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Abstract

+« The suitability of thinning to prevent forest gréwdecline from global warming has been
scarcely tested in the Macaronesian Canary [fimei$ canariensis Sweet ex Spreng.).

s We used tree-ring series from dominant, codominamt, overtopped trees to study the
effects of thinning intensity on basal area incretagBAI) and climate sensitivity on windward
(wet) and leeward (dry) slopes on Tenerife, Canslignds. Three replicated blocks of control,
light thinning, and heavy thinning stands were @eteach slope in 1988, and cores were
extracted in 2007.

% Heavy thinning induced growth release and increaBA¢i mainly on dominant and
codominant trees, whereas light thinning effectseweegligible; their impacts were more intense
on windward. Temperature sensitivity was hardlgetiéd by thinning on leeward, where climate
control was stronger. On windward, thinning enhanttee influence of summer temperatures.
Upper crown classes were overall more sensitivé, dvertopped trees responded better in
summer.

 Thinning intensity and aspect greatly influencewgtoon Canary pine afforestations, but
individual responses are highly dependent on crolasses. In addition, thinning may be less

effective to modify growth conditions on leewardss, at least if it is not intense.

dendroecology / treering/ climate-growth relationships/ growth release / forest restor ation

1. INTRODUCTION
According to global warming predictions, a geneedi raise in temperatures and a
potential decline in annual rainfall are expectethe Mediterranean area for the current century

(IPCC, 2007). These predictions can also be applethe Macaronesian region, although
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changes might be weaker due to its oceanic charda&terioration of growth conditions will
arise for many Mediterranean species if heat anttmmstress are intensified (Andreu et al.,
2007). As Linares et al. (2009) reported, droughtss is probably the main reason for the
current growth decline of coniferous woodlandsantlern Europe.

Drought effects on tree growth and performance lbanaggravated in densely-stocked
stands, since trees suffer from a long-term sti®sssustained intense competition, which
incorporates more sensitivity to short-term stressech as severe drought events (Linares et al.,
2010). Therefore, reducing competition by thinnglguld enhance growing conditions, and thus
alleviate water stress that constrains photosyiatletivity and growth (McDowell et al., 2003).
Thinning also provides more growing space and adriggmount of light on the soil surface,
which results in a greater carbon gain and a fasteeralization of the litter, yielding an
increase in nutrient availability. However, advags from thinning on growth may not be the
same for trees of different crown classes, mainlg tb a different duration of the growing
period (Bréda et al., 1995).

Radial growth responses to climate considerably @a&cording to local tree density and
crown class in areas where water is limiting (Lesaet al. 2009; Martin-Benito et al., 2008). A
reduction in the influence of precipitation, and @mhancement of temperature influence, is
generally reported for non-dominant trees sufferifgm intense competition. In the
Mediterranean area, this change in the respontntperature was also observed after thinning
in dense stands, because it is obscured by irgeradompetition before thinning (Linares et al.
2010). In general, a reduction of drought sensjytiusually results from thinning practices, but
without increasing the intrinsic water use effid@gr(Martin-Benito et al., 2010), which can be
interpreted as a reduced competition for the alalavater after thinning.

Canary pineRinus canariensis Sweet ex Spreng.), endemic species of the weSanary

Islands, can be vulnerable to global warming preegsbecause water availability is already a
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key limiting resource in most forests where it ascuDespite its morphological and
physiological adaptations to cope with drought &e@dt (Jonsson et al., 2002; Petersl.,
2008), tree line in the Canary Islands may be medliby the effects of heat and drought on pine
establishment (Gieger and Leuschner, 2004). Ootter hand, the additional stress provided by
inter-tree competition should also be consideraddanary pine afforestations established on
Tenerife Island during the 20th century. Under dbsence of a subsequent management, most
stands attained excessive densities in comparsoatural stands, being more prone to growth
decline, decay and intense wildfires. Nonethelgsdlic forest managers have been recently
reconsidering the usefulness of these plantat@minsng the restoration of natural pine forest by
means of silvicultural practices (Arévalo and Fedez-Palacios, 2005). Additionally,
environmental conditions are remarkably differdwbughout narrow geographic ranges in the
Canary Islands, because moisture provided by tnadds almost exclusively affects windward
(northern) slopes, remaining leeward (southern)someich drier (Fernandez-Palacios and de
Nicolas, 1995). However, no previous studies comgbdhe effects of thinning on growth and
climate sensitivity at windward and leeward staratiough thinning should not affect them in
the same way.

There are previous studies dealing with thinnirfga$ on Canary pine plantations, which
were based on an experiment performed in 1988 ith@astern Tenerife Island to evaluate the
impacts of several management practices on theneegigon of this species (Madrigal et al.,
1989). Aboal et al(2000) monitored throughfall to study fog entrapmeme years after
thinning, and found that it was optimized by intediate thinning intensities. Arévalo and
Fernandez-Palacios (2005) assessed the effecténoirtg on the naturalization of pinewoods,
and reported that intense thinning considerablyeiased tree size and promoted a more natural

stand structure.
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Dendroecological methods are widely used for stuglyaoth thinning and climate effects
on the radial growth of trees (e.g. Misson et2003), but have hardly been applied on Canary
pine. The difficulty of this species to be usedd@ndrochronology has been highlighted by
Jonsson et al. (2002), who mainly reported the dhnoe of missing rings and other growth
anomalies. In our study, we used dendrochronolbgiethods to assess the short-term impact of
thinning intensity on Canary pine radial growth. dittbnally, we performed an analysis of
climate-growth relationships to assess the climatftuence on growth of trees of different
crown class on both slopes on Tenerife Island, @ued possible effects of thinning on the
climatic response of this species. For this, weeBasn previous experimental stands set by
Madrigal et al.(1989) to answer the following questions: (1) Areet growth patterns (BAI)
modified by the intensity of thinning and aspe@Y I6 the sensitivity to climate modulated by
thinning? (3) Do trees of different crown classespond differentially to thinning intensity and

climate?

2. MATERIALSAND METHODS
2.1. Study area

The study area is located in the Cordillera Dorsahr the northeastern boundary of the
Corona Forestal Natural Park, Tenerife Island, 1I5§&ig. 1A and B). The park extends over
46,613 ha, 25% of which was reforested with Carmang from 1940 to 1960 at elevations
between 1,000 and 2,000 m. Altitude and wind exposuwe the major environmental factors
affecting the distribution of vegetation types oenérife (Fernandez-Palacios and de Nicolas,
1995). Thanks to the moisture occasionally providedog drip by trade winds, windward pine
forests hold an abundant undergrowth cover, wtakavbrd forests only show sparse shrubs.
Climate is Mediterranean with a long dry seasomira; from May to September (Figure 1C).

Mean annual temperature showed a significant isangatrend in the period 1901-2006, while
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annual precipitation did not significantly chandeigure 1D). Soils are developed on deep
horizons of volcanic scoria and are classified assBl, suborder Orthens (Fernandez-Caldas et

al., 1985).

2.2. Stand history and experimental design

Windward and leeward stands were respectively gthimt 1949 and 1953, introducing two
seeds in each hole to ensure the success of [teme&stablishment. On windward, the removal
of doubled trees in 1972, a moderate thinning fle@ow in 1975 (removal of 40% of the
previous density), and another in 1982 (remova@3:#0% with a low pruning) were carried out.
On leeward, a light thinning from below in 1979nf@val of 20-28% and doubled-trees) and
another in 1985 (removal of between 16-20% witbwa pruning) were performed (Madrigal et
al., 1989). Dead and overtopped trees were prefaligriogged in these treatments.

In 1988, park managers selected 18 stands for switigh were representative of a larger
area of over 1,500 ha of continuous Canary pinetateons (Madrigal et al., 1989). Three blocks
composed by three 625%nstands assigned to three respective thinningntesas (control
stands: unthinned; light-thinned stands: remova-@8% of the total basal area; heavy-thinned
stands: removal of 38-52%), were established oh kandward and leeward slopes (Table 1,
Fig. 1B). Thinning activities were carried out maty, and trees preferentially selected for
thinning were those overtopped, small-sized orglyin

No significant differences in tree density exisé@dong treatments within each slope before
thinning (two-way ANOVA,F;, 1, = 2.163,p = 0.158). However, tree density varied between
slopes, either beford-{ 1, = 34.839,p < 0.001) or after thinningH 1> = 29.981,p < 0.001).
Similarly, windward stems showed a higher mean DB&h leeward ones (Student’sest,t =
3.345,p < 0.004, df = 16). Tree density, mean DBH, andhertcharacteristics of the study

stands are summarized in Table 1.
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2.3. Sampling, tree-ring measuring and crossdating

The 18 study stands were newly located in May 2Q0W 15 trees per stand were
randomly selected for sampling, avoiding edge ¢$fe€heir DBHs were measured, the crown
class (dominant, codominant, overtopped) was regidt and two increment cores were taken
per tree from opposite sides of the bole. In haivyred stands, only dominant and codominant
trees were included in data analysis since ovedoppees were scarce. The cores were dried,
mounted on wooden boards, and sanded. Tree ringe wientified and dated under
magnification following standard procedures (Stokad Smiley, 1996). Total tree-ring widths
were measured to the nearest 0.001 mm with a megsigvice (Velmex Inc., Bloomfield, NY,
USA). Tree-ring series were crossdated visually dgmparison against series highly
intercorrelated for each slope. Missing rings anldeo wood anomalies were detected and
corrected when possible, and crossdating was &drifuantitatively using COFECHA (Grissino-

Mayer, 2001).

2.4. Thinning effects assessment

Series of annual basal area increments (BAI) weneveld from raw tree-ring widths
assuming a circular cross section, after averaloth series of each tree. We used BAI because
it is less dependent on cambial age and stem lsezettee-ring width (Biondi, 1999). We study
the long-term responses of BAI to thinning using ffercentage growth change (PGC) filter
(Nowacki and Abrams, 1997). This method is a powetéchnique for the identification of
release events in tree-ring series based on thehaictrees surviving after natural disturbances
or artificial thinning respond with a released gtow(Copenheaver and Abrams, 2003).
Individual PGC chronologies were calculated fromlBAries by applying the formula: PGC =

[(M2 —M;) M3] x 100, whereM; andM, are the preceding and subsequent nine-year mean BA
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The nine-year span was chosen to keep consisteiticyperiods used in other analyses in this
work. The common period for comparison (1968-198@ys determined by the shortest series.
We identified episodes of abrupt and sustained trawleases as peaks > 50% in the PGC
chronologies averaged for each crown class, penitg treatment and slope.

To evaluate the short-term responses of BAI tortinig, we applied a repeated measures
analysis of variance. We selected periods of elgmagjth, defined as pre-treatment (1979-1987),
post-treatment (1989-1997), and stabilization (12086) to calculate mean BAls, which were
used as within-subjects factors. Mean BAI withiegdl periods was set as dependent variable,
and aspect (windward and leeward), treatment (obright thinning and heavy thinning), and
the covariate block, were the inter-subjects fact8ignificant differences among individual BAI
means from each treatment were analyzed using émeparametric Dunnett test since the
equality of variances could not be assumed. Thectffof thinning for each crown class was
assessed by pairwise comparisons through of mednbB#wveen both treatments and control
stands using tests. All statistical analyses were performech@gissPSS v.15.0 (SPSS Inc.,

Chicago IL, USA).

2.5. Calculation of the relationships between tree growth and climate

Mean BAI series were characterized for each treatmespect and crown class before
(1970-1987) and after (1989-2006) the thinning ttreat. Raw individual BAI series were
detrended by fitting a cubic smoothing spline of y&ars and 50% cutoff, and the resulting
indices were averaged into a chronology for eaehtinent per slope. We assessed chronology
guality from the common signal among trees usimgrtiean correlation between trees (Rbt), the
expressed population signal (EPS), and the fidéorautocorrelation (AC), whereas mean

sensitivity (MS) served as a measure of year-tg-yaaability (Briffa and Jones, 1990).
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Bootstrapped Pearson’s correlations were calculabEiween standardized BAI
chronologies and monthly records of temperaturepedipitation for the defined periods, each
out of 10,000 bootstrap iterations, and applyirgydarrection proposed by Mason and Mimmack
(1992) to compute the confidence intervals. Climddéa, derived from the Climate Research
Unit auto calibrated model (CRU TS 3.0) of the Wmsity of East Anglia, UK, were monthly
time series of mean temperature and total pretipitainterpolated with a geographical
resolution of 0.5° x 0.5°, were obtained from theebWsite of the Royal Netherlands

Meteorological Institute (http://climexp.knmi.nl/).

3.RESULTS
3.1. Radial growth responsesto thinning
For the upper crown classes, BAI showed increasimgs after heavy thinning on both
slopes, lasting for a shorter time span on leew&id. 2). By contrast, patterns after light
thinning differed from control only on windward, asking no declining trend. Likewise,
dominant and codominant trees on windward sigmfigadiffered from control after both
thinning treatments (Studentdests,p < 0.001), but not overtopped tre¢s (1.20,p = 0.242).
On leeward, only heavy thinning diverged from cohfor both dominantt(= —2.82,p = 0.01)
and codominant trees £ —4.89,p < 0.001), while light thinning did not significagtinfluence
growth in any case(> 0.05). Narrow tree rings were detected on ledviar 1975, 1983, 1991,
1995, and 2001, which mostly occurred after drydaring warm years. Wide rings formed
following these depressions only in dominant andlocoinant trees of heavily thinned stands.
Mean PGC values above the minimum threshold of S@%urred only after heavy
thinning, which showed the greatest number of sslddrees, whereas light thinning released a
low proportion of trees (Fig. 3). Most of the reded trees were codominant or dominant in both

treatments. The most remarkable release after h#anging occurred in 1988 on windward
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(PGC = 57.73%), but in 1991 on leeward (PGC = 8&R2INot only the 1988 thinning had a
relevant effect on tree growth patterns, but alsotteatments in 1975 and 1982 on windward,
and 1985 on leeward, as suggested by the frequeeoicieleased trees.

Aspect (repeated measures ANOVA 26:= 54.401 p < 0.001), treatment fhe1= 78.445,
p < 0.001), periodKz522= 15.904p < 0.001), and their interactiong € 0.05), except aspect x
period p > 0.05), were significant predictors of BAI Inntoast, no differences arose among
blocks €1261= 1.425,p = 0.234). Short-term variations of BAl immediatggior and after the
thinning treatment followed similar patterns of iaéion on both aspects, with gently-descending
BAI trends for control and light thinning, and ar$laincrease after heavy thinning, which was

maintained or roughly decreased in the stabilirgpieriod (Fig. 4).

3.2. Common signal and climate-growth relationships

The quality of standardized BAI chronologies watdyeon leeward, both before and after
thinning (Tab. 2), with a higher year-to-year vhiiidy (perceived by MS) and inter-tree
synchrony of growth (Rbt and EPS). These valuesdonmon signal mainly decreased on both
slopes for the post-treatment period. Both thinnireatments caused a weaker reduction on
windward, and so did only the most intense treatnoenleeward. On leeward, chronologies
were only slightly autocorrelated before 1988 andmmore afterwards; no remarkable AC was
observed on windward, except for control in the tmesent period.

Correlations between standardized BAI chronologied climate revealed that average
temperature was the dominant climatic variable radimig growth, while rainfall nearly exerted
no effects (data not shown). Temperature influestcengly differed between slopes, as control
stands revealed, with positive significant corielas on windward only, and negative on
leeward (Fig. 5). The effects of temperature oe fyeowth varied between both pre- and post-

treatment periods for every treatment, shiftingri@nths influencing growth. On windward, the
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positive effect of temperature in previous Octobanuary shifted to current March, while on
leeward, negative correlations in March-April chaddo May-September (Fig. 5). Furthermore,
we found an overall increment in the statisticgngicance of correlations after 1988 on both
slopes.

On windward, thinning modified climate sensitivity the windward as compared to the
control, particularly for the most intense treattn@ng. 5). Thus, the influence of temperature in
late winter and spring decreased with increasingnthg intensity, being not significant for
heavy thinning. Simultaneously, a strongly negatinfiuence of temperatures in previous late
summer-autumn and current June and September d@gseontrast, correlations were very
similar among treatments on leeward, with the etioapof the slightly enhanced negative
correlations with May-September temperature fovhg#hinned stands.

When comparing crown classes, responses to teraperatere similar on each slope,
although the significance of correlations occadignaliffered (Tab. 3). Dominant and
codominant trees were the most sensitive onesntraastands. On windward, they responded to
October-January before 1988, and to March-Apriérafards; on leeward, only correlations to
March-April before 1988 were high. However, theipes influence of current June temperature
on windward control before 1988 was higher for god@ant and overtopped trees. Similarly,
negative influence of previous July-August and entrMay-September in the post-treatment
period was greater for overtopped trees on leewantrol. Temperature responses of dominant

and codominant individuals were similar for botintiing treatments.

4. DISCUSSION
4.1. Effects of thinning intensity and aspect on BAI
Only the most intense thinning treatment was ablmduce an evident growth release on

both slopes, suggesting that BAI patterns are nemtliby thinning intensity. Our results are in
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accordance to previous studies, which reported podividual growth responses after light
thinning in comparison to heavy thinning (Carfekasl., 2004; Martin-Benito et al., 2010). Yet,
no uniform responses arose through different crolasses. Codominant trees were the most
benefited from thinning, followed by dominant treedich could be explained by a lower effect
of thinning from below on dominant crown class, jsegted to a lower competition intensity
(Mé&kinen and Isomaki, 2004). Bréda et al. (1993gddhat overtopped and dominant trees take
more advantage than codominant trees as a resuthimhing from above. Nevertheless,
overtopped trees were not favoured by light thignim our study. This treatment was probably
not intense enough to reduce the stress experidmgede lowest crown classes. Overtopped
trees can be stagnated, losing the capacity tor@cgnough vigour to significantly release, even
if the competition intensity is greatly reducedr(aies et al., 2009).

Aspect exerted a modulation on thinning effects¢eithe impacts of thinning intensity on
BAI were more limited on leeward than on windwaad,shown by our results. We suggest that
the modulation exerted by aspect was likely duthédfacts that: 1) thinning effects were masked
by the higher stem density on leeward with the eqonently smaller stem-sized trees, whose
growth after thinning is less in absolute termanttarger ones (Cariellas et al., 2004; Méakinen
and Isomaki, 2004); and 2) thinning is less effectat dry sites if it is not intense enough,
because inter-tree competition for water is stronge that site conditions cannot support high-
density stands (Cotillas et al., 2009; Linares.e2809; Moreno and Cubera, 2008). Thus, a still
high competition level not sufficiently removed Hyinning, coupled with the more limiting
climatic conditions, should have somehow obscutesl ddvantages of thinning on leeward
(Misson et al., 2003). Thus, besides the effecth®ftreatment in 1988, the impact of treatments
performed in 1975 and 1982 also showed to be retewahich probably preconditioned

differential responses in the post-treatment pemaeoke evident on windward.
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Despite the more limited effects of thinning oevard, the reduction of tree density still
contributed to increase BAI, presumably due to aenpwonounced drought tolerance of Canary
pine on this slope, since growth recovered fromdifeeight-induced depressions, mainly those in
1992-1993 and 1996. Similar results were foundifees suffering from different intensities of
competition, or as a result of thinning experienather under Mediterranean (Linares et al.,
2009; Martin-Benito et al., 2008) or temperate elies (Kohler et al., 2010; Misson et al., 2003).

Increased growth rates by heavy thinning are uguliiked to the simultaneous
enhancement of tree water status and illuminatighinvthe stand as inter-tree competition is
reduced (Aussenac, 2000). A higher water supplgwall a better stomatal conductance and
carbon assimilation, which encourage tree growtlcdvell et al.,, 2003), and extend the
growing season (Linares et al., 2009). Besidesendaamatic detrimental effects of drought can
be expected in the heliophytic Canary pine in stae/ironments (Climent et al., 2006). Heavy
thinning would be more favourable in this case,abee it generates larger canopy gaps and
greater irradiance, leading to the release of singitrees (Stan and Daniels, 2010). As shown
by Blanco et al. (2008), thinning can also altetrieat return via needle litterfall in Scots pine,
but not proportionally to its intensity, suggestitige existence of thresholds in the ecological
response to thinning from below. Nonetheless, @it measurements on water input, solar

radiation, and nutrient return would allow us teifyethese hypotheses for Canary pine woods.

4.2. Variation in climate sensitivity

As shown by the higher common signal and year-&o-yariability, climatic control of
BAI appears to be more intense on leeward. Besicmsmon signal decreased after 1988 in
whatever treatment, likely due to the increasingngetition among trees as they become larger.
But this reduction was less intense for the thigrireatments, mainly on windward, indicating

that thinning affected climate sensitivity.
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Our findings indicate that aspect modulated theaichf thinning on climate sensitivity.
Increasing temperatures within the stands as aeqoesice of a higher exposure to radiation
after thinning (Moreno and Cubera, 2008), wouldrtetact the positive effect of temperatures
in previous winter and highlight their negative impacicurrent summer (Martin-Benito et al.,
2010), as occurred on windward only after the hehuyning. This could also be linked to the
fact that fog entrapment in Canary pine woods seloafter heavy thinning than after light
thinning (Aboal et al., 2000), which probably mdged the negative effects of warm previous
autumn and current summer on windward after helwying. On the contrary, leeward stands
were homogeneous in their response in whateveoghenihich does not agree with the increased
temperature sensitivity that frequently occurs g dites after thinning (Gea-lzquierdo et al,
2009; Linares et al., 2010). Since thinning appearaffect growth rates of trees, but not their
temperature sensitivity, we suggest that the seonlymatic control on leeward causes that year-
to-year variation of growth is mainly determineddbynate, regardless of local tree density. This
fact verifies that the limited thinning effects eward can be attributed not only to the higher
tree density but also to the more constraining &iérconditions.

Climate-growth relationships for Canary pine protedbe unstable through time also in
control stands. There was an increase of the negaifluence of temperatures for the most
recent period, mainly on leeward. Although climaésponses are sometimes age-dependent
(Carrer and Urbinati, 2004), similar processes iregplofor other pine species in southwestern
Europe since the late 80's were mostly relateditnate warming (Andreu et al., 2007; Bogino
and Bravo, 2008; Martin-Benito et al., 2010), whialas also the case of mean annual
temperature in our study area.

Dominant and codominant trees recovered faster afteught-induced narrow rings,
corroborating the less plastic response of oveddppees to the environmental variability

(Linares et al., 2009), in which no retrieval ocedl Climate-growth correlations followed
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similar patterns among crown classes, namely feruipper ones. This suggests that aspect has
more impact on climatic sensitivity than individuetharacteristics, such as the crown social
status. However, the significance of correlatioiffeed at specific seasons, being the upper
classes more sensitive to climate. Suppressed twees generally less sensitive except to
previous and current summer temperatures, nametiieofeeward control, which can be related
to the major water stress suffered by overtoppeestin spring and summer (Martin-Benito et
al., 2008).

The negligible influence of precipitation had noteh reported before for other
Mediterranean pines (Andreu et al., 2007; Bogind Bravo, 2008), although it can be related to
the relative influence of rainfall in the Canariatsds in comparison to other water sources, such
as fog drip. As shown Aboal et al. (2000) on windiyanean annual throughfall can account for
up to two times the incident rainfall. Furthermoire,areas with nearly no precipitation during
summer, growth regulation by water stress can Imdraibed by high temperatures rather than
local and erratic rainfall (Martin-Benito et alQ@B).

Despite the potential masking effects arisen byiagven stand management history and
by the limitation of using short tree-ring seri€openheaver and Abrams, 2003), our analyses
demonstrated for the first time the impact of timgntreatments on growth patterns in young
Canary pine plantations. Heavy thinning providesnare natural community structure and
favours the establishment of new cohorts (Arévald &ernandez-Palacios, 2005), improves
growth rates, and modulates tree sensitivity toitimg climatic conditions. Therefore,
management guidelines should take heavy thinning consideration in order to improve
growing conditions and self-maintenance in Canaitye pplantations with focus on their
restoration. This is especially true on leewardssitecause: 1) more similar densities to those
recorded by Blanco et al. (1989) for naturally regrated stands are advisable (i.e. 130-440

stems ha); and 2) the constraining climate conditions camamap the impact of thinning if it is
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not intense enough, with a special concern to glomming. Nevertheless, to verify our
supposition would be necessary to test more aayrabw the contrasting climatic conditions,
imposed by the topography and the circulation afiérwinds, could modulate growth along the

complete altitudinal range of Canary pine.
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479 Table 1.- General characteristics of the study stands ondwwnd and leeward slopes in

480 Tenerife, for control (CO), light thinning (LT) andeavy thinning (HT) treatments. Stand

481 elevation, the percentage of basal area removedsttiactural characteristics of the stands in
482 1988, before and after thinning treatment, and nissadiameter of the sampled trees in 2007
ﬂgﬁ are shown.

1988 before thinning 1988 after thinning . 2007°
Block ® Treatment Elevation % BA Density Mean Mean Density Mean Mean Mean DBH
(m) removed  (stems BA (m? DBH (stems  BA (m? DBH (cm) = SD

ha) ha') (cm) ha) hat) (cm)

wi CcoO 1650 1072 62.4 27.2 30.7+7.7
LT 1640 7.68 752 53.4 30.1 656 49.3 30.9 342+79
HT 1643 52.02 800 52.1 28.8 352 25.0 30.1 39.9+5.3
W2 CO 1654 1232 67.0 26.3 27.8+4.8
LT 1652 14.45 1312 69.9 26.0 912 59.8 28.9 29.8+7.4
HT 1659 40.31 704 45.9 28.8 368 27.4 30.8 40.4+£5.9
W3 CO 1671 992 56.6 26.9 316+7.1
LT 1671 6.35 752 50.4 29.2 656 47.2 30.3 37.5+8.8
HT 1670 46.57 928 49.6 26.1 352 26.5 31.0 37.3+4.8
L1 CcO 1701 1456 59.8 22.9 246+45
LT 1699 13.57 1504 58.2 22.2 1216 50.3 22.9 26.7+4.2
HT 1686 45.55 1312 55.1 23.1 528 30.0 26.9 345+29
L2 CO 1698 1664 65.5 22.4 26.1+5.6
LT 1704 13.66 1600 52.7 20.5 1280 455 21.3 23.0+3.9
HT 1697 38.13 1605 43.8 18.7 800 27.1 20.8 23.9+4.3
L3 CO 1719 2224 71.8 20.3 24.4+5.6
LT 1718 18.10 2000 68.5 20.9 1360 56.1 22.9 243+6.2
HT 1704 51.58 1488 60.1 22.7 544 29.1 26.1 35.6+59

485
486 BA: basal area. DBH: diameter at breast high (In30SD: standard deviation.
487 2W: blocks on windward slope. L: blocks on leewslape.

488 " Calculations based on 15 sampled trees per stand.

489
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490 Table 2.- Descriptive statistics of the standardized baseh ancrement chronologies for the
491 periods 1970-1987 and 1989-2006 correspondingdoctmtrol (CO), light thinning (LT) and
ﬂga heavy thinning (HT) treatments.

Rbt EPS MS AC
Aspect Treatment 1970- 1989- 1970- 1989- 1970- 1989- 1970- 1989-
P 1987 2006 1987 2006 1987 2006 1987 2006
Windward Cco 0.456 0.298 0.973 0.903 0.200 0.138 0.229 0.520
LT 0.278 0.286 0.945 0.925 0.177 0.144 0.205 0.137
HT 0.304 0.296 0.952 0.949 0.175 0.144 0.141 0.362
Leeward Cco 0.647 0.290 0.987 0.904 0.291 0.190 0.484 0.096
LT 0.616 0.334 0.987 0.929 0.348 0.233 0.555 0.021
HT 0.768 0.568 0.993 0.982 0.352 0.307 0.520 0.216

494
495 Rbt: Mean correlation between trees. EBPfressed population signal. MS: Mean sensitivity.
496 AC: First-order autocorrelation coefficient.
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497 Table 3.- Bootstrappedcorrelations between temperature variables and @&#&bnologies for
498 dominant (D), codominant (C), and overtopped (&gsrunder control (CO), light thinning (LT),
é88 and heavy thinning (HT) treatments, for the perib880-1987 and 1989-2006.

1970-1987 1989-2006
Aspect Treatment Crown Class Oct-1 Jan Mar Apr June Jul-1 Aug-1  Mar Apr May Sep
Windward CO D 0.590** 0.012 0.594** 0.032 0.689*** 0.250
C 0.568** 0.026 0.626*** 0.114 0.602*** 0.296
(0] 0.501* 0.080 0.569*** -0.066 0.584* -0.068
LT D 0.599** 0.035 0.385 -0.190 0.477** -0.126
C 0.589** 0.116 0.402 -0.135 0.438* -0.127
(0] 0.615** 0.179 0.429 -0.042 0.201 -0.107
HT D 0.488* 0.172 0.488* -0.447* 0.257 -0.346
C 0.384 0.039 0.407 -0.413* 0.335 -0.376
Leeward CO D -0.251 -0.548** -0.315 -0.384 -0.256 -0.512*
C -0.294 -0.542** -0.257 -0.380 -0.369 -0.499*
(0] -0.297 -0.458* -0.123 -0.568** -0.176 -0.635***
LT D -0.187 -0.547** -0.261 -0.397* -0.317 -0.532*
C -0.222 -0.545** -0.269 -0.557** -0.007 -0.412
(0] -0.290 -0.498** -0.416* -0.450* -0.173 -0.306
HT D -0.213 -0.541** -0.302 -0.502* -0.351 -0.617***
C -0.283 -0.485* -0.289 -0.541** -0.360 -0.636**

501
502 *p<0.05; *p < 0.01, **p < 0.001
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505 Figurel.-A) Location of the study area on Tenerife Island, @atselands, SpairB) Location
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523 Figure 3.- Mean (black line) and standard deviation (greg)liof percentage growth change
524 (PGC) for BAI of trees by treatment and slope. Honital dashed line indicates the minimum
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