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Abstract

The mononuclear phagocyte system is composed of monocytes, macrophages and dendritic cells and has
crucial roles in inflammation, autoimmunity, infection, cancer, organ transplantation and in maintaining
organismal homeostasis. Interleukin-34 (IL-34) and macrophage colony stimulating factor (MCSF), both
signalling through the MCSF receptor, regulate the mononuclear phagocyte system. A single IL-34 and
MCSF gene are present in tetrapods. Two types of MCSF exist in teleost fish which is resulted from teleost-
wide whole genome duplication. In this report, we first identified and sequence analyzed six IL-34 genes in
five teleost fish, rainbow trout, fugu, Atlantic salmon, catfish and zebrafish. The fish IL-34 molecules had a
higher identity within fish group but low identities to IL-34s from birds (27.2-33.8%) and mammals (22.2-
31.4%). However, they grouped with tetrapod 1L-34 molecules in phylogenetic tree analysis, had a similar 7
exon/6 intron gene organisation, and genes in the IL-34 loci were syntenically conserved. In addition, the
regions of the four main helices, along with a critical N-glycosylation site were well conserved. Taken
together these data suggest that the teleost IL-34 genes described in this report are orthologues of tetrapod

IL-34.

Comparative expression study of the three trout MCSFR ligands revealed that IL-34, MCSF1 and MCSF2
are differentially expressed in tissues and cell lines. The expression of MCSF1 and MCSF2 showed great
variance in different tissues and cell lines, suggesting a role in the differentiation and maintenance of specific
macrophage lineages in specific locations. The relatively high levels of IL-34 expression across different
tissues suggests a homeostatic role of I1L-34 for the macrophage lineage in fish. One striking observation in
the present study was the lack of induction of MCSF1 and MCSF2 expression but the quick induction of IL-
34 expression by PAMPs and inflammatory cytokines in cell lines and primary head kidney macrophages in
rainbow trout. In a parasitic proliferative kidney disease (PKD) model, the expression of IL-34 but not the
dominant MCSF2 was affected by PKD, suggesting an involvement of macrophage function in this disease
model. Thus IL-34 expression is sensitive to inflammatory stimuli and may regulate macrophage biology

once up-regulated.
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1. Introduction

The monocyte/macrophage lineage cells, including blood monocytes and resident tissue macrophages, are
evolutionally conserved and the first line of defense against pathogens. They maintain homeostasis, and have
trophic functions ranging from bone morphogenesis to neuronal patterning in sexual development and from
angiogenesis to adipogenesis (Pollard, 2009; Wang et al., 2012). The development of monocytes and
macrophages requires macrophage colony-stimulating factor (MCSF, also known as colony-stimulating
factor 1, CSF1) through its binding to the MCSF receptor (MCSFR, also known as CSF1R or CD115) on
bone marrow progenitor cells, which results in their proliferation and differentiation into monocytes and
macrophages. All MCSF effects are mediated through MCSFR. Thus Csflr/  mice (mice deficient in
MCSFR) show all the defects of Csf1°?/°" mice (mutant mice that lack MCSF), such as deficiency in most
tissue macrophages (Dai et al., 20002). However, Csflr/" mice have more severe defects in several
monocyte/macrophage subsets than Csf1°?/*® mice. For example, microglia (resident macrophages of the
central nervous system) and Langerhans cells (resident dendritic cells of the epidermis) are absent from
Csflr”™ mice but present in Csf1®/" mice (Witmer-Pack et al., 1993). Such discrepancies suggest the
existence of an alternative ligand for MCSFR that can partially compensate for the absence of MCSF in
Csf1°/°" mice. Indeed, interleukin 34 (IL-34), a molecule lacking discernible sequence similarity to MCSF,
has been recently identified as the second functional ligand for MCSFR in mammals (Lin et al., 2008; Wei et

al., 2010) and birds (Garceau et al., 2010).

Despite a lack of appreciable sequence similarity with other proteins, IL-34 was recognised as a short chain
helical cytokine belonging to the same family as MCSF and stem cell factor (Garceau et al., 2010).
Mammalian IL-34 has a distinctive antiparallel four-helix bundle cytokine core structure consisting of long
aA, aB, aC, and aD helices as with MCSF (Liu et al., 2012; Ma et al., 2012). Outside this core portion, there
are two additional shorter helices al and o2, connecting aA and aB, and aC and aD, respectively, that are
packed against aB and aD, and associated with the 4 longer helices through continuous hydrophobic
interactions. The human and mouse IL-34 is further locked by two intramolecular disulfide pairs located at
the pole of each protomer that shares no structural similiarity with disulfide bonds in MCSF. The first

disulfide bridge connects helices aA and aD, while the second locks the C-terminal extension to the end of



aD (Liu et al. 2012; Ma et al., 2012). Unlike MCSF, IL-34 is a non-covalently linked homodimer without an
intermolecular disulfide bridge that is used to covalently cross-link the two monomers in the MCSF dimer
(Liu et al., 2012). Furthermore, an N-glycosylation site is conserved in helix al in mammalian and bird 1L-34
molecules. The glycan serves to fill the cavity between the helices al and aC and is critical for I1L-34

stability in solution (Liu et al., 2012).

Through binding to MCSFR, IL-34 shares similar functions with MCSF. Thus, both cytokines support cell
growth and survival in cell culture studies (Chihara et al., 2010; Misuno et al., 2011; Wei et al., 2010) and
induce chemokines in human whole blood (Eda et al., 2010). IL-34 can also substitute for MCSF to support
RANKL induced osteoclastogenesis (Baud’huin et al., 2010; Chen et al.,, 2011; Hwang et al., 2012;
Nakamichi et al., 2012). The IL-34 gene, when expressed under the control of the MCSF promoter, can
rescue the bone, osteoclast and tissue-macrophage defects of CSF-1°°/°" mice (Wei et al., 2010). However,
the signal transduction mechanisms and biological activity of IL-34 and M-CSF are not identical. They differ
in terms of the induction of chemokines and morphological changes induced in primary macrophages. 1L-34
has been shown to induce a stronger but transient activation of MCSFR and downstream effectors and
rapidly downregulates MCSFR expression (Chihara et al., 2010). Moreover, 1L-34 and MCSF exhibit
different spatiotemporal patterns of expression in both embryonic and adult tissues, which lead to
complementary activation of MCSFR (Nandi et al., 2012; Wei et al., 2010). IL-34 but not MCSF mRNA is
detected together with MCSFR in embryonic brain. Wang et al. (2012) found that the main sources of 1L-34
are neurons in the brain and keratinocytes in the epidermis, and IL-34-deficient mice lack microglia and
Langerhans cells. Thus, while IL-34 and MCSF resemble each other, they are not identical in their role in

development, biological activity, and signal activation kinetics or strength.

IL-34 mRNA is broadly expressed in adult human tissues, including heart, brain, lung, liver, kidney, spleen,
thymus, testis, ovary, small intestine, prostate and colon (Lin et al., 2008). Although the expression of both
IL-34 and MCSF can be induced by proinflammatory cytokines, e.g. IL-13 and TNF-a, the signalling
pathways involved in their induction are different. For example, MAPK is involved in the induction of 1L-34
but not MCSF, by IL-1p and TNF-a (Eda et al., 2011). MCSF is expressed as a biologically active membrane
spanning cell surface glycoprotein and can be cleaved to release a bioactive soluble MCSF (Pandit et al.,

1992). In contrast, 1L-34 is secreted. Whilst the cell surface isoforms of MCSF act locally in a cell-to-cell



contact manner, the secreted 1L-34 and soluble MCSF can act at remote sites to induce a response.

MCSF has recently been identified in several fish species including rainbow trout (Oncorhynchus mykiss),
zebrafish (Danio rerio) and goldfish (Carassius auratus), with two isoforms of this cytokine (MCSF1, and
MCSF2) identified in trout and zebrafish (Hanington et al., 2007; Wang et al., 2008). The two trout MCSF
isoforms differ in their expression patterns in tissues and different cell populations. Recombinant fish MCSF
was demonstrated to promote the proliferation of macrophages (Hanington et al., 2007; Wang et al., 2008),
induce pro-inflammatory gene expression and enhance antimicrobial responses (Grayfer et al., 2009),
suggesting a conservation of the monocyte/macrophage system and its regulation in vertebrates. In this report,
we have identified and characterised IL-34 for the first time in fish, in rainbow trout, Atlantic salmon (Salmo
salar), fugu (Takifugu rubripes), zebrafish, and catfish (Ictalurus punctatus). We have examined the
expression of IL-34 together with the two other putative MCSFR ligands, MCSF1 and MCSF2, in vivo and
in vitro, and found that the three ligands are differentially expressed and modulated by pathogen associated

molecular patterns (PAMPs), proinflammatory cytokines and a parasitic infection.



2. Materials and methods

2.1. Identification and cloning of IL-34 in rainbow trout and fugu

Search of the expressed sequence tag (EST) database revealed two overlapping trout ESTs (Acc Nos.
CA351788, CA368219) that when translated encode a peptide with homology to the N-termini of
mammalian IL-34 molecules. The full-length sequence of the trout molecule was obtained by 3’-RACE
using spleen SMART c¢cDNA as described previously (Wang and Secombes, 2003). Primers (F1/F2, Table I)
were designed in the 5’-untranslated region (UTR) and amplified a 1.5 kb product that contained the

complete coding region and 3’-UTR.

The fugu IL-34 sequence was found by exploiting the conservation of synteny between the human and the
fugu genomes. The fugu genome database was searched by basic local alignment search tool (BLAST)
analysis (Altschul et al., 1990) using human metastasis suppressor 1-like (MTSS1L) and splicing factor 3b,
subunit 3 (SF3B3) genes, the known neighbours of the human IL-34 gene. Two candidate fugu DNA
scaffolds (764 and 2156) were obtained and a region encoding a possible fugu IL-34 homologue identified
using various sequence analysis programs (Burge and Karlin, 1998). The prediction was confirmed by
sequencing of a PCR product amplified by primers fIL34F1 and R1 (Table 1) from cDNA samples. The

cDNA sequence was extended by 3’- and 5’-RACE using primers detailed in Table 1.

2.2. Sequence analysis of IL.-34 homologues in other fish species

BLAST search at NCBI using the cloned trout and fugu IL-34 sequences identified tilapia and zebrafish IL-
34 molecules predicted from the respective genomic sequence (Acc. Nos. 13JZ08 and B3DLJS8). Search of
the EST database obtained multiple fish ESTs with ESTs from Atlantic salmon, catfish and zebrafish
producing contigs of the complete coding region of 1L-34 (details seen in Supplementary Figs. 2, 5 and 6).
An additional salmon IL-34 gene (IL-34B) was also predicted from whole-genome shotgun contigs (WGS,

Acc. No. AGKDO01076819, detailed in Supplementary Fig. 3).

2.3. Gene organisation
The DNA sequences were retrieved from relevant databases. The gene organisation was determined by

comparing the c¢cDNA and genomic sequences using the online Spidey program



(http://www.ncbi.nlm.nih.gov/spidey) at NCBIL.

2.4. Sequence analysis

The DNA sequences produced by cloning and the EST sequences retrieved from the database were
assembled and analysed with the AlignIR program (LI-COR, Inc). The protein sequences were retrieved
from the Expasy or NCBI protein databases. Global sequence comparisons were performed using the
MatGAT program (V2.02, Campanella et al., 2003) using the scoring matrix BLOSUMG60 with a gap open
penalty of 10 and gap extension penalty of 1. Multiple sequence alignments were generated using ClustalW
(Chenna et al., 2003) and shaded using BOXSHADE (version 3.21;

www.ch.embnet.org/software/BOX form.html). The signal peptide was predicted using SignalP 4.0

(Petersen et al., 2011). Finally phylogenetic trees were created by the neighbour-joining method using

MEGA software (version 5.1, Tamura et al., 2011), and were bootstrapped 10,000 times.

2.5. Expression of IL-34, MCSF1 and MCSF?2 in healthy trout and four trout cell lines

Six healthy rainbow trout (Mean+SEM =106.0+5.2 g) were killed and fourteen tissues (gills, thymus, scales,
skin, muscle, liver, spleen, ovary, head kidney, caudal kidney, intestine, heart, tail fins and brain) were
collected and homogenized in Trizol (Invitrogen). The RNA preparation and cDNA synthesis were as

described previously (Wang et al., 2011a, b).

The primers (Table 1) for real-time-PCR analysis of gene expression were designed so that at least one
primer crossed an intron and were pre-tested to ensure that each primer pair could not amplify genomic DNA
using the real-time PCR protocols. The expression of trout IL-34, MCSF1 and MCSF2, as well as the house
keeping gene elongation factor-1a (EF-1a) was quantified by real-time PCR as described previously (Wang
et al., 2009, 2011a, b). For comparison, a standard was constructed using a mixture of equal mole amounts of
purified PCR products amplified from cloned plasmids for each gene to be studied. A serial dilution of the
standards was run along with the cDNA samples in the same 96-well PCR plate and served as a reference for
quantification. The expression level of each gene was calculated as arbitrary units normalized to the
expression of EF-1a. The expression level of MCSF1 in gills, the lowest level of all the ligands in all the

tissues, was defined as 1.



The constitutive expression of the three ligands was also examined in four trout cell lines, RTS-11 (a
mononuclear/macrophage-like cell line from spleen, Ganassin and Bols, 1998), RTL (an epithelial cell line
from liver, Lee et al., 1993), RTG-2 (a fibroid cell lines from gonad, Wolf and Quimby, 1962) and RTGill (a
fibroid cell line from gills, Schirmer et al., 1998). All cells were maintained in L-15 medium (Invitrogen)
supplemented with 30% foetal calf serum (FCS, Labtech International, UK) for RTS-11 cells or 10% FCS for
the other cell lines, and 100 units/ml penicillin, 100 pg/ml streptomycin (Invitrogen). Total RNA was
prepared from 1 day old cells after passage and real-time analysis of gene expression was as described above.
The expression level of MCSF1 in RTGill, the lowest level of all the ligands in all the cell lines, was defined

as 1.

2.6. Modulation of I1L-34, MCSF1 and MCSF2 expression in four trout cell lines by PAMPs and IFN-y

All cells were passaged 1 day before stimulation in 10% FCS at a concentration of 5-10x10° cells/ml. The
cells were stimulated by direct addition of stimulants that were dissolved in L-15 medium. Three stimulants,
E. coli LPS (25pg/ml, from strain 055:B5, Sigma), polyinosinic:polycytidylic acid (polyIC, 50 pg/ml,
Sigma), recombinant trout IFN-y (IFN-y, 20 ng/ml, Wang et al., 2011) or medium alone as control, were used.
The concentrations chosen for each stimulant were deemed optimal from previous studies (Wang et al., 2010;
Holland et al., 2010). The treatments were terminated by dissolving the cells in TRIzol (Sigma) at 4 h, 8 h
and 24 h post-stimulation and total RNA was prepared. Four replicates were used in each group. The real-
time analysis of gene expression was as described in section 2.5. The fold changes were calculated as the

average expression of the treatment groups divided by that of the time matched control group.

2.7. Modulation of IL-34 expression in primary head kidney macrophages

Primary head kidney (HK) macrophages were prepared from four trout as described previously (Costa et al.,
2011). Four day old primary macrophages were then stimulated with a variety of PAMPs (LPS, 25 pg/ml;
polylC, 50 pg/ml), inflammatory cytokines (recombinant trout IL-1f, 20 ng/ml, Hong et al., 2001; IL-6, 200
ng/ml, Costa et al., 2011; IFN-y, 20 ng/ml, Wang et al., 2011b), other immune stimulants (phorbol 12-
myristate 13-acetate (PMA), 100 ng/ml; calcium ionophore (CI), 0.5 pg/ml; phytohaemagglutinin (PHA)
from red kidney bean Phaseolus vulgaris, 10 ug/ml), as well as an immune suppressor (dexamethasone
(DM), 0.5 pg/ml) for 4 h, 8 h and 24 h. All the chemicals were from Sigma-Aldrich and the stimulants were

diluted in complete medium just before addition to the cells. The concentrations chosen for each stimulant



were deemed optimal from previous studies (Costa et al., 2011, Hong et al., 2001; Wang et al., 2009, 2011a,
b). The treatments were terminated by dissolving the cells in TRIzol (Invitrogen). The real-time analysis of
IL-34 expression was as described in section 2.5. The fold changes were calculated as the average expression
of the treatment groups divided by that of the time matched control group. The expression of MCSF1 and

MCSF2 was very low and not reported.

2.8. Modulation of I1L-34, MCSF1 and MCSF2 expression by parasitic infection

Proliferative kidney disease (PKD) is a parasitic disease of salmonid fish caused by the myxozoan parasite
Tetracapsuloides bryosalmonae (Bettge et al., 2009). The parasite infects the fish through the skin and gills
and subsequently gains access to internal tissues, with the kidney being the main target organ. As the HK is
the main organ of myeloid development in fish and primary HK macrophage increases IL-34 expression after
stimulation (see results), the expression of IL-34, alongside MCSF1 and MCSF2, was analysed in HK of
trout infected with T. bryosalmonae during a natural outbreak. Tissue collection and preparation of cDNA
samples was as described previously (Wang et al., 2010). The severity of clinical pathology of each fish was
analysed and a kidney swelling index assigned from 0 to 4, with O representing the control fish and 1 to 4
increasing pathology in the infected fish (Clifton-Hadley et al., 1987). The real-time PCR quantification of
the genes was as described in section 2.5. The fold changes were calculated as the average expression of

infected samples at each grade divided by that of the control group.

2.9. Statistical analysis

Real-time quantitative PCR measurements were analyzed using the SPSS package 20.0 (SPSS Inc. Chicago,
Illinois). The arbitrary units for each sample were obtained after normalization to the lowest expression level
in a data set that was defined as 1, and were log2 transformed to improve the normality of data distribution as
described previously (Wang et al., 2011a). One-way ANOVA and the least significant difference (LSD) post
hoc test were then used to analyze the expression data (Figs. 5B, 6 and 8), with p<0.05 between groups
considered significant. Since the expression data in Figs. 5A and 7 consisted of a set of samples from four

individual fish, a Paired-Sample T-test was applied.



3. Results

3.1. Identification of teleost 1L.-34

The compiled trout IL-34 cDNA was 1464 bp with an open reading frame (ORF) of 615 bp encoding for 204
aa and a polyadenylation signal (AATAAA) 20 bp upstream of the poly A tail (Acc. No. FN820499,
Supplementary Fig. 1). There are four upstream ATGs before the main ORF in the 5’-UTR and a mRNA
instability motif (ATTTA) in the 3’-UTR. Using the trout IL-34 as bait, 28 salmon ESTs were obtained at
NCBI that produced a contig of 1528 bp with an ORF of 615 bp encoding for salmon IL-34A
(Supplementary Fig. 2). Similar to trout 1L-34, the salmon IL-34A cDNA had 5 ATGs in the 5’-UTR, and an
ATTTA motif and a polyadenylation signal in the 3’-UTR. A salmon WGS contig (NCBI ID:
AGKDO01076819) was further identified with a predicted ORF for 207 aa and was designated salmon IL-34B

(Supplementary Fig. 3).

The extended cDNA sequence of fugu IL-34 contained a complete ORF of 681 bp encoding for 226 aa, with
a predicted signal peptide at the N-terminus of the translation (Acc. No. AB691593, Supplementary Fig. 4).
The 3’- and 5’-RACE products probably did not contain the full-length cDNA sequence, in that there were

no upstream ATGs in the 5° UTR sequence and no polyadenylation site in the 3 UTR sequence.

Eight catfish ESTs were retrieved at NCBI, that made a contiguous sequence of 1691 bp encoding an ORF of
636 bp that translated into the catfish I1L-34 protein of 211 aa (Supplementary Fig. 5). Two ATGs in the 5’-
UTR, and an ATTTA motif and a polyadenylation signal in 3’-UTR were also observed in this catfish 1L-34
cDNA. The ORF for zebrafish IL-34 was predicted from the genome sequence but no cDNA sequence had
been reported previously. Six zebrafish ESTs were obtained at NCBI that gave a contiguous sequence of
1539 bp, with an ORF of 642 bp encoding the predicted protein of 213 aa (Acc. No. B3DLJS). Two ATGs in
the 5’-UTR and an ATTTA motif in the 3’-UTR were also present in this cDNA sequence (Supplementary

Fig. 6).

The identities of teleost I1L-34 were further confirmed by synteny analysis in human, chicken, zebrafish and
fugu (Fig. 1). The human, chicken and zebrafish IL-34 genes are on Chromosome (Chr) 16, 11 and 18,

respectively. The fugu IL-34 was on scaffold 764 and 2156 in the fugu genome (Ensembl release 68). The
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genes, VAC14, COG4, MTSS1L, SF3B3, N4PB1, SIAH1 and LONP2, are linked to IL-34 on human Chr 16
and chicken Chr 11. The last five genes are also present in the zebrafish IL-34 locus on Chr 18, and the last
four genes conserved in the fugu IL-34 locus (Fig. 1), suggesting that the teleost 1L.-34 genes are indeed

orthologues of tetrapod IL-34.

3.2. Chracterisation of teleost 1L.-34

The teleost 1L-34 aa sequences are sumarised in Table 2. They are 204-226 aa long with basic theoretical
isoelectric points (pl) (8.36-9.42) except fugu IL-34 (pI=6.18). As with bird and mammalian IL.-34 molecules,
the teleost IL-34 molecules have a signal peptide at the N-terminal suggesting they are secreted. Two to six

potential N-glycosylation sites are also present in each fish molecule (Table 2).

The trout IL-34 and salmon IL-34A share 95.1% identity to each other but only share 82.2% identity to
salmon IL-34B (Table 3). All the fish IL-34 molecules from different families share comparable high
identities (37.4-49.3%) except the fugu and tilapia IL-34s that share 63.6% identity to each other. However,
the fish IL-34 molecules only share low identities to 1L-34s from birds (27.2-33.8%) and mammals (22.2-

31.4%). Identities within birds (76.7%) and mammals (67.8-71.9%) are relatively high (Table 3).

To further reveal the conservation and identity of fish IL-34 molecules, a multiple alignment was constructed
(Fig. 2A). The human and mouse 1L.-34 have four long alpha helices (aA-D) that form the core “up-up-down-
down” structure, in addition to two short helices (al-2) (Liu et al., 2012; Ma et al., 2012). The four long
helices, as well as the al helix are well conserved (Fig. 2A). The N-glycosylation site in helix al, shown to
be critical for IL-34 stability in solution (Liu et al., 2012), is also conserved in all vertebrates. An additional
N-glycosylation site between helices aA and al is present in teleost species except tilapia (Fig. 2A). There
are six conserved cysteine residues (C1, 2, 4, 5, 6 and 7 in the alignment) in mammalian 1L-34, and four of
them form two pairs of intramolecular disulfide bonds (C1-C6 and C4-C7, Ma et al., 2012) (Fig. 2B). Four
of the six cysteine residues (C1, 2, 6 and 7) were also conserved in teleost IL-34 molecules, in addition to a
fish specific cysteine residue C3. Thus the the teleost IL-34 may also have two intramolecular disulfide
bonds (C1-C6 and C3-C7; Fig. 2B). However, the bird IL-34 molecules only have three conserved cysteine
residues (C1, 2 and 6) and miss the final cysteine C7 present in both mammals and teleosts. Interestingly, C2

is conserved across all vertebrates but is reported to have no role in disulfide bond formation in mammalian
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IL-34 (Ma et al., 2012). One noticable difference between mammals and other species (fish and birds) is the
longer C-terminal tail in mammalian IL-34 (although fugu IL-34 is relatively long for fish), which is Pro-
Ser-Thr-rich, a feature typical of flexible mucin-like O-linked glycosylation-rich sequences, that is missing in
fish and bird IL-34 (Liu et al., 2012, Fig. 2A). The shorter C-terminal of teleost IL-34 contains many basic

residues (K and R).

A phylogenetic tree was also constructed using mammalian MCSF as an outgroup (Fig. 3). All the 1L-34
molecules from fish, birds and mammals grouped together with high bootstrap support (100%) and separate
from MCSF, indicating that they are indeed orthologues. In agreement with the multiple alignments, the IL-
34 molecules from teleost fish, birds and mammals form independent clades, a reflection of selection

pressures in each vertbrate group.

It appeared that the IL-34 genes across vertebrates had a general 7 exon/6 intron structure, with one intron in
the 5’-UTR. The first and last introns in the coding region are phase 1 and the rest are phase 0. One
exception was fugu IL-34 that may have an 8 exon/7 intron structure resulting from an intron insertion in
exon 5 (Fig. 4). Despite the conservation of exon number, exon size showed group specific features except in
exons 4 and 5. Mammalian IL-34 genes had a large untranslated region in the first coding exon (exon 2) and
a large coding region in the last exon compared to fish and bird IL-34 genes. In the chicken IL-34 gene exon

3 was similar in size to teleost IL-34 genes but exon 6 was more similar to mammalian IL-34 genes (Fig. 4).

3.3. Differential expression of IL-34, MCSF1 and MCSF2 in vivo and in cell lines

The expression of the three trout MCSFR ligands, 1L-34, MCSF1 and MCSF2, was comparatively examined
in fourteen tissues from six healthy trout, by real-time PCR (Fig. 5A). The expression of MCSF1 showed
great variance between tissues, with the lowest level detected in the gills (arbitrary unit 1) and highest level
in spleen (40,088). The expression of MCSF2 was also varied, with the highest expression level in the head
kidney (2,529) and lowest in ovary (3). IL-34 was relatively highly expressed and less varied across tissues,
with the highest level in gills (1,416) and lowest in ovary (57, Fig. 5A). The expression levels of IL-34 and
MCSEF2 differed significantly in all tissues, whilst IL-34 and MCSF1 differed in most tissues except in brain
and tail fins (Fig. 5C). The expression levels of MCSF1 and MCSF2 were also different in most tissues,

except liver, skin, thymus and heart.

12



Consistent with the in vivo expression, MCSF1 expression also showed greatest difference in cell lines with
the lowest level (arbitrary unit 1) in RTGill (a cell line derived from gills) and highest level (53,696) in RTL
(a cell line derived from liver) (Fig. 5B). MCSF2 expression was less varied, with the lowest expression
level (2) in RTS-11 cells and the highest level (660) in RTGill cells. IL-34 expression was again relatively
high and showed the least variation, with the highest level (3,045) in RTS-11 cells and lowest (592) in RTG-
2 cells (Fig. 5B). The expression levels of the three ligands differed from each other in all the cell lines (Fig.

50).

3.4. Differential modulation of IL-34, MCSF1 and MCSF2 in four trout cell lines

Trout MCSF1 expression was not increased in cell lines after 4 h of stimulation with PAMPs (LPS and
polylC) (Wang et al., 2008). To investigate if these PAMPs can modulate the other MCSFR ligands, four
trout cell lines were stimulated with the same PAMPs, as well as IFN-y, a known modulator of MCSF
expression in mammals (Ogawa et al., 1994), for 4 h, 8 h and 24 h. The expression of both MCSF1 and
MCSEF2 was not increased by any of the stimulants at any of the time points except for MCSF1 expression in
RTL and RTGill cells that was increased by polyIC at 24 h (Fig. 6). However, the expression of both genes
was inhibited by these stimulants in a cell line- and time-dependent manner. In contrast, the expression of IL-
34 was induced by all the three stimulants in all the four cell lines tested (Fig. 6). The highest induction (23-
fold) of IL-34 expression like in RTS-11 cells was by LPS, whilst polyIC gave the largest increases in the
other cell lines, e.g. RTL 26.7-fold, RTG-2 18.7-fold and RTGill 12-fold. A modest induction (less than 5-

fold) of IL-34 expression was also seen in all cell lines after IFN-y stimulation (Fig. 6).

3.5. Differential modulation of IL-34, MCSF1 and MCSF2 in adherent primary head kidney
macrophages

As macrophages are a first line of defence in vivo and the macrophage like cell line RTS-11 expressed the
highest level of IL-34 of the three MCSFR ligands (Fig. 5B), IL-34 expression was further examined in
primary HK macrophages stimulated with PAMPs, proinflammatotory cytokines (recombinant trout IFN-y,
IL-1B and IL-6), other stimulants (PHA, PMA and CI) and an immuno-suppressant (DM). The expression of
MCSF1 and MCSF2 was very low and showed no significant induction in these primary macrophages (data
not shown). IL-34 expression was highly induced by LPS (up to 45.3 fold), polyIC (up to 36.9 fold), IFN-y

(up to 16.8 fold), IL-1P (up to 58.7 fold) and PHA (up to 4.4 fold), but was refractory to stimulation by IL-6,
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CI and DM, and inhibited by PMA at 4 h and 8 h (Fig. 7).

3.6. Differential modulation of I1L-34, MCSF1 and MCSF2 in head kidney by PKD

The kidney of teleost fish is a major lymphoid organ and a site of hematopoiesis and macrophage
development (Zapata et al., 2006). PKD infection can lead to a massive granulomatous infiltration and
proliferation of the interstitial tissue of the kidney (Holland et al., 2003). To investigate the potential
involvement of macrophages in the disease, the expression of the three MCSFR ligands was examined in the
kidney during a natural infection. The control fish were from the same source but not exposed to infection
and parasite-infected fish were assigned a kidney swelling index from Grade 1 to 3. A modest increase (1.7-
2.6 fold) of IL-34 expression was seen in all the infected fish (Fig. 8). However, the expression of MCSF2

was refractory to the disease and MCSF1 was decreased in advanced stages of the disease (over Grade 1).
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4. Discussion

We report for the first time the identification and characterisation of IL-34 in teleost fish. 1L-34 is another
potential ligand for MCSFR, in addition to the other two potential ligands in teleosts, MCSF1 and MCSF2.
The expression of I1L-34 has been studied in rainbow trout and compared to the expression of MCSF1 and
MCSF2. We found that the three ligands were differentially expressed in vivo and in cell lines, and that 1L-34

was the main responder of the three ligands to inflammatory stimulation and parasite infection.

4.1. The teleost IL-34 gene

By cloning and database mining, we identified six IL-34 genes in five teleost fish, rainbow trout, fugu,
Atlantic salmon, catfish and zebrafish. The fish 1L-34 molecules had low identities to 1L-34s from birds
(27.2-33.8%) and mammals (22.2-31.4%) (Table 3). However, they grouped with tetrapod I1L-34 molecules
in phylogenetic tree analysis (Fig.3), had a similar 7 exon/6 intron gene organisation (Fig. 4), and genes in
the IL-34 loci were syntenically conserved (Fig. 1). In addition, the regions of the four main helices, along
with a critical N-glycosylation site were well conserved (Fig 2). Taken together these data suggest that the

teleost IL-34 genes described in this report are orthologues of tetrapod 1L-34.

Despite the above conserved features, the IL-34 molecules from fish, birds and mammals showed particular
characteristics in each group. The mammalian IL-34s have a longer C-terminal tail that extends beyond the
core four helix structure and that is P-S-T-rich. The C-terminal of teleost I1L.-34s are shorter (except fugu IL-
34) and basic residue (K-R) rich. The bird IL-34s are the shortest and lack the last cysteine residue that is
conserved in both fish and mammals. Interestingly, the C-terminal of mammalian IL-34 is not necessary for
its function. Thus human recombinant IL-34 lacking the last 49 aa is as active as MCSF and slightly more
active than full-length recombinant IL-34 in its ability to promote human monocyte viability (Ma et al.,
2012). The Pro-Ser-Thr-rich tail in mammalian IL-34 has the potential for O-linked glycosylation (Liu et al.,
2012) that may affect receptor binding or stability. Due to the K-R rich C-terminal, the fish 1L.-34s are basic
except for fugu IL-34 which is acidic as a result of the extended D-E rich C-terminal. These differences in

the C-terminal tail in fish and mammals may have an as yet unrecognised role in IL-34 biology.

The other major difference between the molecules is the potential to form disulfide bonds. Mammalian 1L-34
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has six conserved cysteine residues, whilst fish have five and birds only three. All the three cysteine residues
in bird IL-34 are conserved in fish and mammals and form one putative conserved disulfide bond.
Mammalian IL-34, and likely the fish IL-34, have one additional disulfide bond (Fig. 2). The potential of the
remaining two cysteine residues of mammalian IL-34 to form a disulfide bond is unclear (Ma et al., 2012).
Interestingly, one of the cysteine residues is well conserved in both fish and birds. The MCSF homodimer
but not mammalian IL-34 is linked by an intermolecular disulfide bond. The role of this conserved cysteine

residue in IL-34 remains to be determined.

Also, whilst the IL-34 genes across vertebrates have a general 7 exon/6 intron structure, the exon sizes are
quite variable, with fish and mammals having the largest differences and birds somewhat in-between these
two. Interestingly in fugu IL-34 an extra exon was present, the result of an intron insertion in the common
exon 5. In addition, the coding region of the last exon of fugu IL-34 is longer than equivalent exons in other
fish and bird IL-34 genes. A similar gene organisation has been found in Tetraodon nigroviridis IL-34 in the

genome database (data not shown), suggesting these differences are lineage specific.

Due to the teleost fish wide whole genome duplication (FWGD) event (Meyer and Van de Peer, 2005),
teleost fish possess two types of macrophage colony stimulating factors, e.g. trout MCSF1 and MCSF2
(Wang et al., 2008). We were only able to identify a single IL-34 in each fish species examined except in
Atlantic salmon. However, the two salmon IL-34 genes share 82.2% identity at the protein level and in
phylogenetic tree analysis they group closely together, suggesting they may have resulted from a further
genome duplication event known to have happened in the ancestor of salmonids (Koop et al., 2008) although

a tandem gene duplication event cannot be excluded at the momment.

4.2. Features of the teleost IL-34 transcript

Two to five ATG codons can be found in the 5’-UTR of the main ORF of 1L-34 genes in trout, salmon,
zebrafish and catfish, where full-length cDNA sequences are available (supplementary Figs. 1-3, 5-6). The
chicken, human and mouse IL-34 genes also have multiple ATGs before the main ORF. These upstream
ATGs are found within many eukaryotic transcripts and are known to regulate protein translation (Wethma et
al., 2010). Thus, IL-34 gene expression across vertebrates may be controlled at the translational level by

these upstream ATGs. Another common feature of IL-34 cDNA sequences is the presence of the ATTTA
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motif in the 3’-UTR of fish, birds and mammals. The ATTTA motif in 3’-UTRs is implicated in the
regulation of mRNA stability (Wu and Brewer, 2012; Roca et al., 2007), and indicates that IL-34 gene

expression may be regulated at the mRNA and translational levels in addition to the transcriptional level.

4.3. The expression of three MCSFR ligands in tissues and cell lines

The expression patterns of mammalian IL-34 mRNA and MCSF mRNA are spatially and temporally distinct,
which suggests that they have complementary rather than redundant roles in MCSFR activation in vivo
(Wang et al., 2012). Due to the additional teleost-wide whole genome duplication, teleost fish possess two
MCSF genes, as well as two MCSF receptors (unpublished results). Thus teleost fish have at least three
ligands and two MCSFRs, and in salmonids there may be double this amount of ligands and receptors
because of the additional WGD in the ancestor of salmonids, suggesting a complex regulation of

monocyte/macrophage development in teleost fish.

In general, the three trout MCSFR ligands are differentially expressed in tissues and cell lines. The
expression of MCSF1 and MCSF2, the membrane bound ligands of MCSFR, showed great variance in
different tissues and cell lines, perhaps suggesting that these ligands have a role in the differentiation and
maintenance of specific macrophage lineages in specific locations. Macrophage lineage cells populate every
tissues of vertebrates with crucial functions in maintaining the homeostasis of many tissues as well as
promoting inflammatory and repair responses to microbial, chemical and physical insults (Geissmann et al.,
2010). The relatively high levels of expression of IL-34 across different tissues suggests a homeostatic role
of IL-34 for the macrophage lineage in fish. Nevertheless, one striking observation in the present study was
the lack of induction of MCSF1 and MCSF2 expression but the quick induction of IL-34 expression by
PAMPs and inflammatory cytokines in cell lines and primary HK macrophages (Figs. 6-7). IL-34 expression
was increased by LPS, polylC, IL-1p and IFN-y stimulation, and induction was quick, and in most cells
peaked at 4 h after stimulation (the earliest time point examined). Thus IL-34 expression is sensitive to

inflammatory stimuli and may regulate macrophage biology once up-regulated.

Macrophages and dendritic cells function as antigen presenting cells, and are critical for modulation of the T
cell immune response (Almolda et al., 2011). The gills expressed the highest level of IL-34 amongst the

fourteen tissues examined, and both gills and thymus expressed IL-34 at a level that was more than one order
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higher than that of MCSF1 and MCSF2. The thymus is a site of T cell development in fish as in other
vertebrates, and the gills have been shown recently to possess a unique T cell rich lymphoid tissue
(Haugarvoll et al., 2008). Therefore, this expression pattern may suggest a role of IL-34, through its action

on macrophage lineage, in fish T cell development.

4.4. The expression of IL-34 during proliferative kidney disease (PKD)

PKD is a parasitic disease of salmonid fish caused by the myxozoan parasite T. bryosalmonae. Fish are
infected by parasite spores released from bryozoans which are the invertebrate host of the parasite. T.
bryosalmonae infects the fish through skin and gills and afterwards invades inner organs, with the kidney
being the main target organ where massive granulomatous infiltration and proliferation of the interstitial
tissue occur post-infection (Bettge et al., 2009). The role of kidney macrophages in PKD is unclear.
Previously we have shown that MCSF?2 is the dominant isoform in the head kidney (Wang et al., 2008), but
in this study its expression in head kidney was not affected by PKD. IL-34 is also highly expressed in head
kidney and its induction by PKD at this site suggests an involvement of macrophage function in this disease

model.
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Figure legends:

Fig. 1. Diagram to show gene synteny at the 1L-34 loci in fugu, zebrafish, chicken and humans. The

arrows indicate the transcriptional direction.

Fig. 2. Multiple alignment of teleost IL-34 amino acid sequences with selected tetrapod IL-34
molecules (A) and schematic diagram to show the secondary structure and potential intramolecular
disulfide bonds in IL-34 (B). The multiple alignment was produced using ClustalW, and conserved amino
acids shaded using BOXSHADE (version 3.21). The signal peptide, four long helices (aA-aD) that form the
core four helical bundle and two additional short helices (al and a2) are indicated. The conserved cysteine
residues (C1-C7) are indicated above the alignment and conserved N-glycosylation sites by a star. The

accession numbers for sequences used in this alignment are given in Fig. 3.

Fig. 3. An unrooted phylogenetic tree of teleost I1.-34 and selected tetrapod IL-34 molecules. The tree
was constructed using amino acid multiple alignments and the neighbour-joining method within the MEGAS5
program (Tamura et al., 2011). Node values represent percent bootstrap confidence derived from 10,000
replicates. The evolutionary distances were computed using the JTT matrix-based method. All positions
containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons
(Pairwise deletion option). Selected mammalian MCSF molecules were chosen as an outgroup. The
accession number for each sequence is given after the species name and molecular type except for the fish

IL-34 molecules from trout, salmon, fugu and catfish analysed in this report.

Fig. 4. Gene organisation of teleost and tetrapod IL-34 molecules. The gene organisation was predicted
using the Spidey program. The grey and white boxes represent amino acid coding regions and untranslated
regions within exons, respectively, and the black bars represent introns. The sizes (bp) of exons are
numbered in the boxes and the intron phase is indicated under the bar. The fish IL-34 cDNA sequences are
described in Supplementary Figs. 2 (salmon IL-34A), 4 (fugu), and 6 (zebrafish); and the genomic sequences
are from WGS contigs AGKD01091083 and AGKD01005291 (salmon IL-34A); AGKD01076819 (salmon
IL-34B); CABZ01008753 and CABZ01008752 (zebrafish 1L-34), and fugu genome scaffolds 764 and 2156.

The human, mouse and chicken IL-34 gene organisations were derived from AC020763 (DNA) and
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NM 152456 (mRNA), AC139245 (DNA) and NM_001135100 (mRNA), and AADN03006282 (DNA) and

XM 003641892 (mRNA), respectively.

Fig. 5. Differential expression patterns of trout IL-34, MCSF1 and MCSF2 transcripts in tissues and
cell lines. The expression of trout IL-34, MCSF1 and MCSF2 in 14 tissues from healthy fish (A) and four
cell lines (B) was determined by real-time PCR. The transcript level was first calculated using a serial
dilution of references in the same run. The relative expression level was then expressed as arbitrary units
normalized against the expression level of EF-1a. The expression levels of MCSF1 in gills (A) and RTGill
(B), the lowest amongst the same data set, were defined as 1. The results represent the mean + SEM of six
fish (A) and four flasks of cells (B). The ratios of the expression levels between trout 1L-34, MCSF1 and
MCSF?2 and the p values comparing the difference are also shown (C). A paired sample t-test was applied to
the tissue samples and one-way analysis of variance was used for the cell lines. The p value numbers shaded

indicate a significant difference of the expression levels of the genes concerned.

Fig. 6. Modulation of expression of 1L.-34, MCSF1 and MCSF?2 in four trout cell lines by PAMPs and
IFN-y. One day after passage, four cell lines, RTGill, RTL, RTG-2 and RTS-11, were stimulated with polylC
(50 pg/ml), LPS (25 pg/ml), and recombinant IFN-y (20 ng/ml), or with medium only as control for 4 h, 8 h
and 24 h and terminated by dissolving the cells in TRI reagent. The expression of trout IL-34, MCSF1 and
MCSF2 was examined as in Fig. 5. A fold change that was calculated as the average expression level of
stimulated samples divided by that of the time-matched controls is presented. The results represent the
average + SEM from four flasks of cells. The relative significance of an LSD post hoc test after a significant
one-way analysis of variance between the stimulated samples and control at the same time point is shown

above the bars as: *p<0.05, **p<0.01 and ***p<0.001.

Fig. 7. Modulation of expression of trout IL-34, MCSF1 and MCSF2 in primary HK macrophages.
Four day old HK primary macrophages were stimulated with LPS (25 pg/ml), polyIC (50 pg/ml), and
recombinant IFN-y (20 ng/ml), IL-1B (20 ng/ml), IL-6 (100 ng/ml), PHA (10 pg/ml), PMA (100 ng/ml),
calcium ionophore (CI, 500 ng/ml) and dexamethasone (DM, 500 ng/ml) for 4 h, 8 h and 24 h. The RNA
preparation and quantification of gene expression was as described in Fig. 5. Gene expression was expressed

as a fold change that was calculated as the average expression level of stimulated samples divided by that of
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the time-matched controls. The mean+SEM of four fish is shown. The p-values of a paired samples T test
between stimulated samples and their time matched controls is shown above the bars as: *p<0.05, **p<0.01

and ***p<0.001.

Fig. 8. Expression analysis of trout IL-34, MCSF1 and MCSF2 during a parasitic infection. Kidneys
from rainbow trout infected with T. bryosalmonae or from unexposed fish (control) were collected during a
natural infection. RNA was extracted and quantification of gene expression was as described in Fig. 5. The
gene expression was expressed as a fold change that was calculated as the average expression level of each
grade divided by that of the uninfected controls. Results are averages + standard error. The fish number was
11, 5,9, 10 and 9 for control, Grade 1, 1-2, 2 and 3, respectively. The relative significance of an LSD post
hoc test after a significant one-way analysis of variance between the infected and control samples is shown

above the bars as: *p<0.05 and ***p=<0.001.
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Highlights

The IL-34 gene has been identified in teleost fish for the first time.

The IL-34 loci are syntenically conserved in fish, birds and mammals.

The IL-34 gene has a general seven exon/six intron organisation across vertebrates.
Fish IL-34 has a short, basic amino acid-rich C-terminal tail.

IL-34 expression is induced by LPS, polylC, IL-1p, IFN-y, PHA and parasitic infection.



Table 1. Primers used for PCR cloning and real-time PCR analysis

Gene Primer name Sequence (5’ to 3°) Application
Trout IL-34 IL-34 F1 CCAAAGAAAGTGAGGCTTCAGGGA 3’-RACE
1L-34 F2 ACGGGGGTTTTACTCTGGGTGTTG 3’-RACE
IL-34F AGGCAGAAGACGTAACATGAAACACA Real-time PCR
IL-34R CCACCCTCGCCCTCAGCTT Real-time PCR
Fugu IL-34 fIL-34F1 CGGCGCTACATGAAACACTA 3’-RACE
fIL-34F2 CCCCATCAACTACACCATCA 3’-RACE
fIL-34R1 CTTCAACACCCCCTGGTAGA 5’-RACE
fIL-34R2 GAAGCAGAACCTCCACCTGT 5’-RACE
Trout EF-1a EF-1aF CAAGGATATCCGTCGTGGCA Real-time PCR
EF-10R ACAGCGAAACGACCAAGAGG Real-time PCR
Trout MCSF1 MCSFIF AAGACTGAGCCAAACCATCCTAGGAC Real-time PCR
MCSFIR GGATAAGGGCTTGGAGTCTCTTCTTCTC Real-time PCR
Trout MCSF2 MCSF2F CCTCCCTACAGCACTCTCTCTGACTAC Real-time PCR
MCSF2R GGTCAGTACTGTAGGACATCTTGTGTGT Real-time PCR




Table 2. Summary of teleost 1L-34. The signal peptide predicted using SignalP 4.0 program is shaded and
potential-glycosylation sites are underlined. The number of amino acids (aa), and the theoretical isoelectric
point (pl) and molecular mass (MM) of the full-length translation are presented.

Molecule

Amino acid sequence

Trout
IL-34

aa/pl/MM

Evidence

MVRSTANCCGAEECETCVEPRVENTPRTAQCTSLKTLENKL IGRRRN
MKHNLP INYT IRVHYEEVFKLSN I SKLRARVEDLEDGDLQDVWLLVN
REVLKR ITRVLPVRHPSYKYTTDLEDLFRKVOQVFPPQTDEREPPER
1EE 1 YKRVKE I DSKGWRFVTPKSLLDNCYRTMHCLFKDCFSSEDREQ

Salmon
IL-34A

204/
24.31/
9.42

Cloned in this study.
Supplementary Fig. 1.

DYCGLPHWRKGRKRL
TPRTAQCTSLKTLENKL IGRRRN

MKHNLP INYTIRVHYEEVFKLSNITRLRARVEDLEDGDLQDVWLLVN
QEVLKRITRVLPVRHPSYKYTTDLCEDLFRKVQQVFPTQSDEREPPER
TEE1YKRVKEIDSKGWTFVTPKSLLDNCYRTMHCLFKDCFPSEDREQ
DYCGLPHWRKGRKRLL

Salmon
IL-34B

204/
24.29/
9.30

Predicted from a contig
of 28 ESTs that matched
WGSs: AGKD01002735
andAGKD01091083.
Supplementary Fig. 3.

MVRPTSEEECCEFCEMWVIPVEMTPTTLAQCTSLKTLETKLTDRRRN
LKHNFPINYTIRVHYEELFKLSNISRLRVRVDDLEEGDLQDVWLLVN
?EVLKRIERVLPVRHPSYKYTSDEEDLFRKI VFPPQSDEREPPER
EE1YNRVKEPNSKGWRFVTPKSLLDNCYRTMHCLFKNCFPSEDGEQ

207/
24.61/
9.22

Predicted from
WGS:AGKDO01156379.
Supplementary Fig. 4.

DYCSSLHWRKGRKRQLQAT
TPSSMCTPLKTINDSLSHRRRY

Fugu
IL-34

MKHYFPINYT IRVHAYEVFRLSN 1 SRMRPQVEVLLLQQLWFQVYQGV
LKK 1 IRVCSERHPSRSYTAELERRFQDAEGVFVQSHPVEVFQQELPE
AI1QETWDHLTEDPERVPESRWRYASPKALLDNLCYTMHCLFRECFPS
TELQQDYCSFSQWRKGRKKPDQQEGDVVLDDCGEESDS

Catfish
IL-34

226/
26.61/
6.18

Cloned in this study.
Supplementary Fig. 2.

FPSPSPISKNSPLCTSLVTLKDQ
LNSSLRRRYLKHNFPINYTIHVRYEEVFRLKN I SRMKNDSE I EKHLQ
DVWVDVTVTVIQSILNVCPERHPTRHKYLANCESLLKAFQT IWVKTD
ESYYTENIFNIVKHLGMEKYEARKSVRPKSLLDNCYRTMHCLFKDCF

Zebrafish
IL-34

211/
25.08/
9.27

Predicted from a contig
of 6 ESTs.
Supplementary Fig. 5.

LRNSSQDDYCDTQHWRKVNGTQG

AAPDLCGPLKTVQDSLNATLRRR
YMKMHFP INYTVQVRYEEVFRLRN ISRLVNTSNEEEPVLPRDLCQDLW
LYVSQQG IRKVLRVLPERHPTRRKYLSDLENCFKKFETVFKEGNHED
QENVRERPESLQT IWDHLTEQDYKGWKSVTPKSILDNCYRTMLCLFK
ECFTKEDDNYDYCEVYNRRKERKTT

Tilapia
IL-34

213/
25.51/
8.36

Predicted, B3DLJ8, and
matched 6 ESTs

MVQESTAVCEEGCEFEIAPVEMAPTHSSMCTPLRT INDSLSHRRQYM
KHNFPTEYTIKVHNRE I FRLSN I SRMRLRTEGLNELVLCORLWFQVYQ
GVLKKILWVLPTRHPSRPYTAELCERRFKDAQAVFMQSHPAQVFQEDL
PEKIHD IWDSLTEKPENMPESSWRFATPKSLLDNLCRTMYCLFSECF
SNADVQEDYCEVSHWRKGRKKDMQPES

215/
25.36/
8.74

Predicted, 13JZ08




Table 3. Comparison of identities (top right) and similarities (bottom left) of teleost 1L-34 molecules with
selected IL-34 sequences from birds and mammals. The accession numbers of the sequences used are as in
Fig. 3.
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Fig.

Signal peptide C

Trout WAYRS--TA/[MEer (MKeR |C\"IEg] VEMT[ERT——---—— ISVK LLICERRRENMKHNEP INYT IRVHYEEVFKLSN | SK L REEEAN—4s}
Salmon-A [WYRS--TA| LLGALLGLI S SVIEMTERT-————-- ISVK LLICERRRENMKHNEP INYT IRVHYEEVFKLSN IR L REEEAN—4s}
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Fugu e VTS BL ' P—TAQ.PS ———————— SM Sl SRR RIEY MKHIFP I NY T 1 RVHENEVFRLSN ! SREREEE IS
Tilapia MARTHS—————— SMCTPLRTINDS SH——RRQYMKHNFPIEYTIKVH ELFRLSN 1 SRMREEEI RIS
Catfish SFPSPSPISKNSPLCTSLUTLHDQLNSS RRINYEKHNFP INYT HgVIRlY EEVFRLINN 1 SRMKINEEEESIS)
Zebrafish LP CSSAAPD--—————— [RClelx| KTVODSLNGNS RRRYMKMWFPINYT Q NTSN 80
Chicken  [HEJECAAVLCYLAVREMEY - ————————————— AALE{SOE] "LLQDKLﬁ ISV R(Xe)YMKHNFP IBYTER R ANVAIREND-—- 72
Finch  [[QelelYAAVLCY/LAVMEeMEA- - — - ——————————— VARG E C{ELIR(NL QDK LQ Y[SYR(MeY MKHNFP 1[3)Y T\, SILJUINEEN--—- 72
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Mouse [PWELAWEC[Ke I|MED\ARG——--— NENLE IWTLTQDK|SeD ETGY[MRG{ROMKNEL QMU YR I RUIA ANLIREQK-—- 82
aA al
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Human WQD®='[¥SPQSCSPEPSLQYAATQLYPPP-PWSPSSPPHSTGSVRPVRAQGEGLLP 242
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Fig. 3
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Fig. 4
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Fig. 5
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