Chapter 1

Syzygies and minimal resolutions

F.E.A. Johnson
Department of Mathematics, University College London, Gower Street, London WC1E 6BT
feaj@math.ucl.ac.uk

The essence of linear algebra over a field resides in the fact that every vector space is free; that is, has a spanning set of linearly independent vectors. The study of linear algebra over more general rings attempts to approximate this situation by the method of free resolutions. When a module M is not free we make a first approximation to its being free by taking a surjective homomorphism $\epsilon: F_{0} \rightarrow M$ where F_{0} is free to obtain an exact sequence

$$
0 \rightarrow J_{1} \rightarrow F_{0} \xrightarrow{\epsilon} M \rightarrow 0 .
$$

Repeating the construction we approximate J_{1} in turn by a free module to obtain an exact sequence $0 \rightarrow J_{2} \rightarrow F_{1} \rightarrow J_{1} \rightarrow 0$. Iterating and splicing we obtain a free resolution of M in the sense of Hilbert [2]

We study the relationship between the intermediate modules J_{n}, the so-called syzygies of M, and those free resolutions of M which are in some sense minimal.

1. Introduction:

The notion of free resolution has its origin in the classical theory of invariants [2] and the study of graded modules over polynomial rings $\mathbf{F}\left[x_{1}, \ldots, x_{n}\right]$ where \mathbf{F} is a field. In this context there is a well defined notion of minimal free resolution. Such minimal resolutions have a strong uniqueness property; not only are they themselves unique up to isomorphism but in addition any other free resolution is a direct sum of the minimal free resolution with a free acyclic complex. In [1], Eilenberg gave an extension of this
uniqueness property by essentially formal arguments. However, despite the elegance of Eilenberg's approach, its scope remains relatively narrow.

The main technical limitation of Eilenberg's theory arises from his definition of minimality. This places so strong a restriction on the class of rings to which it may be applied as to render it a priori inapplicable to many cases of interest. Consequently we are forced to reformulate matters in a rather more general context.

Our primary notion is that of a special class \mathfrak{S} of projectives in an abelian category \mathfrak{A}; the precise formulation is given in $\S 6$. Suffice to say here that \mathfrak{S} plays a role analogous to that of finitely generated stably free modules over a ring. For an object $M \in \mathfrak{A}$ we consider \mathfrak{S}-resolutions of M, that is, exact sequences in \mathfrak{A} of the form

$$
\mathbf{S}=\left(\cdots \xrightarrow{\partial_{n+1}} S_{n} \xrightarrow{\partial_{n}} \cdots \rightarrow S_{1} \xrightarrow{\partial_{1}} S_{0} \rightarrow M \rightarrow 0\right)
$$

where each $S_{r} \in \mathfrak{S}$. To such a resolution we may add a \mathfrak{S}-resolution of 0

$$
\mathbf{T}=\left(\cdots \rightarrow T_{n} \rightarrow \cdots \rightarrow T_{1} \rightarrow T_{0} \rightarrow 0\right)
$$

to obtain another \mathfrak{S}-resolution $\mathbf{S} \oplus \mathbf{T}$ of M thus

$$
\mathbf{S} \oplus \mathbf{T}=\left(\cdots \rightarrow S_{n} \oplus T_{n} \rightarrow \cdots \rightarrow S_{1} \oplus T_{1} \rightarrow S_{0} \oplus T_{0} \rightarrow M \rightarrow 0\right)
$$

\mathbf{S} is said to be minimal when, for any \mathfrak{S}-resolution \mathbf{S}^{\prime} there exists a commutative diagram

$$
\left(\begin{array}{ccccccl}
\ldots \xrightarrow{\partial_{n+1}^{\prime}} & S_{n}^{\prime} \xrightarrow{\partial_{n}^{\prime}} & \ldots \cdots \cdot \xrightarrow{\partial_{1}^{\prime}} & S_{0}^{\prime} & \xrightarrow{\eta} & M & \rightarrow 0 \\
\varphi_{0} \downarrow & & \downarrow \mathrm{Id}_{M} & \\
\ldots{ }^{\partial_{n+1}} \varphi_{n} \downarrow & S_{n} \xrightarrow{\partial_{n}} & \ldots \cdots \cdot \xrightarrow{\partial_{n}} & S_{0} & \xrightarrow{\epsilon} & M & \rightarrow 0
\end{array}\right)
$$

where each φ_{r} is epimorphic. When they exist, minimal resolutions are unique in the following sense:
Theorem A: Let \mathbf{S} and $\widetilde{\mathbf{S}}$ be \mathfrak{S}-resolutions of M; if \mathbf{S} is minimal then $\widetilde{\mathbf{S}} \cong \mathbf{S} \oplus \mathbf{T}$ for some \mathfrak{S}-resolution \mathbf{T} of 0 . In particular, if $\widetilde{\mathbf{S}}$ is also minimal then $\widetilde{\mathbf{S}} \cong \mathbf{S}$.

In applications the requirement that M has an \mathfrak{S}-resolution is usually a very strong restriction. We may relax it by considering partial \mathfrak{S}-resolutions or n-stems. Thus an n-stem over M is an exact sequence in \mathfrak{A} of the form

$$
\mathbf{S}=\left(S_{n} \xrightarrow{\partial_{n}} \cdots \rightarrow S_{1} \xrightarrow{\partial_{1}} S_{0} \rightarrow M \rightarrow 0\right)
$$

where each $S_{r} \in \mathfrak{S}$. The n-stem $\mathbf{S}^{(n)}$ is minimal when, for any n-stem $\widetilde{\mathbf{S}}^{(n)}$ there exists a commutative diagram

$$
\left(\right)
$$

in which each φ_{r} is epimorphic. For n-stems, Theorem A is modified to:
Theorem B : If $\mathbf{S}^{(n)}, \widetilde{\mathbf{S}}^{(n)}$ are n-stems over M and $\mathbf{S}^{(n)}$ is minimal then $\widetilde{\mathbf{S}}^{(n-1)} \cong_{\mathrm{Id}_{m}} \mathbf{S}^{(n-1)} \oplus \mathbf{T}^{(n-1)}$ for some ($n-1$)-stem $\mathbf{T}^{(n-1)}$ over 0 .
If $\mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} \cdots \rightarrow S_{1} \xrightarrow{\partial_{7}} S_{0} \rightarrow M \rightarrow 0\right)$ is an n-stem its syzygies are the intermediate objects $\left(J_{r}\right)_{1 \leq r \leq n}$ obtained via the canonical decomposition of ∂_{r} as the composition of a monomorphism i_{r} and an epimorphism p_{r} thus:

Minimality also implies a relation amongst syzygies. If $J, \widetilde{J} \in \mathfrak{A}$ we say that \widetilde{J} splits over J when $\widetilde{J} \cong J \oplus T$ for some $T \in \mathfrak{S}$; we will prove:
Theorem C : Let $\mathbf{S}^{(n)}$ and $\widetilde{\mathbf{S}}^{(n)}$ be n-stems over M having syzygies $\left(J_{r}\right)_{1 \leq r \leq n}\left(\widetilde{J}_{r}\right)_{1 \leq r \leq n}$ respectively; if $\mathbf{S}^{(n)}$ is minimal then \widetilde{J}_{r} splits over J_{r} for $1 \leq r \leq n-1$.

2. Some categorical preliminaries :

We assume familiarity with the notions of category and functor ([5]). We denote by $\mathcal{A} \mathrm{b}$ the category of abelian groups and homomorphisms. In what follows we shall work with subcategories \mathfrak{A} of \mathcal{A} b which satisfy certain tameness conditions. These are defined formally below. However, it is instructive to consider them as they relate to two basic examples; thus suppose that Λ is a ring and consider
$\mathcal{M o d}_{\Lambda}$: the category of right Λ-modules and Λ-homomorphisms:
By a graded Λ-module we mean a Λ-module M given as a direct sum $M=\bigoplus_{n \geq 0} M_{n}$ where each M_{n} is a Λ-submodule. A graded homomorphism $f: M \rightarrow N$ between two such graded modules is then a Λ-homomorphism satisfying $f\left(M_{n}\right) \subset N_{n}$ for each n and we may form
$\mathcal{G}(\Lambda)$: the category of graded right Λ-modules and Λ-homomorphisms.

Observe that $\mathcal{M o d}_{\Lambda}$ may be regarded as the subcategory of $\mathcal{G}(\Lambda)$ consisting of graded modules in which $M_{r}=0$ for $r>0$. In turn, $\mathcal{G}(\Lambda)$ may be regarded as a subcategory of \mathcal{A} b by forgetting both the grading and the Λ-structure. In the above examples the following notions are well defined;
(i) Zero ; (ii) Kernels; (iii) Images; (iv) Exact sequences;(v) Quotients.

In either case the nature of 'zero' should be obvious. Any module has a zero and hence a zero submodule. When $f: M \rightarrow N$ is a Λ-homomorphism

$$
\operatorname{Ker}(f)=\{\mathbf{x} \in M \mid f(\mathbf{x})=0\} ; \operatorname{Im}(f)=\{f(\mathbf{x}) \mid \mathbf{x} \in M\}
$$

Then $\operatorname{Ker}(f)$ is a submodule of M and $\operatorname{Im}(f)$ a submodule of N. Moreover if f is a graded homomorphism then $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$ are graded by

$$
\operatorname{Ker}(f)_{n}=\operatorname{Ker}(f) \cap M_{n} ; \operatorname{Im}(f)_{n}=\operatorname{Im}(f) \cap N_{n} .
$$

A sequence of morphisms $A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n-1}} A_{n} \xrightarrow{\alpha_{n}} A_{n+1}$ is said to be exact when $\operatorname{Ker}\left(\alpha_{r+1}\right)=\operatorname{Im}\left(\alpha_{r}\right)$ for $1 \leq r \leq n-1$. If $K \subset M$ is a Λ submodule the quotient group M / K admits a natural Λ-module structure. Moreover, if K is a graded submodule of the graded module M then M / K is graded by $(M / K)_{n}=M_{n} / K_{n}$. One may also construct
(vi) Pullbacks; (vii) Direct products; (viii) Pushouts; (ix) Direct sums We first recall the definitions. If \mathfrak{A} is a category and $f_{i}: M_{i} \rightarrow N$ are morphisms in $\mathfrak{A}(i=1,2)$ then by a pullback for f_{1}, f_{2} we mean an object $\varliminf_{i}\left(f_{1}, f_{2}\right)$ in \mathfrak{A} together with morphisms $\pi_{i}: \underset{\rightleftarrows}{\lim }\left(f_{1}, f_{2}\right) \rightarrow M_{i}$ such that $f_{1} \circ \pi_{1}=f_{2} \circ \pi_{2}$ which possess the following universal property: If $\alpha_{i}: X \rightarrow M_{i}$ are morphisms in \mathfrak{A} such that $f_{1} \circ \alpha_{1}=f_{2} \circ \alpha_{2}$ then there exists a unique morphism $\alpha: X \rightarrow \underset{\rightleftarrows}{\lim }\left(f_{1}, f_{2}\right)$ making the following diagram commute

When $\underset{\rightleftarrows}{\lim }\left(f_{1}, f_{2}\right)$ exists the uniqueness condition on α guarantees that $\lim \left(f_{1}, f_{2}\right)$ is unique up to isomorphism in \mathfrak{A}. We say that \mathfrak{A} has pullbacks
when $\lim _{\leftrightarrows}\left(f_{1}, f_{2}\right)$ exists for any pair of morphisms $f_{i}: M_{i} \rightarrow N(i=1,2)$. In $\mathcal{M o d}_{\Lambda}$ pullbacks are defined by

$$
\lim _{\rightleftarrows}^{\leftrightarrows}\left(f_{1}, f_{2}\right)=\left\{\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2} \mid f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)\right\}
$$

where $\pi_{i}: \varliminf_{\varliminf}\left(f_{1}, f_{2}\right) \rightarrow M_{i}$ is the obvious projection map. Moreover, in the special case where $N=0$ the pullback construction simply yields the direct product $M_{1} \times M_{2}$ showing that any pullback $\lim \left(f_{1}, f_{2}\right)$ is a submodule of $M_{1} \times M_{2}$. Note that in $\mathcal{G}(\Lambda)$ a direct product $\overleftarrow{M \times} M^{\prime}$ of graded modules admits a grading given by $\left(M \times M^{\prime}\right)_{r}=M_{r} \times M_{r}^{\prime}$ which in turn induces a grading on any pullback contained therein.

Pushout is the dual notion to pullback. Here it is useful to recall that if \mathfrak{A} is a category the dual category \mathfrak{A}^{*} has the same objects and morphisms as \mathfrak{A} but with the direction of all arrows reversed. One says that \mathfrak{A} has pushouts when the dual category \mathfrak{A}^{*} has pullbacks. Thus if $f_{r}: N \rightarrow M_{i}$ $(r=1,2)$ are morphisms in \mathfrak{A} by a pushout for f_{1}, f_{2} we mean an object $\xrightarrow{\lim }\left(f_{1}, f_{2}\right)$ in \mathfrak{A} together with morphisms $i_{r}: M_{r} \rightarrow \underset{\longrightarrow}{\lim }\left(f_{1}, f_{2}\right)$ such that $i_{1} \circ f_{1}=i_{2} \circ f_{2}$ which possess the universal property which is dual to pullback. When $\xrightarrow{\lim }\left(f_{1}, f_{2}\right)$ exists the uniqueness condition on α again guarantees that $\underset{\longrightarrow}{\lim }\left(f_{1}, f_{2}\right)$ is unique up to isomorphism. In the special case where $N=0$ the pushout construction yields the direct sum $M_{1} \oplus M_{2}$. In both $\mathcal{M o d}_{\Lambda}$ and $\mathcal{G}(\Lambda)$ the direct sum $M_{1} \oplus M_{2}$ coincides with the direct product $M_{1} \times M_{2}$ with the canonical injections $i_{r}: M_{r} \rightarrow M_{1} \oplus M_{2}$

$$
i_{1}(\mathbf{x})=(\mathbf{x}, 0) ; \quad i_{2}(\mathbf{x})=(0, \mathbf{x})
$$

In $\operatorname{Mod}_{\Lambda} \xrightarrow{\lim }\left(f_{1}, f_{2}\right)=\left(M_{1} \oplus M_{2}\right) / \operatorname{Im}\left(f_{1} \oplus-f_{2}\right)$. Note that this module has a natural grading when f_{1}, f_{2} are graded homomorphisms so that $\mathcal{G}(\Lambda)$ also has pushouts.

In what follows we work with categories \mathfrak{A} in which the above notions (i) - (ix) are all present. Recall that a category \mathfrak{A} is said to be abelian (cf [4], [5]) when the following properties (I), (II). (III) hold ${ }^{\dagger}$:
(I) \mathfrak{A} has a zero object;
(II) \mathfrak{A} has pullbacks and every monomorphism is a kernel;
(III) \mathfrak{A} has pushouts and every epimorphism is a cokernel.

In any abelian category \mathfrak{A} we define an addition on all $\operatorname{Hom}_{\mathfrak{A}}(A, B)$ thus:

$$
+: \operatorname{Hom}_{\mathfrak{A}}(A, B) \times \operatorname{Hom}_{\mathfrak{A}}(A, B) \rightarrow \operatorname{Hom}_{\mathfrak{A}}(A, B) ; \quad f+g=(f, g) \circ \delta
$$

where $\delta: A \rightarrow A \oplus A$ is the diagonal and the morphism $(f, g): A \oplus A \rightarrow B$
\dagger We note (cf [5] Chapter 1) that there are many apparently different, though equivalent, ways of defining the notion of abelian category.
is induced from $f: A \rightarrow B$ and $g: A \rightarrow B$ by regarding $A \oplus A$ as a pushout. When \mathfrak{A} is an abelian category we have the following additivity property whose proof is left as an exercise:
(x) $\operatorname{Hom}_{\mathfrak{A}}(A, B)$ is naturally an abelian group for any $A, B \in \mathfrak{A}$.

Recall that a category \mathfrak{A} is said to be small when its objects form a set rather then merely a class. In this context, we note the following theorem of Lubkin ([4], [5])

Theorem 2.1 : If \mathfrak{A} is a small abelian category there is a functor $\iota: \mathfrak{A} \rightarrow \mathcal{A b}$ which preserves addition, exact sequences and for which $\operatorname{Hom}_{\mathfrak{A}}(A, B) \stackrel{i_{*}}{\longrightarrow} \operatorname{Hom}_{\mathrm{Ab}}(\iota(A), \iota(B))$ is injective for all $A, B \in \mathfrak{A}$.

Lubkin's Theorem has the practical consequence that diagrams in any abelian category can be regarded simply as diagrams of additive abelian groups and homomorphisms; we take advantage of this in what follows.

By a tame category we mean one which is equivalent to a small subcategory of \mathcal{A} b and which is abelian in the above sense. In consequence we see that every small abelian category is tame. Evidently $\mathcal{M o d}_{\Lambda}$ and $\mathcal{G}(\Lambda)$ are abelian categories. However, without some size restriction on the objects neither category is tame. One especially convenient restriction is to consider only rings Λ which are countable. We then denote by $\mathcal{M o d}_{\Lambda}^{\infty}$ the full subcategory of $\operatorname{Mod}_{\Lambda}$ consisting of countably generated modules. Likewise $\mathcal{G}^{\infty}(\Lambda)$ will denote the full subcategory of $\mathcal{G}(\Lambda)$ whose underlying modules are countably generated. It follows easily that:

Proposition 2.2: If Λ is a countable ring then $\mathcal{M o d}_{\Lambda}^{\infty}$ and $\mathcal{G}^{\infty}(\Lambda)$ are tame abelian categories.

3. Splitting and projectives :

In what follows, \mathfrak{A} will denote a tame abelian category. We recall the following basic result, the Five Lemma which, via Lubkin's Theorem, it suffices to prove in \mathcal{A} b.
(3.1) Suppose given a commutative diagram in \mathfrak{A} with exact rows

$$
\begin{array}{rlrllll}
A_{1} & \xrightarrow{\alpha_{7}} & A_{2} & \xrightarrow{\alpha_{2}} A_{3} & \xrightarrow{\alpha_{3}} & A_{4} & \xrightarrow{\alpha_{4}} \\
f_{1} \downarrow & A_{5} \\
f_{2} \downarrow & & f_{3} \downarrow & & f_{4} \downarrow & & f_{5} \downarrow \\
B_{1} & \xrightarrow{\beta_{7}} & B_{2} & \xrightarrow{\beta_{2}} & B_{3} & \xrightarrow{\beta_{3}} & B_{4}
\end{array} \xrightarrow{\beta_{4}} \quad B_{5}
$$

If f_{1}, f_{2}, f_{4} and f_{5} are all isomorphisms then f_{3} is also an isomorphism.

Given objects $A, C \in \mathfrak{A}$ there are a canonical morphisms $i_{A}: A \rightarrow A \oplus C$ and $\pi_{C}: A \oplus C \rightarrow C$ allowing the construction of the trivial exact sequence

$$
\mathcal{T}=\left(0 \rightarrow A \xrightarrow{i_{A}} A \oplus C \quad \xrightarrow{\pi_{C}} C \rightarrow 0\right) .
$$

An exact sequence $\mathcal{E}=(0 \rightarrow C \xrightarrow{i} B \xrightarrow{p} A \rightarrow 0)$ in \mathfrak{A} is said to split when it is isomorphic to the trivial exact sequence by means of a commutative diagram as follows:

$$
\begin{array}{lllllll}
0 \rightarrow & A & \xrightarrow{i} & B & \xrightarrow{p} & C & \rightarrow 0 \\
& \downarrow \operatorname{Id}_{A} & \downarrow \psi & \downarrow \operatorname{Id}_{C} & \\
0 \rightarrow & A & \xrightarrow{i_{A}} A \oplus C \xrightarrow{\pi_{C}} & C & \rightarrow 0 .
\end{array}
$$

It follows from the Five Lemma that such a splitting ψ is necessarily an isomorphism. We say that \mathcal{E} splits on the left when there exists a morphism $r: B \rightarrow A$ such that $r \circ i=\operatorname{Id}_{A}$. Finally we say that \mathcal{E} splits on the right when there exists a morphism $s: A \rightarrow B$ such that $p \circ s=\operatorname{Id}_{C}$. If ψ is a splitting of \mathcal{E} then $r=\pi_{A} \circ \psi$ is a left splitting of \mathcal{E}. Conversely if $r: B \rightarrow C$ is a left splitting of \mathcal{E} then $\psi=\binom{r}{p}: B \rightarrow A \oplus C$ is a splitting. If ψ is a splitting of \mathcal{E} then $s=\psi^{-1} \circ i_{C}: C \rightarrow B$ is a right splitting. Conversely if s is a right splitting then by the Five Lemma, $(i, s): A \oplus C \rightarrow B$ is necessarily an isomorphism and $\psi=(i, s)^{-1}$ is then a splitting. To summarise:
(3.2) \mathcal{E} splits $\Longleftrightarrow \mathcal{E}$ splits on the left $\Longleftrightarrow \mathcal{E}$ splits on the right.

We say that an object $Q \in \mathfrak{A}$ is projective when every exact sequence of the form $0 \rightarrow C \xrightarrow{i} B \xrightarrow{p} Q \rightarrow 0$ splits. The following is fundamental:
Proposition 3.3: (Schanuel's Lemma) Let $\left(0 \rightarrow D_{r} \xrightarrow{i_{r}} P_{r} \xrightarrow{f_{r}} M \rightarrow 0\right)$ be exact sequences in $\operatorname{Mod}_{\Lambda}(r=1,2)$; if P_{1} and P_{2} are projective then $D_{1} \oplus P_{2} \cong D_{2} \oplus P_{1}$.

Proof : Form the pullback $Q=\varliminf_{\swarrow}\left(f_{1}, f_{2}\right)$ Then there is a short exact sequence $0 \rightarrow D_{2} \rightarrow Q \xrightarrow{\pi_{7}} P_{1} \rightarrow 0$ which splits as P_{1} is projective. Hence $Q \cong D_{2} \oplus P_{1}$. Likewise the short exact sequence $0 \rightarrow D_{1} \rightarrow Q \xrightarrow{\pi_{2}} P_{2} \rightarrow 0$ splits as P_{2} is projective. Thus $D_{1} \oplus P_{2} \cong Q \cong D_{2} \oplus P_{1}$ as claimed.

4. Some standard diagrams :

Consider the following commutative diagram in a tame abelian category \mathfrak{A} in which it is assumed that all rows and columns are exact.

By Lubkin's Theorem we may replace it by an equivalent diagram in $\mathcal{A} \mathbf{b}$. A straightforward diagram chase then shows that, in (4.1):
(4.2) φ and \widehat{p} are both epimorphic $\Longleftrightarrow \widetilde{p}$ and φ_{-}are both epimorphic.

Consider likewise
(4.3)

$$
\left\{\begin{array}{clllll}
& 0 & & 0 & & 0 \\
& \downarrow & & \downarrow & & \downarrow \\
& C_{2} & \xrightarrow{\gamma_{2}} & C_{1} & \xrightarrow{\gamma_{7}} & C_{0} \\
& \downarrow j_{2} & & \downarrow j_{1} & & \downarrow j_{0} \\
& B_{2} & \xrightarrow[\rightarrow]{ } & B_{1} & \xrightarrow{\beta_{1}} & B_{0} \\
B_{3} \xrightarrow{\beta_{3}} & B_{2} & \\
\downarrow \varphi_{3} & \downarrow \varphi_{2} & \downarrow \varphi_{1} & \downarrow \varphi_{0} \\
A_{3} \xrightarrow{\alpha_{3}} & A_{2} & \xrightarrow[\rightarrow]{\alpha_{2}} & A_{1} & \xrightarrow[\rightarrow]{\alpha_{1}} & A_{0} \\
\downarrow & \downarrow & & \downarrow & & \downarrow \\
0 & 0 & & 0 & & 0
\end{array}\right.
$$

(4.4) Suppose in (4.3) that the columns are all exact; if the rows
$\left(A_{3} \xrightarrow{\alpha_{3}} A_{2} \xrightarrow{\alpha_{2}} A_{1} \xrightarrow{\alpha_{1}} A_{0}\right)$ and $\left(B_{3} \xrightarrow{\beta_{3}} B_{2} \xrightarrow{\beta_{2}} B_{1} \xrightarrow{\beta_{7}} B_{0}\right)$ are exact then $\left(C_{2} \xrightarrow{\gamma} C_{1} \xrightarrow{\gamma} C_{0}\right)$ is also exact.

In the following commutative diagram \mathcal{C} over \mathfrak{A} we assume all rows and columns are exact:

We say that the diagram \mathcal{C} of (4.5) splits completely when there are morphisms $r_{t}: B_{t} \rightarrow C_{t}$ for $t=0,1,2$ such that $r_{t} \circ j_{t}=\operatorname{Id}_{C_{t}}$ and such that the following diagram commutes

The triple $\left(r_{0}, r_{1}, r_{2}\right)$ is then called a complete splitting of \mathcal{C}. Evidently r_{0} is a (left) splitting of the exact sequence

$$
0 \rightarrow C_{0} \xrightarrow{j_{0}} B_{0} \xrightarrow{\varphi_{0}} A_{0} \rightarrow 0
$$

and we say the complete splitting $\left(r_{0}, r_{1}, r_{2}\right)$ extends the splitting r_{0}.

Theorem 4.6: Assume in (4.5) above that all rows and columns are exact and that A_{1} and C_{0} are projective; then any (left) splitting r_{0} of the right hand column extends to a complete splitting $\left(r_{0}, r_{1}, r_{2}\right)$ of \mathcal{C}.

5. A comparison theorem for resolutions:

Given an integer $n \geq 0$ and an object $M \in \mathfrak{A}$, by an n-resolution we mean an exact sequence in \mathfrak{A} of the form

$$
\mathbf{E}^{(n)}=\left(E_{n} \xrightarrow{\partial_{n}} E_{n-1} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{2}} E_{1} \xrightarrow{\partial_{1}} E_{0} \xrightarrow{\epsilon} M \rightarrow 0\right) .
$$

We allow ourselves to write $E_{-1}=M$ and $\partial_{0}=\epsilon \quad$ whenever it is notationally convenient to do so. Whilst later we shall require the resolving objects E_{r} to be projective of a special type, here we impose no restriction other than exactness. We denote by $\mathfrak{A}(n)$ the category whose objects are such sequences and in which morphisms are commutative ladders

We also allow the limiting case $n=\infty$ in the obvious way. If $\varphi_{-}: \widetilde{M} \rightarrow M$ is an epimorphism we say that φ is a dominating morphism over φ_{-}when each φ_{r} is also an epimorphism. We agree to write $\mathbf{E}^{(n)} \preceq \widetilde{\mathbf{E}}^{(n)}$ in the special case where $\varphi_{-}=\operatorname{Id}_{M}: M \rightarrow M$.

For the rest of this section we pick a specific dominating morphism $\varphi: \widetilde{\mathbf{E}}^{(n)} \rightarrow \mathbf{E}^{(n)}$ over Id_{M}. Defining $T_{r}=\operatorname{Ker}\left(\varphi_{r}\right), j_{r}: T_{r} \rightarrow \widetilde{E}_{r}$ will denote the 'inclusion' and $\widehat{\partial}_{r}: T_{r} \rightarrow T_{r-1}$ the 'restriction' giving a commutative diagram:

Although $\widehat{\partial}_{n-1} \circ \widehat{\partial}_{n}=0$ it is not, in general, true that $\operatorname{Ker}\left(\widehat{\partial}_{n-1}\right)$ is the same as $\operatorname{Im}\left(\widehat{\partial}_{n}\right)$. Noting this loss of information at the top left hand corner, it nevertheless follows, by induction from (4.4), that the following portion
of (5.1) has exact rows and columns:
(5.2)

In the above we define $J_{r}=\operatorname{Ker}\left(\partial_{r-1}\right)$ for $1 \leq r \leq n+1$. When $r \leq n$ then it is also true that $J_{r}=\operatorname{Im}\left(\partial_{r}\right)$ and we then write $\partial_{r}=i_{r} \circ p_{r}$ for the canonical decomposition of ∂_{r} through its image with i_{r} monomorphic and p_{r} epimorphic:

Likewise we consider the corresponding decompositions for the $\widetilde{\partial}_{r}$ to obtain commutative diagrams as follows:

where, depending on context, both φ_{r}^{-}and φ_{r-1}^{+}denote the restriction $\varphi_{r-1 \mid \widetilde{J}_{r}}: \widetilde{J}_{r} \rightarrow J_{r}$. Now taking the corresponding decompositions for the $\widehat{\partial}_{r}$ we get commutative diagrams

where both j_{r}^{-}and j_{r-1}^{+}both denote the 'inclusion' $V_{r} \rightarrow \widetilde{J}_{r}$. We assemble (5.3) and (5.4) into commutative diagrams $\mathcal{D}(r)$ for $1 \leq r \leq n-2$;

In the special case $r=0$ we obtain

$$
\mathcal{D}(0)=\left\{\right.
$$

As $\tilde{\epsilon} \circ j_{0}=\epsilon \circ \varphi_{0} \circ j_{0}=\underset{\sim}{0}$ then the 'inclusion' $j_{0}^{+}: V_{1} \rightarrow \widetilde{J}_{1}=\operatorname{Ker}(\widetilde{\epsilon})$ and 'restriction' $\varphi_{0}^{+}: \varphi_{1 \mid \widetilde{J}_{1}}: \widetilde{J}_{1} \rightarrow J_{1}$ are both well defined. We note:
Proposition 5.5: All the rows and columns of $\mathcal{D}(0)$ are exact.

Proof : Exactness of the rows and of the right hand and middle columns is tautological. Thus it suffices to show that:
(a) φ_{0}^{+}is epimorphic and (b) $\operatorname{Ker}\left(\varphi_{0}^{+}\right)=\operatorname{Im}\left(j_{0}^{+}\right)$.

For (a), observe that in the following subdiagram of $\mathcal{D}(0)$ all rows and columns are exact.

As both φ_{0} and \widehat{p}_{0} are epimorphic then φ_{0}^{+}is epimorphic by (4.2).
To prove (b) we may again, by Lubkin's Theorem, assume that the diagram consists of abelian groups and homomorphisms in which monomorphisms become inclusions thus:

$$
\begin{array}{llllll}
& 0 & & 0 & & \\
& & \downarrow \\
& & & \downarrow & & \\
& V_{1} & = & T_{0} & \rightarrow & 0 \\
& \cap j_{0}^{+} & & \cap j_{0} & \downarrow \\
0 \rightarrow & \widetilde{J_{1}} & \stackrel{\widetilde{i_{0}}}{\hookrightarrow} & \widetilde{E}_{0} & \xrightarrow{\widetilde{\epsilon}} M \rightarrow 0 \\
& \downarrow \varphi_{0}^{+} & & \downarrow \varphi_{0} & & \| \text { Id } \\
0 \rightarrow & J_{1} & \stackrel{i_{0}}{\longrightarrow} & E_{0} & \xrightarrow{\epsilon} M \rightarrow 0 \\
& \downarrow & & \downarrow & \downarrow \\
& 0 & & 0 & & 0
\end{array}
$$

The inclusion $\operatorname{Im}\left(j_{0}^{+}\right) \subset \operatorname{Ker}\left(\varphi_{0}^{+}\right)$then follows by restriction from $\varphi_{0} \circ j_{0}=0$. Thus suppose $x \in \widetilde{J}_{1}$ satisfies $\varphi_{0}^{+}(x)=0$; then $\widetilde{i}_{0}(x) \in \operatorname{Ker}\left(\varphi_{0}\right)=T_{0}=V_{1}$, completing the proof.

Before proceeding we first note:
(5.6) the rows of each $\mathcal{D}(r)$ are exact ;
(5.7) the middle column of each $\mathcal{D}(r)$ is exact;
(5.8) the right hand column of $\mathcal{D}(r)$ is identical to the left hand column of $\mathcal{D}(r-1)$ for $1 \leq r \leq n-1$.

We arrive at the following 'weak comparison' theorem:

Theorem 5.9: Let $\varphi: \widetilde{\mathbf{E}}^{(n)} \rightarrow \mathbf{E}^{(n)}$ be a dominating morphism over Id_{M} where $n \geq 2$; then the rows and columns of $\mathcal{D}(r)$ are exact for $0 \leq r \leq n-2$.

Proof : For $n=2$ this is simply a restatement of (5.5). Thus we may suppose that $n \geq 3$. Let $\mathbf{C}(r)$ be the statement that the rows and columns of $\mathcal{D}(r)$ are exact. As $\mathbf{C}(0)$ is true, again by (5.5), it suffices to show that $\mathbf{C}(r-1) \Longrightarrow \mathbf{C}(r)$ for $1 \leq r \leq n-2$.

Via the Lubkin imbedding it suffices to prove the statement for the corresponding diagram of abelian groups and homomorphisms. By induction the right hand column of $\mathcal{D}(r)$ is exact as it coincides with the left hand column of $\mathcal{D}(r-1)$. As observed in (5.7) the middle column of $\mathcal{D}(r)$ is exact so it suffices to show the left hand column of $\mathcal{D}(r)$ is exact. As j_{r}^{+}is a monomorphism it suffices to show:
(a) φ_{r}^{+}is epimorphic and
(b) $\operatorname{Ker}\left(\varphi_{r}^{+}\right)=\operatorname{Im}\left(j_{r}^{+}\right)$.

To show (a), note that in the following subdiagram of $\mathcal{D}(r)$ all rows and columns are exact;

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow j_{r} \quad \downarrow j_{r}^{-} \\
& \widetilde{J}_{r+1} \xrightarrow{\widetilde{i_{r}}} \quad \widetilde{E}_{r} \quad \xrightarrow{\widetilde{p_{r}}} \widetilde{J}_{r} \longrightarrow 0 \\
& \downarrow \varphi_{r}^{+} \quad \downarrow \varphi_{r} \quad \downarrow \varphi_{r}^{-} \\
& \begin{array}{ccc}
J_{r+1} & \xrightarrow{i_{r}} & E_{r} \\
& & \xrightarrow{p_{r}} \\
& J_{r} \longrightarrow 0 \\
& & \downarrow \\
& & 0
\end{array}
\end{aligned}
$$

As φ_{r} and \widehat{p}_{r} are epimorphic it follows by (4.2) that φ_{r}^{+}is epimorphic.
To prove (b) suppose $x \in \widetilde{J}_{r+1}=\operatorname{Ker}\left(\widetilde{\partial}_{r}\right)$ satisfies $\varphi_{r}^{+}(x)=0$. We must produce an element $y \in V_{r+1}=\operatorname{Ker}\left(\widehat{\partial}_{r}\right)$ such that $j_{r}(y)=x$. Consider the following portion of the diagram established in (5.2). Observe that as $r \leq n-2$ this subdiagram is well defined.

$$
\begin{array}{ccccccc}
& T_{r+1} & \xrightarrow{\widehat{\partial}_{r+1}} & T_{r} & \xrightarrow{\widehat{\partial}_{r}} & T_{r-1} \\
& j_{r+1} \downarrow & & j_{r} \downarrow & & j_{r-1} \downarrow \\
\widetilde{E}_{r+2} & \widetilde{\partial}_{r+2} & \widetilde{E}_{r+1} & \widetilde{\partial}_{r+1} & \widetilde{E}_{r} & \xrightarrow{\widetilde{\partial}_{r}} & \widetilde{E}_{r-1} \\
\varphi_{r+2} \downarrow & & \varphi_{r+1} \downarrow & & \varphi_{r} \downarrow & & \varphi_{r-1} \downarrow \\
E_{r+2} & \xrightarrow{\partial_{r+2}} & E_{r+1} & \xrightarrow{\partial_{r+1}} & E_{r} & \xrightarrow{\partial_{r}} & E_{r-1} \\
\downarrow & & & & & & \\
0 & & & & & & \\
0 & & & & & &
\end{array}
$$

The conditions on $x \in \widetilde{E}_{r}$ are $\widetilde{\partial}_{r}(x)=0$ and $\varphi_{r}(x)=0$. By exactness of the middle row we may choose $w \in \widetilde{E}_{r+1}$ such that $\widetilde{\partial}_{r+1}(w)=x$. Then $\varphi_{r} \circ \widetilde{\partial}_{r+1}(w)=0$ so that $\partial_{r+1} \circ \varphi_{r+1}(w)=0$. By exactness of the bottom row choose $z \in{\underset{\sim}{E}}_{r+2}$ such that $\partial_{r+2}(z)=\varphi_{r+1}(w)$.

As $\varphi_{r+2}: \widetilde{E}_{r+2} \rightarrow E_{r+2}$ is epimorphic, choose $\zeta \in \widetilde{E}_{r+2}$ such that $\varphi_{r+2}(\zeta)=z$; then $\partial_{r+2} \circ \varphi_{r+2}(\zeta)=\varphi_{r+1}(w)$. Put $\mu=w-\widetilde{\partial}_{r+2}(\zeta) \in \widetilde{E}_{r+1}$ so that $\varphi_{r+1}(\mu)=0$. Choose $\eta \in T_{r+1}$ such that

$$
j_{r+1}(\eta)=\mu=w-\widetilde{\partial}_{r+2}(\zeta)
$$

Then $\widetilde{\partial}_{r+1} \circ j_{r+1}(\eta)=\widetilde{\partial_{r+1}}(w)-\widetilde{\partial_{r+1}} \widetilde{\partial_{r+2}}(\zeta)$. Put $y=\widehat{\partial}_{r+1}(\eta)$. Then $y \in V_{r+1}$ and $j_{r}(y)=x$. This completes the proof.

The statement of (5.9) extends to the limiting case $n=\infty$ as follows:
Corollary 5.10: Let $\varphi: \widetilde{\mathbf{E}}^{(\infty)} \rightarrow \mathbf{E}^{(\infty)}$ be a dominating morphism over Id_{M}; then the rows and columns of $\mathcal{D}(r)$ are exact for all $r \geq 0$.

6. Finiteness conditions and stability:

Let \mathfrak{A} be a tame abelian category. By a special class in \mathfrak{A} we mean a class of objects $\mathfrak{S} \subset \mathfrak{A}$ satisfying the following properties $\mathfrak{S}(1)-\mathfrak{S}(3)$:
$\mathfrak{S}(1)$: Each $S \in \mathfrak{S}$ is projective and $0 \in \mathfrak{S}$;
$\mathfrak{S}(\mathbf{2}):$ If $0 \rightarrow X \rightarrow Y \rightarrow S \rightarrow 0$ is exact in \mathfrak{A} and $S \in \mathfrak{S}$ then

$$
X \in \mathfrak{S} \Longleftrightarrow Y \in \mathfrak{S} .
$$

Finally we have a 'finiteness' property. If $S, T \in \mathfrak{S}$ let $\mathbf{e}(S, T)$ denote the set of integers k for which there exists an epimorphism $S \rightarrow \underbrace{T \oplus \cdots \oplus T}_{k}$. $\mathfrak{S}(3):$ If $S, T \in \mathfrak{S}$ and $T \neq 0$ then $\mathbf{e}(S, T)$ is bounded above.
It follows from $\mathfrak{S}(1)$ and $\mathfrak{S}(2)$ that \mathfrak{S} is closed with respect to coproducts;
(6.1). $X \in \mathfrak{S}$ and $Y \in \mathfrak{S} \Longrightarrow X \oplus Y \in \mathfrak{S}$.

Likewise \mathfrak{S} is closed with respect to isomorphism;
(6.2) $X \in \mathfrak{S}$ and $X \cong_{\mathfrak{A}} Y \Longrightarrow Y \in \mathfrak{S}$.

Recall that a finitely generated module M over a ring Λ is said to be stably free when $M \oplus \Lambda^{m} \cong \Lambda^{m+n}$ for some integers m, n.
(6.3) The class $\mathcal{S F}$ of finitely generated stably free Λ-modules is a special class in $\operatorname{Mod}_{\Lambda}$.

Similarly we define a class $\mathcal{G S F}$ of objects in $\mathcal{G}(\Lambda)$ as follows:
$M \in \mathcal{G S F} \Longleftrightarrow$ each M_{r} is finitely generated stably free over Λ.
(6.4) The class $\mathcal{G S F}$ is a special class in $\mathcal{G}(\Lambda)$.

There is a relation, \mathfrak{S}-equivalence, defined on the objects of \mathfrak{A} by

$$
X \sim X^{\prime} \Longleftrightarrow X \oplus S \cong X^{\prime} \oplus S^{\prime} \quad \text { for some } S, S^{\prime} \in \mathfrak{S}
$$

We define a class $\mathcal{F}(0)$ of objects in \mathfrak{A} as follows; $M \in \mathcal{F}(0)$ when there exists an epimorphism $\eta: S \rightarrow M$ for some $S \in \mathfrak{S}$.

Proposition 6.5 : Let $M \in \mathcal{F}(0)$; if $T \in \mathfrak{S}$ is such that $M \oplus T \cong M$ then $T=0$.

Proof : Let $\varphi: S \rightarrow M$ be an epimorphism where $S \in \mathfrak{S}$, and suppose that there is an isomorphism $\psi_{1}: M \rightarrow M \oplus T$ where $T \in \mathfrak{S}$. Then for each positive integer k we obtain an isomorphism $\psi_{k}: M \rightarrow M \oplus T^{(k)}$ on putting $\psi_{k}=\left(\psi_{k-1} \oplus \operatorname{Id}_{T}\right) \circ \psi_{1}$ for $k \geq 2$. Hence for each positive integer k we obtain an epimorphism $\eta_{k}: S \rightarrow T^{(k)}$ on putting $\eta_{k}=\pi_{k} \circ \psi_{k} \circ \varphi$. This contradicts property $\mathfrak{S}(3)$ unless $T=0$.

Corollary 6.6 : Let $S \in \mathfrak{S}$; if $\varphi: S \rightarrow S$ is an epimorphism then φ is an isomorphism.

Proof : Suppose that $\varphi: S \rightarrow S$ is an epimorphism. As S is projective then from the exact sequence

$$
0 \rightarrow \operatorname{Ker}(\varphi) \rightarrow S \xrightarrow{\varphi} S \rightarrow 0
$$

there is an isomorphism $\psi_{1}: S \rightarrow S \oplus \operatorname{Ker}(\varphi)$ and $\operatorname{Ker}(\varphi) \in \mathfrak{S}$. By (6.5) $\operatorname{Ker}(\varphi)=0$, so that φ is monomorphic and hence an isomorphism.

We first introduce a general definition; if $M_{1}, M_{2} \in \mathcal{F}(0)$ we say that M_{2} splits over M_{1}, written $M_{1} \dashv M_{2}$, when there is an isomorphism $M_{1} \oplus T \cong M_{2}$ in which $T \in \mathfrak{S}$. Evidently one has:

Proposition 6.7 : If $M_{1} \dashv M_{2}$ then $M_{1} \sim M_{2}$.
It is straightforward to see that the relation ' - ' is transitive; that is :
(6.8) If $M_{1} \dashv M_{2}$ and $M_{2} \dashv M_{3}$ then $M_{1} \dashv M_{3}$.

More subtly, ' -1 ' is also anti-symmetric in the sense that, for $M_{1}, M_{2} \in \mathcal{F}(0)$,
Proposition 6.9: $\quad M_{1} \dashv M_{2} \wedge M_{2} \dashv M_{1} \Longrightarrow \quad M_{1} \cong M_{2}$.
Proof: The hypothesis allows us to write $M_{2} \cong M_{1} \oplus T_{1}$ and $M_{1} \cong M_{2} \oplus T_{2}$ for some $T_{1}, T_{2} \in \mathfrak{S}$. Thus $M_{1} \cong M_{1} \oplus T$ where $T=\left(T_{1} \oplus T_{2}\right) \in \mathfrak{S}$. It follows from (6.6) above that $T=0$. Hence $T_{2}=0$ and $M_{1} \cong M_{2}$.
Corollary 6.10 : If Ω is an \mathfrak{S}-class of type $\mathcal{F}(0)$ then the relation ' -1 ' induces a partial ordering on the isomorphism types of Ω.

If X is an object in \mathfrak{A} the \mathcal{S}-class $[X]$ is defined to be the collection of isomorphism classes of objects Y in \mathfrak{A} which are \mathfrak{S}-equivalent to X :

$$
[X]=\{Y \in \mathfrak{A} \mid Y \sim X\} / \cong
$$

As \mathfrak{A} is equivalent to a small subcategory of $\mathcal{A} b$ it follows that
(6.11) $[X]$ is a set for each object $X \in \mathfrak{A}$.

We denote by $\mathfrak{S}(n)$ the full subcategory of $\mathfrak{A}(n)$ consisting of exact sequences of the form

$$
\mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} S_{n-1} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{2}} S_{1} \xrightarrow{\partial_{b}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

in which $S_{0}, \ldots, S_{n} \in \mathfrak{S}$. Such a sequence will be called an n-stem over M. Moreover $J_{r+1}=\operatorname{Ker}\left(\partial_{r}\right)$ is called the $(r+1)^{\text {st }}$ syzygy of $\mathbf{S}^{(n)}$. We say that M is of type $\mathcal{F}(n)$ when there exists an n-stem over M. In general this condition is a nontrivial restriction on M.

Theorem 6.12 : Let $M \in \mathfrak{A}$ and $S \in \mathfrak{S}$; then

$$
M \in \mathcal{F}(n) \Longleftrightarrow M \oplus S \in \mathcal{F}(n) .
$$

Proof : Let $\mathcal{P}(n)$ be the statement of the theorem; we first prove $\mathcal{P}(0)$. Suppose that $\epsilon: S_{0} \rightarrow M$ is an epimorphism. Then $\epsilon \oplus \operatorname{Id}: S_{0} \oplus S \rightarrow M \oplus S$ is also an epimorphism so that if $M \in \mathcal{F}(0)$ then $M \oplus S \in \mathcal{F}(0)$. Conversely suppose that $M \oplus S \in \mathcal{F}(0)$ and let $\eta: S_{0} \rightarrow M \oplus S$ be an epimorphism.

Taking $\pi_{1}: M \oplus S \rightarrow M, \pi_{2}: M \oplus S \rightarrow S$ to be the canonical projections, put $S^{\prime}=\operatorname{Ker}\left(\pi_{2} \circ \eta\right)$. Applying τ we obtain an exact sequence

$$
0 \rightarrow \tau\left(S^{\prime}\right) \rightarrow \tau\left(S_{0}\right) \xrightarrow{\tau\left(\pi_{1} \circ \eta\right)} \tau(S) \rightarrow 0 .
$$

It follows that the sequence $0 \rightarrow S^{\prime} \rightarrow S_{0} \xrightarrow{\pi_{1} \text { ○ } \epsilon} S \rightarrow 0$ is also exact so that $S^{\prime} \in \mathfrak{S}$ by property $\mathfrak{S}(3)$. However, $\tau\left(\pi_{1} \circ \eta\right): \tau\left(S^{\prime}\right) \rightarrow \tau(M)$ is epimorphic so that $\pi_{1} \circ \eta: S^{\prime} \rightarrow M$ is epimorphic and hence $M \in \mathcal{F}(0)$. This proves $\mathcal{P}(0)$. Now suppose that $\mathcal{P}(n-1)$ is true for $n \geq 1$, let $M \in \mathcal{F}(n)$ and let

$$
S_{n} \xrightarrow{\partial_{n}} \cdots \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0
$$

be an n-stem. Letting $i: S_{0} \rightarrow S_{0} \oplus S$ be the canonical morphism define

$$
\delta_{r}=\left\{\begin{array}{cc}
i \circ \partial_{1} & r=1 \\
\partial_{r} & r>1
\end{array}\right.
$$

We see that $S_{n} \xrightarrow{\delta_{\eta}} \ldots \xrightarrow{\delta_{1}} S_{0} \oplus S \xrightarrow{\epsilon \oplus \mathrm{Id}} M \oplus S \rightarrow 0$ is exact. As $S_{0} \oplus S \in \mathfrak{S}$ then $M \oplus S \in \mathcal{F}(n)$.

Conversely suppose that $S_{n} \xrightarrow{\delta_{n}} \cdots \xrightarrow{\delta_{1}} S_{0} \xrightarrow{\eta} M \oplus S \rightarrow 0$ is an n-stem where $M \oplus S \in \mathcal{F}(n)$. We may decompose this into a pair of exact sequences

$$
\begin{gather*}
S_{n} \xrightarrow{\delta_{n}} \cdots \xrightarrow{\delta_{2}} S_{1} \xrightarrow{p} K \rightarrow 0 \tag{*}\\
0 \rightarrow K \xrightarrow{i} S_{0} \xrightarrow{\eta} M \oplus S \rightarrow 0 \tag{**}
\end{gather*}
$$

where $\delta_{1}=i \circ p$. Take $\pi_{1}: M \oplus S \rightarrow M, \pi_{2}: M \oplus S \rightarrow S$ to be the canonical projections and put $S^{\prime}=\operatorname{Ker}\left(\pi_{2} \circ \epsilon\right)$. As in the proof of $\mathcal{P}(0), S^{\prime} \in \mathfrak{S}$ and $\pi_{1} \circ \epsilon: S^{\prime} \rightarrow M$ is epimorphic. Moreover there is an isomorphism of K^{\prime} with $\operatorname{Ker}\left(\pi_{1} \circ \eta: S^{\prime} \rightarrow M\right)$ giving an exact sequence

$$
\begin{equation*}
0 \rightarrow K^{\prime} \rightarrow S^{\prime} \xrightarrow{\pi_{1} \circ \eta} M \rightarrow 0 \tag{***}
\end{equation*}
$$

Splicing $\left({ }^{(* *}\right)$ with $\left({ }^{*}\right)$ gives an n-stem $S_{n} \xrightarrow{\delta_{n}} \cdots \xrightarrow{\delta_{1}} S^{\prime} \xrightarrow{\pi_{1} \circ \eta} M \rightarrow 0$; hence $M \in \mathcal{F}(n)$. This completes the proof.

It follows immediately that:
Corollary 6.13: If $M \sim M^{\prime}$ then $M \in \mathcal{F}(n) \Longleftrightarrow M^{\prime} \in \mathcal{F}(n)$.
In view of (6.13) we extend the condition $\mathcal{F}(n)$ from objects in \mathfrak{A} to \mathfrak{S} classes by saying that the \mathfrak{S}-class $[K]$ satisfies $\mathcal{F}(n)$ when K satisfies $\mathcal{F}(n)$.

7. A strong comparison theorem for syzygies :

Given an n-stem $\mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} S_{n-1} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{2}} S_{1} \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)$ over M put $J_{r+1}=\operatorname{Ker}\left(\partial_{r}\right)$. Suppose given another n-stem over M

$$
\widetilde{\mathbf{S}}^{(n)}=\left(\widetilde{S}_{n} \xrightarrow{\widetilde{\partial}_{n}} \widetilde{S}_{n-1} \xrightarrow{\widetilde{\partial}_{n-1}} \ldots \cdots \xrightarrow{\widetilde{\partial}_{2}} \widetilde{S}_{1} \xrightarrow{\widetilde{\partial}_{1}} \widetilde{S}_{0} \xrightarrow{\widetilde{\epsilon}_{\rightarrow}} M \rightarrow 0\right)
$$

with $\widetilde{J}_{r+1}=\operatorname{Ker}\left(\widetilde{\partial}_{r}\right)$ and suppose that $\varphi: \widetilde{\mathbf{S}}^{(n)} \rightarrow \mathbf{S}^{(n)}$ is a dominating homomorphism. From the results of $\S 5$, for $0 \leq r \leq n-2$ we obtain commutative diagrams $\mathcal{D}(r)$ in which all rows and columns are exact
and in which $V_{0}=0$ and $J_{0}=\widetilde{J}_{0}=M$. As $0 \rightarrow T_{r} \rightarrow \widetilde{S}_{r} \rightarrow S_{r} \rightarrow 0$ is exact and $S_{r}, \widetilde{S}_{r} \in \mathfrak{S}$ it follows that $\widetilde{S}_{r} \cong T_{r} \oplus S_{r}$ and hence:
(7.1) Each $T_{r} \in \mathfrak{S}$.

As $V_{0}=0$ then $V_{1}=T_{0}$ so that:
(7.2) $V_{1} \in \mathfrak{S}$.

From the exact sequences $0 \rightarrow V_{r+1} \xrightarrow{\widehat{i}_{r}} T_{r} \xrightarrow{\widehat{p}_{r}} V_{r} \rightarrow 0$ it follows from $\mathfrak{S}(2)$ that
(7.3) $V_{r} \in \mathfrak{S}$ for $1 \leq r \leq n-1$.

Consequently;
(7.4) $0 \rightarrow V_{r+1} \xrightarrow{\widehat{i}_{r}} T_{r} \xrightarrow{\widehat{p}_{r}} V_{r} \rightarrow 0 \quad$ splits for $0 \leq r \leq n-2$.

Hence:
(7.5) $\quad T_{r} \cong V_{r+1} \oplus V_{r}$ for $0 \leq r \leq n-2$.

Theorem 7.6 : Let M be an object in $\mathcal{F}(n)$ and let $\mathbf{S}^{(n)}, \widetilde{\mathbf{S}}^{(n)}$ be n-stems over M; if $\mathbf{S}^{(n)} \preceq \widetilde{\mathbf{S}}^{(n)}$ then \widetilde{J}_{r} splits over J_{r} for $1 \leq r \leq n-1$.
Proof : By (5.9) we have diagrams $\mathcal{D}(r)$ with exact rows and columns for $0 \leq r \leq n-2$. First consider $\mathcal{D}(0)$

$$
\mathcal{D}(0)=\left\{\begin{array}{lllll}
& 0 & & 0 & 0 \\
& \downarrow & & \downarrow & \downarrow \\
0 \rightarrow & V_{1} & = & T_{0} & \xrightarrow{\widehat{p_{0}}} 0 \longrightarrow 0 \\
& \downarrow j_{0}^{-} & \downarrow j_{0} & \downarrow \\
& \widetilde{J}_{1} & \stackrel{\widetilde{i_{0}}}{\longrightarrow} & \widetilde{S}_{0} & \xrightarrow{\widetilde{\epsilon}} M \longrightarrow 0 \\
0 \longrightarrow & \downarrow \varphi_{0}^{-} & \downarrow \varphi_{0} & \| \mathrm{Id} \\
& J_{1} & \xrightarrow{i_{0}} & S_{0} & \xrightarrow{\epsilon} M \longrightarrow 0 \\
& \downarrow & & \downarrow & \downarrow \\
& 0 & & 0 & 0
\end{array}\right.
$$

By hypothesis we have that $S_{0} \in \mathfrak{S}$ so that the middle column splits. If $\rho: \widetilde{S}_{0} \rightarrow T_{0}$ is a left splitting of the middle column then $\rho \circ \widetilde{i}_{0}$ is a left splitting of the left-hand column and $\widetilde{J}_{1} \cong J_{1} \oplus V_{1}$. Suppose, inductively, that $0 \rightarrow V_{r} \xrightarrow{j_{r}^{+}} \widetilde{J}_{r} \xrightarrow{\varphi_{r}^{+}} J_{r} \rightarrow 0$ splits for $t \leq r \leq n-2$ and consider

As $r \leq n-2$ then we see from (7.3) that $V_{r}, V_{r+1} \in \mathfrak{S}$. Moreover $S_{r} \in \mathfrak{S}$ so that both S_{r} and V_{r} are projective. It follows from (4.6) that the sequence $0 \rightarrow V_{r+1} \rightarrow \widetilde{J}_{r+1} \rightarrow J_{r+1} \rightarrow 0$ splits and so $\widetilde{J}_{r+1} \cong J_{r+1} \oplus V_{r+1}$. As $V_{r+1} \in \mathfrak{S}$ this completes the proof.

Corollary 7.7 : Let $\mathbf{S}^{(n)}$ and $\widetilde{\mathbf{S}}^{(n)}$ be n-stems over M with syzygies $\left(J_{r}\right)_{1 \leq r \leq n}\left(\widetilde{J}_{r}\right)_{1 \leq r \leq n}$ respectively; if $\mathbf{S}^{(n)}$ is minimal then \widetilde{J}_{r} splits over J_{r} for $1 \leq r \leq n-1$.

Thus we have proved Theorem C of the Introduction.
In the limiting case an ∞-stem will be called a complete \mathfrak{S}-resolution of M. The statement of (7.7) is then modified to:

Corollary 7.8 : Let \mathbf{S} and $\widetilde{\mathbf{S}}$ be complete \mathfrak{S}-resolutions of M with syzygies $\left(J_{r}\right)_{1 \leq r},\left(\widetilde{J}_{r}\right)_{1 \leq r}$; if \mathbf{S} is minimal then \widetilde{J}_{r} splits over J_{r} for all r.

8. Uniqueness of minimal resolutions :

Let $M \in \mathcal{F}(n)$ and let $\mathbf{S}^{(n)}$ be an n-stem over M

$$
\mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} S_{n-1} \xrightarrow{\partial_{n}-1} \ldots \cdots \xrightarrow{\partial_{2}} S_{1} \xrightarrow{\partial_{\partial}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right) .
$$

We say that $\mathbf{S}^{(n)}$ is a minimal n-stem when, given any other n-stem $\widetilde{\mathbf{S}}$ over M, there is a dominating morphism $\varphi: \widetilde{\mathbf{S}}^{(n)} \rightarrow \mathbf{S}^{(n)}$ over Id_{M} thus

In particular, φ_{r} is epimorphic for each r. A straightforward deduction from (7.7) and (6.6) then shows:

Proposition 8.1 : If $\mathbf{S}^{(n)}, \widetilde{\mathbf{S}}^{(n)}$ are both minimal n-stems over M then $\mathbf{S}^{(n)} \cong_{\operatorname{Id}_{M}} \widetilde{\mathbf{S}}^{(n)}$.

This is easily strengthened to allow variation of the differentials as follows:

Proposition 8.2 : Suppose given n-stems over M as follows:

$$
\begin{aligned}
& \mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} \ldots \cdots \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right) ; \\
& \widehat{\mathbf{S}}^{(n)}=\left(S_{n} \xrightarrow{\delta_{n}} \ldots \cdots \xrightarrow{\delta_{1}} S_{0} \xrightarrow{\eta} M \rightarrow 0\right) ;
\end{aligned}
$$

if $\mathbf{S}^{(n)}$ is minimal then so also is $\widehat{\mathbf{S}}^{(n)}$.
Let $M, M^{\prime} \in \mathcal{F}(n)$ and let $\mathbf{S}^{(n)}, \mathbf{T}^{(n)}$ be n-stems over M, M^{\prime} respectively:

$$
\begin{aligned}
& \mathbf{S}^{(n)}=\left(S_{n} \xrightarrow{\partial_{n}} S_{n-1} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{2}} S_{1} \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right) ; \\
& \mathbf{T}^{(n)}=\left(T_{n} \xrightarrow{\partial_{n}^{\prime}} T_{n-1} \xrightarrow{\partial_{n-1}^{\prime}} \ldots \cdots \xrightarrow{\partial_{2}^{\prime}} T_{1} \xrightarrow{\partial_{7}^{\prime}} T_{0} \xrightarrow{\eta} M^{\prime} \rightarrow 0\right) .
\end{aligned}
$$

We may form an n-stem $\mathbf{S}^{(n)} \oplus \mathbf{T}^{(n)}$ over $M \oplus M^{\prime}$ thus
$S_{n} \oplus T_{n} \xrightarrow{\delta_{n}} S_{n-1} \oplus T_{n-1} \xrightarrow{\delta_{n-1}} \ldots \cdots \xrightarrow{\delta_{2}} S_{1} \oplus T_{1} \xrightarrow{\delta_{1}} S_{0} \oplus T_{0} \xrightarrow{\epsilon \oplus \eta} M \oplus M^{\prime} \rightarrow 0$
where $\quad \delta_{r}=\left(\begin{array}{cc}\partial_{r} & 0 \\ 0 & \partial_{r}^{\prime}\end{array}\right)$. An n-stem $\mathbf{T}^{(n)}$ over 0 is simply an exact sequence $\mathbf{T}^{(n)}=\left(T_{n} \rightarrow T_{n-1} \rightarrow \ldots \cdots \rightarrow T_{1} \rightarrow T_{0} \rightarrow 0\right)$ where each
$T_{r} \in \mathfrak{S}$. Moreover, $\mathbf{S}^{(n)} \oplus \mathbf{T}^{(n)}$ is then an n-stem over $M \oplus 0 \cong M$. We now have the following which is Theorem B of the Introduction:

Theorem 8.3: If $\mathbf{S}^{(n)}, \widetilde{\mathbf{S}}^{(n)}$ are n-stems over M and $\mathbf{S}^{(n)}$ is minimal then $\widetilde{\mathbf{S}}^{(n-1)} \cong_{\operatorname{Id}_{M}} \mathbf{S}^{(n-1)} \oplus \mathbf{T}^{(n-1)}$ for some $(n-1)$-stem $\mathbf{T}^{(n-1)}$ over 0 .

Proof : Given a dominating homomorphism $\varphi: \widetilde{\mathbf{S}}^{(n)} \rightarrow \mathbf{S}^{(n)}$ we construct, as in (5.2), a commutative diagram in which all rows and columns are exact

In particular we have an $(n-1)$-stem over the zero object, namely

$$
\mathbf{T}=\left(T_{n-1} \xrightarrow{\widehat{\partial}_{n-1}} T_{n-2} \xrightarrow{\widehat{\partial}_{n-2}} \cdots \xrightarrow{\widehat{\partial}_{b}} T_{0} \rightarrow 0 \rightarrow 0\right) .
$$

For $0 \leq k \leq n-2$ we obtain commutative diagrams $\mathcal{D}(k)$ as in $\S 5$ in which all rows and columns are exact. As the right hand column of $\mathcal{D}(0)$ is trivially split and both \widetilde{S}_{0} and 0 are projective we may, by (4.6) construct a complete splitting $\left(r_{0}^{+}, r_{0}, 0\right)$ of $\mathcal{D}(0)$ as follows:

Next consider $\mathcal{D}(1)$, recalling that the right hand column of $\mathcal{D}(1)$ is identical with the left hand column of $\mathcal{D}(0)$. Defining $r_{1}^{-}=r_{0}^{+}$we see that r_{1}^{-}is a (left) splitting of the right hand column of $\mathcal{D}(1)$. As V_{1} and S_{1} are projective then, by (4.6), r_{1}^{-}extends to a complete splitting $\left(r_{1}^{-}, r_{1}, r_{1}^{+}\right)$of $\mathcal{D}(1)$.

Suppose inductively that for $t \leq k-1$ we have constructed complete splittings $\left(r_{t}^{+}, r_{t}, r_{t}^{-}\right)$of $\mathcal{D}(t)$ in such a way that $r_{t}^{-}=r_{t-1}^{+}$. Defining
$r_{k}^{-}=r_{k-1}^{+}$gives a splitting of the right hand column of $\mathcal{D}(k)$. Now $S_{k} \in \mathfrak{S}$ by hypothesis and we have seen in (7.3) that $V_{k} \in \mathfrak{S}$; thus both S_{k} and V_{k} are projective. It again follows from (4.6) that we may extend r_{k}^{-} to a complete splitting $\left(r_{k}^{+}, r_{k}, r_{k}^{-}\right)$of $\mathcal{D}(k)$.

Inductively, for k in the range $0 \leq k \leq n-2$, we construct complete splittings $\left(r_{k}^{+}, r_{k}, r_{k}^{-}\right)$of $\mathcal{D}(k)$ such that $r_{k}^{-}=r_{k-1}^{+}$when $k \geq 1$. Finally, applying (4.6) to

$$
\mathcal{E}=\left\{\begin{array}{rllllll}
0 \rightarrow & T_{n-1} & \xrightarrow{j_{1}} & \widetilde{S}_{n-1} & \xrightarrow{\varphi_{1}} & S_{n-1} & \rightarrow 0 \\
& \widehat{p}_{n-1} \downarrow & & \widetilde{p}_{n-1} \downarrow & & p_{n-1} \downarrow & \\
0 \rightarrow & V_{n-1} & \xrightarrow{j_{0}} & \widetilde{J}_{n-1} & \xrightarrow{\varphi} & J_{n-1} & \rightarrow 0
\end{array}\right.
$$

we may construct a left splitting $r_{n-1}: \widetilde{S}_{n-1} \rightarrow T_{n-1}$ of the exact sequence

$$
0 \rightarrow T_{n-1} \xrightarrow{j_{n}-1} \widetilde{S}_{n-1} \xrightarrow{\varphi_{n-1}} S_{n-1} \rightarrow 0
$$

making the following diagram commute;

$$
\begin{array}{lll}
T_{n-1} & \stackrel{r_{1}}{\leftarrow} & \widetilde{S}_{n-1} \\
\downarrow \widehat{p}_{n-1} & & \downarrow \widetilde{p}_{n-1} \\
V_{n-1} & \stackrel{r_{0}}{\leftarrow} & \widetilde{J}_{n-1}
\end{array}
$$

It follows that we have constructed a morphism of exact sequences

Then $\binom{\varphi}{\mathbf{r}}: \widetilde{\mathbf{S}}^{(n-1)} \rightarrow \mathbf{S}^{(n-1)} \oplus \mathbf{T}^{(n-1)}$ is the required isomorphism.
In the case of complete \mathfrak{S}-resolutions we may continue the construction of the complete splittings $\left(r_{k}^{+}, r_{k}, r_{k}^{-}\right)$indefinitely to obtain Theorem A of the Introduction, namely:

Theorem 8.4: Let \mathbf{S} and $\widetilde{\mathbf{S}}$ be complete \mathfrak{S}-resolutions of M; if \mathbf{S} is minimal then $\widetilde{\mathbf{S}} \cong \mathbf{S} \oplus \mathbf{T}$ for some complete \mathfrak{S}-resolution \mathbf{T} of 0 .

9. The structure of the stable syzygies $\Omega_{n}(M)$:

If $M \in \mathcal{F}(0)$ then there is an exact sequence $0 \rightarrow J \rightarrow S \rightarrow M \rightarrow 0$ with $S \in \mathfrak{S}$. We write

$$
\Omega_{1}(M)=[J]
$$

$\Omega_{1}(M)$ is called the first stable syzygy of M relative to \mathfrak{S}. It is well defined as, by (3.3), the \mathfrak{S}-class $[J]$ depends only upon M. Moreover:
(9.2) Let $M, M^{\prime} \in \mathcal{F}(0)$; if $M \sim M^{\prime}$ then $\Omega_{1}(M)=\Omega_{1}\left(M^{\prime}\right)$.

More generally, if $M, M^{\prime} \in \mathcal{F}(n)$ then there are exact sequences

$$
\begin{aligned}
& 0 \rightarrow J \rightarrow S_{n} \rightarrow \cdots \rightarrow S_{0} \rightarrow M \rightarrow 0 \\
& 0 \rightarrow J^{\prime} \rightarrow S_{n}^{\prime} \rightarrow \cdots \rightarrow S_{0}^{\prime} \rightarrow M^{\prime} \rightarrow 0
\end{aligned}
$$

with $S_{i}, S_{j}^{\prime} \in \mathfrak{S} ;(9.2)$ now generalizes straightforwardly to give:
(9.3) If $M \sim M^{\prime}$ then $J \sim J^{\prime}$.

If $\left(0 \rightarrow J \rightarrow S_{n} \rightarrow \cdots \rightarrow S_{0} \rightarrow M \rightarrow 0\right)$ is an n-stem over M we write

$$
\Omega_{n+1}(M)=[J]
$$

$\Omega_{n+1}(M)$ is the $(n+1)^{s t}$-stable syzygy of M relative to \mathfrak{S}; to uniformize notation we shall write the stable class $[M]$ of M as $[M]=\Omega_{0}(M)$. From (9.3) we now obtain:
(9.4) Let $M, M^{\prime} \in \mathcal{F}(n)$; if $M \sim M^{\prime}$ then $\Omega_{n+1}(M)=\Omega_{n+1}\left(M^{\prime}\right)$.

One sees easily that:
(9.5) If $M \in \mathcal{F}(n)$ then $\Omega_{r}(M)$ satisfies $\mathcal{F}(n-r)$ for $1 \leq r \leq n$.

If M satisfies $\mathcal{F}(n)$ then although $\Omega_{n+1}(M)$ is defined, it need not, in general, satisfy $\mathcal{F}(0)$. In this context, for $M \in \mathcal{F}(n)$ we see that:

$$
\begin{equation*}
\Omega_{n+1}(M) \text { satisfies } \mathcal{F}(0) \Longleftrightarrow M \text { satisfies } \mathcal{F}(n+1) \tag{9.6}
\end{equation*}
$$

10. Realizing elements of $\Omega_{n}(M)$ as syzygies :

We say that $M \in \mathfrak{A}$ is 1 -coprojective when, for any $S \in \mathfrak{S}$, any exact sequence of the form $0 \rightarrow S \rightarrow X \rightarrow M \rightarrow 0$ splits; then:
(10.1) If $M \sim M^{\prime}$ then M is 1-coprojective $\Longleftrightarrow M^{\prime}$ is 1-coprojective. We have the following 'realization lemma' (cf [3] p. 107) :
(10.2) If M is a 1-coprojective of type $\mathcal{F}(0)$ then any $J \in \Omega_{1}(M)$ occurs in an exact sequence $0 \rightarrow J \rightarrow S \rightarrow M \rightarrow 0$ in which $S \in \mathfrak{S}$.
More generally, we say that $M \in \mathfrak{A}$ is $(n+1)$-coprojective when $\Omega_{r}(M)$ is defined and 1-coprojective for $0 \leq r \leq n$.

Proposition 10.3 : Suppose that $M \in \mathcal{F}(n)$ is $(n+1)$-coprojective; then for any sequence $\left(J_{r}\right)_{1<r<n+1}$ with $J_{r} \in \Omega_{r}(M)$ there exists an n-stem

$$
\mathbf{S}=\left(S_{n} \xrightarrow{\partial_{n}} S_{n-1} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

in which $J_{r} \cong \operatorname{Ker}\left(\partial_{r-1}\right)$ for $1 \leq r \leq n+1$.
Proof : By induction on n. Taking $J_{1}=J$ and putting $\partial_{0}=\epsilon$ then the statement for $n=0$ is simply (10.2). Thus suppose that $n=1$ and let $J_{1} \in \Omega_{1}(M), J_{2} \in \Omega_{2}(M)$; by (10.2) there is an object $S_{0} \in \mathfrak{S}$ and an exact sequence $0 \rightarrow J_{1} \xrightarrow{i_{0}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0$. The hypothesis $M \in \mathcal{F}(1)$ implies that $J_{1} \in \mathcal{F}(0)$. As $\Omega_{2}(M)=\Omega_{1}\left(J_{1}\right)$ then $J_{2} \in \Omega_{1}\left(J_{1}\right)$ so we may apply (10.2) to obtain an exact sequence $0 \rightarrow J_{2} \xrightarrow{i_{1}} S_{1} \xrightarrow{\pi_{1}} J_{1} \rightarrow 0$ where $S_{1} \in \mathfrak{S}$. Splicing these two sequences together by putting $\partial_{1}=i_{0} \circ \pi_{1}$ we obtain an exact sequence $\left(0 \rightarrow J_{2} \xrightarrow{i_{1}} S_{1} \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)$ where $S_{0}, S_{1} \in \mathfrak{S}$. Then $\left(S_{1} \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)$ is a 1 -stem with the stated properties.

In general, suppose proved for $n-1$ where $n \geq 2$ and let $\left(J_{r}\right)_{1 \leq r \leq n+1}$ be a sequence with $J_{r} \in \Omega_{r}(M)$. By hypothesis there exists an $n-1$-stem

$$
\mathbf{S}^{\prime}=\left(S_{n-1}^{\prime} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

in which $S_{0} \ldots S_{n-1} \in \mathfrak{S}$ and $J_{r} \cong \operatorname{Ker}\left(\partial_{r-1}\right)$ for $1 \leq r \leq n$. We may write this in co-augmented form as

$$
\mathbf{S}^{\prime}=\left(0 \rightarrow J_{n} \xrightarrow{i_{n}-1} S_{n-1}^{\prime} \xrightarrow{\partial_{n-1}} \ldots \cdots \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

The hypothesis $M \in \mathcal{F}(n)$ implies that $J_{n} \in \mathcal{F}(0)$. As $\Omega_{n+1}(M)=\Omega_{1}\left(J_{n}\right)$ we see that $J_{n+1} \in \Omega_{1}\left(J_{n}\right)$. Apply (10.2) again to obtain an exact sequence

$$
0 \rightarrow J_{n+1} \xrightarrow{i_{n}} S_{n} \xrightarrow{\pi_{n}} J_{n} \rightarrow 0
$$

where $S_{n} \in \mathfrak{S}$. Splicing these last two sequences together gives an n-stem with the stated properties

$$
\begin{equation*}
0 \rightarrow J_{n+1} \xrightarrow{i_{n}} S_{n} \xrightarrow{\partial_{n}} \ldots \cdots \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0 . \tag{*}
\end{equation*}
$$

where $\partial_{n}=i_{n-1} \circ \pi_{n}$.
We say that $\Omega_{r}(M)$ is relatively straight when there exists $N_{0} \in \Omega_{r}(M)$ such that any other $N \in \Omega_{r}(M)$ may be written in the form $N \cong N_{0} \oplus T$ for some $T \in \mathfrak{S}$. We note the following consequence of minimality.

Theorem 10.4: Suppose that $M \in \mathcal{F}(n+1)$ admits a minimal $(n+1)$-stem $\mathbf{S}^{(n+1)}$. If $\Omega_{n-1}(M)$ is 1-coprojective then $\Omega_{n}(M)$ is relatively straight.

Proof : Write $\mathbf{S}^{(n+1)}=\left(S_{n+1} \xrightarrow{\partial_{n+1}} S_{n} \xrightarrow{\partial_{n}} \ldots \ldots \xrightarrow{\partial_{t}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)$ and for $1 \leq r \leq n+1$ put $J_{r}=\operatorname{Im}\left(\partial_{r}\right)$. Choose $J \in \Omega_{n}(M)$. We must show there exists $T \in \mathfrak{S}$ such that $J \cong J_{n} \oplus T$. Write the truncation $\mathbf{S}^{(n-2)}$ in co-augmented form

$$
\mathbf{S}^{(n-2)}=\left(J_{n-1} \xrightarrow{i_{n-2}} S_{n-2} \xrightarrow{\partial_{n-2}} \ldots \cdots \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right) .
$$

Clearly $J \in \Omega_{1}\left(J_{n-1}\right)$ as $\Omega_{n}(M)=\Omega_{1}\left(J_{n-1}\right)$ and, by hypothesis, J_{n-1} is 1 -coprojective. Thus by (10.1), there exists an exact sequence

$$
\mathbf{E}=\left(0 \rightarrow J \rightarrow E_{0} \rightarrow J_{n-1} \rightarrow 0\right)
$$

where $E_{0} \in \mathfrak{S}$. As $M \in \mathcal{F}(n+1)$ and $J \in \Omega_{n}(M)$ then $J \in \mathcal{F}(1)$ so there exists a 1-stem $\mathbf{F}=\left(F_{1} \rightarrow F_{0} \rightarrow J \rightarrow 0\right)$. Yoneda product $\mathbf{F} \circ \mathbf{E} \circ \mathbf{S}^{(n-2)}$ gives an $n+1$-stem

$$
\widetilde{\mathbf{S}}^{(n+1)}=\left(F_{1} \xrightarrow{\delta_{n+1}} F_{0} \xrightarrow{\delta_{n}} E_{0} \xrightarrow{\delta_{n-1}} \ldots \cdots \xrightarrow{\delta_{1}} \widetilde{S}_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

where $\widetilde{S}_{r}=S_{r}$ for $r \leq n-2$ and where $J=\operatorname{Im}\left(\delta_{n}\right)$. As $\mathbf{S}^{(n+1)}$ is minimal it follows from (7.7) that J splits over $J_{n}=\operatorname{Im}\left(\partial_{n}\right)$. Thus, as claimed, there exists $T \in \mathfrak{S}$ such that $J \cong J_{n} \oplus T$.

11. Minimal epimorphisms :

We define a category $\mathfrak{S}_{(-)}$in which the objects are pairs (S, ϵ) where $S \in \mathfrak{S}$ and where ϵ is an epimorphism in \mathfrak{A} with domain S and whose codomain is some, as yet unspecified, object in \mathfrak{A}. Morphisms in $\mathfrak{S}_{(-)}$are then commutative squares of morphisms in \mathfrak{A} thus:

$$
\begin{array}{rll}
S^{\prime} & \xrightarrow{\epsilon^{\prime}} & M^{\prime} \\
\varphi \downarrow & & \downarrow \varphi_{-} \\
S & \xrightarrow{\epsilon} & M .
\end{array}
$$

In this case we say that φ is a morphism over φ_{-}. In practice we shall only consider the case where φ_{-}is an isomorphism and usually, though not always, we shall take φ_{-}to be the identity morphism. For $M \in \mathfrak{A}$ we define a subcategory \mathfrak{S}_{M} of $\mathfrak{S}_{(-)}$by restricting morphisms to be commutative squares of the form

$$
\begin{array}{rll}
S^{\prime} & \xrightarrow{\epsilon^{\prime}} & M \\
\varphi \downarrow & & \downarrow \operatorname{Id}_{M} \\
S & \xrightarrow{\epsilon} & M .
\end{array}
$$

If $(S, \epsilon),\left(S^{\prime}, \epsilon^{\prime}\right)$ are objects in \mathfrak{S}_{M} we write $(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right)$ whenever there exists a morphism $\varphi:\left(S^{\prime}, \epsilon^{\prime}\right) \rightarrow(S, \epsilon)$ in which $\varphi: S^{\prime} \rightarrow S$ is an epimorphism in \mathfrak{A}. It is straightforward to observe that:
(11.1) If $(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right)$ and $\left(S^{\prime}, \epsilon^{\prime}\right) \preceq\left(S^{\prime \prime}, \epsilon^{\prime \prime}\right)$ then $(S, \epsilon) \preceq\left(S^{\prime \prime}, \epsilon^{\prime \prime}\right)$.

Slightly more subtle is :
(11.2) $(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right) \wedge\left(S^{\prime}, \epsilon^{\prime}\right) \preceq(S, \epsilon) \Longleftrightarrow(S, \epsilon) \cong\left(S^{\prime}, \epsilon^{\prime}\right)$.

It follows that :
(11.3) The relation ' \preceq ' induces a partial ordering on the isomorphism classes of \mathfrak{S}_{M}.

For $E \in \mathfrak{S}$ we define the base stabilisation functor $\beta_{E}: \mathfrak{S}_{M} \rightarrow \mathfrak{S}_{M \oplus E}$ thus:
$\beta_{E}\left(\begin{array}{ccc}S^{\prime} & \xrightarrow{\epsilon^{\prime}} & M \\ \varphi \downarrow & & \downarrow \operatorname{Id}_{M} \\ S & \xrightarrow{\epsilon} & M\end{array}\right)=\left(\begin{array}{ccc}S^{\prime} \oplus E & \xrightarrow{\epsilon^{\prime} \oplus \mathrm{Id}} & M \oplus E \\ \varphi \oplus \operatorname{Id}_{E} \downarrow & & \downarrow \operatorname{Id}_{M} \\ S \oplus E & \xrightarrow{\epsilon \oplus \mathrm{II}} & M \oplus E\end{array}\right) ;$
that is, β_{E} acts on objects by $\beta_{E}(S, \epsilon)=\left(S \oplus E, \epsilon \oplus \operatorname{Id}_{M}\right)$ and on morphisms by $\beta_{E}(\varphi)=\varphi \oplus \operatorname{Id}_{E}$. Observe that β_{E} is order preserving:

$$
\begin{equation*}
(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right) \Longrightarrow \beta_{E}(S, \epsilon) \preceq \beta_{E}\left(S^{\prime}, \epsilon^{\prime}\right) . \tag{11.4}
\end{equation*}
$$

Write $(S, \epsilon) \in \mathfrak{S}_{M \oplus E}$ as an exact sequence $0 \rightarrow K \hookrightarrow S \xrightarrow{\epsilon} M \oplus E \rightarrow 0$ and put $T=\operatorname{Ker}\left(\pi_{E} \circ \epsilon\right)$ where $\pi_{E}: M \oplus E \rightarrow E$ is the canonical projection. We obtain a pair of exact sequences

$$
0 \rightarrow T \rightarrow S \rightarrow S / T \rightarrow 0 \quad ; \quad 0 \rightarrow T / K \rightarrow S / K \rightarrow S / T \rightarrow 0
$$

and a Noether isomorphism $S / T \cong(M \oplus E) / M \cong E$. In particular, $S / T \in \mathfrak{S}$. We may assemble the above into a commutative diagram with exact rows and columns
in which $\nu, \nu^{\prime}, \widetilde{\pi}$ and π are all canonical morphisms. As S and $S / T \cong E$ are both in \mathfrak{S} it follows from the middle row of $(*)$ and property $\mathfrak{S}(2)$ that $T \in \mathfrak{S}$. As $S / T \cong E$ is projective we may choose a morphism
$\tilde{\sigma}: S / T \rightarrow S$ which splits the middle row of $\left(^{*}\right)$ on the right. Now define $\sigma=\nu \circ \widetilde{\sigma}: S / T \rightarrow S / K$. As $\pi \circ \nu=\widetilde{\pi}$ we see that
(**) $\pi \circ \sigma=\operatorname{Id}_{S / T}$.
That is, σ splits the bottom row of $\left(^{*}\right)$ on the right. Taking the corresponding left splittings $\widetilde{\lambda}=\operatorname{Id}_{S}-\widetilde{\sigma} \widetilde{\pi} ; \lambda=\operatorname{Id}_{S}-\sigma \pi$, one verifies easily that $\lambda \circ \nu=\nu^{\prime} \circ \widetilde{\lambda}$. In addition to $\left(^{*}\right)$ we have another commutative diagram with exact rows and columns
$(* * *)$

Thus there exists a Noether isomorphism $দ_{1}:(S, \nu) \xrightarrow{\simeq}(S, \epsilon)$ for some $(S, \nu) \in \mathfrak{S}_{S / K}$. As T and S / T are both in \mathfrak{S} then $\left(T, \nu^{\prime}\right) \in \mathfrak{S}_{T / K}$ and $\beta_{S / T}\left(T, \nu^{\prime}\right)$ is well defined. Now consider the isomorphisms

$$
\begin{array}{ll}
\widetilde{h}: S \rightarrow T \oplus S / T \quad ; \quad h: S / K \rightarrow T / K \oplus S / T \\
\widetilde{h}(x)=(\widetilde{\lambda}(x), \widetilde{\pi}(x) \quad ; \quad h(x) \quad=(\lambda(x), \pi(x)
\end{array}
$$

Then \widetilde{h} defines an isomorphism $\widetilde{h}:(S, \nu) \xrightarrow{\simeq}_{h} \beta_{S / T}\left(T, \nu^{\prime}\right)$ over h and there is another Noether isomorphism $\mathfrak{h}_{2}: \beta_{S / T}\left(T, \nu^{\prime}\right) \xrightarrow{\simeq} \beta_{E}(T, \eta)$ where $\eta=\epsilon_{\mid T}: T \rightarrow M$. The composition $দ_{2} \circ \widetilde{h} \circ \natural_{1}^{-1}:(S, \epsilon) \xrightarrow{\simeq} \beta_{E}(T, \eta)$ is an isomorphism over $\operatorname{Id}_{M \oplus E}$. We have shown:

Theorem 11.5: $\beta_{E}: \mathfrak{S}_{M} \rightarrow \mathfrak{S}_{M \oplus E}$ is surjective on isomorphism classes.
For $(S, \epsilon),\left(S^{\prime}, \epsilon^{\prime}\right)$ in \mathfrak{S}_{M} consider morphisms $\varphi: \beta_{E}\left(S^{\prime}, \epsilon^{\prime}\right) \rightarrow \beta_{E}(S, \epsilon)$ in $\mathfrak{S}_{M \oplus E}$. Any such morphism is, at least, a morphism $\varphi: S^{\prime} \oplus E \rightarrow S \oplus E$ in \mathfrak{A} and so may be described as a matrix of \mathfrak{A}-morphisms

$$
\varphi=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \quad \text { where } \quad\left\{\begin{array}{l}
A: S^{\prime} \rightarrow S ; B: E \rightarrow S \\
C: S^{\prime} \rightarrow E ; D: E \rightarrow E
\end{array}\right.
$$

A straightforward calculation shows there is a $1-1$ correspondence
$\operatorname{Hom}_{\mathfrak{S}_{(-)}}\left(\beta_{E}\left(S^{\prime}, \epsilon^{\prime}\right), \beta_{E}(S, \epsilon)\right) \stackrel{(}{\longleftrightarrow}\left\{\left(\begin{array}{cc}A & B \\ 0 & \operatorname{Id}_{E}\end{array}\right) \left\lvert\, \begin{array}{c}A \in \operatorname{Hom}_{\mathfrak{S}_{(-)}}\left(\left(S^{\prime}, \epsilon^{\prime}\right),(S, \epsilon)\right) \\ B \in \operatorname{Hom}_{\mathfrak{A}}(E, \operatorname{Ker}(\epsilon))\end{array}\right.\right\}$.

Suppose given an \mathfrak{A}-morphism $\varphi=\left(\begin{array}{cc}A & B \\ 0 & \mathrm{Id}_{E}\end{array}\right): S^{\prime} \oplus E \rightarrow S \oplus E$. If A is epimorphic then so is φ. Conversely if φ is epimorphic, then since $S \oplus E$ is projective there exists an \mathfrak{A}-morphism $\sigma: S \oplus E \rightarrow S^{\prime} \oplus E$ such that $\varphi \circ \sigma=\operatorname{Id}_{S \oplus E}$. Writing $\sigma=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right)$ it follows easily that $\sigma_{21}=0$ and $A \circ \sigma_{11}=\operatorname{Id}_{S}$; hence A is also epimorphic. From this it follows that

$$
\beta_{E}(S, \epsilon) \preceq \beta_{E}\left(S^{\prime}, \epsilon^{\prime}\right) \Longrightarrow(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right) .
$$

As a consequence we see that:
Corollary 11.6 : For any $E \in \mathfrak{S}, \beta_{E}$ induces an order preserving bijection on isomorphism types $\beta_{E}: \mathfrak{S}_{M} \xrightarrow{\simeq} \mathfrak{S}_{M \oplus E}$.
An epimorphism (S, ϵ) in \mathfrak{S}_{M} is said to be absolutely minimal when $(S, \epsilon) \preceq\left(S^{\prime}, \epsilon^{\prime}\right)$ for each $\left(S^{\prime}, \epsilon^{\prime}\right) \in \mathfrak{S}_{M}$. We may verify directly that:
(11.7) If $(S, \epsilon),\left(S^{\prime}, \epsilon^{\prime}\right)$ are both absolutely minimal over M then

$$
(S, \epsilon) \cong\left(S^{\prime}, \epsilon^{\prime}\right)
$$

We say that $\mathcal{A b s}(M)$ holds precisely when there exists an absolutely minimal epimorphism (S, ϵ) in \mathfrak{S}_{M}. By (11.6) satisfaction of this condition depends only upon the \mathfrak{S}-class of M; that is:

Corollary 11.8 : If $M \sim M^{\prime}$ then $\mathcal{A b s}(M)$ holds $\Longleftrightarrow \mathcal{A b s}\left(M^{\prime}\right)$ holds.
This condition may be reformulated to say:
(11.9) $\mathcal{A b s}(M)$ holds $\Longleftrightarrow M$ admits a minimal 0-stem.

12. An existence criterion :

When $M \in \mathfrak{A}$ we define a subcategory $\mathfrak{S}(n)_{M}$ of $\mathfrak{S}(n)$ by restricting morphisms to be commutative diagrams of the form

For $\mathbf{S}, \mathbf{S}^{\prime}, \mathbf{S}^{\prime \prime}$ in $\mathfrak{S}(n)_{M}$ we may generalize the results of $\S 11$ as follows:
(12.1) If $\mathbf{S} \preceq \mathbf{S}^{\prime}$ and $\mathbf{S}^{\prime} \preceq \mathbf{S}^{\prime \prime}$ then $\mathbf{S} \preceq \mathbf{S}^{\prime \prime}$.
(12.2) If $\mathbf{S} \preceq \mathbf{S}^{\prime}$ and $\mathbf{S}^{\prime} \preceq \mathbf{S}$ then $\mathbf{S} \cong \mathbf{S}^{\prime}$.
(12.3) The relation ' \preceq ' induces a partial ordering on the isomorphism classes of $\mathfrak{S}_{M}(n)$.
For $E \in \mathfrak{S}$ there is a base stabilisation functor $\beta_{E}: \mathfrak{S}(n)_{M} \rightarrow \mathfrak{S}(n)_{M \oplus E}$ which transforms

$$
\begin{array}{r}
\widetilde{\mathbf{S}} \\
\varphi \downarrow \\
\mathbf{S}
\end{array}=\left(\begin{array}{ccccll}
\widetilde{S}_{n} \xrightarrow{\widetilde{\partial_{n}}} & \ldots \ldots & \xrightarrow{\widetilde{\partial}_{\rightarrow}} & \widetilde{S}_{0} & \xrightarrow{\widetilde{ }} & M \\
\varphi_{n} \downarrow & & \rightarrow 0 \\
\varphi_{0} \downarrow & & \downarrow \mathrm{Id}_{M} & \\
S_{n} \xrightarrow{\partial_{n}} & \ldots \ldots & \xrightarrow{\partial_{7}} & S_{0} & \xrightarrow{\epsilon} & M
\end{array}\right)
$$

to

$$
\begin{array}{r}
\beta_{E}(\widetilde{\mathbf{S}}) \\
\beta_{E}(\varphi) \downarrow \\
\beta(\mathbf{S})
\end{array} \quad=\left(\begin{array}{ccc}
\widetilde{S}_{n} \xrightarrow{\widetilde{\partial_{n}}} & \cdots \stackrel{\widetilde{i} \circ \widetilde{\partial}_{1}}{\rightarrow} \widetilde{S}_{0} \oplus E \stackrel{\widetilde{\eta} \oplus \operatorname{Id}}{\rightarrow} & M \oplus E \rightarrow 0 \\
\varphi_{n} \downarrow & & \varphi_{0} \downarrow \\
S_{n} \xrightarrow{\partial_{n}} & \ldots \xrightarrow{i \circ \partial_{1}} S_{0} \oplus E \xrightarrow{\epsilon \oplus \operatorname{Id}_{M}} & M \oplus E \rightarrow 0
\end{array}\right)
$$

where $\widetilde{i}: \widetilde{S}_{0} \rightarrow \widetilde{S}_{0} \oplus E$ and $i: S_{0} \rightarrow S_{0} \oplus E$ are the canonical morphisms.
(12.4) β_{E} is order preserving; that is, $\mathbf{S} \preceq \mathbf{S}^{\prime} \Longrightarrow \beta_{E}(\mathbf{S}) \preceq \beta_{E}\left(\mathbf{S}^{\prime}\right)$.
(12.5) $\quad \beta_{E}: \mathfrak{S}(n)_{M} \rightarrow \mathfrak{S}(n)_{M \oplus E}$ is surjective on isomorphism classes.
(12.6) If $\mathbf{S}, \widetilde{\mathbf{S}}$ are objects in $\mathfrak{S}(n)_{M}$ then $\beta_{E}(\mathbf{S}) \preceq \beta_{E}(\widetilde{\mathbf{S}}) \Longrightarrow \mathbf{S} \preceq \widetilde{\mathbf{S}}$.
(12.7) β_{E} induces an order preserving bijection on isomorphism types

$$
\beta_{E}: \mathfrak{S}(n)_{M} \xrightarrow{\simeq} \mathfrak{S}(n)_{M \oplus E} .
$$

We have the following useful consequence of (12.7):
(12.8) If \mathbf{S} is a minimal n-stem over M then $\beta_{E}(\mathbf{S})$ is a minimal n-stem over $M \oplus E$.

We say that $\operatorname{Min}_{n}(M)$ holds when M admits a minimal n-stem. Note that the condition $\mathcal{M} \operatorname{in}_{0}(M)$ is simply a re-statement of $\mathcal{A b s}(M)$. Moreover from (12.7) it follows immediately that:
(12.9) If $M \sim M^{\prime}$ then $\operatorname{Min}_{n}(M)$ holds $\Longleftrightarrow \operatorname{Min}_{n}\left(M^{\prime}\right)$ holds.

Thus satisfaction of the condition $\mathcal{M i n}_{n}(M)$ depends only upon the \mathfrak{S}-class $[M]$ of $M \in \mathfrak{A}$. Observe that for $M \in \mathcal{F}(n)$ we have:

Theorem 12.10: $\quad \mathcal{A b s}(M) \wedge \mathcal{M i n}_{n-1}\left(\Omega_{1}(M)\right) \Longrightarrow \mathcal{M i n}_{n}(M)$.

Proof : Let $\mathbf{S}^{(0)}=\left(0 \rightarrow K \xrightarrow{i} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)$ be a minimal 0-stem over M and let $\mathbf{S}^{\prime}=\left(S_{n-1}^{\prime} \xrightarrow{\delta_{n-1}} \cdots \cdots \xrightarrow{\delta_{1}} S_{0}^{\prime} \xrightarrow{\eta} K \rightarrow 0\right)$ be a minimal $(n-1)$-stem over K. After re-indexing thus $S_{r+1}=S_{r}^{\prime} ; \partial_{r+1}=\delta_{r}$ we may splice \mathbf{S}^{\prime} with $\mathbf{S}^{(0)}$ to obtain an n-stem

$$
\mathbf{S}=\mathbf{S}^{\prime} \circ \mathbf{S}^{(0)}=\left(S_{n} \xrightarrow{\partial_{n}} \cdots \cdots \xrightarrow{\partial_{2}} S_{1} \xrightarrow{\partial_{1}} S_{0} \xrightarrow{\epsilon} M \rightarrow 0\right)
$$

where $\partial_{1}=i \circ \eta$. We claim that \mathbf{S} is minimal; that is, given an n-stem $\widetilde{\mathbf{S}}$ over M we must produce a dominating morphism $\Psi: \widetilde{\mathbf{S}} \rightarrow \mathbf{S}$ over Id_{M}. Thus write $\widetilde{\mathbf{S}}$ as a Yoneda product $\widetilde{\mathbf{S}}=\widetilde{\mathbf{S}}^{\prime} \circ \widetilde{\mathbf{S}}^{(0)}$ where

$$
\widetilde{\mathbf{S}}^{\prime}=\left(\widetilde{S}_{n} \xrightarrow{\widetilde{\partial_{n}}} \cdots \cdots \xrightarrow{\widetilde{\sigma_{2}}} \widetilde{S}_{1} \xrightarrow{\widetilde{n}} \widetilde{K} \rightarrow 0\right) ; \quad \widetilde{\mathbf{S}}^{(0)}=\left(0 \rightarrow \widetilde{K} \xrightarrow{\widetilde{i}} \widetilde{S}_{0} \xrightarrow{\widetilde{\epsilon}} M \rightarrow 0\right) .
$$

Then there is a dominating morphism of 0-stems $\psi_{0}: \widetilde{\mathbf{S}}^{(0)} \rightarrow \mathbf{S}^{(0)}$

Observe that $E \in \mathfrak{S}$ and, in (4.8), (4.17), $\widetilde{K} \cong K \oplus E$. Thus by (12.8) $\beta_{E}\left(\mathbf{S}^{\prime}\right)$ is a minimal $(n-1)$-stem over $\widetilde{K} \cong K \oplus E$. Hence there exists a dominating morphism $\psi^{\prime}: \widetilde{\mathbf{S}}^{\prime} \rightarrow \beta_{E}\left(\mathbf{S}^{\prime}\right)$. Composition with the canonical morphism $\pi: \beta_{E}\left(\mathbf{S}^{\prime}\right) \rightarrow \mathbf{S}^{\prime}$ then takes the form

$$
\pi \circ \psi^{\prime}=\left(\right)
$$

Rewriting $\widetilde{K} \cong K \oplus E$ we may splice $\pi \circ \psi^{\prime}$ with $\psi^{(0)}$ to obtain a morphism over Id_{M}

$$
\Psi=\left(\begin{array}{cccccccc}
\widetilde{S}_{n} \xrightarrow{\widetilde{\partial_{n}}} & \cdots & \widetilde{S}_{1} & \xrightarrow[\rightarrow]{\partial_{1}} & \widetilde{S}_{0} & \xrightarrow[\rightarrow]{\widetilde{\epsilon}} M & \rightarrow 0 \\
\Psi_{n} \downarrow & & \Psi_{1} \downarrow & & \Psi_{0} \downarrow & \operatorname{Id} \downarrow & \\
S_{n} \xrightarrow{\partial_{n}} & \cdots & S_{1} & \xrightarrow{\partial_{\rightarrow}} & S_{0} & \xrightarrow{\epsilon} & M & \rightarrow 0
\end{array}\right)
$$

where $\Psi_{r}=\pi \circ \psi_{r}^{\prime}$ for $r=1$ and $\Psi_{r}=\psi_{r}^{\prime}$ otherwise. Thus each Ψ_{r} is epimorphic and Ψ is a dominating morphism.

From (12.10) we deduce our criterion for the existence of a minimal n-stem:
Theorem 12.11: Let $M \in \mathcal{F}(n)$ and suppose that $\mathcal{A b s}\left(\Omega_{r}(M)\right)$ holds for $0 \leq r \leq n$; then M admits a minimal n-stem.

In conclusion, we point out that Eilenberg's results from [1] can all be accommodated under the aegis of (12.11). For example, when Λ is a local ring, we take \mathfrak{A} to be the category of finitely generated Λ-modules and $\mathfrak{S} \subset \mathfrak{A}$ to be the subclass of finitely generated free modules. Likewise, when Λ is semisimple, we take \mathfrak{A} to be the category of locally finitely generated graded Λ-modules and $\mathfrak{S} \subset \mathfrak{A}$ to be the subclass of quasi-free modules. In either case, every such module M belongs to $\mathcal{F}(\infty)$ and satisfies $\operatorname{Abs}(M)$. Hence every such module has a complete minimal resolution. However, as we shall show elsewhere, there are many more examples of minimal resolutions which are excluded a priori from Eilenberg's framework.

References

[1] : S. Eilenberg : Homological dimension and syzygies. Ann. of Math. 64 (1956) 328-336.
[2] : D. Hilbert: Über die Theorie der Algebraischen Formen. Math. Ann. 36 (1890) 473-539.
[3] : F.E.A. Johnson ; Syzygies and homotopy theory : Springer-Verlag. 2011.
[4] : S. Lubkin: Imbedding of abelian categories. Trans. Amer. Math. Soc. 97 (1960) 410-417.
[5] : B. Mitchell: Theory of categories. Academic Press, 1965.

