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ARTICLE

Expanding the genetic architecture of nicotine
dependence and its shared genetics with
multiple traits
Bryan C. Quach et al.#

Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic

variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We

present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association

study in 58,000 European or African ancestry smokers. We observe five genome-wide

significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2

(rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using

the heaviness of smoking index from UK Biobank (N= 33,791), rs2714700 is consistently

associated; rs1862416 is not associated, likely reflecting nicotine dependence features not

captured by the heaviness of smoking index. Both variants influence nearby gene expression

(rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of

genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine

dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking

traits (rg= 0.40–1.09) and co-morbidities. Our results highlight nicotine dependence-specific

loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of

smoking.

https://doi.org/10.1038/s41467-020-19265-z OPEN

#A list of authors and their affiliations appears at the end of the paper.
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C igarette smoking remains the leading cause of preventable
death worldwide1, despite the well-known adverse health
effects. Smoking causes more than 7 million deaths

annually from a multitude of diseases including cancer, chronic
obstructive pulmonary disease (COPD), and heart disease1,2.
Cigarette smoking is a multi-stage process consisting of initiation,
regular smoking, nicotine dependence (ND), and cessation. Each
step has a strong genetic component (for example, twin-based
heritability estimates up to 70% for the transition from regular
smoking to ND3,4) and partial overlaps are expected among the
sets of sequence variants correlating with the different stages3, as
evidenced by findings of the GWAS and Sequencing Consortium
of Alcohol and Nicotine use (GSCAN) with sample sizes up to 1.2
million individuals5. GSCAN identified 298 genome-wide sig-
nificant loci associated with initiation (ever vs. never smoking),
age at initiation, cigarettes per day (CPD), and/or cessation
(current vs. former smoking); 259 of the loci harbored significant
associations with initiation5.

In comparison to other stages of smoking, known loci for ND are
limited. Only six reproducible, genome-wide significant loci have
been identified: CHRNB3-CHRNA6 (chr8p11), DBH (chr9q34),
CHRNA5-CHRNA3-CHRNB4 (chr15q25), DNMT3B and NOL4L
(chr20q11), and CHRNA4 (chr20q13)6. A more complete under-
standing of the genetics underlying ND is needed, as it could help to
predict the likelihood of quitting smoking, withdrawal severity,
response to treatment, and health-related consequences7–10. The
Fagerström Test for ND (FTND), also called the Fagerström Test for
Cigarette Dependence11, provides a composite phenotype that cap-
tures multiple behavioral and psychological features of ND among
smokers12. While CPD is associated with key markers of ND, such
as cessation likelihood13, the FTND conveys additional valuable
information by including 5 items in addition to CPD. FTND is
meaningfully associated with tobacco use diagnostic criteria from the
Diagnostic and Statistical Manual of Mental Disorders14,15 and is

more highly associated with withdrawal severity than is CPD7. Its
validity may be due to the inclusion of the time-to-first-cigarette in
the morning (TTFC) item, which appears to be especially strongly
associated with relapse likelihood16–18 and may be an especially
informative measure of heritability of ND19. Thus, the FTND pro-
vides somewhat different information than CPD alone and has been
relatively understudied from a genetic perspective because of its
more limited availability across datasets.

The FTND score, based on totaling responses to the 6 items
that constitute the FTND, ranges from 0 (no dependence) to 10
(highest dependence level)12,20. In the present study, we cate-
gorize FTND scores as mild (scores 0–3), moderate (scores 4–6),
or severe (scores 7–10), as done before in studies comprising our
Nicotine Dependence GenOmics (iNDiGO) Consortium21,22. We
expand upon our prior analyses and report findings from the
largest GWAS meta-analysis for ND (N= 58,000; 46,213 Eur-
opean [EUR] ancestry and 11,787 African American [AA] par-
ticipants from 23 studies). Our findings highlight two genetic loci
with previously unreported associations with cigarette smoking,
genetic correlations between ND and 18 other phenotypes, and
enrichment of ND heritability with genes expressed in cere-
bellum. By testing GSCAN-identified loci5, we report loci whose
associations with other smoking outcomes, such as CPD, extend
to ND. Our findings support a complex polygenetic architecture
of ND, with neurobiological indications, including loci shared
across smoking traits and ND-specific loci.

Results
GWAS meta-analysis finds two novel SNP associations with ND.
Our cross-ancestry ND GWAS meta-analysis (λ= 1.035, Supple-
mentary Fig. 1A) identified five genome-wide significant loci
(Fig. 1). Associations of the lead SNPs (single nucleotide poly-
morphisms) from each of these five loci are shown in Table 1.
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Fig. 1 Cross-ancestry nicotine dependence genome-wide association meta-analysis results. This study comprises 23 iNDiGO studies with total
N= 58,000 biologically independent samples from European and African American ancestry ever smokers. The –log10 meta-analysis p-values of single
nucleotide polymorphisms (SNPs; depicted as circles) and insertions/deletions (indels; depicted as triangles) are plotted by chromosomal position. Five
loci surpassed the genome-wide statistical significance threshold (P < 5 × 10−8, as marked by the solid horizontal black line).
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All genome-wide significant SNP/indel associations from the cross-
ancestry meta-analysis are provided in Supplementary Data 1.

Three of the genome-wide significant loci have known
associations with ND from our prior GWAS and others6:
chr15q2521–23 (smallest P= 1.6 × 10−39 for rs16969968, a well-
established functional missense [D398N] CHRNA5 SNP24)
chr20q1321 (smallest P= 1.2 × 10−12 for rs151176846, an intro-
nic CHRNA4 SNP), and chr9q3422 (smallest P= 1.1 × 10−8 for
rs13284520, an intronic DBH SNP). In the EUR-specific GWAS
meta-analysis, the loci spanning nicotinic acetylcholine receptor
genes (CHRNA5-A3-B4 and CHRNA4), but no novel loci, were
identified at genome-wide significance (λ= 1.036, Supplementary
Figs. 1B and 2A). No genome-wide significant loci were found in
the GWAS meta-analysis among AAs (λ= 1.032, Supplementary
Figs. 1C and 2B).

Two genome-wide significant loci from the cross-ancestry
meta-analysis represent novel associations with ND. On chr7q21,
the most significant SNP (P= 2.3 × 10−9) was rs2714700, a SNP
between the MAGI2 and GNAI1 genes (Supplementary
Fig. 3A–B). The most significant SNP on chr5q34, rs1862416
(P= 1.5 × 10−8), sits within an intron for TENM2 (Supplemen-
tary Fig. 3C–D). Both SNPs imputed well: sample size-weighted
mean estimated r2 values were 0.97 for rs2714700 and 0.92 for
rs1862416. Further, both SNPs were common, and their
associations with ND were observed across EURs and AAs
(Table 1) and were largely consistent across studies (Supplemen-
tary Fig. 4A–B): rs2714700-T being associated with reduced risk
(meta-analysis odds ratio [OR] and 95% confidence interval
[CI]= 0.96 [0.94–0.97]) and rs1862416-T being associated with
increased risk (meta-analysis OR [95% CI]= 1.08 [1.05–1.11]) for
severe vs. mild ND. These comparisons of dissimilar categories
were derived from the GWAS regression coefficients (i.e., OR=
exp[2 × β] for severe vs. mild ND, with OR > 1 corresponding to
an increased risk of severe ND) to contextualize the magnitude of
the observed effect sizes. Neither SNP showed evidence for
heterogeneity, based on the I2 index25, across studies (P= 0.83 for
rs2714700 and 0.75 for rs1862416). Leave-one-study-out analyses
(Supplementary Table 1) revealed some variability in p-values
(P= 3.1 × 10−7–7.4 × 10−9 for rs2714700 and P= 5.6 × 10−9–
3.9 × 10−6 for rs1862416), likely due to fluctuating statistical
power given the significant correlation between N (sample size)
and p-value across iterations: r=−0.65, P= 8.6 × 10−5. How-
ever, there was little variation in the effect sizes (range of β values
corresponding to the OR for severe vs. mild ND= 0.95 – 0.96 for
rs2714700-T and 1.07 – 1.08 for rs1862416-T).

We compared the novel ND-associated SNPs with results
reported for other smoking traits by GSCAN5. European ancestry
participants from 8 iNDiGO studies were included in GSCAN
(Supplementary Table 2). Both the MAGI2/GNAI1 SNP
rs2714700 and the TENM2 SNP rs1862416 were nominally
associated at P < 0.05 with ever vs. never smoking and rs2714700
with CPD in consistent directions with ND; neither SNP was
associated with age at initiation or smoking cessation (Supple-
mentary Table 3). Other SNPs near rs1862416 were associated at
genome-wide significance with ever vs. never smoking in GSCAN
(Supplementary Table 4).

For replication in an independent sample, we analyzed the two
novel SNPs (rs2714700 and rs1862416) for association with the
heaviness of smoking index (HSI) in the UK Biobank. Results are
shown in Supplementary Table 5. HSI is based on two items
(CPD and TTFC) of the 6 items that constitute the FTND; the
HSI and full-scale FTND are highly correlated (e.g., r= 0.7
among nondaily smokers and 0.9 among daily smokers)26. The
MAGI2/GNAI1 SNP, rs2714700, was associated with HSI at
P= 0.014, which surpassed Bonferroni correction for two SNP
tests, and meta-analysis of iNDiGO studies with UK BiobankT
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(total N= 91,791) supported rs2714700-T being associated with
milder ND (P= 7.7 × 10−9). The TENM2 SNP, rs1862416, was
not associated with HSI in the UK Biobank (P= 0.39).

To determine whether the novel genome-wide associations were
driven by specific FTND items or shared across items, we returned
to the iNDiGO studies, tested SNP associations with each specific
FTND item, and combined results via cross-ancestry meta-
analyses. For rs2714700, we observed the lowest p-values for the
two items that constitute the HSI (Fig. 2a): TTFC (P= 5.3 × 10−4)
and CPD (P= 1.1 × 10−3). Rs2714700 was also associated at P <
0.05 with difficult in refraining from smoking in forbidden places
(P= 0.025) and the cigarette most hated to give up (P= 0.030).
Rs1862416 was associated with TTFC (P= 0.018) and two items
that are not captured by the HSI: the cigarette most hated to give
up (P= 0.015) and smoking when ill (P= 0.023) (Fig. 2b).

GWAS findings for other smoking traits extend to ND. We
assessed whether genome-wide significant SNPs identified for

smoking traits in GSCAN extended to ND using results from the
cross-ancestry GWAS meta-analysis. We focused on the 55
genome-wide significant SNPs from 40 loci associated with CPD,
given that it displayed the best genetic correlation with ND
(Fig. 3). After applying Bonferroni correction for the 53 SNPs that
were available in our meta-analysis (P < 9.4 × 10−4), 17 SNPs had
a statistically significant and directionally consistent association
with ND (Table 2). These SNPs span six loci reported at genome-
wide or nominal significance in prior GWAS of ND (CHRNA5-
A3-B4 [chr15], CHRNA4 [chr20], DBH [chr9], CHRNB3 [chr8],
CYP2A6 [chr19], and NOL4L [near DNMT3B, chr20])6 and three
loci not reported in prior ND GWAS—DRD2 (chr11), C16orf97
(chr16), and CHRNB2 (chr1).

Gene-based association analyses highlight known genetic loci.
Using Hi-C coupled multi-marker analysis of genomic annota-
tion (H-MAGMA)27 on the EUR-specific GWAS meta-analysis
results from iNDiGO, 11 genes when using fetal brain tissue and

MAGl2/GNAl1 SNP allele rs2714700-T

TENM2 SNP allele rs1862416-T

FTND item

a

1: Time to first cigarette after waking

4: Cigarettes per day

2: Difficult to refrain from smoking in forbidden places

3: Cigarette most hated to give up (first in the morning or others)

5: Smoke more during first hours after waking

6: Smoke when ill

FTND item

1: Time to first cigarette after waking

–0.050 –0.025
Beta (95% CI)

0.000

0.025 0.050–0.025

Beta (95% CI)

0.000

4: Cigarettes per day

2: Difficult to refrain from smoking in forbidden places

3: Cigarette most hated to give up (first in the morning or others)

5: Smoke more during first hours after waking

6: Smoke when ill

b

Fig. 2 Single nucleotide polymorphism (SNP) associations with specific Fagerström Test for Nicotine Dependence (FTND) items. Beta values and
corresponding 95% confidence intervals (CIs) were taken from cross-ancestry meta-analysis of a rs2714700 and b rs1862416 using linear regression
models for categorical FTND item responses (1 and 4, closed diamonds) or logistic regression models for binary FTND item responses (2, 3, 5, and 6, open
diamonds) across the iNDiGO studies (N up to 47,569 biologically independent samples with complete FTND data contributing to the specific item
analyses). Diamonds indicate the beta values, and error bars correspond to the 95% CI estimates for the beta values.
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13 genes when using adult brain tissue were associated with ND
at P < 2.7 × 10−6, based on correction for testing 18,655 protein
coding genes. See Supplementary Data 2 and 3 for the genome-
wide H-MAGMA results for fetal and adult tissues, respectively.
Of the 16 unique genes identified, 10 genes in three known loci
were associated with HSI in the UK Biobank at P < 0.0031, based
on correction for testing 16 genes (Supplementary Table 6): the
ACSBG1-WDR61-IREB2-HYKK-PSMA4-CHRNA5-CHRNA3-
CHRNAB4-ADAMTS7-MORF4L1 gene cluster on chr. 15q25,
CHRNA4 on chr. 20q13, and the ADAMTSL2 and DBH genes in
close proximity on chr. 9q34. Two novel genes on distinct
chromosomes were identified in iNDiGO (AFG1L on chr. 6q21
and AK2 on chr. 1p35), but their associations were not corro-
borated in UK Biobank.

We also applied Summary-MultiXcan (S-MultiXcan)28 to the
EUR-specific GWAS meta-analysis results from iNDiGO and
found significant associations for two chromosome 15q25 genes
(PSMA4 and CHRNA5), when considering cis-expression quanti-
tative trait loci (cis-eQTL) evidence from either the multi-tissue or
single best tissue (substantia nigra). See Supplementary Data 4 for
the genome-wide S-MultiXcan results. Both genes were also
associated with HSI in UK Biobank from multi-tissue (P= 2.4 ×
10−8 for PSMA4 and 1.3 × 10−6 for CHRNA5) or single best tissue

(P= 9.6 × 10−14 for PSMA4 and 4.6 × 10−8 for CHRNA5, both in
substantia nigra).

ND is genetically correlated with 18 other phenotypes. We
estimated the heritability explained by common SNPs of ND at h2g
(standard error) = 0.086 (0.012), using LDSC29 and the EUR-
specific GWAS meta-analysis results. We also found statistically
significant genetic correlations of ND with 18 phenotypes (Bon-
ferroni-corrected P < 0.0011; Fig. 3 and Supplementary Table 7).
Positive correlations indicate that the genetic predisposition to
higher ND risk was correlated with genetic risks for other smoking
traits5 (smallest P= 3.1 × 10−70 for higher CPD [rg= 0.95], fol-
lowed by P= 3.4 × 10−16 for current smoking [rg= 0.51], P=
3.2 × 10−16 for ever smoking [rg= 0.40], and P= 1.8 × 10−13 for
HSI [highest rg at >1]). We repeated LDSC, after removing all
chr15q25 variants between 78.5 and 79.5 megabases (MB) and
found only negligible differences in these correlations (rg= 0.94
for higher CPD, rg= 0.51 for current smoking, and rg= 0.42 for
ever smoking). Beyond the smoking traits, with all SNPs included,
higher ND was genetically correlated with higher risks of alcohol
dependence30, neuroticism31, psychiatric diseases (attention deficit
hyperactivity disorder32, bipolar disorder33, major depressive

Heaviness of smoking
Cigarettes per day (GSCAN)

Cotinine levels

Cannabis use disorder
Alcohol drinks per week (GSCAN)

Lifetime cannabis use (ever vs. never)

Smoking cessation (current vs. former, GSCAN)

Smoking initiation (ever vs. never, GSCAN)
Age of smoking initiation (GSCAN)

Alcohol dependence

Squamous cell lung cancer
Lung cancer

Lung adenocarcinoma
Small cell carcinoma

Adiponectin
COPD

Forced expiratory volume in 1 second (FEV1)/Forced vital capacity (FVC)
Cigarette smoking

Drug and alcohol use

Cancer

Cardiometabolic

Respiratory

Neurological

Cognitive/education

Personality

Psychiatric

Brain volume

Forced expiratory volume in 1 second (FEV1)
Forced vital capacity (FVC)

Parkinsons disease
Amyotrophic lateral sclerosis

Alzheimers disease
Intelligence

Childhood lQ
College completion

Years of schooling
Neuroticism

Conscientiousness
Openness to experience

Posttraumatic stress disorder
Attention deficit hyperactivity disorder

Depressive symptoms
Major depressive disorder

Bipolar disorder
Autism spectrum disorder

Schizophrenia
Psychiatric cross–disorder

Anorexia nervosa
Subjective well being

Putamen volume
Accumbens volume

Pallidum volume
Caudate volume

Thalamus volume
Hippocampus volume

Intracranial volume

–0.5 0.0 0.5
rg

1.0

Coronary artery disease

Fig. 3 Genetic correlations of nicotine dependence (ND) with 47 other phenotypes. Correlations were calculated using linkage disequilibrium (LD) score
regression with the iNDiGO European ancestry-specific GWAS meta-analysis results for ND (N= 46,213 biologically independent samples), compared
with results made available via LD Hub or study investigators (see Supplementary Table 7 for original references). Phenotypes were grouped by disease/
trait or measurement category, as indicated by different colorings. Dots indicate the mean values for genetic correlation (rg); error bars show the 95%
confidence intervals; the dashed vertical black line corresponds to rg= 0 (no correlation with ND), and the solid vertical black line corresponds to rg= 0
(complete correlation with ND). Phenotypes with significant correlation with ND are bolded (1 degree of freedom Chi-square test; Bonferroni adjusted
p-value <0.05 after accounting for 47 independent tests). Exact p-values are provided in Supplementary Table 7.
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disorder34 and its symptoms31, posttraumatic stress disorder, and
schizophrenia35) and smoking-related consequences (lung cancer
and its histological subtypes36 and coronary artery disease37).
Among these positively correlated traits, rg values ranged from 0.18
(schizophrenia) to 0.75 (squamous cell lung cancer). Higher risk of
ND was genetically correlated with lower age of smoking initiation5

(rg=−0.55) and fewer years of schooling38 (rg=−0.34).
For the traits with statistically significant genetic correlations with

ND from the cigarette smoking, drug and alcohol use, personality,
and psychiatric categories, we applied pairwise GWAS (GWAS-
PW)39 to identify shared genetic influences between FTND and
each of these traits (Supplementary Fig. 5). GWAS-PW provides
posterior probabilities for several models of genetic influence,
including whether a given genomic region contains a variant that
influences only ND (model 1), only the other trait (model 2), or
both ND and the other trait (model 3). It also considers the scenario
of whether the region contains a variant that influences ND and a
separate variant influences the other trait (model 4). Both novel
FTND-associated GWAS loci showed large probabilities for model
4 when comparing alcohol dependence and ND (posterior
probabilities >0.97). The region surrounding rs2714700 also showed
large model 4 probabilities for comparisons with depressive
symptoms and schizophrenia. The region surrounding rs1862416
exhibited large model 3 probabilities for major depressive disorder
and smoking initiation.

Rs1862416 was located within the boundaries of a genome-wide
significant locus for smoking initiation (chr5:164,596,435-
168,114,971), and to assess the independence of association signals
at the single variant level, we performed conditional modeling using
Genome-wide Complex Trait Analysis (GCTA)40,41. All 6 lead
SNPs in this GSCAN-identified locus were in low LD with
rs1862416 (maximum r2= 0.0047 (Supplementary Fig. 6), max-
imum D′= 0.46), and three were nominally associated with ND at
P < 0.05 (Supplementary Table 4). Among our iNDiGO studies,
rs1862416 remained associated with ND in models conditioned on
each GSCAN lead SNP individually (P= 7.9 × 10−8–1.8 × 10−8)
and with all 6 SNPs taken together (P= 2.2 × 10−7). Rs2714700 was
located >1 MB away from any GSCAN-identified locus, so

conditional modeling was not necessary. Altogether, the GWAS-
PW results suggest pleiotropy of smoking-related and comorbid
traits in our two novel ND-associated regions, but at the variant
level, the rs2714700 and rs1862416 associations with ND are
independent of the GSCAN-identified variants.

Regulatory annotations suggest target genes. Credible set ana-
lysis of the chr7q21 locus narrowed the list of most likely causal
variants to the lead SNP (rs2714700) and three others (rs2714674,
rs1464692, and rs2707864) (Supplementary Table 8). Rs2714700,
an intergenic SNP, is not a significant cis-eQTL with any gene-
level expression in the Genotype-Tissue Expression (GTEx; v8)
project, but it was implicated as a cis-eQTL for the MAGI2-AS3
transcript in hippocampus from BrainSeq42 (N= 551; P= 8.5 ×
10−4). The protective allele for ND (rs2714700-T) was associated
with higher expression of the MAGI2-AS3 transcript
ENST00000414797.5. Rs1464692 was also implicated as a cis-
eQTL for the MAGI2-AS3 transcript in hippocampus from
BrainSeq (N= 551; P= 8.1 × 10−4), and rs2707864 is located in a
DNaseI hypersensitivity site in adult and fetal fibroblast cells in
HaploReg39 (Supplementary Table 8).

The lead SNP at the chr5q34 locus, rs1862416, is annotated to
enhancer histone marks in brain (specifically, germinal matrix
during fetal development and the developed prefrontal cortex,
anterior caudate, and cingulate gyrus tissues) and several other
tissues in HaploReg43. It is also located in the promoter of CTB-
77H17.1, which is a novel antisense RNA transcript encoded
within a TENM2 intron. In GTEx, rs1862416 was reported as a
significant lung-specific cis-eQTL SNP for TENM2. The ND risk-
conferring allele (rs1862416-T) was associated with decreased
gene-level TENM2 expression in lung. CTB-77H17.1 was too
lowly expressed across GTEx tissues to test its expression levels by
rs1862416. Two additional, potentially causal variants identified
in a credible set analysis were similarly annotated to enhancer and
promoter markers in brain (prefrontal cortex, astrocyte) and fetal
lung in HaploReg (rs36064369) and as lung-specific cis-eQTL in
GTEx (rs116612101) (Supplementary Table 8).

Table 2 Single nucleotide polymorphisms (SNPs) identified as genome-wide significant for cigarettes per day (CPD) by the
GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium and associated with nicotine dependence
(ND) in the Nicotine Dependence GenOmics (iNDiGO) consortium.

SNP (effect allele) Chr:position (NCBI build 37) Gene/nearest gene(s) GSCAN β (SE), P iNDiGO β (SE), P

rs7125588a (G) 11:113,436,072 DRD2 / TMPRSS5 −0.014 (0.0020), 6.5 × 10−12 −0.016 (0.0042), 1.8 × 10−4

rs1592485a (A) 16:52,093,549 C16orf97 −0.013 (0.0021), 1.1 × 10−10 −0.015 (0.0043), 4.5 × 10−4

rs2072659a (G) 1:154,548,521 CHRNB2 −0.025 (0.0038), 2.5 × 10−13 −0.026 (0.0078), 8.4 × 10−4

rs146009840b (T) 15:78,906,177 CHRNA3 0.030 (0.0036), 2.0 × 10−17 0.060 (0.0046), 2.6 × 10−39

rs72740955b (T) 15:78,849,779 PSMA4 / CHRNA5 0.040 (0.0033), 2.4 × 10−34 0.058 (0.0045), 1.5 × 10−38

rs10519203b (A) 15:78,814,046 HYKK −0.075 (0.0021), 3.1 × 10−286 −0.050 (0.0042), 7.7 × 10−32

rs8040868b (C) 15:78,911,181 CHRNA3 0.022 (0.0034), 1.8 × 10−10 0.044 (0.0041), 7.3 × 10−27

rs12438181b (A) 15:78,812,098 HYKK −0.023 (0.0037), 5.0 × 10−10 −0.039 (0.0049), 2.6 × 10−15

rs3743063b (C) 15:79,065,171 ADAMTS7 −0.023 (0.0035), 1.5 × 10−11 −0.030 (0.0042), 6.8 × 10−13

rs28681284b (T) 15:78,908,565 CHRNA3 −0.049 (0.0030), 2.1 × 10−58 −0.035 (0.0051), 1.1 × 10−11

rs2273500b (C) 20:61,986,949 CHRNA4 0.031 (0.0029), 3.5 × 10−26 0.034 (0.0058), 4.0 × 10−9

rs3025383b (C) 9:136,502,369 DBH −0.026 (0.0026), 9.8 × 10−24 −0.025 (0.0049), 1.8 × 10−7

rs28438420b (T) 15:78,836,288 PSMA4 0.020 (0.0028), 1.3 × 10−12 0.020 (0.0041), 7.9 × 10−7

rs75596189b (T) 9:136,468,701 FAM163B / DBH 0.035 (0.0037), 1.8 × 10−20 0.030 (0.0066), 8.1 × 10−6

rs4236926b (G) 8:42,578,059 CHRNB3 0.028 (0.0024), 7.7 × 10−33 0.021 (0.0048), 1.6 × 10−5

rs56113850b (C) 19:41,353,107 CYP2A6 0.043 (0.0021), 4.0 × 10−99 0.018 (0.0042), 2.1 × 10−5

rs1737894b (G) 20:31,054,702 NOL4L 0.014 (0.0021), 9.9 × 10−12 0.017 (0.0043), 1.1 × 10−4

SNPs were associated with CPD at P < 5 × 10−8 in GSCAN (N= 330,721 biologically independent samples) and with ND at P < 9.4 × 10−4 (α= 0.05/53 tests) in the cross-ancestry meta-analysis from
iNDiGO (N= 58,000 biologically independent samples). Results are sorted by novelty (first three SNPs are previously unreported for ND) and then by iNDiGO p-values, and β values correspond to
direction of association for the effect alleles, with standard errors (SEs) shown.
NCBI National Center for Biotechnology Information.
aThe locus flanking this SNP was not reported by prior GWAS of ND.
bSNP is located in a locus that was reported by prior GWAS of ND.
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ND heritability is enriched for genes expressed in cerebellum.
To assess whether heritability of ND is enriched in regions sur-
rounding genes with the highest specific expression patterns in
given tissue/cell type(s), we applied LDSC-SEG44 using the EUR-
specific ND GWAS meta-analysis results with reference to 205
tissues/cell types with publicly available gene expression data
assembled from GTEx45 (53 human tissues/cell types) and the
underlying data that is used to comprise the Data-driven
Expression Prioritized Integration for Complex Traits
(DEPICT) tool46,47 (152 tissues/cell types from humans and
rodent models). We observed statistically significant enrichment
in one tissue (cerebellum) at Bonferroni-corrected P < 2.4 × 10−4

(Supplementary Data 5), indicating that genes spanning ND-
associated SNPs are enriched for specific expression in the cere-
bellum relative to other tissues/cell types.

Combining evidence across FTND and HSI finds additional
loci. Given the strong genetic correlation between FTND and HSI
(rg > 1, Supplementary Table 7), we expanded our GWAS meta-
analyses in the iNDiGO cohorts by additionally including the
HSI-based UK Biobank results. The cross-ancestry GWAS meta-
analysis (N= 91,791) is presented in Supplementary Figs. 7–8.
Seven genome-wide significant loci were identified: ARHGAP25
(chr2p13), MAGI2/GNAI1 (chr7q21), CHRNB3 (chr8p11),
FAM163B/DBH (chr9q34), AGPHD1 (nearby CHRNA5;
chr15q25), CYP2A6 (chr19q13), and CHRNA4 (chr20q13) (see
Supplementary Table 9 for lead SNP results). Of these, only the
ARHGAP25 locus, tagged by rs144481999, was previously unre-
ported for any cigarette smoking phenotype. Although mono-
morphic among African Americans, rs144481999 is a low
frequency (minor allele frequency [MAF]= 1.5%), but well-
imputed (Rsq= 0.70‒0.98), SNP in European ancestry cohorts,
and the association of its T allele with increased risk is supported
by several cohorts (e.g., P < 0.05 in deCODE, OZ-ALC, Yale-
Penn, and UK Biobank).

Discussion
We expanded current knowledge of ND in this largest GWAS to
date, by identifying novel genome-wide significant loci as well as
known loci, extending associations of additional loci implicated
for other smoking phenotypes, and detecting significant genetic
correlations of ND with 18 other complex phenotypes and with
gene expression in cerebellum. The top novel SNPs between
MAGI2 and GNAI1 (chr7q21), at TENM2 (chr5q34), and at
ARHGAP25 (chr2p13) were independent of previously reported
GWAS signals for any smoking trait. Three of our genome-wide
significant loci were known: (1) CHRNA5-CHRNA3-CHRNB4
(chr15q25) is irrefutably associated with ND, as driven largely by
CPD6. (2) Our initial GWAS meta-analysis of 5 studies (now part
of the iNDiGO consortium)21 identified CHRNA4 (chr20q13) at
genome-wide significance. Subsequent associations were found
with heavy vs. never smoking in the UK Biobank48 and with
initiation, CPD, and cessation in GSCAN5. (3) DBH (chr9q34)
was first identified as genome-wide significant for smoking ces-
sation but later associated with ND in our meta-analysis of
15 studies (now part of the iNDiGO consortium)22 and with CPD
and cessation in GSCAN5. Known loci were corroborated at the
gene level with aggregated single SNP associations that take
physical proximity and chromatin interactions or cis-eQTL evi-
dence into account.

The novel ND-associated locus with lead SNP rs2714700 is
intergenic between MAGI2 (membrane associated guanylate
kinase, WW and PDZ domain containing 2) and GNAI1 (G
protein subunit alpha i1). We identified rs2714700 at genome-
wide significance for its association with ND, which was driven by

CPD (unlike rs1862416), TTFC, and other FTND items, indicat-
ing that this SNP association may reflect both primary and sec-
ondary features of ND. Primary (or core) features of ND are
necessary and sufficient for habit formation (heaviness of smoking
[tolerance], automaticity, loss of control, and craving), while sec-
ondary features of ND underlie smoking that is goal based, e.g.,
relief of negative mood or cognitive enhancement49–52. Rs2714700
was also associated with HSI in the independent UK Biobank. The
cis-eQTL evidence for rs2714700 in the hippocampus suggests that
it may influence expression of the long noncoding RNA MAGI2-
AS3 (MAGI2 antisense RNA 3). MAGI2-AS3 has been mainly
studied for its role in the progression of cancer, including glioma
in the brain53. No genome-wide significant associations have been
reported within 1 MB of rs2714700 in the GWAS catalog. Our
evidence of genome-wide significance for rs2714700 points to a
novel locus that has not been associated with smoking or any
related trait, and its functional relevance merits further
investigation.

We also observed a genome-wide significant association of ND
with rs1862416, a lung-specific cis-eQTL for TENM2. TENM2
encodes teneurin transmembrane protein 2, a cell surface receptor
that plays a fundamental role in neuronal connectivity and
synaptogenesis54. With rs1862416 residing in the promoter of
CTB-77H17.1, it could influence this antisense RNA, which in
turn could dysregulate its sense transcript, TENM2. As an illus-
trative example, the SNP rs4307059, identified at genome-wide
significance and independently replicated for autism55, is anno-
tated to and acts as a promoter region cis-eQTL for the antisense
RNA MSNP1AS (moesin pseudogene 1, antisense) that influences
regulation of its sense transcript, MSN56. However, while
rs1862416 is generally indicated for its potential regulatory role
(i.e., enhancer and promoter annotations and cis-eQTL evidence),
its specific effect on either CTB-77H17.1 or TENM2 regulation in
brain tissue was not evident in currently available data.

Further, independent association testing using HSI in the UK
Biobank did not yield statistical significance for rs1862416.
Similarly, the gene-based associations for the novel loci were not
corroborated in UK Biobank. These differences in observed SNP-
and gene-based associations may reflect components of ND that
are not fully captured by the two FTND items that comprise the
HSI (TTFC and CPD), as suggested by the specific FTND item
association testing among the iNDiGO studies. Rs1862416 was
suggestively associated (P < 0.05) with TTFC, “Which cigarette
would you hate most to give up?” (the first one in the morning vs.
all others), and “Do/did you smoke if you are so ill that you are in
bed most of the day?” (yes/no). These item responses reflect
withdrawal symptoms that are indicative of secondary features of
ND, as compared with primary features of ND associated with
habit formation49–52. Having the composite ND phenotype may
have enhanced our power for discovering TENM2, but its
detection in the UK Biobank may have been limited by the reli-
ance on the HSI.

Beyond our discovery of rs1862416 with ND, SNPs across the
TENM2 gene have been identified at genome-wide significance, as
presented in the GWAS catalog57, for educational attainment38,
smoking initiation (ever vs. never smoking)5,58–60, age of smok-
ing initiation5, smoking cessation (current vs. former smoking)5,
cigarette pack-years61, alcohol consumption (drinks per week)5,
lung function60,62, height60, number of sexual partners58,
depression63,64, risk taking tendency58, body mass index60,
menarche (age at onset)65, and regular attendance at a religious
group66. Our pairwise comparisons supported pleiotropic asso-
ciations in the TENM2 region. At the variant level, all TENM2
SNPs in the GWAS catalog have very low r2 values with our novel
SNP, rs1862416 (Supplementary Fig. 6), and our conditional
modeling results showed that rs1862416 was associated with ND
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independently from other TENM2 SNPs implicated in GSCAN.
While rs1862416 may have an ND-specific effect, the TENM2
region has pleiotropic effects on ND, traits that are genetically
correlated with ND, and other traits.

By combining ND GWAS results from iNDIGO with the
highly correlated HSI results from the UK Biobank, our study also
implicated the low frequency rs144481999, an intronic SNP in
ARHGAP25 (Rho GTPase Activating Protein 25). This finding
merits independent replication testing and further biological
characterization, as little is known about the regulatory potential
of rs144481999 or its flanking ARHGAP25 gene in relation to
addiction.

The genetics of smoking behaviors, more broadly, has rapidly
evolved with the GSCAN consortium having amassed a very large
sample size and identified 298 genome-wide significant loci for
smoking traits representing single components: ever vs. never
smoking, age of smoking initiation, CPD, and current vs. former
smoking5. We observed statistically significant genetic correla-
tions of each of these smoking traits with ND (highest rg= 0.95,
as observed between ND and CPD), yet our two novel ND-
associated loci were not identified at genome-wide significance by
GSCAN (smallest P= 0.033 for rs1862416-T; smallest P= 0.016
for rs2714700-T), suggesting that these loci are specific to ND.
Similarly, the majority of GSCAN-identified loci were trait-
specific (191 of the 298 loci), whereas the other 107 loci were
pleiotropic with associations identified for two or more of the
smoking traits5. In our evaluation of GSCAN-identified loci, we
corroborated associations of several previously implicated loci for
ND (e.g., nicotine acetylcholine receptors genes CHRNA5-A3-B4
and CHRNA4) and three additional loci (DRD2, C16orf97, and
CHRNB2) that have not been reported in prior ND GWAS. Of
these loci, DRD2 is notable as a long-studied addiction candidate
gene4 and its recent identification as genome-wide significant for
alcohol use disorder for rs493627767, which is correlated
(r2= 0.94 in 1000 G EUR, 0.82 in 1000 G AFR) with rs7125588,
the top SNP identified for CPD in GSCAN and associated with
ND in iNDiGO; these results support a shared genetic effect of
DRD2 underlying addiction. Notably, rs7125588 is not correlated
(r2= 0.04 in 1000 G EUR, 0.01 in 1000 G AFR) with the DRD2
variant rs1800497 (historically referred to as the ‘Taq1A’ poly-
morphism), which is not significantly associated with ND in
iNDiGO (P= 0.24).

Other GSCAN loci were detected for the single component
smoking traits but show no evidence for association in our study
(Supplementary Data 6), suggesting that these loci influence
stages of smoking other than ND, or they exert weak effects on
ND that we were underpowered to detect. We expect that addi-
tional GSCAN-identified loci are associated with ND, but their
detection will require a larger sample size. These results
demonstrate the utility of studying the genetics of the composite
ND phenotype and comparing with GWAS of other smoking
traits to tease apart loci that are specific to one stage (i.e.,
initiation, regular smoking, ND, cessation) vs. loci that influence
multiple stages to better understand the full spectrum of smoking
behaviors.

Beyond the smoking traits, we observed significant genetic cor-
relations between ND and alcohol dependence30, years of school-
ing38, neuroticism31, comorbid psychiatric traits (attention deficit
hyperactivity disorder32, bipolar disorder33, major depression34,
schizophrenia35, and posttraumatic stress disorder68) and smoking-
related health consequences (lung cancer36 and coronary artery
disease37). Some of these observations corroborate prior findings
(for example, alcohol dependence30 and schizophrenia69,70 with
ND), whereas the other correlations extend to ND prior observa-
tions for the single component smoking traits (for example, CPD
with years of schooling5, neuroticism5, major depression5, coronary

artery disease5, and lung cancer36). The genetic correlation between
ND and gene expression in cerebellum is a notable observation
consistent with cerebellum-specific cis-eQTL effects observed for
the ND-associated DNMT3B SNP rs91008322 and the age of
smoking initiation-associated CHRNA2 SNP rs1178047136, both of
which are also associated with lung cancer. These findings add to
the evidence that the cerebellum may be important for ND risk71,72,
in addition to the other addiction-relevant brain tissues. However,
since the cerebellum contains a higher neuronal concentration than
other brain tissues44,73, future studies are needed to decipher
whether the cerebellar gene regulatory effects in the etiology of ND
are due to neuronal activity. Additionally, although genetic corre-
lation between ND and another trait suggest shared genetics
underlying the phenotypes, multiple mechanisms can produce
significant correlations (i.e., unmeasured intermediary phenotypes,
correlated risk variants, mediation)74–76. Identifying the true
mechanistic explanation requires further investigations.

In addition to the correlation between ND and cerebellar gene
expression, the functional annotation of ND-associated loci using
several gene-based analyses and enrichment tests implicated gene
expression in multiple tissues and brain regions as relevant to ND
(e.g., substantia nigra, hippocampus, and lung). Although it may
appear that these methods produce discrepant results, it is
important to consider the differences in reference data, model
assumptions, and motivations underlying the methods for these
analyses when interpreting findings. For example, S-MultiXcan
provides the smallest p-values when using the single best tissue
model (substantia nigra), but this does not indicate that the
functional relevance of the ND-associated loci is exclusive to this
brain region. The multi-tissue models also identified statistically
significant ND associations with PSMA4 and CHRNA5. Together
these results highlight substantia nigra but also convey the rele-
vance of other brain regions. Relatedly, the lack of substantia
nigra evidence for BrainSeq eQTLs is not a discrepant finding.
The reference data underlying the BrainSeq eQTLs only includes
hippocampus and prefrontal cortex gene expression, thus this
resource offers complementary information.

The present ND GWAS meta-analysis follows two prior waves
of data assembly by the iNDiGO consortium (Ns= 17,07421,
38,60222, and now 58,000) and is the largest to date for the field.
Despite still having substantially smaller sample sizes than the
GSCAN GWAS, at each wave, increasing sample size for diverse
ancestry groups (EURs and AAs) has illuminated ND-associated
loci, some of which are shared with other stages of smoking while
others are specific to ND. Our present findings underscore the
complexity even within the ND phenotype, as our novel loci
displayed patterns of association with specific FTND items that
reflect primary or secondary ND features, e.g., the TENM2 SNP
influenced secondary features that are not captured simply by
HSI. Future studies are needed to further dissect the genetic
architectures underlying each of the specific FTND items.
Understanding genetic similarities and differences that underlie
these items and their contributions to primary vs. secondary ND
may better inform treatment strategies, e.g., changing environ-
mental cues for individuals whose smoking is driven solely by
primary ND features vs. treating withdrawal for individuals
whose ND is augmented with secondary features51. Studying the
genetics of ND alongside other smoking traits (e.g., initiation and
cessation) is key to gaining a better understanding of the neu-
robiological perturbations that influence the trajectory of smok-
ing behaviors and their treatment implications.

Methods
Study overview. We assembled 58,000 European ancestry or African American
participants from 23 iNDiGO consortium studies with genome-wide SNP geno-
types and FTND phenotype data available for ever smokers to perform ND GWAS
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meta-analyses. Institutional review boards for the respective studies approved the
study protocols, and all participants provided written informed consent. The meta-
analysis combining the summary statistics from the 23 studies was approved by the
RTI International Institutional Review Board. Fifteen of the studies were included
from our prior GWAS using their original or updated sample sizes (total N
increased from 38,60222 to 46,098 in the current analysis), while 8 studies were
added for the current study (total N= 11,902). Participant characteristics are
provided in Supplementary Table 2, and details of the study designs are provided in
the Supplementary Methods. Ever smokers were defined by having reported
smoking 100 or more cigarettes in their lifetime21,22, unless otherwise stated in the
study design description (see Supplementary Methods), and ND was defined by the
FTND12.

Our standard QC pipeline was applied to each study, unless otherwise stated in
the study design description (see Supplementary Methods). Participants were
removed due to genotype missing rate >3%, sample duplication (identity-by-state
>90%), first-degree relatedness (identity-by-descent >40%), gender discordance
(Fst < 0.2 for chromosome X single nucleotide polymorphisms (SNPs) to confirm
females and Fst > 0.8 to confirm males), excessive homozygosity (Fst > 0.5 or Fst <
−0.2), or chromosomal anomalies. SNPs were removed due to missing rate
>3% across samples or Hardy–Weinberg equilibrium (HWE) P < 1 × 10−4.
Genotyped SNPs passing QC were used as input for imputation with reference to
1000 G phase 3 across all studies4, except for deCODE which used an Icelandic
whole genome sequencing-based reference panel77.

FTND and categorical ND definitions for discovery GWAS. The FTND12 is a
well-validated, widely used questionnaire that assesses psychologic dependence on
nicotine using the following six items:

(1) How soon after you wake up do/did you smoke your first cigarette?
Categorical responses: within 5 min, 6–30 min, 31–60 min, or after 60 min.

(2) Do/Did you find it difficult to refrain from smoking in places where it is
forbidden, e.g., in church, at the library, in a cinema, etc.? Binary response:
yes or no.

(3) Which cigarette would you hate most to give up? Binary response: the first
one in the morning or all others.

(4) How many cigarettes per day do/did you smoke? Categorical response: 10 or
less, 11–20, 21–30, or 31 or more.

(5) Do/did you smoke more frequently during the first hours after waking than
during the rest of the day? Binary response: yes or no.

(6) Do/did you smoke if you are so ill that you are in bed most of the day?
Binary response: yes or no.

Additional details on the protocol and scoring algorithm are provided in the
PhenX Toolkit78, a catalog of commonly ascertained phenotype and exposure
measures: https://www.phenxtoolkit.org/protocols/view/31001. Briefly, FTND
scores range from 0 (no dependence) to 10 (highest dependence level)23,79. FTND
can be administered on current or former smokers based on the time period when
they reported smoking the most (i.e., lifetime FTND) or among current smokers
based around the time of interview (i.e., current FTND). We used lifetime FTND
collected among current and former smokers in AAND, ADAA, EAGLE,
COGEND, COGEND2, COPDGene2, deCODE, eMERGE, FINRISK, FTC, GAIN,
JHS/ARIC, MCTFR, nonGAIN, NTR, OZ-ALC, SAGE*, Spit for Science, and Yale-
Penn. We used current FTND that was available in COHRA1, COPDGene,
eMERGE, German, and UW-TTURC. We previously found only small differences
in genetic association results due to any measurement variance when using current
vs. lifetime FTND80.

We used the FTND to derive a categorical variable for ND21,22: scores of 0–3 for
mild, 4–6 for moderate, and 7–10 for severe. We relied solely on the FTND to
define ND, except in two of the 23 studies (deCODE and JHS/ARIC) where we
included smokers with FTND data available as well as low-intensity smokers who
had only CPD data that we used as a proxy measure to define mild dependence
(CPD ≤ 10)21,22. Our prior assessment showed high concordance of CPD ≤ 10 and
FTND scores 0–3 (86.4%)22, suggesting that CPD can be used to define mild
dependence with little phenotype misclassification. However, any phenotype
misclassification would be expected to conservatively bias results, leading to
reduced statistical power, attenuated effect size estimates, and thus underestimate
SNP associations with ND81,82. Moderate and severe dependence was defined
solely by FTND scores across all studies, as our prior assessment showed lower
concordance between FTND and CPD for defining these categories22.

ND GWAS meta-analysis. For each study, genome-wide SNP/indel associations
with the 3-level categorical ND outcome were tested within an ancestry group
using linear regression. Covariates included age, sex, principal component eigen-
vectors, and study-specific covariates where warranted. For studies that included
relatives, relatedness was accounted for in the regression modeling. See Supple-
mentary Methods for additional study-specific details.

GWAS results were combined using fixed-effect inverse variance-weighted
meta-analyses in METAL83. Prior to performing meta-analyses, we applied
genomic control to results from one study, deCODE, to adjust for inflation due to
relatedness among participants (λ= 1.12); all other studies had low inflation
(λ= 0.99–1.04) (Supplementary Table 2). We removed SNPs/indels with MAF <

1% in the 1000 G phase 3 reference panel for the analyzed ancestry group (1000 G
European or African superpopulations), imputation info score < 0.3, or availability
in only one study. All variant annotations correspond to the National Center for
Biotechnology Information (NCBI) build 37. The threshold of genome-wide
significance was set at P= 5 × 10−8 22. Regional association plots of novel genome-
wide significant loci were constructed using LocusZoom84 with references of either
1000 G European or African panels to estimate linkage disequilibrium of the lead
SNP (based on smallest meta-analysis P-value) and surrounding SNPs. The lead
SNP for each novel FTND locus was tested for association with each of the specific
FTND items.

For any ND-associated SNPs located within the bounds of loci identified by
GSCAN (1 MB surrounding the lead SNP)5, conditional models were analyzed
using our GWAS summary statistics and the Genome-wide Complex Trait
Analysis (GCTA) tool, adjusted for the lead SNPs in GSCAN40,41. To contextualize
the magnitude of the observed effect sizes, we calculated odds ratios (ORs) using
the β estimate from the single SNP linear regression model (OR= exp[2 × βSNP] for
severe vs. mild ND, with OR > 1 corresponding to an increased risk of severe ND)
and compared these values across studies and ancestries using the Forest Plot
Viewer85.

In follow-up analyses of lead SNPs from novel loci, we tested associations of
each specific FTND item, using linear regression models for items with categorical
responses (items #1 and 4) and logistic regression models for items with binary
responses (items #2, 3, 5, and 6), followed by meta-analysis of results across studies.
Due to varying genotype and phenotype data availability for the novel loci and
specific FTND items, some studies could not utilize the full sample set for specific
FTND item testing. These studies include AAND, COGEND, COGEND2,
deCODE, Dental Caries, GAIN, German, JHS/ARIC, and nonGAIN5.

Independent testing using heaviness of smoking index. Novel, genome-wide
significant SNPs from our ND GWAS meta-analysis were tested in the UK Bio-
bank. Since there are no other ND datasets with comparably large sample sizes, we
relied on the HSI that is available in the UK Biobank. The UK Biobank collected
data on two of the 6 FTND items (CPD and time to first cigarette in the morning
[TTFC]) among current smokers, who reported smoking on most or all days. These
two items together constitute the HSI, which has historically been considered a
suitable proxy for the full-scale FTND12. To evaluate the agreement in our FTND
categories (score range= 0–10; mild [scores 0–3], moderate [scores 4–6], and
severe [scores 7–10] as we have routinely used before21,22) with HSI categories
(score range= 0–6; mild [scores 0–2], moderate [scores 3–4], and severe [scores
5–6], in accordance with the scoring algorithm by the American Society of Clinical
Oncology86), we used EURs in COGEND, which was ascertained specifically for
ND. We compared FTND and HSI categories based on lifetime FTND (i.e., FTND
based on time smoked most). Results are presented in Supplementary Table 10.
Concordance was highest for mild dependence at 94.9%; i.e., among those defined
as having mild dependence by the HSI, 94.87% also had mild dependence as
defined by the full-scale FTND. We observed concordance of 81.2% for moderate
dependence and 84.9% for severe dependence. Overall concordance was high
(89.3%), corroborating the utility of the HSI categories as a proxy for defining ND
in the UK Biobank. Genome-wide significant SNP associations from our GWAS
meta-analysis were tested for association using 33,791 current smokers with HSI
data available in UK Biobank: 18,063 mild (HSI scores 0–2), 13,395 moderate (HSI
scores 3–4), and 2,333 severe (scores 5–6) dependence. This final analysis data set
included only unrelated individuals, as we removed 844 third-degree or closer
relatives prior to analysis; for each related pair/cluster, individuals who had more
relatives and who were light smokers were prioritized for removal. For our SNP-
HSI association testing, we followed the model employed by systemic GWAS
analyses for a multitude of phenotypes (see http://www.nealelab.is/uk-biobank/),
adjusting for the following covariates: sex, age, age2, age × sex, age2 × sex, and PC
eigenvectors, with the age2 and interaction terms among the age and sex variables
intended to account for non-linear associations. To compare the genetic correlation
of ND with HSI, we restricted UK Biobank analyses to the 31,854 current smokers
of self-reported European ancestry.

Gene-based association testing. To assess evidence for association beyond single
variants, we applied two methods that aggregate SNP-based summary statistics at
the gene level. For genome-wide testing with both methods, we used the EUR-
specific GWAS meta-analysis results from iNDiGO as the input dataset, given the
reliance on linkage disequilibrium (LD) reference data by ancestry in calculating
the gene-based summary statistics. First, H-MAGMA27 computes gene-based
association statistics by aggregating SNP associations based on physical proximity
to the target gene(s) measured by chromatin interaction maps from human brain
tissue. We included SNPs with an rs identification number (9,525,836 SNPs) and
coupled them with Hi-C reference datasets from fetal87 and adult brain tissues,
specifically cortical tissues88, that are available for running H-MAGMA. H-
MAGMA converted SNP-level p-values into gene-level p-values. We identified
statistically significant genes that were associated with ND at a Bonferroni-
corrected threshold of P < 2.7 × 10−6 (α= 0.05/18,655 protein coding genes).

Second, we applied Summary-MultiXcan (S-MultiXcan)28 to compute gene-
level associations by leveraging imputed, genetically driven gene expression using
RNA-Seq across the 13 adult brain tissues in GTEx as reference data. S-
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MultiXcan28, an extension of the S-PrediXcan method for integrating eQTLs with
GWAS summary statistics89, aggregates eQTL information across multiple tissue
types to enhance statistical power, while still presenting the single tissue with the
best evidence for association. We applied Bonferroni correction to declare
statistically significant gene-based associations as P < 3.5 × 10−6 (α= 0.05/14,494
genes).

For both gene-based methods, we carried forward significant gene-level
associations and tested them in the UK Biobank, using HSI as a proxy for ND, as
done with the single SNP associations.

Cross-trait genetic correlations with ND. Summary statistics from the EUR-
specific meta-analyses were used as input into LD score regression (LDSC)29 with
reference to the 1000 G EUR panel to estimate the SNP heritability (h2g ) of ND and
its genetic correlations with 47 other complex phenotypes, including other
smoking, drug, and alcohol use and dependence traits, smoking-related health
consequences (e.g., cancer, COPD, and coronary heart disease), psychiatric and
neurologic disorders, cognitive and educational traits, and brain volume metrics.
The full list of phenotypes and GWAS datasets, as obtained from LD Hub90 or
shared by the original study investigators, are provided in Supplementary Table 7.

Tissue and cell type gene expression enrichment of ND loci. EUR-specific
GWAS meta-analysis summary statistics were input into stratified LDSC, as
applied to specifically expressed genes (LDSC-SEG)44, with reference to 205 tissues
and cell types from two sources—RNA-sequencing data on 53 human tissues/cell
types in GTEx91 and array-based data on 152 tissues/cell types from humans and
rodent models that underlie the DEPICT tool and made available in Gene
Expression Omnibus46,47. See full list of the 205 tissues/cell types in Supplementary
Data 5. Similarly to the initial application of LDSC-SEG44, these two sources were
selected because their expression data included a wide range of ND-relevant and
other tissues and cell types in humans, as opposed to focused information on a
particular tissue. LDSC-SEG involved comparing expression of each gene in each
tissue/cell type with that in other tissues/cell types, selecting the top 10% of dif-
ferentially expressed genes, annotating SNPs from the GWAS summary statistics
that lie within 100 kilobase windows of the selected genes, and using the stratified
LDSC method to estimate the enrichment in SNP heritability for ND for the given
gene set compared to the baseline LDSC model with all genes. For each analysis, a
Bonferroni correction was applied to assess statistical significance: P < 0.0011
(α= 0.05/47 phenotypes) for LDSC and P < 2.4 × 10−4 (α= 0.05/205 tissues/cell
types) for LDSC-SEG.

Associations of ND loci with other complex traits. We applied pairwise GWAS
(GWAS-PW v0.21 [github.com/joepickrell/gwas-pw/])39 to characterize the cross-
phenotype associations for ND and its genetically correlated phenotypes, as
revealed in the LDSC analyses. Specifically, we applied GWAS-PW to the
“Cigarette smoking”, “Drug and alcohol use”, “Personality”, and “Psychiatric”
phenotypes with significant genetic correlation with ND. Using EUR-specific
GWAS summary statistics for ND and its correlated phenotypes, for each pairwise
comparison of ND to a given phenotype, we calculated a correlation statistic used
by GWAS-PW to account for potential sample overlaps between studies. Specifi-
cally, we applied fgwas v0.3.6 (https://github.com/joepickrell/fgwas), with genome-
wide predefined LD blocks (https://bitbucket.org/nygcresearch/ldetect-data/src/
master/EUR/fourier_ls-all.bed), to variants that have summary statistics for both
phenotypes. Z-scores for all variants within genomic segments with a poster
probability less than 0.2 for either phenotype were used to calculate a Pearson
correlation coefficient. We then further reduced the SNP set to only SNPs with
summary statistics available from both studies and that also were located within an
LD block for any of the 5 FTND GWAS significant loci. For this step, we defined
the LD blocks by using LDproxy92 with the top (i.e., most significant) SNP from
each FTND-associated locus and extracting r2 values (based on 1000 Genomes
Phase 3 EUR populations) for all SNPs within 0.5 MB of the top SNP. The
minimum and maximum genomic coordinate for all extracted SNPs with r2 > 0.2
were used as the LD block boundaries.

cis-eQTL assessment of novel ND-associated SNPs. For each novel locus, we
identified a credible set, or the set of SNPs most likely to contain the causal variant,
using a Bayesian method93 implemented via LocusZoom84. To assess evidence for
SNP-gene associations, SNPs in the credible set were queried against GTEx (ver-
sion 8) cis-eQTL results derived from SNP genotype and RNA-sequencing data
across 44 tissues (N= 126–209 for the 13 brain tissues)91. The GTEx portal
(https://gtexportal.org/home/) presents significant single-tissue cis-eQTLs, based
on a false discovery rate (FDR) < 5%.

We also assessed single-tissue cis-eQTL evidence from the BrainSeq consortium
that includes larger sample sizes with SNP genotype and RNA-sequencing data
available in two brain tissues, dorsolateral prefrontal cortex (N= 453) and
hippocampus (N= 447)42. Of the 551 individuals with data available in at least one
brain tissue, 286 were schizophrenia cases; case/control status was included as a
covariate for adjustment in the cis-eQTL analysis94 Significant cis-eQTLs at FDR <
10% are available at http://eqtl.brainseq.org/phase2/eqtl/.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The prior meta-analysis summary statistics22 are available via dbGaP accession number
phs001532.v1.p1. The summary statistics generated from the current study are included
under version 2 of this dbGaP study with accession number phs001532.v2.p1. These
summary statistics are also available upon reasonable request to the corresponding
author (D.B.H.). Individual-level genotype and phenotype data for many of the
contributing studies are available via dbGaP, as outlined in the study descriptions in
the Supplementary Methods. The dbGaP accession numbers for these studies are
phs000092.v1.p1, phs000404.v1.p1, phs000095.v2.p1, phs000765.v1.p2, phs000093.v2.p2,
phs000170.v2.p1, phs000021.v3.p2, phs000167.v1.p1, phs000286.v3.p1, phs000090.v1.p1,
phs000277.v1.p1, phs000092.v1.p1, and phs000404.v1.p1. 1000 Genomes Phase 3
reference panel data are available at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/. GSCAN summary statistics are available at https://genome.psych.umn.edu/
index.php/GSCAN. GWAS summary statistics from LD Hub are available at http://ldsc.
broadinstitute.org/gwashare/. LDSC EUR LD scores are available at ftp://atguftp.mgh.
harvard.edu/brendan/1k_eur_r2_hm3snps_se_weights.RDS. LD blocks used with
GWAS-PW are available at https://bitbucket.org/nygcresearch/ldetect-data/src/master/
EUR/fourier_ls-all.bed. BrainSeq Consortium cis-eQTL summary statistics are available
at http://eqtl.brainseq.org/phase2/eqtl/.

Code availability
All software used to perform these analyses is available online.
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