ESI

Fast degenerate double proton transfer in the solid state between two indazolinone tautomers

Marta Pérez-Torralba, Concepción López, Carlos Pérez-Medina, Rosa M^a Claramunt, Elena Pinilla, M. Rosario Torres, Ibon Alkorta and José Elguero

1S. X-Ray data collection and structure refinement

Prismatic colorless single crystals of **6** ($C_7H_4F_2N_2O$) suitable for X-ray diffraction experiments were obtained by crystallization from methanol. Data collection were carried out at room temperature on a Bruker Smart CCD diffractometer using graphite-monochromated Mo-K α radiation (λ = 0.71073 Å) operating at 50 kV and 30 mA. The data were collected over a hemisphere of the reciprocal space by combination of three exposure sets. Each exposure of 30s covered 0.3 in ω . The first 100 frames were recollected at the end of the data collection to monitor crystal decay. No appreciable drop in the intensities of standard reflections was observed. The cell parameter were determined and refined by a least-squares fit of all reflections.

A summary of the fundamental crystal and refinement data is given in Table 1. Full-matrix least-squares refinements were carried out, minimizing $\omega(F_o^2 - F_c^2)^2$. R_w and goodness-of-fit are based on F². Most of the calculations were carried out with the Smart software for data collection and reduction and SHELXTL-97 (G. M. Sheldrick, *SHELXL-97, Program for refinement of crystal structures*, University of Gottingen, Germany, 1997) for structure solution and refinement. Anisotropic parameters were used in the last cycles of refinement for all non-hydrogen atoms. Hydrogen atoms bonded to the nitrogen and oxygen atoms have been located in a Fourier synthesis, included and refined their coordinates and fixed the thermal parameters (H2a y H2b at 50%). The remaining hydrogen atoms were included in calculated positions and refined as riding on their respective carbon atoms. Final R(Rw) values were 0.0363(0.0825).

The supplementary crystallographic data have been passed to the Cambridge Crystallographic Data Centre (CCDC deposition number).

Compound	6
Empirical formula	$C_7H_4F_2N_2O$
Formula weight	170.12
Crystal system	Monoclinic
Space group	C2/c
a (Å)	9.0766 (7)
<i>b</i> (Å)	11.6167 (9)
<i>c</i> (Å)	12.4603 (10)
$\beta(^{\circ})$	103.471 (2)
$V(A^3)$	1277.67 (17)
Z	8
<i>T</i> (K)	296(2)
F(000)	688
$\rho_{\text{calc.}}$ (g cm ⁻³)	1.769
$\mu (\text{mm}^{-1})$	0,161
Scan technique	ω and φ
Data collected	(-10,-13,-14) to (10,12,14)
θ range (°)	2.90 - 25.00
Reflections collected	4493
Independent reflections	$1083 \ (R_{\text{int}} = 0.0380)$
Completeness to maximum θ	96.1%
Data/restraints/parameters	1083 / 0 / 115
$\operatorname{GOF}(F^2)$	1.071
$R^{a}[I > 2\sigma(I)]$	0.0315
Rw_F^{b} (all data)	0.0825
Largest residual peak and hole (e Å ⁻³)	0.155 /-0.225
${}^{a}\Sigma[F_{o} - \overline{F_{c} }] / \Sigma F_{o} .$ ${}^{b}\{\Sigma[w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma[w(F_{o}^{2})^{2}]\}^{1/2}$	

Table 1. Crystal and refinement data for 6

D-H···A	d(D-H)	d(H···A)	d(D····A)	<(DHA)		
O1-H2B ^{···} O1 ^a	1.292(2)	1.292(2)	2.579(2)	173(3)		
N2-H2A N2 ^a	0.91(2)	2.04(2)	2.888(3)	155(4)		
N1-H1 O1 ^b	0.89(4)	2.10(2)	2.936(18)	157(2)		
^a (-x+1, y, -z+1/2), ^b (-x+1/2, y+1/2, -z+1/2)						

Hydrogen bonds in the crystal structure of **6** (distances in Å, angles in °)

(x, i, j, z, i, z), (x, i, z, j, i, z, z, i, z)

Hydrogen bonding between dimers of **6** through N1-H1^{\cdots}O1 (-x+1/2, y+1/2, -z+1/2) are responsible of the formation of layers parallel to [110]. See Figure 1S.

Fig. 1S Packing along c axis in dimeric units of 6

2S. NMR spectroscopy.

2.1. Solution NMR spectra were recorded on a Bruker DRX 400 (9.4 Tesla, 400.13 MHz for ¹H, 100.62 MHz for ¹³C and 40.56 MHz for ¹⁵N) spectrometer with a 5-mm inverse-detection H-X probehead equipped with a z-gradient coil, at the temperatures indicated in each case. Chemical shifts (δ in ppm) are given from internal solvent, DMSO- d_6 2.49 for ¹H and 39.5 for ¹³C, THF- d_8 , 3.58 for ¹H and 67.4 for ¹³C; for ¹⁵N NMR nitromethane (0.00) was used as external standard. Typical resolution for ¹H NMR spectra is 0.15-0.25 Hz per point and for ¹³C NMR spectra 0.6 Hz per point.

²D inverse proton detected heteronuclear shift correlation spectra, (¹H-¹³C) gs-HMQC, (¹H-¹³C) gs-HMBC and (¹H-¹⁵N) gs-HMBC, were acquired and processed using standard Bruker NMR software and in non-phase-sensitive mode. Gradient selection was achieved through a 5% sine truncated shaped pulse gradient of 1 ms. Variable temperature experiments were recorded on the same spectrometer. A Bruker BVT300 temperature unit was used to control the temperature of the cooling gas stream and an exchanger to achieve low temperatures.

2.2. Solid state ¹³C (100.73 MHz) and ¹⁵N (40.60 MHz) CPMAS NMR spectra have been obtained on a Bruker WB 400 spectrometer at 300 K using a 4 mm DVT probehead and a 4-mm diameter cylindrical zirconia rotor with Kel-F end-caps. The non-quaternary suppression (NQS) technique to observe only the quaternary carbon atoms was employed. ¹³C spectra were originally referenced to a glycine sample and then the chemical shifts were recalculated to the Me₄Si (for the carbonyl atom δ (glycine) = 176.1 ppm) and ¹⁵N spectra to ¹⁵NH₄Cl and then converted to nitromethane scale using the relationship: δ ¹⁵N(nitromethane) = δ ¹⁵N(ammonium chloride) – 338.1 ppm. A Bruker BVT3000 temperature unit was used to control the temperature of the cooling gas stream an a exchanger to achieve low temperatures. To avoid problems at low temperatures caused by air moisture, pure nitrogen was used as bearing, driving and cooling gas. The rotational frequencies were of about 6 kHz and we used boron nitride caps.

3S. Spectral data of 6 recorded on a Bruker DRX 400

¹ H NMR data (δ in ppm, J in [Hz)		
Solvent	NH	OH	H5	H7
Temperature				
DMSO- d_6	11.8 (br s)	10.9 (br s)	6.71 (ddd)	6.92 (dd)
300 K			${}^{4}J_{\rm H7}=1.9$	${}^{4}J_{\rm H5}=1.9$
			${}^{3}J_{\mathrm{F4}} = {}^{3}J_{\mathrm{F6}} = 10.3$	$^{3}J_{\rm F6}=9.5$

¹³C NMR (δ in ppm, J in Hz)

		/					
Conditions	C3	C3a	C4	C5	C6	C7	C7a
DMSO- d_6	153.6 (s)	98.9 (d)	155.7 (dd)	94.4 (dd)	161.8 (dd)	92.0 (dd)	143.6 (dd)
300 K		$^{2}J_{\rm F4}=20.2$	$^{1}J_{\rm F4}$ =253.3	$^{2}J_{\rm F4}=30.5$	$^{1}J_{\rm F6}$ =242.7	$^{2}J_{\rm F6}$ =26.1	$^{3}J_{\rm F4}$ =15.1
			$^{3}J_{\rm F6}$ =16.7	$^{2}J_{\rm F6}=23.3$	$^{3}J_{\rm F4}=11.7$	${}^{4}J_{\rm F4}=4.7$	$^{3}J_{\rm F6}$ =10.3
CPMAS	157.5	99.1	157.5	94.6	163 (br s)	94.6	145.9
300 K							

¹⁵N NMR (δ in ppm, J in Hz)

	ppin, J in nz)	
Conditions	N1	N2
THF- d_8	-224.1 (d)	-117,9
207 K	$^{1}J_{\rm H1}$ =107.1	
CPMAS	-240.9	-169 (br s)
300 K		

¹ H NMR (δ in ppm, J in Hz)								
Solvent	NH	OH	H5	H7				
Temperature								
DMSO- d_6	11.8 (d)	10.9 (s)	6.70 (ddd)	6.91 (ddd)				
300 K	$^{1}J_{\rm N1}=99$		${}^{4}J_{\rm H7}$ =1.9	${}^{4}J_{\rm H5}=1.9$				
			${}^{3}J_{\rm F4} = {}^{3}J_{\rm F6} = 10.3$	$^{3}J_{\rm F6}=9.4$				
				$^{3}J_{\rm N1}=1.0$				
THF- d_8	11.1 (br s)	10.8 (br s)	6.48 (ddd)	6.76 (ddd)				
300K			${}^{4}J_{\rm H7}=1.9$	${}^{4}J_{\rm H5}=1.9$				
			${}^{3}J_{\rm F4} = {}^{3}J_{\rm F6} = 10.0$	$^{3}J_{\rm F6}=9.3$				
				$^{3}J_{\rm N1}=1.2$				
THF- d_8	11.6 (ddd)	10.8 (s)	6.77 (ddd)	7.01 (ddd)				
193K	$^{1}J_{\rm N1} = 108$		$^{4}J_{\rm H7}=1.9$	${}^{4}J_{\rm H5}=1.9$				
	$^{2}J_{\rm N2}=8.3$		${}^{3}J_{\rm F4} = {}^{3}J_{\rm F6} = 10.1$	$^{3}J_{\rm F6}=9.3$				
	${}^{5}J_{\rm F4}=1.9$			${}^{3}J_{\rm N1}=1.1$				

4S. Spectral data of $6^{-15}N_2$ recorded on a Bruker DRX 400

¹³C NMR (δ in ppm, J in Hz)

	σ in ppin, σ	III IIZ)					
Solvent	C3	C3a	C4	C5	C6	C7	C7a
Temperature							
DMSO- d_6	153.6 (s)	99.0 (dd)	155.6 (dd)	94.4 (dd)	161.9 (ddd)	92.2 (dd)	143.6 (m)
300 K		$^{2}J_{\rm F4}=20.2$	$^{1}J_{\rm F4}$ =253.4	$^{2}J_{\rm F4}$ =30.3	$^{1}J_{\rm F6}$ =242.6	$^{2}J_{\rm F6}=26.1$	
		$^{2}J_{\rm N1}$ =3.6	$^{3}J_{\rm F6}=16.5$	$^{2}J_{\rm F6}$ =22.9	$^{3}J_{\rm F4}=11.6$	${}^{4}J_{\rm F4}=4.3$	
					$^{3}J_{\rm N1}=2.6$		
THF- d_8	154.7 (s)	99.5 (dd)	157.0 (dd)	95.3 (dd)	163.5 (ddd)	92.7 (dd)	144.5 (m)
193 K		$^{2}J_{\rm F4}$ =20.9	$^{1}J_{\rm F4}$ =253.9	$^{2}J_{\rm F4}=30.6$	$^{1}J_{\rm F6}$ =245.8	$^{2}J_{\rm F6}=26.3$	
		$^{2}J_{\rm N1}=3.4$	$^{3}J_{\rm F6}=16.0$	$^{2}J_{\rm F6}=23.1$	$^{3}J_{\rm F4}=11.0$	${}^{4}J_{\rm F4}=3.5$	
					$^{3}J_{\rm N1}=2.6$		

¹⁵N NMR (δ in ppm, J in Hz)

i ppin, o in mz)	
N1	N2
-224.1 (d)	-121.8
$^{1}J_{N2}=10.9$	
-229.5 (dd)	-118.3 (d)
$^{1}J_{N2}=12.1$	$^{1}J_{\rm N1}$ =12.1
-227.6 (d)	-119.3 (d)
$^{1}J_{N2}=10.6$	$^{1}J_{\rm N1}$ =10.6
-241.2	-168.6
-241.8	-169.4
	$\frac{11}{1000000000000000000000000000000000$

5S. Spectral data of 6- ¹⁵N₂ recorded on a Bruker 600 MHz instrument

¹³C CPMAS NMR chemical shifts at 300 K (10 kHz)

Peak Picking region:							
Start(p	opm)	Start(Hz)	End(ppm)	End(Hz)	MI(%)	MAXI(%)	
277.40) 41862	-53.84	-8125.6	-2.39 100.50)		
Peak I	Picking	results:					
Peak 1	Nr.	Data Point	Frequency	PPM Intens	ity	%Int.	
1	588	34684.47	229.8397	11237517	3.9		
2	682	33537.01	222.2360	28293396	9.9		
3	826	31779.20	210.5877	61687496	21.5		
4	1436	24332.91	161.2442	121734656	42.5		
5	1501	23539.45	155.9863	286299936	100.0		
6	1645	21781.64	144.3380	241848192	84.5		
7	2224	14713.77	97.5021	154952768	54.1		
8	2262	14249.90	94.4282	254037056	88.7		
9	2279	14042.38	93.0531	284723680	99.4		
10	2320	13541.89	89.7365	40217648	14.0		
11	2464	11784.08	78.0882	41075864	14.3		
12	3044	4704.00	31.1715	16056978	5.6		
13	3098	4044.82	26.8034	31868780	11.1		
14	3141	3519.92	23.3251	8967616	3.1		
15	3283	1786.52	11.8385	15176869	5.3		
16	3914	-5916.11	-39.2037	9195823	3.2		

¹³C CPMAS NMR chemical shifts at 173 K (9 kHz)

Peak Picking region:								
Start(p	pm)	Start(Hz)	End(ppm)	End(Hz)	MI(%)	MAXI(%)		
277.40	41862.	.2 -53.84	-8125.6	-7.73 100.50				
Peak P	icking	results:						
Peak N	Jr.	Data Point	Frequency	PPM Intensi	ty	%Int.		
1	773	32426.17	214.8749	44316092	9.5			
2	913	30717.19	203.5501	100023744	21.4			
3	1433	24369.53	161.4868	162202176	34.7			
4	1506	23478.42	155.5818	356660640	76.3			
5	1650	21720.60	143.9335	325195200	69.5			
6	2165	15433.98	102.2746	38695616	8.3			
7	2231	14628.32	96.9358	228235600	48.8			
8	2267	14188.87	94.0238	449153376	96.0			
9	2282	14005.76	92.8104	467660512	100.0			
10	2386	12736.23	84.3977	78863488	16.9			
11	3002	5216.70	34.5689	61615960	13.2			

¹⁵N CPMAS NMR chemical shifts at 300 K (8 kHz)

Peak Picking region: End(ppm) Start(ppm) Start(Hz) End(Hz) MI(%) MAXI(%) 574.63 34944.9 -247.47 -15049.0 -1.15 100.50 Peak Picking results: Peak Nr. Data Point Frequency PPM Intensity %Int. 1 3661 12599.91 207.1930 100447680 29.8 2 4378 8223.69 135.2304 337391904 100.0 -207. 1930 2304 200 (ppm)

¹⁵N CPMAS NMR chemical shifts at 173 K (8 kHz)

Peak Picking	region:					
Start(ppm)	Start(Hz)	End(ppm)	End(H	z)	MI(%)	MAXI(%)
574.63 34944.	9 -247.4	7 -15049	0.0	-0.65	100.50	
Peak Picking	results:					
Peak Nr.	Data Point	Frequency	PPM	Intensi	ty	%Int.
1 3657	12624.32	207.5945	212633	8984	45.8	
2 4379	8217.59	135.1300	464364	1672	100.0	

6S. Theoretical calculations.

		-(
		Etotal +ZPE	Erel	Erel+ZPE	
	Etotal (hartree)	hartree	(kJ/mol)	(kJ/mol)	EI (kJ/mol)
oxo-tautomer 6a	-653.726099	-653.619955			
hydroxy-tautomer 6b	-653.726718	-653.621398	-1.63	-3.79	
dimer 6a/6b	-1307.47553	-1307.2624			-59.64
dimer_TS	-1307.46013	-1307.25492	40.43	19.64	

Energetic results at the B3LYP/6-311++G(d,p) computational level

Absolute shieldings (ppm)

	oxo-tautomer 6a
10	1 C 14.4514
	2 C 13.3504
	3 C 80.0168
	4 H 25.3856
4 4	5 C 7.0017
3 8	6 C 84.4028
	7 H 25.4401
	8 C 72.9720
	9 C 21.6841
5 9	10 F 276.8538
11 12	11 F 273.8978
	12 N 131.7179
16	13 N 92.0022
	14 O -54.8605
	15 H 25.9930
	16 H 26.6444
	hydroxy-tautomer 6b
10	1 C 23 6347
	1 C 23.0347
	2 C 17.2677
14 -15	2 C 17.2677 3 C 83.2252
	2 C 17.2677 3 C 83.2252 4 H 25.3401
4 2 1	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380
4 2 1	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987 11 F 283.1574
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987 11 F 283.1574 12 N 87.7298
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987 11 F 283.1574 12 N 87.7298 13 N -32.8737
	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987 11 F 283.1574 12 N 87.7298 13 N -32.8737 14 O 228.9042
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 C 17.2677 3 C 83.2252 4 H 25.3401 5 C 10.7380 6 C 89.4299 7 H 25.3714 8 C 79.7269 9 C 33.8518 10 F 283.0987 11 F 283.1574 12 N 87.7298 13 N -32.8737 14 O 228.9042 15 H 26.9591

These shieldings can be transformed into chemical shifts using the following equations:

 δ^{4} H = 31.0 – 0.97 σ^{1} H (A. M. S. Silva, R. M. S. Sousa, M. L. Jimeno, F. Blanco, I. Alkorta, J. Elguero, *Magn. Reson. Chem.* 2008, **46**, 859).

 δ^{13} C = 175.7 – 0.963 σ^{13} C (F. Blanco, I. Alkorta, J. Elguero, *Magn. Reson. Chem.* 2007, **45**, 797).

The ¹H chemical shifts are almost useless since these molecules have only two CHs. The calculated 13 C chemical shifts correspond to those of the hydroxy tautomer **6b** in solution:

DMSO: $\delta^{l_3}C_{exp} = (0.993 \pm 0.006) \ \delta^{l_3}C_{calc}, n = 7, R^2 = 1.000$ THF: $\delta^{l_3}C_{exp} = (1.001 \pm 0.006) \ \delta^{l_3}C_{calc}, n = 7, R^2 = 1.000$

The ¹³C NMR data of $6^{-15}N_2$ in the solid state from the spectra reproduced in Section 5S are: 161.5 (C6), 155.6 (C3,C4), 144.0 (C7a), 102.3 (C3a), 96.9 (C5) and 94.0 ppm (C7).

These chemical shifts agree very well with the calculated ones (averaged) for 6a/6b:

The trendline corresponds to $\delta^{13}C_{exp} = (9.4 \pm 1.4) + (0.905 \pm 0.010) \delta^{13}C_{calc}$, n = 7, $R^2 = 0.999$.