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Within a generalized Langevin framework for open quantum systems, the cyclic evolution of a two-
level system is analyzed in terms of the geometric phase extended to dissipative systems for Ohmic
friction. This proposal is applied to the dynamics of chiral molecules where the tunneling and parity
violating effects are competing. The effect of different system-bath coupling functions in the dissi-
pated energy is shown to be crucial to understand the behavior of the geometric phase as well as
the decoherence displayed by the corresponding interference patterns. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4707735]

I. INTRODUCTION

Nowadays measuring the energy difference between
enantiomers of chiral molecules is considered as one of the
most challenging experiments.1 After more than 40 years
of research, the parity-violating energy difference (PVED)
between the two enantiomers of chiral molecules (a conse-
quence of the theory of electroweak interactions), still re-
mains elusive for an experimental detection. This PVED is
estimated to be between 10−13 and 10−21 eV (for recent re-
views see Refs. 2–7) but no conclusive energy difference has
been reported up to date.8–10 Due to the weakness of the
effect, extremely precise theoretical calculations are needed
to propose appropriate molecular candidates to guide the
experiment.11–14 Since the first experimental suggestion,15

several techniques have been proposed for the observation
of parity violation in molecular systems such as, for ex-
ample, laser spectroscopy on vibrational transitions,8, 10, 14, 16

electronic,17, 18 Mossbauer9, 19 and NMR spectroscopies,20, 21

and optical activity measurements.22–35 In the last type of
measurements, time dependent optical activity is proposed in
chiral molecules creating superpositions of eigenstates of the
two asymmetric wells, where the tunneling and PVED con-
tributions are of the same order of magnitude.22, 27 Thus, such
experiments would provide indirect information on the PVED
by comparison with the tunneling splittings (for an exhaustive
list of tunneling splittings and PVEDs, see Table 6 of Ref. 7
and references therein).

Essentially, the quantum beating of the optical activity
is a consequence of the oscillation between left- and right-
handed states, this being a typical example of a cyclic evo-
lution. A well known consequence of quantum mechanics is
that the initial and final state vectors of a cyclic evolution

a)p.bargueno@fis.ucm.es.

are related by a phase factor with observable consequences,
two paradigmatic examples being the Berry36 and Aharonov-
Anandan phases.37 Although geometrical phases have been
measured in many different fields of physics,38 in molecu-
lar physics they have been mainly studied in the context of
conical intersections,39 where the Born-Oppenheimer approx-
imation breaks down38, 40–42 (for a recent study on geomet-
ric phases in polyatomic molecules from a gauge field the-
ory perspective, see Ref. 43). In a recent work,44 we have
looked for alternative manifestations of the PVED in isolated
chiral molecules (described as a pure state) by analyzing the
geometric phase as a consequence of the stereomutation dy-
namics of these molecules. In particular, we have derived the
explicit dependence of the geometric phase on the essen-
tial parameters describing this stereomutation process. Even
more, the geometric phase has also been explored for superpo-
sition states by using a canonical formulation in the descrip-
tion of the corresponding dynamics45 by means of a Caldeira-
Legget-like Hamiltonian.46 External chiral fields (circularly
polarized electric fields) have been shown to influence the
geometric phase. Furthermore, the interference pattern dis-
played by such a superposition of states in the presence of
external fields exhibits PVED-locking when the amplitude of
the field equals the PVED in absolute value. This locking is
also exhibited by the geometric phase.

There are several extensions of the geometric phase con-
cept to open quantum systems based on quantum trajec-
tories issued from the stochastic Schrödinger equation,47, 48

quantum interferometry,49–53 and the kinematic approach.54, 55

However, as far as we know, there is no definition of the geo-
metric phase in the Langevin framework which is equivalent
to the usual density matrix approach.46 In this work, a simple
definition for the geometric phase acquired by chiral states in
the corresponding cyclic evolution when interactions with the
environment are taken into account is proposed and analyzed.

0021-9606/2012/136(17)/174505/6/$30.00 © 2012 American Institute of Physics136, 174505-1
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In particular, the consequences of the competition between
tunneling and parity violation when an Ohmic friction is as-
sumed in an eventual measurement of the geometric phase
and the decoherence displayed by interference patterns in this
chiral dynamics are studied.

II. THEORY

A. General considerations

Let us remember that an isolated chiral molecule can
be modelled in a phenomenological way by a two-well
potential within the Born-Oppenheimer approximation. We
consider that the chiral states, |L〉 and |R〉, have the same
energy E0. These states are connected to each other by tunnel-
ing through the double well barrier. If Ĥ is the Hamiltonian
of the molecule then 〈L|Ĥ |R〉 = −δ, with δ > 0, following
a common criteria for signs. When a slight asymmetry in the
double well potential is included due to the electroweak parity
violation, the PVED is defined as 2ε = 〈L|Ĥ |L〉 − 〈R|Ĥ |R〉.
Taking E0 = 0 as the origin of energies, the Hamiltonian de-
scribing the molecule is

Ĥ = δσ̂x + εσ̂z, (1)

where σ̂x,z are the Pauli matrices (and ¯= 1). The chiral states
can be described in terms of the eigenstates by means of a
rotational angle θ given by tan 2θ = δ/ε.

Following Aharonov and Anandan,37 the geometric
phase acquired by the pure state |L〉 during a single oscilla-
tion of period T in a cyclic evolution is

φg(L) = π +
∫ T

0
〈L|i d

dt
|L〉dt = π +

∫ T

0
〈Ĥ 〉|L〉, (2)

which turns out to be44

φg(L) = −φg(R)

= π (1 − cos 2θ ) = π

(
1 − ε√

δ2 + ε2

)
, (3)

and where the second term is known as the dynamical phase.
Thus, chiral states only acquire a geometric phase due to
stereomutation iff parity is non-conserved. When tunneling is
prevented due to a high barrier, the splitting between chiral
states is only due to the PVED and an eventual measurement
of the geometric phase should be strictly zero. Let us note
that, as interactions with the environment lead to tunnel sup-
pression (see, for example, the dissipative-induced racemiza-
tion shown in Ref. 45), a strong dependence of the geometric
phase on the PVED is expected when considering either long
times or strong dissipation, irrespective of the height of the
barrier.

B. Generalized Langevin dynamics
of chiral molecules

An alternative and very appealing way to express the ge-
ometrical phase of a linear combination of chiral states is by
means of a canonical formulation.44, 45 Let us consider a state

of the form

|�(t)〉 = aL(t)|L〉 + aR(t)|R〉. (4)

Then, if the corresponding complex amplitudes are written in
polar form as aL,R(t) = |aL,R(t)|ei	L,R(t), the optical activity
is defined as z(t) ≡ |aR(t)|2 − |aL(t)|2, and the phase differ-
ence between chiral states as 	(t) ≡ 	R(t) − 	L(t), then the
geometric phase for this superposition of chiral states is given
by

φg(�) = π + π
δ




(
−

√
1 − z2

0 cos 	0 + ε

δ
z0

)
, (5)

where z0 = z(t = 0), 	0 = 	(t = 0), and 
 = √
δ2 + ε2.

Any isolated two-level system has been showed to be de-
scribed by the Hamiltonian45

H = −
√

1 − z2 cos 	 + ε

δ
z, (6)

where z and 	 can be seen as a pair of canonically conju-
gate variables. In the quantum domain, these variables obey
the Heisenberg equations of motion which are formally iden-
tical to the Hamilton equations of motion, ż = −∂H/∂	 and
	̇ = ∂H/∂z. Thus, in terms of these two new conjugate vari-
ables, the geometric phase given by Eq. (5) turns out to be44

φg(�) = π

(
1 + δ



H0

)
, (7)

where 〈Ĥ 〉� = H0 ≡ H [z(t = 0),	(t = 0)] denotes the av-
erage value of the molecular energy which is a conserved
magnitude when dealing with a closed system. It should be
noticed that the first term of the Hamiltonian (6) accounts for
the tunneling process and the second one for the underlying
PVED asymmetry.

Noting that 	 and z play the role of a generalized co-
ordinate and momentum, respectively, one can introduce in-
teractions with the environment by means of a system-bath
bilinear coupling via a Caldeira-Legget-like Hamiltonian ex-
pressed as44

H = −
√

1 − z2 cos 	 + ε

δ
z

+ 1

2

∑
i

(
�iz

2
i + 	2

i ω
2
i

�i

)

−	
∑

i

ci	i + 	2
∑

i

c2
i �i, (8)

where the sums run over the coordinates of the bath oscil-
lators {zi, 	i} and �i, ci, and ωi are suitable dimensionless
constants representing generalized masses, couplings with the
environment, and oscillator frequencies, respectively. Without
loss of generality, notice that these bath variables could also
be alternatively written in terms of the usual harmonic oscilla-
tor ones (positions and momenta). In any case, these environ-
mental degrees of freedom can be exactly eliminated from the
equations of motion. On the other hand, when dealing with
phases or angles, the bilinear coupling could be questionable
due to the fact that the corresponding Hamiltonian does not
display the periodicity of the problem at hand. For example,
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in the rotational tunneling process (see Ref. 56 and references
therein) the environmental coupling has the same periodicity
as the hindering potential. In our canonical formalism for chi-
ral molecules, the generalized position is a phase variable and
the molecule-bath coupling should be periodic in 	. Thus, we
could consider the following generalized Hamiltonian:

H = −
√

1 − z2 cos 	 + ε

δ
z

+ 1

2

∑
i

(
�iz

2
i + 	2

i ω
2
i

�i

)

− f (	)
∑

i

ci	i + f 2(	)
∑

i

c2
i �i, (9)

where the periodicity of the coupling is given by the specific
choice of the function f(	). The corresponding coupled gen-
eralized Langevin equations are then given by (dimensionless
time units are used, t → 2δt)

ż = −
√

1 − z2 sin 	

− df (	)

d	

∫ t

0
γ (t − t ′)

df (	)

d	
	̇(t ′) dt ′ + df (	)

d	
ξ (t),

	̇ = z√
1 − z2

cos 	 + ε

δ
, (10)

where

γ (t) =
∑

i

�ic
2
i cos ωi(t − t ′) (11)

is the damping kernel and

ξ (t) = ∑
i ci�i (	i(0) cos ωit + zi(0) sin ωit)

− c2
i �i	0f (	0)

df (	)

d	
cos ωit (12)

represents a stochastic force, depending on the initial condi-
tions of both the system and the bath. The temperature will
be considered high enough in order to neglect contributions
coming from the zero point motions of bath oscillators. Thus,
when averaging over the bath variables, this force vanishes
leading to a pure dissipative dynamics in terms of the av-
erage quantities of the system which will be again denoted
(for simplicity) by z and 	. In other words, Eqs. (10) will
be solved numerically for the average quantities and where
the average stochastic force is zero. We point out that when
reaching cold temperatures, it would be necessary to consider
only the two lowest states thermally populated and the noise
should be treated quantum mechanically.

If only dissipative dynamics is considered, Eqs. (10) for
the average quantities, z and 	, can be derived from the fol-
lowing effective Hamiltonian:

Hγ (t) = −
√

1 − z2 cos 	 + ε

δ
z

+ γ 	̇

∫ 	

0

(
df (	′)
d	′

)2

d	′, (13)

which explicitly depends on friction and the generalized ve-
locity, 	̇. Let us point out that Hγ actually represents the non-
conserved energy of the chiral system in the presence of dis-
sipation due to the coupling with the bath.

At this point, a quite natural and straightforward exten-
sion of the geometric phase, displayed by a superposition of
chiral states during a cycle of period T, can be proposed from
Eq. (2) to the case of dissipative dynamics as follows:

φγ
g (�) ≡ π +

∫ T

0
Hγ (t) dt. (14)

This quantity plays the same role as that used in the defini-
tion of geometric phase given by Eq. (2). After Eq. (14), it is
easy to see that the non-dissipative phase is recovered taking
γ = 0 and noting that Hγ → H0, which is a conserved magni-
tude (we would like to point out the formal similarities be-
tween the geometric phase given by our Eq. (14) and that
of Ref. 55 (Eq. 21), derived from Lindblad’s formalism). It
should also be stressed here the importance of the dissipated
energy in one period of the cyclic evolution for the evaluation
of the geometric phase.

C. Role of the coupling function

Let us now analyze the effect of different generalized
couplings in the dissipative dynamics. If Ohmic friction is as-
sumed, the generalized Langevin equations given by Eqs. (10)
are rewritten as

ż = −
√

1 − z2 sin 	 − γ

(
df (	)

d	

)2

	̇,

	̇ = z√
1 − z2

cos 	 + ε

δ
. (15)

If the usual bilinear coupling is considered, the dissipated en-
ergy is given by

Hγ (t) = −
√

1 − z2 cos 	 + ε

δ
z + γ		̇. (16)

On the other hand, when periodic coupling is assumed, the
most standard functions to be considered are a sine or co-
sine function, f (1)(	) = √

2 sin 	 and f (2)(	) = √
2 cos 	.

The following effective Hamiltonians are straightforwardly
obtained to be

H (1,2)
γ (t) = −

√
1 − z2 cos 	 + ε

δ
z

+ γ 	̇

(
	 ± sin 2	

2

)
(17)

where the superscripts (1, 2) correspond to the plus and mi-
nus sign, respectively. For the cosine-type coupling, when the
phase is a small quantity, the term involving the friction coef-
ficient is very small or even zero for a certain period of time.
This fact should lead to a lower decaying behavior with time.
And, finally, depending on the initial conditions, the starting
value of the decaying system energy will be different.

D. Decoherence of interference patterns

For this dissipative dynamics, information on interfer-
ence experiments can be straightforwardly extracted from
the probability density. The typical interference signal is of
cosine-type according to

I ∝ |�(t)|2 ∝ 1 + 2|aL(t)||aR(t)| cos 	(t) (18)
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and one should be able to obtain information of the phase
from the cosine oscillations. Using the effective Hamiltonian
approach here developed, the total intensity of the interfer-
ence pattern for the Ohmic case is given now by

I ∝ 1 + ε

δ
z − Hγ = 1 +

√
1 − z2 cos 	

− γ 	̇

∫ 	

0

(
df (	′)
d	′

)2

d	, (19)

where z, 	 are the solutions of Eqs. (15). This type of experi-
ments could also be used to look for signals of parity violation
in chiral molecules. Furthermore, the presence of dissipation
in this effective Hamiltonian will lead to the suppression of
quantum interference, that is, to decoherence. The quantum
interference (coherence) is given by Eq. (19) when replacing
Hγ by H0.

III. RESULTS

It is very instructive to analyze first how the energy is
dissipated with time for different coupling functions when the
tunneling or the PVED asymmetry is competing. This magni-
tude has been previously shown to play a critical role in the
evaluation of the geometric phase and the time evolution of
interference patterns.

For the bilinear coupling, Fig. 1 shows the time depen-
dence of Hγ for ε = 0 (symmetric wells) and δ = 0.5 at dif-
ferent values of the friction coefficient, γ (given in units of
2δ), and with initial conditions z0 = 0.999 and 	0 = 0. In
this case, the tunneling process only rules the dynamics and
Hγ displays a global exponential relaxation. With the correct
dimensions, the expected asymptotic behavior is reproduced,
that is, Hγ → −2δ for long times. This asymptotic limit is
due to the tunneling blocking which occurs with friction is
acting at very long times. The linear term involved in Eq. (6)
plays no role. Therefore, the system tends to an eigenstate of
the isolated chiral molecule. Figure 1 also shows, for γ = 0,
the conserved energy of the system. This behavior is expected
to occur, for example, in molecules such as H2O2 or H2S2,
which have a ratio of ε/δ 	 10−15 and 10−6, respectively.7

0 10 20 30 40
1.0

0.8

0.6

0.4

0.2

0.0

t

H

FIG. 1. Time dependence of Hγ for different values of the friction [γ = 0
(dotted), γ = 0.1 (solid), and γ = 0.3 (dashed)] when tunneling only rules
the dynamics of stereomutation (ε = 0, symmetric wells).

0 10 20 30 40

5

0

5

t

H

FIG. 2. Time dependence of Hγ for different values of the PVED [ε/δ = 0
(solid line), ε/δ = 1.2 (dotted line), and ε/δ = 5 (dashed line)]. We have taken
γ = 0.1, z0 = 0.999, and 	0 = 0.

A drastic scenario takes place when the PVED is present,
ε 
= 0. As shown in Fig. 2, and for different ratios ε/δ, no
global behavior is observed in the time evolution of the dissi-
pated energy, Hγ (t), except for the solid curve which displays
the behavior with no PVED asymmetry. The other two values
for the ratio ε/δ = 1.2, 5 correspond to two drastically dif-
ferent dynamics. The first value describes a dynamics where
the tunneling and the PVED asymmetry are competing and,
in the second value, the dynamics is without tunneling. At
long times, in both cases, the system energy tends again to
the eigenstate −2
 = −2

√
δ2 + ε2 following a different be-

havior. In the competing case, the oscillations displayed by
the dissipative system are due to the presence of tunneling ex-
cept to very long times where this process is inhibited due to
the friction. On the contrary, in the second case, the asymp-
totic energy is reached after a short period of time but in an
abrupt way since tunneling is not present and the linear term
of Hamiltonian (6) dominates the dynamics. An inspection of
Fig. 2 reveals that the most rich structure occurs for molecules
such that ε/δ 	 1, as is the case of D2Se2.7

In Fig. 3, the comparison between the dissipative dynam-
ics driven by bilinear, sine, and cosine coupling functions is

0 10 20 30 40
1.0

0.8

0.6

0.4

0.2

0.0

t

H

FIG. 3. Time dependence of Hγ for ε/δ = 0, γ = 0.1 and different couplings
(bilinear, sine, and cosine dissipations depicted by solid, dotted, and dashed
lines, respectively). We have taken z0 = 0.999 and 	0 = 0 for the initial
conditions.
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0 10 20 30 40

10

5

0

5

10

t

H 0 2 4 6 8 10

10

5

0

5

10

t

H

FIG. 4. Time dependence of Hγ for ε/δ = 5 and different couplings (solid,
dotted, and dashed for bilinear, sine, and cosine coupling functions, respec-
tively). We have taken z0 = 0.999 and 	0 = 0 as the initial conditions of the
dynamics.

shown for the case of parity-conserving molecules (such as
H2O2). The dissipative dynamics is shown to be not very dif-
ferent in case of bilinear and sine couplings, with the excep-
tion of small discrepancies shown regarding the decay time.
On the contrary, when a cosine-type coupling is considered,
dissipative effects are shown to be strongly reduced. As ex-
pected, the elapsed time needed to reach complete localiza-
tion is enormously high in the case of cosine coupling.

As observed in Fig. 4, when the PVED asymmetry dom-
inates mainly the chiral dynamics, ε/δ = 5, the main dif-
ferences among the bilinear, sine-, and cosine-type coupling
functions are clearly manifested at long times. Thus, when
the dissipative dynamics is due to both bilinear and sine-type
couplings, the energy tends very rapidly to the correspond-
ing eigenstate. On the contrary, for cosine dissipation, the en-
ergy performs regular oscillations around the same asymp-
totic value, which will be reached for very, very long times.

Once the dissipated energy has been analyzed in terms
of the different coupling functions, the next step is to show
how the geometric phase depends on the friction coefficient.
The explicit dependence of the dynamical phase (when the
π -phase is neglected) on the friction coefficient γ is deduced
from solving numerically Eqs. (15) and then using the pre-
vious definition given by Eq. (14). In Fig. 5, the geometric
phase is displayed when ε = 0 (solid line) and ε/δ = 0.3
(solid line with points) for the bilinear coupling. We note
that φ

γ
g → π (δ/
)H0 when γ → 0 according to Eq. (7). On

the contrary, with the friction, the geometric phase reaches
a plateau given by φg(γ → ∞) → 2π . This behavior is a
direct consequence of tunneling suppression. Thus, one can
speculate on using an appropriate tuning of the environment
(by changing the pressure, the temperature, or the density of
a surrounding gas, for example) to test the dependence of the
geometric phase on the friction coefficient and on the PVED.
Moreover, when a cosine-type coupling is considered (points
in Fig. 5), noticeable differences can be shown between the
geometric phase in the bilinear case and in the present situa-
tion. It should be emphasized that, when the PVED is present,
the plateau displayed by the geometric phase is reached be-

0

1

2
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4

5

6

7

0 2 4 6 8 10

G
eo

m
et

ric
 P

ha
se

Friction Coefficient

FIG. 5. Geometric phase in terms of the friction for different values of the
PVED [ε = 0 (solid line) and ε/δ = 0.3 (solid line with points)]. We have
taken z0 = 0.999 and 	0 = 0 as the initial conditions of the chiral dynam-
ics. The points (without line) represent the geometric phase for a cosine-type
coupling and ε = 0.

fore (at slightly smaller friction coefficients) compared to the
situation in which tunneling prevails.

Finally, Fig. 6 displays the time-dependent interference
signal for different kinds of coupling for γ = 0.1 and when
PVED dominates over the tunneling process. For comparison,
we have also depicted the non-dissipative case (dashed-dotted
line). When γ = 0, the interference signal displays regular co-
sine oscillations for all times (coherence). With Ohmic fric-
tion, in all cases, the coherence is destroyed (decoherence). If
a bilinear coupling is assumed, strong oscillations are present
at short times, although the final damping of the signal can be
appreciated when t > 5. The main differences between sine
(dotted line) and cosine dissipation (dashed line) appear at
t > 5. In this region, damping leads to an interference signal
which is quite similar to the one shown by the bilinear case.
On the contrary, as expected, with cosine dissipation, damp-
ing gives place to an oscillating signal whose amplitude is
again very slowly decreased. At short times, similar behav-
iors are displayed for different coupling functions.

0 2 4 6 8 10

15

10
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5

t

I

FIG. 6. Interference signal for ε/δ = 5 and bilinear (solid line), sine- (dotted
line), and cosine-type couplings (dashed line). The non-dissipative signal is
depicted with dashed-dotted lines. We have taken γ = 0.1, z0 = 0.999, and
	0 = 0.
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IV. CONCLUSION

In this work, we have put in evidence the fundamental
role played by the parity-violating energy difference in the
dissipative stereomutation dynamics, within a canonical de-
scription of chiral molecules in the Langevin framework. The
nonlinearity exhibited by the coupled equations describing
this process competing with tunneling has shown to be very
rich. The canonical formalism has allowed us to define an
effective Hamiltonian for Ohmic friction for any dissipative
two-level system interacting with a bath of harmonic oscilla-
tors via a generalized coupling. In particular, the effects of two
different periodic (sine and cosine) coupling functions have
been rationalized in terms of strong and weak dissipation, re-
spectively. A straightforward extension of the definition of the
geometric phase in pure states to open quantum systems with
Ohmic friction has been proposed. Finally, the role of differ-
ent dissipative effects in the energy, the geometric phase, and
decoherence displayed by interference patterns of this cyclic
evolution has been discussed.
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