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Abstract  23 

Little is known concerning the effects of wildfires on tree radial growth and their climatic 24 

response under contrasting regimes of fog water inputs on oceanic islands. On Tenerife, 25 

Canary Islands, windward slopes are humid with high fog frequency due to influence of 26 

wet trade winds, while climate on leeward slopes is more arid. We used tree-ring records 27 

of Pinus canariensis Sweet ex Spreng. to quantify the effects of a fire of known date on 28 

radial growth, and determine the main limiting climatic factors for growth. Radial growth 29 

patterns and their responsiveness to fire severity and climatic variation differed between 30 

windward and leeward slopes. Surface fire did not significantly impact growth, while 31 

crown fire caused short-term growth reduction, and even cessation, more pronounced on 32 

the windward slope. Growth rates, tree-ring common signal, and climate sensitivity were 33 

smaller on the windward slope, with cold winters and summer water stress limiting 34 

growth. On the leeward slope, climate explained a greater amount of growth variation 35 

mainly due to negative effects of high October-December sea-level pressures causing dry 36 

winter conditions. Contrasting growth dynamics on both slopes may result from diverging 37 

physiological effects of water inputs and reduced radiation caused by fog drip. Our 38 

findings suggest that dating growth suppressions and absent rings are useful to date past 39 

high-severity crown fires in P. canariensis forests, in addition to ordinary fire scars dating 40 

indicative of low-severity surface fires. 41 
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 45 

Introduction 46 

Fire regimes in regions with a seasonal aridity are dependent on climate (Kitzberger et al. 47 

2001; Piñol et al. 1998), which implies a synchrony of fire occurrence at a regional or 48 

even larger scale. This climatic component, modulated by specific characteristics of the 49 

terrain and human-influenced fuel accumulation rates and lightning, will have relevant 50 

effects on future fire regimes under a context of global change (Westerling et al. 2006). 51 

Wildfire is a fundamental ecological process in conifer forests where the structure, 52 

diversity, population dynamics, and nutrient cycling are commonly regulated by the 53 

spatial and temporal variation of fire regimes (Drury and Veblen 2008; Yermakov and 54 

Rothstein 2006). 55 

Tree-rings are capable of recording historical fire regimes, with fire-history 56 

reconstructions relying on proxies of fire timing, extension and behaviour recorded in 57 

surviving trees, as well as stumps, logs and snags (Niklasson and Granström 2000). Fire 58 

history is typically reconstructed based on two types of tree-ring proxies: fire scars created 59 

during surface burning, and recruitment dates of trees established after crown-opening 60 

fires (Brown and Wu 2005; Mast et al. 1999). Fire scars in repeatedly fire-injured trees are 61 

the most widely used proxies of local surface burns, and can be dated at an annual or even 62 

seasonal resolution by means of dendrochronological methods (Drobyshev et al. 2004; 63 

Smith and Sutherland 2001). 64 

Despite the effort that has been made to study the relationships of wildfires with 65 

climatic variation and human activities (e.g., Veblen et al. 1999), as well as the combined 66 

effects of climate and fire on tree regeneration (e.g., Brown and Wu 2005), there is little 67 

information and a lack of agreement concerning the effects of wildfires on radial growth 68 

patterns. Previous studies report that Pinus ponderosa Douglas ex C. Lawson can show 69 
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both tree-ring growth increases and reductions after surface fires of varying frequency 70 

(Peterson et al. 1994). Fires caused growth reductions in P. strobus L. and P. taeda L. 71 

(Elliott et al. 2002; McInnis et al. 2004). On the contrary, abrupt tree-ring growth 72 

increases were found on the surviving P. monophylla Torr. & Frém. following intense 73 

fires (Py et al. 2006). 74 

All previous investigations were performed on pine species without the capability of 75 

resprouting after fire, which are usually killed by intense fires. However, the impact of 76 

fire severity on the growth of species with the ability to resprout after severe crown 77 

reduction has not been studied. This is the case of Pinus canariensis Sweet ex Spreng., an 78 

endemic species from the western Canary archipelago, which shows traits related to fire 79 

adaptation such as thick bark, large buds, tall growth habit, longevity, sprouting 80 

capability, and serotiny (Climent et al. 2004). Following severe fires or other injuries, P. 81 

canariensis develops whorls of new epicormic sprouts from dormant buds located below 82 

the bark and form a new canopy. 83 

P. canariensis also shows adaptations to xeric conditions, such as very deep root 84 

system, tight regulation of transpirational water loss, drought-induced xeromorphic 85 

adaptations of the needles, and xeriscent cone opening (Climent et al. 2004; Grill et al. 86 

2004). In spite of these adaptations, however, it is sensitive to prominent water stress, a 87 

limiting factor at the upper altitudinal timberline of the species in the Canary archipelago 88 

(Gieger and Leuschner 2004; Jonsson et al. 2002). There are prevailing environmental 89 

differences between windward and leeward slopes in the Canary Islands that may 90 

differentially modulate the effects of fire severity and climatic stress on tree performance 91 

and growth. On windward slopes, orographic lifting of moist oceanic trade winds 92 

produces adiabatic cooling, condensation, and fog formation, leading to the accumulation 93 

of clouds known as ‘cloud sea’, with precipitation mostly occurring by horizontal 94 
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interception by plant canopies (Aboal et al. 2000). By contrast, leeward slopes are 95 

protected from trade winds, and the climate is drier and more arid. While it seems 96 

reasonable to expect that P. canariensis responsiveness to fire and climate can be different 97 

on windward and leeward slopes in the Canary Islands, no investigation has been made to 98 

demonstrate the differences 99 

We use dendroecological methods to assess the effects of fire intensity and climate 100 

variation on P. canariensis radial growth on windward and leeward slopes on Tenerife, 101 

Canary Islands. Our objectives are to quantify the effects of a severity level fire of known 102 

date on radial growth, and to determine the main growth limiting climatic factors on both 103 

slopes. We hypothesize that different fire severities and the contrasted environmental 104 

conditions on opposite slopes play a significant role on tree performance and growth 105 

dynamics. 106 

 107 

Materials and methods 108 

Study area 109 

Tenerife is the largest island of the Canary archipelago with an area of 2,036 km2. The 110 

island has a steep relief dominated by the volcano Teide (3,718 m) and the Cordillera 111 

Dorsal, which splits the island into two main slopes at the south and north sides, causing 112 

significant differences in their weather regime (Fernández-Palacios 1992). Climate is 113 

Mediterranean, with a mean annual temperature of 12.6 ºC, maximum amplitude between 114 

–4.2 and 31.2 ºC, and an annual precipitation ranging from 460 to 930 mm (Aboal et al. 115 

2000). Soils associated to humid Canary pine woodlands on Tenerife were classified as 116 

Andisols, whereas Inceptisols dominate in xeric areas (Armas et al. 2007). 117 

Altitude and wind-exposure are major determinants of the distribution of well-118 

defined vegetation belts (Fernández-Palacios and de Nicolás 1995). Pine forests round the 119 
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highest part of the island with a distribution between 1,300-2,000 m, on windward slopes 120 

and 700-2,200 m on leeward slopes (Fernández-Palacios and de Nicolás 1995). On 121 

windward areas, pines form a high canopy over a dense understorey of shrubs and 122 

frequent laurel-like broadleaves, while leeward pinewoods contain sparse shrubs, and very 123 

often only a thick layer of needle litter covers the ground. The study plots are plantations 124 

established in 1948 and 1952 on windward and leeward slopes, respectively, located on 125 

the Cordillera Dorsal (Fig. 1a) near the north-eastern boundary of the Corona Forest 126 

Natural Park, at elevations ranging between 1,390 and 1,560 m (Table 1). 127 

 128 

Sampling 129 

In June 1995, a big fire affected 2,709 ha in Tenerife during three days, burning both at 130 

low severity in surface fuels, and at high-severity fires in the crowns of trees. In a 131 

previous study assessing the effects of fire severity on pinewood understorey composition, 132 

27 study plots subjected to three different fire treatments –control not burnt, surface fire, 133 

crown fire– from the 1995 fire were selected (Arévalo et al. 2001). In our study, we 134 

selected six of these plots on the windward slope and six on leeward, two plots per 135 

treatment on both slopes (Fig. 1b, Table 1). We measured DBH (bole diameter at 1.30 m 136 

above ground), recorded the presence of epicormic sprouts and took two wood cores per 137 

tree using an increment borer from 22 trees per plot. 138 

 139 

Sample processing and tree-ring measurement 140 

The cores were air-dried, glued onto wooden mounts, mechanically surfaced and then 141 

manually polished with successively finer grades of sandpaper, until the xylem cellular 142 

structure was visible in the transverse plane. Tree-ring series were absolutely dated by 143 

assigning calendar years to the rings. Total ring widths were measured under 144 
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magnification to the nearest 0.001 mm with a sliding-stage micrometer (Velmex Inc., 145 

Bloomfield NY, USA) interfaced with a computer. 146 

In addition, earlywood (EW) and latewood (LW) widths were measured on the cores 147 

of two control plots, one on windward and one on leeward, which were at a similar 148 

elevation, in order to assess the climate/growth relationships free from fire influence. In 149 

these cases, total ring (TR) widths were obtained as the sum of EW and LW on a year-by-150 

year basis. Early- to latewood transition was defined according to a more or less gradual 151 

qualitative contrast in darkening, originated by a change in wood density. The computer 152 

program COFECHA (Grissino-Mayer 2001) was used to quantitatively check for 153 

crossdating and measuring errors; only series confidently dated at an annual basis were 154 

used for further analyses. 155 

 156 

Assessing fire effects on growth patterns 157 

Ring widths were used to calculate mean radial growth rates in order to assess the effects 158 

of 1995 fire on tree growth. Due to the great similarity between growth patterns of plot 159 

replicates for each treatment and aspect (correlations between plot replicates varied from 160 

0.766 to 0.938, all of them significant at a P < 0.001 level), we used tree-ring data from 161 

each fire treatment, irrespective of the plot, both on windward and leeward slopes. A 162 

modified version of the percentage growth change (PGCs) filter of Nowacki and Abrams 163 

(1997) was applied to identify abrupt and sustained growth suppressions (Rozas 2004): 164 

PGCs = [(M1–M2)/M2] × 100, where M1 and M2 are, respectively, the preceding and 165 

subsequent 7-year ring-width means. PGCs chronologies were calculated by applying this 166 

formula to the individual tree-ring series, and mean PGCs chronologies for each fire 167 

treatment were separately calculated for windward and leeward slopes. Abrupt growth 168 

suppressions were recognized as peaks > 200% in the average PGCs chronologies. In 169 
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addition, the number of absent rings identified by crossdating on the individual tree-ring 170 

growth series was summarized at an annual basis. Rings were considered as absent only if 171 

identified by crossdating on both cores of each tree. 172 

To assess the short-term effects of fire severity on tree-ring growth, we considered 173 

three 5-year periods: pre-fire (1990–1994), post-fire (1996–2000), and recovery (2001–174 

2005). Tree-ring growth data were square-root transformed to achieve requirements of 175 

normality and homocedasticity. The effects of plot, treatment, aspect and period on tree-176 

ring growth were analyzed using repeated-measures ANOVA (Zar 2010), where plot was 177 

a random factor, treatment and aspect were between-subjects factors, and period was a 178 

within-subjects factor. The Huynh-Feldt corrected test was applied for within-subjects 179 

effects analysis due to the lack of data sphericity. Comparisons among periods, for each 180 

treatment and aspect, were carried out using one-way ANOVA and tested with the 181 

Tukey’s HSD post hoc test. Statistical analyses were performed with the SPSS v15.0 for 182 

Windows package (SPSS Inc., Chicago IL, USA).  183 

 184 

Tree-ring standardization and chronology computation 185 

Intra- and inter-annual responses of growth to climate were investigated after 186 

standardizing the raw EW, LW and TR series with the ARSTAN computer program 187 

(Cook and Holmes 1996). Asynchronous growth changes such as disturbance signals were 188 

unusual within our tree-ring series, and only 50 years of tree-ring data were available. 189 

This is why we used for standardization a flexible spline function, which guarantees the 190 

removal of most non-climatically related variance, such as the biological trends, by 191 

preserving high-frequency climatic information (Cook and Peters 1981). We used a spline 192 

function with a 50% frequency response of 32 years and pre-whitened the obtained 193 

residuals by autoregressive modeling. The resulting indices for the individual series were 194 
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averaged by biweight robust mean. The statistical quality of chronologies was assessed for 195 

the common interval 1967–2006 using standard basic statistics to measure the common 196 

signal (Briffa and Jones 1990): mean sensitivity (ms), first-order autocorrelation (Ac), 197 

mean correlation between trees (Rbt), within trees (Rwt), and between all cores (Rbar), 198 

signal-to-noise ratio (SNR), and expressed population signal (EPS). 199 

 200 

Evaluating tree-ring growth responses to climate 201 

Since the local network of meteorological stations on Tenerife is incomplete and covers 202 

mainly low-altitude areas, we used monthly gridded data from the datasets of the Climate 203 

Research Unit, University of East Anglia, UK. Mean temperature (T), total precipitation 204 

(P), and mean sea-level pressure (SLP) for the period 1967–2006, were taken from the 205 

Web site of the Royal Netherlands Meteorological Institute (http://climexp.knmi.nl/). 206 

Monthly data from June of the previous year (Jun(–1)) to September of the current growth 207 

year (Sep) were used, and also averaged (T and SLP) or summed (P) in periods of two and 208 

three months to identify their main effects on tree-ring growth at monthly, bimonthly and 209 

seasonal scales. 210 

We determined the climatic factors that significantly influenced radial growth, and 211 

total growth variance explained by climate on tree-ring chronologies, by redundancy 212 

analysis (RDA), a canonical multivariate method that seeks linear combinations of 213 

environmental factors correlated to linear combinations of response variables (Legendre 214 

and Legendre 1998). EW, LW and TR chronologies were considered as the response 215 

variables in RDA, while the climatic variables were environmental predictors. A forward 216 

selection procedure allowed excluding highly redundant and collinear predictors, which 217 

could have caused model instability and/or variance overestimation. Stepwise RDAs and 218 

Pearson’s correlations were calculated to determine the explained tree-ring growth 219 
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variation for the retained predictors, as well as the sign of climate-growth relationships. 220 

The amount of growth variance explained in each RDA was calculated as the proportion 221 

of total variance given by the canonical eigenvalue λ (Legendre and Legendre 1998). 222 

Total explained variation in tree-ring chronologies for either windward or leeward slopes 223 

was obtained under a reduced RDA model including the significant predictors. For the 224 

described analyses, Monte Carlo tests with 9,999 random permutations were used to 225 

evaluate the significance of canonical eigenvalues. The sequence of several 226 

complementary RDAs was performed with the software CANOCO v4.0 for Windows (ter 227 

Braak and Smilauer 1998). A scatter plot of the weighting coefficients for the first two 228 

RDA axes under an overall canonical ordination displayed the relationships between the 229 

significant climatic predictors and chronologies for EW, LW and TR on both slopes. 230 

 231 

Results 232 

Fire impact on tree-ring growth patterns 233 

Mean diameters of the sampled trees were quite similar on both slopes, ranging 26.3–31.2 234 

cm on windward and 25.1–31.0 on leeward (Table 1). The proportion of trees with 235 

epicormic sprouts greatly differed among fire treatments, with 0.0–17.4% in control plots, 236 

8.7–27.3% in surface fire plots, and 100% in crown fire plots. In control plots, only those 237 

trees overtopped or which suffered some mechanical damage showed sprouts. In surface 238 

fire plots, the same cases as in control plots were recorded, but additionally several trees 239 

showed basal sprouts due to fire damage in the lower part of the trunk. In crown fire plots, 240 

in contrast, crown and bark along the complete stems were scorched, with new sprouts 241 

densely and uniformly arranged in whorls with a general aspect of trees resembling 242 

‘bottlebrushes’. 243 
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Growth patterns of control and surface fire treatments on the same slope were very 244 

similar, with no growth anomalies and the typical ring-width trend of a negative 245 

exponential decline with an associated decrease in inter-annual variability (Fig. 2). On 246 

both slopes, however, trees suffering from crown fire showed an abrupt decrease in ring 247 

width from 1995, and a new increase in mean growth rates and growth variability from 248 

2000 (Fig. 2). 249 

Growth reductions in the crown fire treatment were evidenced as conspicuous peaks 250 

of PGCs with maxima in 1995 and 1994 on windward and leeward, respectively (Fig. 3). 251 

Reductions associated to the 1995 burn were more pronounced on windward (613% in 252 

mean PGCs) than on leeward (351%). Accordingly, absent rings were identified on both 253 

slopes, since 1996 on windward, and in 1975, 1983, 1987 and, 1995–2001 on leeward. 254 

Absent rings were mainly recorded for period 1996–2000, mostly from trees that 255 

experienced crown fire (Table 1 and Fig. 3). 256 

Fire treatment, aspect, period, and their corresponding interactions had significant 257 

effects on tree-ring growth in the periods immediately before and after the 1995 fire 258 

(Table 2). By contrast, plot and their interaction with period were not significant, which 259 

suggests that replicated plots within each treatment had quite similar ring width variations. 260 

Most conspicuous effects were due to aspect and their interaction with treatment so that 261 

different growth responses to fire can be expected on windward and leeward slopes. The 262 

highly significant interactions between period and treatment indicate that fire severity 263 

differentially impacted on tree growth for the pre-fire, post-fire and recovery periods. 264 

Windward plots did not show growth differences among periods for the control and 265 

surface fire (P > 0.05, Fig. 4a); but under crown fire, post-fire growth was significantly 266 

lower than for the pre-fire and recovery periods (F2,101 = 89.02, P < 0.001). In contrast, on 267 

the leeward slope significant differences among periods were found for all fire treatments 268 
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(Fig. 4b). Under control and surface fire, a significant reduction of tree growth was 269 

noticed in the post-fire, that was maintained for the recovery period (F2,95 = 6.22, P = 270 

0.003 for control; F2,101 = 12.63, P < 0.001 for surface fire). Under crown fire, a 271 

significant reduction of tree growth was also noticed for the post-fire period, but growth 272 

was significantly greater for the recovery period than for previous ones (F2,101 = 80.49, P 273 

< 0.001).  274 

 275 

High-frequency growth variation and climatic response 276 

Mean ring widths and standard deviations were higher on leeward than on windward 277 

(Appendix S1). Also, the relative change of EW, LW and TR widths between consecutive 278 

rings was higher on leeward, as indicated by ms values, while Ac was higher on 279 

windward. Common signal within and between trees was larger on leeward, as indicated 280 

by Rbt, Rwt, Rbar, and SNR statistics for all EW, LW, and TR. EPS values were higher 281 

than 0.85 for almost all chronologies, suggesting that the amount of local year-to-year 282 

growth variation shared by trees was relatively high, especially for EW and TR 283 

chronologies. 284 

A large amount of growth variation was shared by EW, LW and TR at a local level, 285 

with very similar intra-annual variation patterns within each slope, but quite different 286 

between slopes (Appendix S2). The visual assessment was supported by statistical 287 

correlations among chronologies, which were highly significant within the same slope, 288 

especially between EW and TR; however, no significant correlations among chronologies 289 

from different slope were found (Appendix S3). 290 

According to RDA models, climatic variables with a significant effect on tree-ring 291 

growth on the windward slope were T in previous December, P in July-August, and P in 292 

February, with both December T and July-August P explaining over 17.7% of growth 293 
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variation (Table 3). Pearson’s correlations showed that both variables exerted a positive 294 

effect on growth, more pronounced in EW and TR for December T, and in LW for July-295 

August P. By contrast, February P showed a negative effect on LW and TR growth. 296 

According to the reduced model, 37.1% of tree growth variation on the windward slope 297 

was explained by climate. On the leeward slope, climatic variables with significant effect 298 

on growth were P in previous November-December, with a positive effect on tree growth, 299 

and SLP in previous October-December, with a negative effect mainly on EW and TR 300 

growth. Both variables explained together 43.9% of tree growth variation, while P and 301 

SLP explained 25.1% and 40.9%, respectively. 302 

Based on an overall RDA model (F-value = 6.08, P < 0.001), RDA axis 1 was 303 

positively correlated with P in previous November-December and July-August, and 304 

negatively with SLP in previous October-December (Appendix S4). RDA axis 2 was 305 

positively correlated with T in previous December, and P in July-August, but negatively 306 

with P in February.  RDA axes 1 and 2 explained, respectively, 74.3% and 20.7% of the 307 

growth-climate relationships (Fig. 5). The ordination showed that tree-ring growth on 308 

windward was mainly positively related to T in previous December (correlation with TR, 309 

R = 0.45, P = 0.003). On the leeward slope, the main factor affecting tree ring width 310 

negatively was SLP in previous October-December (correlation with TR, R = –0.66, P < 311 

0.001). The strong relationships between tree-ring growth and SLP in October-December 312 

can be also graphically verified (Fig. 6), with wider tree rings following years with low 313 

SLP values (i.e., 1990 and 2002), and narrower rings following years with high SLP 314 

values (i.e., 1975, 1983, 1987, and 1995). 315 

 316 

Discussion 317 

Climate-growth responses of P. canariensis 318 
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Even in a reduced geographical range, we found big differences in tree growth between 319 

windward and leeward slopes on Tenerife. This is in agreement with previous findings 320 

that Canary pine forests on windward and leeward are separate ecosystems, each with its 321 

own dynamics and environmental constraints (Fernández-Palacios and de Nicolás 1995). 322 

The physiological effects of water inputs and reduced radiation caused by fog drip 323 

make climate less limiting on the windward slope. The amount of water captured by 324 

vegetation from the fog carried by trade winds implies that throughfall can account in 325 

average more than twice the incident rainfall (Aboal et al. 2000), therefore throughfall 326 

plays a fundamental role in the water relationships of P. canariensis. Fog alleviates water 327 

stress by reducing canopy transpiration or evaporation, and/or by improving plant water 328 

status by direct absorption through the foliage (Burgess and Dawson 2004). Reduced 329 

water stress on windward can explain the positive effects of elevated temperatures in 330 

previous December and the detrimental impact of February precipitation on P. canariensis 331 

growth. In Mediterranean pines, carbon assimilation occurs year round, and relatively 332 

high rates of winter photosynthesis can occur under warm conditions (Medlyn et al. 333 

2002). In fact, maximum daily net photosynthesis in P. canariensis can be higher during 334 

winter than in summer, due to a higher soil-water availability and a lower evaporative 335 

demand as compared to the warm and dry season (Peters et al. 2008). High winter 336 

photosynthetic rates and relatively elevated temperatures would result in a greater amount 337 

of carbohydrates stored to be used in the following active season (Zweifel et al. 2006).  338 

The negative influence of February precipitation, mainly on latewood growth, may 339 

be related to reduced solar radiation modulated by cloudiness, which showed to be a 340 

primary factor limiting photosynthesis, carbon uptake and growth during the rainy season 341 

(Graham et al. 2003). Trees on windward show a positive response to precipitation in 342 

July-August, suggesting that summer water stress limits growth. Probably, summer 343 
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drought is mitigated by a high relative humidity of the air, and a high frequency of clouds 344 

due to trade winds influence. In this species, canopy transpiration is maintained at 345 

relatively high rates during the dry season (Luis et al. 2005), suggesting that water stress 346 

can negatively affect growth of P. canariensis during the warm and dry season, a 347 

generalized response of pine species under Mediterranean climate (Bogino and Bravo 348 

2008; Campelo et al. 2006). 349 

On the leeward slope, the presence of narrow/wide rings produced during years of 350 

high/low sea-level pressure, suggested that annual growth was strongly limited by climatic 351 

factors depending on SLP, namely winter precipitation. In fact, precipitation in 352 

November-December is negatively correlated (R = –0.56, P < 0.001) with SLP in 353 

October-December. Wider rings were formed after rainy winters (1990 and 2002), while 354 

narrower and even absent rings occurred in years following lower winter precipitation 355 

(1975, 1983, 1987, and 1995). Narrow rings for these years were also identified by 356 

Jonsson et al. (2002) near the upper altitudinal timberline of P. canariensis (2,000-2,100 357 

m) on Tenerife, suggesting that they are characteristic of sites beyond the influence of the 358 

“cloud sea”. When the low-pressure system tends to be stronger, it causes moister and 359 

colder conditions than usual during November-December on Tenerife, so that soils are 360 

replenished with water before the summer drought. By contrast, high pressures in winter 361 

produce the reversed pattern, and lead to anomalous hot and dry winters on leeward. 362 

Leeward populations of P. canariensis exhibit xeromorphic traits allowing a tight 363 

regulation of transpirational water loss (Grill et al. 2004). Accordingly, annual canopy 364 

transpiration lies significantly below the common values for other Mediterranean trees, 365 

suggesting a strong adaptation to low soil water availability during periods of great 366 

evaporative demand (Luis et al. 2005). The effect of winter precipitation can be due to the 367 

pronounced water deficit in the study area, with one-third of the annual precipitation 368 
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occurring in November-December. The positive influence of moist winters on growth is 369 

common in Mediterranean pines and can be attributed to soil water recharge during the 370 

wet season (Bogino and Bravo 2008; Martín-Benito et al. 2008).  371 

 372 

Fire effects on tree growth 373 

Previous evidences suggest that surviving trees can experience either growth releases or 374 

reductions as a function of either the degree of fire injury the trees suffered, or the benefits 375 

derived from competitor’s decline and release of nutrients to the soil. We observed growth 376 

reductions after severe crown fire, with no relevant effects of surface fire on tree growth. 377 

Our finding does not agree to previous studies, which showed that Pinus monophylla and 378 

Sequoiadendron giganteum (Lindl.) J. Buchh. had abrupt tree-ring growth increases on the 379 

surviving trees in the early years following intense fires (Mutch and Swetnam 1995; Py et 380 

al. 2006); or surface fires caused growth reductions on  Pinus strobus, which were directly 381 

related to the amount of forest surface litter consumed by fires (Elliott et al. 2002). 382 

However, our results agree with a study on Pinus taeda, in which crown fires reduced 383 

growth proportionally to the amount of crown scorched (McInnis et al. 2004). In our 384 

crown fires, almost 100% of the crown was scorched, while the proportion of crown 385 

scorched by surface fire was negligible. 386 

Most conspicuous effects of the 1995 fire on ring-width patterns were due to aspect 387 

and its interaction with fire treatment. Crown fire impacted tree growth considerably on 388 

both slopes, but more severely on windward. The reason for growth reduction in 1994 on 389 

leeward, as the PGCs filter revealed, is that the big fire in 1995 coincided with a 390 

climatically-caused narrow ring in the same year on leeward. Thus, the PGCs filter 391 

showed its maximum one year earlier than the actual date of fire. The harsh reduction of 392 

growth rates in the post-fire period, and the absent rings in all trees suffering from crown 393 
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fire on windward, suggested that fire impact on growth was greater than on leeward. 394 

Contrasting growth responses to fire observed on windward and leeward slopes are 395 

probably related to the different growth rates, stand structure, understorey composition, 396 

fuel accumulation, and flammability on both slopes as a result of cloudiness influence. 397 

As opposed to the post-fire impact, growth recovery was faster on leeward, showing 398 

even higher growth rates than for the pre-fire period. In dry Canary pine woodland, 399 

understorey shrubs usually die, and soil mineral nutrients become clumped around pine 400 

trees after severe fires (Rodríguez et al. 2009), which can improve soil resource content 401 

and tree growth in the recovery period. P. canariensis is rarely killed by crown fires, with 402 

all trees remaining alive after very severe fires (Otto et al. 2010), resprouting from stems 403 

and larger branches, and maintaining their ability to intercept nutrients. The outstanding 404 

resistance and capability of P. canariensis to resprout after severe fires are unusual among 405 

pine species. A high proportion of living cells in the xylem, which accumulate large 406 

amounts of starch, are responsible for epicormic sprouting from preformed buds, and the 407 

production of a new crown after severe fire (Climent et al. 1998, 2004). Our results 408 

suggest that the abundant synchronic absent rings are a consequence of severe crown fires, 409 

as radial growth ceased and stored reserves were probably allocated for the growth of 410 

epicormic sprouts during the post-fire period. Only when the photosynthetic tissue from 411 

the new crown produces enough carbohydrates, the surplus can be newly allocated to 412 

storage and radial growth.  413 

The largest wildfires on Tenerife occurred in September 1983 (6,500 ha) and July 414 

1995 (2,700 ha) following dry winters with high sea-level pressure, which coincided with 415 

narrow and absent tree rings on leeward. Dry winters may desiccate coarse forest fuels 416 

enough to produce large fires, so that fire occurrence could be phase-locked with sea-level 417 

pressure. The relative predictability of fire events in the Canary Islands offers managers 418 
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and decision makers a useful alerting tool for planning preventive measures to mitigate 419 

the effects of large, high intensity wildfires when dry conditions occur in previous winter. 420 

Extensive reconstructions of past fire events in Canary pinewoods, based on dating 421 

abundant fire scars and analyzing tree-ring growth sequences from long-lived trees, 422 

should be performed to confirm this assumption. 423 

Even if there are previous evidences that abrupt tree-ring growth changes can be 424 

found in the surviving trees after intense fires (Mutch and Swetnam 1995; Py et al. 2006), 425 

these changes have not been used to reconstruct past fire regimes yet. As our results 426 

suggest, dating harsh growth suppressions and synchronic series of consecutive absent 427 

rings on surviving trees can also help to date past high-severity crown fires in P. 428 

canariensis forests, and probably also in other tree species with the capability of stem 429 

sprouting after fire. 430 
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 560 

Table 1 Characteristics of the studied Pinus canariensis plots and trees at windward and 561 

leeward slopes on Tenerife based on 22 sampled trees per plot. Plot numbers refer to plot 562 

designations from Arévalo et al. (2001) 563 

Aspect Plot Treatment North 

latitude 

West 

longitude 

Elevation 

(m) 

DBH  ± SD 

(cm) 

Epicormic 

sprouts (%) 

Absent 

rings (%) 

                  Windward 
1 Control 28º24.738' 16º25.370' 1542 29.2 ± 6.1 0.0 9.1 

 
2 Surface fire 28º24.681' 16º25.460' 1559 31.2 ± 5.5 13.6 37.5 

 
5 Crown fire 28º24.770' 16º25.422' 1473 26.3 ± 5.4 100.0 100.0 

 
6 Control 28º24.345' 16º26.074' 1398 27.6 ± 6.9 13.0 0.0 

 
7 Surface fire 28º24.464' 16º25.714' 1462 28.6 ± 6.6 8.7 6.6 

 
10 Crown fire 28º24.448' 16º25.760' 1449 27.5 ± 5.5 100.0 100.0 

         Leeward 
16 Control 28º22.589' 16º26.826' 1390 31.0 ± 5.8 0.0 11.7 

 
18 Crown fire 28º23.201' 16º26.069' 1535 25.1 ± 3.8 100.0 89.5 

 
20 Control 28º22.978' 16º26.591' 1525 25.3 ± 6.0 17.4 5.0 

 
22 Surface fire 28º23.109' 16º25.881' 1435 27.7 ± 7.5 27.3 37.5 

 
25 Surface fire 28º23.076' 16º26.288' 1490 31.0 ± 6.0 18.2 5.5 

 
27 Crown fire 28º22.996' 16º26.304' 1540 25.9 ± 4.6 100.0 93.3 

          564 

 565 
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 566 

Table 2 Results of repeated-measures ANOVA for the effects of plot replicates, treatment 567 

(control, surface fire, crown fire), aspect (windward, leeward), and period (pre-fire, post-568 

fire, recovery), on mean tree-ring width 569 

      Source of variation SS DF  MS F value P value 

            Between-subjects effects      

Intercept 2.627 1 2.627 22.39 < 0.001 

Plot 0.032 1 0.032 0.27 0.600 

Treatment 0.940 2 0.470 4.01 0.020 

Aspect 8.141 1 8.141 69.64 < 0.001 

Treatment × Aspect 2.386 2 1.193 10.17 < 0.001 

Error 22.296 190 0.117   

      Within-subjects effects (*)      

Period 0.195 2 0.104 4.26 0.017 

Period × Plot 0.083 2 0.044 1.81 0.167 

Period × Treatment 3.362 4 0.896 36.75 < 0.001 

Period × Aspect 0.168 2 0.089 3.67 0.029 

Period × Treatment × Aspect 1.524 4 0.406 16.66 < 0.001 

Error 8.690 380 0.024   

       (*) The Huynh-Feldt corrected test was applied due to the lack of data sphericity. 570 

SS: sum of squares; DF: degrees of freedom; MS: mean square 571 
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 574 

Table 3 Summary statistics of RDA models and Pearson’s correlations for the 575 

relationships between the variation of tree-ring growth indices on the windward and 576 

leeward slopes, and climate predictors for mean temperature (T), precipitation (P), and 577 

sea-level pressure (SLP). The proportion of tree-ring growth variation accounted for by 578 

each variable and by reduced models was quantified by the eigenvalue λ 579 

           RDA models  Pearson’s correlations (*) 

                  Aspect Climatic predictors λ F value P value  EW LW TR 

                  Windward T Dec(–1) 0.177 8.18 0.003  0.443** 0.349* 0.449** 

 P Jul-Aug 0.176 8.11 0.003  0.335* 0.496** 0.408** 

 P Feb 0.099 4.18 0.032  –0.288 –0.333* –0.323* 

 Reduced model 0.371 7.08 < 0.001     

         
Leeward P Nov-Dec(–1) 0.251 12.72 0.001  0.484** 0.515*** 0.506*** 

 SLP Oct-Dec(–1) 0.409 26.32 < 0.001  –0.641*** –0.609*** –0.665*** 

 Reduced model 0.439 14.49 < 0.001     

         (*) significance levels: * P < 0.05; ** P < 0.01; *** P < 0.001 580 
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 583 

 584 

Fig. 1 a) Location of the study area. b) Location of the windward and leeward study plots 585 

with their corresponding fire treatments. Plot numbers refer to plot designations from 586 

Arévalo et al. (2001) 587 
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Fig. 2 Radial growth patterns of P. canariensis (mean ring width ± SD) per fire treatment 591 

on windward and leeward slopes, with their corresponding sample sizes. Arrows indicate 592 

the 1995 fire 593 
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 597 

Fig. 3 Mean PGCs chronologies (lines) and number of trees with absent rings (bars) per 598 

fire treatment on windward and leeward slopes. The years of maximum PGCs values and 599 

the considered threshold for 200% PGCs are shown 600 
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Fig. 4 Comparison of mean ring widths (+1 SE) per period and fire treatment on a 605 

windward and b leeward slopes. Different letters within each treatment indicate 606 

significant differences (P < 0.05) among periods according to Tukey’s HSD post hoc test 607 
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Fig. 5 Biplot scores from RDA model for the relationships of tree-ring growth (EW, LW, 612 

and TR are respectively earlywood, latewood, and total ring indexed chronologies) on 613 

windward (W) and leeward (L) slopes with the climatic predictors significantly (P < 0.05) 614 

related to tree-ring growth variation. The percentage of variance accounted for by each 615 

RDA axis is shown 616 
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 620 

Fig. 6 Comparison of tree-ring growth indices on leeward slope with SLP in October-621 

December of the previous year. Note the inverted scale in the vertical axis for SLP. Years 622 

with maximum (1990, 2002) and minimum (1975, 1983, 1987, 1995) growth are shown 623 
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