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Abstract 24 

� The suitability of thinning to prevent forest growth decline from global warming has been 25 

scarcely tested in the Macaronesian Canary pine (Pinus canariensis Sweet ex Spreng.).  26 

� We used tree-ring series from dominant, codominant, and overtopped trees to study the 27 

effects of thinning intensity on basal area increments (BAI) and climate sensitivity on windward 28 

(wet) and leeward (dry) slopes on Tenerife, Canary Islands. Three replicated blocks of control, 29 

light thinning, and heavy thinning stands were set on each slope in 1988, and cores were 30 

extracted in 2007.  31 

� Heavy thinning induced growth release and increased BAI, mainly on dominant and 32 

codominant trees, whereas light thinning effects were negligible; their impacts were more intense 33 

on windward. Temperature sensitivity was hardly affected by thinning on leeward, where climate 34 

control was stronger. On windward, thinning enhanced the influence of summer temperatures. 35 

Upper crown classes were overall more sensitive, but overtopped trees responded better in 36 

summer.  37 

� Thinning intensity and aspect greatly influence growth on Canary pine afforestations, but 38 

individual responses are highly dependent on crown classes. In addition, thinning may be less 39 

effective to modify growth conditions on leeward slopes, at least if it is not intense. 40 

 41 

dendroecology / tree ring / climate-growth relationships / growth release / forest restoration 42 

 43 

 44 

1. INTRODUCTION 45 

According to global warming predictions, a generalised raise in temperatures and a 46 

potential decline in annual rainfall are expected in the Mediterranean area for the current century 47 

(IPCC, 2007). These predictions can also be applied to the Macaronesian region, although 48 
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changes might be weaker due to its oceanic character. Deterioration of growth conditions will 49 

arise for many Mediterranean species if heat and water stress are intensified (Andreu et al., 50 

2007). As Linares et al. (2009) reported, drought stress is probably the main reason for the 51 

current growth decline of coniferous woodlands in southern Europe. 52 

Drought effects on tree growth and performance can be aggravated in densely-stocked 53 

stands, since trees suffer from a long-term stress by sustained intense competition, which 54 

incorporates more sensitivity to short-term stresses such as severe drought events (Linares et al., 55 

2010). Therefore, reducing competition by thinning should enhance growing conditions, and thus 56 

alleviate water stress that constrains photosynthetic activity and growth (McDowell et al., 2003). 57 

Thinning also provides more growing space and a higher amount of light on the soil surface, 58 

which results in a greater carbon gain and a faster mineralization of the litter, yielding an 59 

increase in nutrient availability. However, advantages from thinning on growth may not be the 60 

same for trees of different crown classes, mainly due to a different duration of the growing 61 

period (Bréda et al., 1995). 62 

Radial growth responses to climate considerably vary according to local tree density and 63 

crown class in areas where water is limiting (Linares et al. 2009; Martín-Benito et al., 2008). A 64 

reduction in the influence of precipitation, and an enhancement of temperature influence, is 65 

generally reported for non-dominant trees suffering from intense competition. In the 66 

Mediterranean area, this change in the response to temperature was also observed after thinning 67 

in dense stands, because it is obscured by inter-tree competition before thinning (Linares et al. 68 

2010). In general, a reduction of drought sensitivity usually results from thinning practices, but 69 

without increasing the intrinsic water use efficiency (Martín-Benito et al., 2010), which can be 70 

interpreted as a reduced competition for the available water after thinning. 71 

Canary pine (Pinus canariensis Sweet ex Spreng.), endemic species of the western Canary 72 

Islands, can be vulnerable to global warming processes, because water availability is already a 73 
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key limiting resource in most forests where it occurs. Despite its morphological and 74 

physiological adaptations to cope with drought and heat (Jonsson et al., 2002; Peters et al., 75 

2008), tree line in the Canary Islands may be modified by the effects of heat and drought on pine 76 

establishment (Gieger and Leuschner, 2004). On the other hand, the additional stress provided by 77 

inter-tree competition should also be considered for Canary pine afforestations established on 78 

Tenerife Island during the 20th century. Under the absence of a subsequent management, most 79 

stands attained excessive densities in comparison to natural stands, being more prone to growth 80 

decline, decay and intense wildfires. Nonetheless, public forest managers have been recently 81 

reconsidering the usefulness of these plantations, aiming the restoration of natural pine forest by 82 

means of silvicultural practices (Arévalo and Fernández-Palacios, 2005). Additionally, 83 

environmental conditions are remarkably different throughout narrow geographic ranges in the 84 

Canary Islands, because moisture provided by trade winds almost exclusively affects windward 85 

(northern) slopes, remaining leeward (southern) ones much drier (Fernández-Palacios and de 86 

Nicolás, 1995). However, no previous studies compared the effects of thinning on growth and 87 

climate sensitivity at windward and leeward stands, although thinning should not affect them in 88 

the same way.  89 

There are previous studies dealing with thinning effects on Canary pine plantations, which 90 

were based on an experiment performed in 1988 in northeastern Tenerife Island to evaluate the 91 

impacts of several management practices on the regeneration of this species (Madrigal et al., 92 

1989). Aboal et al. (2000) monitored throughfall to study fog entrapment nine years after 93 

thinning, and found that it was optimized by intermediate thinning intensities. Arévalo and 94 

Fernández-Palacios (2005) assessed the effects of thinning on the naturalization of pinewoods, 95 

and reported that intense thinning considerably increased tree size and promoted a more natural 96 

stand structure. 97 
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Dendroecological methods are widely used for studying both thinning and climate effects 98 

on the radial growth of trees (e.g. Misson et al., 2003), but have hardly been applied on Canary 99 

pine. The difficulty of this species to be used in dendrochronology has been highlighted by 100 

Jonsson et al. (2002), who mainly reported the abundance of missing rings and other growth 101 

anomalies. In our study, we used dendrochronological methods to assess the short-term impact of 102 

thinning intensity on Canary pine radial growth. Additionally, we performed an analysis of 103 

climate-growth relationships to assess the climatic influence on growth of trees of different 104 

crown class on both slopes on Tenerife Island, and the possible effects of thinning on the 105 

climatic response of this species. For this, we based on previous experimental stands set by 106 

Madrigal et al. (1989) to answer the following questions: (1) Are tree growth patterns (BAI) 107 

modified by the intensity of thinning and aspect? (2) Is the sensitivity to climate modulated by 108 

thinning? (3) Do trees of different crown classes respond differentially to thinning intensity and 109 

climate? 110 

 111 

2. MATERIALS AND METHODS 112 

2.1. Study area 113 

The study area is located in the Cordillera Dorsal, near the northeastern boundary of the 114 

Corona Forestal Natural Park, Tenerife Island, Spain (Fig. 1A and B). The park extends over 115 

46,613 ha, 25% of which was reforested with Canary pine from 1940 to 1960 at elevations 116 

between 1,000 and 2,000 m. Altitude and wind exposure are the major environmental factors 117 

affecting the distribution of vegetation types on Tenerife (Fernández-Palacios and de Nicolás, 118 

1995). Thanks to the moisture occasionally provided as fog drip by trade winds, windward pine 119 

forests hold an abundant undergrowth cover, while leeward forests only show sparse shrubs. 120 

Climate is Mediterranean with a long dry season ranging from May to September (Figure 1C). 121 

Mean annual temperature showed a significant increasing trend in the period 1901-2006, while 122 
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annual precipitation did not significantly change (Figure 1D). Soils are developed on deep 123 

horizons of volcanic scoria and are classified as Entisol, suborder Orthens (Fernández-Caldas et 124 

al., 1985). 125 

 126 

2.2. Stand history and experimental design 127 

Windward and leeward stands were respectively planted in 1949 and 1953, introducing two 128 

seeds in each hole to ensure the success of plantation establishment. On windward, the removal 129 

of doubled trees in 1972, a moderate thinning from below in 1975 (removal of 40% of the 130 

previous density), and another in 1982 (removal of 33-40% with a low pruning) were carried out. 131 

On leeward, a light thinning from below in 1979 (removal of 20-28% and doubled-trees) and 132 

another in 1985 (removal of between 16-20% with a low pruning) were performed (Madrigal et 133 

al., 1989). Dead and overtopped trees were preferentially logged in these treatments. 134 

In 1988, park managers selected 18 stands for study, which were representative of a larger 135 

area of over 1,500 ha of continuous Canary pine plantations (Madrigal et al., 1989). Three blocks 136 

composed by three 625 m2 stands assigned to three respective thinning treatments (control 137 

stands: unthinned; light-thinned stands: removal of 6-18% of the total basal area; heavy-thinned 138 

stands: removal of 38-52%), were established on both windward and leeward slopes (Table 1, 139 

Fig. 1B). Thinning activities were carried out manually, and trees preferentially selected for 140 

thinning were those overtopped, small-sized or dying. 141 

No significant differences in tree density existed among treatments within each slope before 142 

thinning (two-way ANOVA, F2,12 = 2.163, p = 0.158). However, tree density varied between 143 

slopes, either before (F1,12 = 34.839, p < 0.001) or after thinning (F1,12 = 29.981, p < 0.001). 144 

Similarly, windward stems showed a higher mean DBH than leeward ones (Student’s t test, t = 145 

3.345, p < 0.004, df = 16). Tree density, mean DBH, and further characteristics of the study 146 

stands are summarized in Table 1. 147 
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 148 

2.3. Sampling, tree-ring measuring and crossdating 149 

The 18 study stands were newly located in May 2007, and 15 trees per stand were 150 

randomly selected for sampling, avoiding edge effects. Their DBHs were measured, the crown 151 

class (dominant, codominant, overtopped) was registered, and two increment cores were taken 152 

per tree from opposite sides of the bole. In heavy-thinned stands, only dominant and codominant 153 

trees were included in data analysis since overtopped trees were scarce. The cores were dried, 154 

mounted on wooden boards, and sanded. Tree rings were identified and dated under 155 

magnification following standard procedures (Stokes and Smiley, 1996). Total tree-ring widths 156 

were measured to the nearest 0.001 mm with a measuring device (Velmex Inc., Bloomfield, NY, 157 

USA). Tree-ring series were crossdated visually by comparison against series highly 158 

intercorrelated for each slope. Missing rings and other wood anomalies were detected and 159 

corrected when possible, and crossdating was verified quantitatively using COFECHA (Grissino-160 

Mayer, 2001). 161 

 162 

2.4. Thinning effects assessment 163 

Series of annual basal area increments (BAI) were derived from raw tree-ring widths 164 

assuming a circular cross section, after averaging both series of each tree. We used BAI because 165 

it is less dependent on cambial age and stem size than tree-ring width (Biondi, 1999). We study 166 

the long-term responses of BAI to thinning using the percentage growth change (PGC) filter 167 

(Nowacki and Abrams, 1997). This method is a powerful technique for the identification of 168 

release events in tree-ring series based on the fact that trees surviving after natural disturbances 169 

or artificial thinning respond with a released growth (Copenheaver and Abrams, 2003). 170 

Individual PGC chronologies were calculated from BAI series by applying the formula: PGC = 171 

[(M2 – M1) ⁄M1] × 100, where M1 and M2 are the preceding and subsequent nine-year mean BAI. 172 
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The nine-year span was chosen to keep consistency with periods used in other analyses in this 173 

work. The common period for comparison (1968-1997) was determined by the shortest series. 174 

We identified episodes of abrupt and sustained growth releases as peaks > 50% in the PGC 175 

chronologies averaged for each crown class, per thinning treatment and slope. 176 

To evaluate the short-term responses of BAI to thinning, we applied a repeated measures 177 

analysis of variance. We selected periods of equal length, defined as pre-treatment (1979–1987), 178 

post-treatment (1989–1997), and stabilization (1998-2006) to calculate mean BAIs, which were 179 

used as within-subjects factors. Mean BAI within these periods was set as dependent variable, 180 

and aspect (windward and leeward), treatment (control, light thinning and heavy thinning), and 181 

the covariate block, were the inter-subjects factors. Significant differences among individual BAI 182 

means from each treatment were analyzed using the non-parametric Dunnett test since the 183 

equality of variances could not be assumed. The effects of thinning for each crown class was 184 

assessed by pairwise comparisons through of mean BAI between both treatments and control 185 

stands using t tests. All statistical analyses were performed using SPSS v.15.0 (SPSS Inc., 186 

Chicago IL, USA). 187 

 188 

2.5. Calculation of the relationships between tree growth and climate 189 

Mean BAI series were characterized for each treatment, aspect and crown class before 190 

(1970-1987) and after (1989-2006) the thinning treatment. Raw individual BAI series were 191 

detrended by fitting a cubic smoothing spline of 32 years and 50% cutoff, and the resulting 192 

indices were averaged into a chronology for each treatment per slope. We assessed chronology 193 

quality from the common signal among trees using the mean correlation between trees (Rbt), the 194 

expressed population signal (EPS), and the first-order autocorrelation (AC), whereas mean 195 

sensitivity (MS) served as a measure of year-to-year variability (Briffa and Jones, 1990).  196 
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Bootstrapped Pearson’s correlations were calculated between standardized BAI 197 

chronologies and monthly records of temperature and precipitation for the defined periods, each 198 

out of 10,000 bootstrap iterations, and applying the correction proposed by Mason and Mimmack 199 

(1992) to compute the confidence intervals. Climate data, derived from the Climate Research 200 

Unit auto calibrated model (CRU TS 3.0) of the University of East Anglia, UK, were monthly 201 

time series of mean temperature and total precipitation interpolated with a geographical 202 

resolution of 0.5º × 0.5º, were obtained from the Web site of the Royal Netherlands 203 

Meteorological Institute (http://climexp.knmi.nl/). 204 

 205 

3. RESULTS 206 

3.1. Radial growth responses to thinning 207 

 For the upper crown classes, BAI showed increasing trends after heavy thinning on both 208 

slopes, lasting for a shorter time span on leeward (Fig. 2). By contrast, patterns after light 209 

thinning differed from control only on windward, showing no declining trend. Likewise, 210 

dominant and codominant trees on windward significantly differed from control after both 211 

thinning treatments (Student’s t-tests, p < 0.001), but not overtopped trees (t = –1.20, p = 0.242). 212 

On leeward, only heavy thinning diverged from control for both dominant (t = –2.82, p = 0.01) 213 

and codominant trees (t = –4.89, p < 0.001), while light thinning did not significantly influence 214 

growth in any case (p > 0.05). Narrow tree rings were detected on leeward for 1975, 1983, 1991, 215 

1995, and 2001, which mostly occurred after dry or during warm years. Wide rings formed 216 

following these depressions only in dominant and codominant trees of heavily thinned stands. 217 

Mean PGC values above the minimum threshold of 50% occurred only after heavy 218 

thinning, which showed the greatest number of released trees, whereas light thinning released a 219 

low proportion of trees (Fig. 3). Most of the released trees were codominant or dominant in both 220 

treatments. The most remarkable release after heavy thinning occurred in 1988 on windward 221 
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(PGC = 57.73%), but in 1991 on leeward (PGC = 80.21%). Not only the 1988 thinning had a 222 

relevant effect on tree growth patterns, but also the treatments in 1975 and 1982 on windward, 223 

and 1985 on leeward, as suggested by the frequencies of released trees. 224 

Aspect (repeated measures ANOVA, F1,261 = 54.401, p < 0.001), treatment (F2,261 = 78.445, 225 

p < 0.001), period (F2,522 = 15.904, p < 0.001), and their interactions (p < 0.05), except aspect × 226 

period (p > 0.05), were significant predictors of BAI. In contrast, no differences arose among 227 

blocks (F1,261 = 1.425, p = 0.234). Short-term variations of BAI immediately prior and after the 228 

thinning treatment followed similar patterns of variation on both aspects, with gently-descending 229 

BAI trends for control and light thinning, and a harsh increase after heavy thinning, which was 230 

maintained or roughly decreased in the stabilization period (Fig. 4).  231 

 232 

3.2. Common signal and climate-growth relationships 233 

The quality of standardized BAI chronologies was better on leeward, both before and after 234 

thinning (Tab. 2), with a higher year-to-year variability (perceived by MS) and inter-tree 235 

synchrony of growth (Rbt and EPS). These values for common signal mainly decreased on both 236 

slopes for the post-treatment period. Both thinning treatments caused a weaker reduction on 237 

windward, and so did only the most intense treatment on leeward. On leeward, chronologies 238 

were only slightly autocorrelated before 1988 and no more afterwards; no remarkable AC was 239 

observed on windward, except for control in the most recent period. 240 

Correlations between standardized BAI chronologies and climate revealed that average 241 

temperature was the dominant climatic variable controlling growth, while rainfall nearly exerted 242 

no effects (data not shown). Temperature influence strongly differed between slopes, as control 243 

stands revealed, with positive significant correlations on windward only, and negative on 244 

leeward (Fig. 5). The effects of temperature on tree growth varied between both pre- and post-245 

treatment periods for every treatment, shifting the months influencing growth. On windward, the 246 
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positive effect of temperature in previous October-January shifted to current March, while on 247 

leeward, negative correlations in March-April changed to May-September (Fig. 5). Furthermore, 248 

we found an overall increment in the statistical significance of correlations after 1988 on both 249 

slopes.  250 

On windward, thinning modified climate sensitivity of the windward as compared to the 251 

control, particularly for the most intense treatment (Fig. 5). Thus, the influence of temperature in 252 

late winter and spring decreased with increasing thinning intensity, being not significant for 253 

heavy thinning. Simultaneously, a strongly negative influence of temperatures in previous late 254 

summer-autumn and current June and September arose. By contrast, correlations were very 255 

similar among treatments on leeward, with the exception of the slightly enhanced negative 256 

correlations with May-September temperature for heavily thinned stands. 257 

When comparing crown classes, responses to temperature were similar on each slope, 258 

although the significance of correlations occasionally differed (Tab. 3). Dominant and 259 

codominant trees were the most sensitive ones in control stands. On windward, they responded to 260 

October-January before 1988, and to March-April afterwards; on leeward, only correlations to 261 

March-April before 1988 were high. However, the positive influence of current June temperature 262 

on windward control before 1988 was higher for codominant and overtopped trees. Similarly, 263 

negative influence of previous July-August and current May-September in the post-treatment 264 

period was greater for overtopped trees on leeward control. Temperature responses of dominant 265 

and codominant individuals were similar for both thinning treatments. 266 

 267 

4. DISCUSSION 268 

4.1. Effects of thinning intensity and aspect on BAI 269 

Only the most intense thinning treatment was able to induce an evident growth release on 270 

both slopes, suggesting that BAI patterns are modified by thinning intensity. Our results are in 271 
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accordance to previous studies, which reported poor individual growth responses after light 272 

thinning in comparison to heavy thinning (Cañellas et al., 2004; Martín-Benito et al., 2010). Yet, 273 

no uniform responses arose through different crown classes. Codominant trees were the most 274 

benefited from thinning, followed by dominant trees, which could be explained by a lower effect 275 

of thinning from below on dominant crown class, subjected to a lower competition intensity 276 

(Mäkinen and Isomäki, 2004). Bréda et al. (1995) noted that overtopped and dominant trees take 277 

more advantage than codominant trees as a result of thinning from above. Nevertheless, 278 

overtopped trees were not favoured by light thinning in our study. This treatment was probably 279 

not intense enough to reduce the stress experienced by the lowest crown classes. Overtopped 280 

trees can be stagnated, losing the capacity to acquire enough vigour to significantly release, even 281 

if the competition intensity is greatly reduced (Linares et al., 2009). 282 

Aspect exerted a modulation on thinning effects, since the impacts of thinning intensity on 283 

BAI were more limited on leeward than on windward, as shown by our results. We suggest that 284 

the modulation exerted by aspect was likely due to the facts that: 1) thinning effects were masked 285 

by the higher stem density on leeward with the consequently smaller stem-sized trees, whose 286 

growth after thinning is less in absolute terms than larger ones (Cañellas et al., 2004; Mäkinen 287 

and Isomäki, 2004); and 2) thinning is less effective at dry sites if it is not intense enough, 288 

because inter-tree competition for water is stronger, so that site conditions cannot support high-289 

density stands (Cotillas et al., 2009; Linares et al., 2009; Moreno and Cubera, 2008). Thus, a still 290 

high competition level not sufficiently removed by thinning, coupled with the more limiting 291 

climatic conditions, should have somehow obscured the advantages of thinning on leeward 292 

(Misson et al., 2003). Thus, besides the effects of the treatment in 1988, the impact of treatments 293 

performed in 1975 and 1982 also showed to be relevant, which probably preconditioned 294 

differential responses in the post-treatment period, more evident on windward. 295 
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 Despite the more limited effects of thinning on leeward, the reduction of tree density still 296 

contributed to increase BAI, presumably due to a more pronounced drought tolerance of Canary 297 

pine on this slope, since growth recovered from the drought-induced depressions, mainly those in 298 

1992-1993 and 1996. Similar results were found for trees suffering from different intensities of 299 

competition, or as a result of thinning experiences, either under Mediterranean (Linares et al., 300 

2009; Martín-Benito et al., 2008) or temperate climates (Kohler et al., 2010; Misson et al., 2003). 301 

Increased growth rates by heavy thinning are usually linked to the simultaneous 302 

enhancement of tree water status and illumination within the stand as inter-tree competition is 303 

reduced (Aussenac, 2000). A higher water supply allows a better stomatal conductance and 304 

carbon assimilation, which encourage tree growth (McDowell et al., 2003), and extend the 305 

growing season (Linares et al., 2009). Besides, more dramatic detrimental effects of drought can 306 

be expected in the heliophytic Canary pine in shaded environments (Climent et al., 2006). Heavy 307 

thinning would be more favourable in this case, because it generates larger canopy gaps and 308 

greater irradiance, leading to the release of surviving trees (Stan and Daniels, 2010). As shown 309 

by Blanco et al. (2008), thinning can also alter nutrient return via needle litterfall in Scots pine, 310 

but not proportionally to its intensity, suggesting the existence of thresholds in the ecological 311 

response to thinning from below. Nonetheless, additional measurements on water input, solar 312 

radiation, and nutrient return would allow us to verify these hypotheses for Canary pine woods. 313 

 314 

4.2. Variation in climate sensitivity 315 

As shown by the higher common signal and year-to-year variability, climatic control of 316 

BAI appears to be more intense on leeward. Besides, common signal decreased after 1988 in 317 

whatever treatment, likely due to the increasing competition among trees as they become larger. 318 

But this reduction was less intense for the thinning treatments, mainly on windward, indicating 319 

that thinning affected climate sensitivity. 320 
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Our findings indicate that aspect modulated the impact of thinning on climate sensitivity. 321 

Increasing temperatures within the stands as a consequence of a higher exposure to radiation 322 

after thinning (Moreno and Cubera, 2008), would counteract the positive effect of temperatures 323 

in previous winter and highlight their negative impact in current summer (Martín-Benito et al., 324 

2010), as occurred on windward only after the heavy thinning. This could also be linked to the 325 

fact that fog entrapment in Canary pine woods is lower after heavy thinning than after light 326 

thinning (Aboal et al., 2000), which probably magnified the negative effects of warm previous 327 

autumn and current summer on windward after heavy thinning. On the contrary, leeward stands 328 

were homogeneous in their response in whatever period, which does not agree with the increased 329 

temperature sensitivity that frequently occurs in dry sites after thinning (Gea-Izquierdo et al, 330 

2009; Linares et al., 2010). Since thinning appears to affect growth rates of trees, but not their 331 

temperature sensitivity, we suggest that the stronger climatic control on leeward causes that year-332 

to-year variation of growth is mainly determined by climate, regardless of local tree density. This 333 

fact verifies that the limited thinning effects on leeward can be attributed not only to the higher 334 

tree density but also to the more constraining climate conditions. 335 

Climate-growth relationships for Canary pine proved to be unstable through time also in 336 

control stands. There was an increase of the negative influence of temperatures for the most 337 

recent period, mainly on leeward. Although climate responses are sometimes age-dependent 338 

(Carrer and Urbinati, 2004), similar processes reported for other pine species in southwestern 339 

Europe since the late 80’s were mostly related to climate warming (Andreu et al., 2007; Bogino 340 

and Bravo, 2008; Martín-Benito et al., 2010), which was also the case of mean annual 341 

temperature in our study area. 342 

Dominant and codominant trees recovered faster after drought-induced narrow rings, 343 

corroborating the less plastic response of overtopped trees to the environmental variability 344 

(Linares et al., 2009), in which no retrieval occurred. Climate-growth correlations followed 345 
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similar patterns among crown classes, namely for the upper ones. This suggests that aspect has 346 

more impact on climatic sensitivity than individual characteristics, such as the crown social 347 

status. However, the significance of correlations differed at specific seasons, being the upper 348 

classes more sensitive to climate. Suppressed trees were generally less sensitive except to 349 

previous and current summer temperatures, namely on the leeward control, which can be related 350 

to the major water stress suffered by overtopped trees in spring and summer (Martín-Benito et 351 

al., 2008). 352 

The negligible influence of precipitation had not been reported before for other 353 

Mediterranean pines (Andreu et al., 2007; Bogino and Bravo, 2008), although it can be related to 354 

the relative influence of rainfall in the Canary Islands in comparison to other water sources, such 355 

as fog drip. As shown Aboal et al. (2000) on windward, mean annual throughfall can account for 356 

up to two times the incident rainfall. Furthermore, in areas with nearly no precipitation during 357 

summer, growth regulation by water stress can be controlled by high temperatures rather than 358 

local and erratic rainfall (Martín-Benito et al., 2008).  359 

Despite the potential masking effects arisen by an uneven stand management history and 360 

by the limitation of using short tree-ring series (Copenheaver and Abrams, 2003), our analyses 361 

demonstrated for the first time the impact of thinning treatments on growth patterns in young 362 

Canary pine plantations. Heavy thinning provides a more natural community structure and 363 

favours the establishment of new cohorts (Arévalo and Fernández-Palacios, 2005), improves 364 

growth rates, and modulates tree sensitivity to limiting climatic conditions. Therefore, 365 

management guidelines should take heavy thinning into consideration in order to improve 366 

growing conditions and self-maintenance in Canary pine plantations with focus on their 367 

restoration. This is especially true on leeward sites because: 1) more similar densities to those 368 

recorded by Blanco et al. (1989) for naturally regenerated stands are advisable (i.e. 130-440 369 

stems ha-1); and 2) the constraining climate conditions can swamp the impact of thinning if it is 370 
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not intense enough, with a special concern to global warming. Nevertheless, to verify our 371 

supposition would be necessary to test more accurately how the contrasting climatic conditions, 372 

imposed by the topography and the circulation of trade winds, could modulate growth along the 373 

complete altitudinal range of Canary pine. 374 

 375 
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Table 1.- General characteristics of the study stands on windward and leeward slopes in 479 
Tenerife, for control (CO), light thinning (LT) and heavy thinning (HT) treatments. Stand 480 
elevation, the percentage of basal area removed, the structural characteristics of the stands in 481 
1988, before and after thinning treatment, and mean tree diameter of the sampled trees in 2007 482 
are shown. 483 
 484 

       

 

   

t
 

    1988 before thinning  1988 after thinning  2007 b 

       
 

   
 

 

       

 

   

 

 

Block a Treatment Elevation 
(m) 

 % BA 
removed 

Density 
(stems 
ha-1) 

Mean 
BA (m2 

ha-1) 

Mean 
DBH 
(cm) 

 Density 
(stems 
ha-1) 

Mean 
BA (m2 

ha-1) 

Mean 
DBH 
(cm) 

 Mean DBH 
(cm) ± SD 

       
 

   
 

 

       

 

   

 

 

W1 CO 1650  1072 62.4 27.2      30.7 ± 7.7 

 LT 1640 7.68 752 53.4 30.1  656 49.3 30.9  34.2 ± 7.9 

 HT 1643 52.02 800 52.1 28.8  352 25.0 30.1  39.9 ± 5.3 

W2 CO 1654  1232 67.0 26.3      27.8 ± 4.8 

 LT 1652 14.45 1312 69.9 26.0  912 59.8 28.9  29.8 ± 7.4 

 HT 1659 40.31 704 45.9 28.8  368 27.4 30.8  40.4 ± 5.9 

W3 CO 1671  992 56.6 26.9      31.6 ± 7.1 

 LT 1671 6.35 752 50.4 29.2  656 47.2 30.3  37.5 ± 8.8 

 HT 1670 46.57 928 49.6 26.1  352 26.5 31.0  37.3 ± 4.8 
                          

L1 CO 1701  1456 59.8 22.9      24.6 ± 4.5 

 LT 1699 13.57 1504 58.2 22.2  1216 50.3 22.9  26.7 ± 4.2 

 HT 1686 45.55 1312 55.1 23.1  528 30.0 26.9  34.5 ± 2.9 

L2 CO 1698  1664 65.5 22.4      26.1 ± 5.6 

 LT 1704 13.66 1600 52.7 20.5  1280 45.5 21.3  23.0 ± 3.9 

 HT 1697 38.13 1605 43.8 18.7  800 27.1 20.8  23.9 ± 4.3 

L3 CO 1719  2224 71.8 20.3      24.4 ± 5.6 

 LT 1718 18.10 2000 68.5 20.9  1360 56.1 22.9  24.3 ± 6.2 

 HT 1704 51.58 1488 60.1 22.7  544 29.1 26.1  35.6 ± 5.9 
       

 
   

 
 

 485 
BA: basal area. DBH: diameter at breast high (1.30 m). SD: standard deviation. 486 
a W: blocks on windward slope. L: blocks on leeward slope. 487 
b Calculations based on 15 sampled trees per stand. 488 
 489 
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Table 2.- Descriptive statistics of the standardized basal area increment chronologies for the 490 
periods 1970-1987 and 1989-2006 corresponding to the control (CO), light thinning (LT) and 491 
heavy thinning (HT) treatments. 492 
 493 

    

 

  

 

  

 

  

  Rbt  EPS  MS  AC 

Aspect Treatment 
1970-
1987 

1989-
2006 

 1970-
1987 

1989-
2006 

 1970-
1987 

1989-
2006 

 1970-
1987 

1989-
2006 

    

 

  

 

  

 

  

    
 

  
 

  

 

  

Windward CO 0.456 0.298 
 

0.973 0.903 
 

0.200 0.138 
 

0.229 0.520 

 LT 0.278 0.286 
 

0.945 0.925 
 

0.177 0.144 
 

0.205 0.137 

 HT 0.304 0.296 
 

0.952 0.949 
 

0.175 0.144 
 

0.141 0.362 
    

 

  

 

  

 

  

    

 

  

 

  

 

  

Leeward CO 0.647 0.290 
 

0.987 0.904 
 

0.291 0.190 
 

0.484 0.096 

 LT 0.616 0.334 
 

0.987 0.929 
 

0.348 0.233 
 

0.555 0.021 

 HT 0.768 0.568 
 

0.993 0.982 
 

0.352 0.307 
 

0.520 0.216 
    

 

  

 

  

 

  

 494 
Rbt: Mean correlation between trees. EPS: Expressed population signal. MS: Mean sensitivity. 495 
AC: First-order autocorrelation coefficient. 496 
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Table 3.- Bootstrapped correlations between temperature variables and BAI chronologies for 497 
dominant (D), codominant (C), and overtopped (O) trees under control (CO), light thinning (LT), 498 
and heavy thinning (HT) treatments, for the periods 1970-1987 and 1989-2006. 499 
 500 

           

    1970-1987  1989-2006 
       

       

Aspect Treatment Crown Class  Oct-1 Jan Mar Apr June  Jul-1 Aug-1 Mar Apr May Sep 
           

           

Windward CO D  0.590** 0.012 0.594**  0.032 0.689*** 0.250 

  C  0.568** 0.026 0.626***  0.114 0.602*** 0.296 

  O  0.501* 0.080 0.569***  -0.066 0.584* -0.068 
           

           

 LT D  0.599** 0.035 0.385  -0.190 0.477*** -0.126 

  C  0.589** 0.116 0.402  -0.135 0.438* -0.127 

  O  0.615** 0.179 0.429  -0.042 0.201 -0.107 

           
           
 HT D  0.488* 0.172 0.488*  -0.447** 0.257 -0.346 

  C  0.384 0.039 0.407  -0.413* 0.335 -0.376 

           
           

Leeward CO D  -0.251 -0.548** -0.315  -0.384 -0.256 -0.512* 

  C  -0.294 -0.542** -0.257  -0.380 -0.369 -0.499* 

  O  -0.297 -0.458* -0.123  -0.568** -0.176 -0.635*** 

           
     -      
 LT D  -0.187 -0.547** -0.261  -0.397* -0.317 -0.532* 

  C  -0.222 -0.545** -0.269  -0.557** -0.007 -0.412 

  O  -0.290 -0.498** -0.416*  -0.450* -0.173 -0.306 

           
           
 HT D  -0.213 -0.541** -0.302  -0.502* -0.351 -0.617*** 

  C  -0.283 -0.485* -0.289  -0.541** -0.360 -0.636** 

            501 
*p < 0.05; **p < 0.01, ***p < 0.001 502 
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 503 

 504 
Figure 1.-A) Location of the study area on Tenerife Island, Canary Islands, Spain. B) Location 505 
of the study stands on the windward and leeward slopes. C) Climate diagram of the study area 506 
for the period 1901-2006, showing the dry (black area) and wet (grey area) seasons. D) Trends 507 
for mean annual temperature and precipitation in the study area in the period 1901-2006. Climate 508 
information is based on the CRU TS 3.0 dataset. 509 

 510 
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 511 
Figure 2.- Mean curves of basal area increment chronologies for each canopy class, and sample 512 
size in number of trees, by treatment and slope. Vertical dashed lines correspond to previous 513 
interventions and the 1988 thinning. Overtopped trees were not shown in both heavy thinning 514 
treatments. 515 
 516 
 517 
 518 
 519 
 520 
 521 
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 522 
Figure 3.- Mean (black line) and standard deviation (grey line) of percentage growth change 523 
(PGC) for BAI of trees by treatment and slope. Horizontal dashed line indicates the minimum 524 
threshold (50% PGC) for release detection, and R the highest PGC above the threshold. Bars 525 
represent the percentage of released trees (>50% PGC) in each crown class per treatment. 526 
Vertical dashed lines indicate previous interventions and the 1988 thinning. Central years of the 527 
9-year intervals used to calculate PGC values are in the abscise axes. 528 
 529 
 530 
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 531 
Figure 4.- Mean BAI (+ 1 standard error) for each period, treatment and slope. Different letters 532 
within a treatment indicate significantly different mean BAI, according to post hoc non-533 
parametric Dunnett test. PRE is pre-treatment period, POST is post-treatment period, and STB is 534 
stabilization period.  535 
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 536 
Figure 5.- Bootstrapped correlations between mean temperatures and standardized BAI series 537 
per thinning treatment, in the pre-treatment (1970-1987) and post-treatment (1989-2006) periods. 538 
Significance levels (*p < 0.05, ** p < 0.01, ***p < 0.001) were obtained by 10,000 bootstrap 539 
iterations.  540 
 541 


