Ab initio calculations and analysis of the torsional spectra of dimethylamine and dimethylphosphine

M. Luisa Senent and Yves G. Smeyers

Citation: J. Chem. Phys. 105, 2789 (1996); doi: 10.1063/1.472141
View online: http://dx.doi.org/10.1063/1.472141
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v105/i7
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Ab initio calculations and analysis of the torsional spectra of dimethylamine and dimethylphosphine

M. Luisa Senent and Yves G. Smeyers
Instituto de Estructura de la Materia, CSIC, calle Serrano, No 123, E-28006 Madrid, Spain

(Received 15 April 1996; accepted 10 May 1996)

Abstract

In the present paper, ab initio calculations at MP2/RHF level are performed with different basis sets $6-31 \mathrm{G}(d, p), 6-311 \mathrm{G}(d, p)$, and $6-311(d f, p)$ to determine the potential energy functions, the kinetic parameters, and the dipole moment components as a function of the double methyl rotation in dimethylamine (DMA) and dimethylphosphine (DMP). From the potential energy and kinetic parameters, the torsional energy levels and torsional functions are determined, and from the dipole moment variations, the far infrared spectra are synthesized by calculating both the frequencies and the intensities. The results are in relatively good agreement with experimental spectra. Calculations confirm the assignments performed with the experimental potentials fitted with only five terms. The calculations, however, allow to reassign the observed band at $239.8 \mathrm{~cm}^{-1}$ in DMA and at 177.2 cm^{-1} in DMP to the superimposition of two different transitions: the $03 \rightarrow 04$ third sequence and an $10 \rightarrow 11$ vibrationally excited fundamental. © 1996 American Institute of Physics. [S0021-9606(96)03231-X]

I. INTRODUCTION

The analysis of the far infrared patterns of dimethylamine ${ }^{1}$ (DMA) and dimethylphosphine ${ }^{2,3}$ (DMP) shows an unusual complexity since the two torsional modes a^{\prime} and $a^{\prime \prime}$ are active in infrared. Both sets of transitions lie in the same region of the spectrum giving rise to $b c$-hybrid and a-type bands. These bands show a prominent Q branch and their assignments require the comparative study of the Raman and FIR spectra. In DMA, furthermore, the bands due to the bending mode appear in the same region as those of two torsional overtones. In exchange, several torsional bands of vibrationally excited states of the CNC bending mode appear also in the same zone.

The torsional frequencies, structures and barriers of DMA $^{1,4-15}$ and DMP ${ }^{2-3,16-21}$ have been considered in many papers. In 1967, Fateley et al. ${ }^{6}$ and Möller et al. ${ }^{7}$ have first observed the torsional spectrum of DMA. They have found barrier heights of 1150 and $1266 \mathrm{~cm}^{-1}$. Later, in 1971, Wollrab et al. ${ }^{9,10}$ have obtained a barrier of $1126.2 \mathrm{~cm}^{-1}$ from microwave data. The most relevant analysis of the IR and Raman structures of DMA is due to Durig, Griffin, and Groner, ${ }^{1}$ who have evaluated, in 1977, a torsional barrier of $1053.8 \mathrm{~cm}^{-1}$. As is expected, the barrier height was found to possess approximately an intermediate value between those of methylamine ${ }^{22}\left(714.6 \mathrm{~cm}^{-1}\right)$ and trimethylamine ${ }^{23}$ ($1538.9 \mathrm{~cm}^{-1}$). Finally, Consalvo et al. ${ }^{15}$ have also considered the Raman spectra of DMA.

The most relevant experiments for DMP are due to Durig, Griffin, and Natter, ${ }^{2}$ and Durig, Groner, and Li. ${ }^{3}$ Durig et al. ${ }^{2,3}$ have evaluated a barrier height of $700.8 \mathrm{~cm}^{-1}$ from IR and Raman spectroscopies and of $811.0 \mathrm{~cm}^{-1}$ from MW data. This barrier shows also an intermediate value between those of methylphosphine ${ }^{24}$ and trimethylphosphine. ${ }^{23}$

Fully and partially optimized ab initio calculations can be applied to verify the assignment of IR and Raman spectra. This technique was first employed for a set of molecules
showing the G_{36} symmetry and two $C_{3 v}$ symmetrical rotors such as thioacetone, ${ }^{25}$ acetone, ${ }^{26}$ biacetyl, ${ }^{27}$ dimethyl-ether, ${ }^{28,29}$ dimethyl-sulphide, ${ }^{30}$ and butenes. ${ }^{31}$ For that purpose, two and three dimension models were used. In the present paper, we applied the same technique to study the internal rotation in DMA and DMP, assuming that the torsional coordinates could be separated from those of the others vibration modes. The CNC (or CPC) bending and the hydrogen inversion modes, however, are expected to interact strongly with the two torsional modes in the amine or phosphine groups. The potential energy interactions are partially introduced in the geometry optimization. With this restriction, the two molecules can be classified according to the G_{18} nonrigid group. ${ }^{32-34}$

The minimal analytic expression ${ }^{32-34}$ of the restricted torsional potentials of the G_{18} molecules is a ten term symmetry adapted Fourier expansion. Experimental data, however, allows only the fitting of five term functions into the G_{36} symmetry. The incidence of the remaining terms on the frequencies could be evaluated by performing ab initio calculations. In order to estimate these effects, the torsional levels were evaluated theoretically by using ten and seven termed expansions. For these purposes, different basis sets and approximations for the electronic correlation were resorted.

II. THEORY

By assuming the separability of large amplitude vibrations, the molecules of DMA and DMP may be described as a rigid C_{s} frame and two $C_{3 v}$ symmetric tops. Thus, the two-dimensional structure may be classified according to the $G_{18} r$-NRG group. At the lowest energy levels, where the tops undergo torsional oscillations, two vibrational normal modes, in which the torsion occurs in the same or opposite sense, may be defined. They can be classified into the a^{\prime} and $a^{\prime \prime}$ representations of the C_{s} point group. Both modes are

FIG. 1. The molecular structure of dimethylamine, the symmetry axes and the torsional angles θ_{1} and θ_{2}.
active in IR. Figure 1 shows the molecule of DMA, as well as the symmetry axis x, y, and z. The sense of the rotation of both methyl groups is defined clockwise.

The torsional Hamiltonian may be written as ${ }^{26}$

$$
\begin{aligned}
\hat{H}\left(\theta_{1}, \theta_{2}\right)= & -\frac{\partial}{\partial \theta_{1}} B_{11} \frac{\partial}{\partial \theta_{1}}-\frac{\partial}{\partial \theta_{1}} B_{12} \frac{\partial}{\partial \theta_{2}} \\
& -\frac{\partial}{\partial \theta_{2}} B_{12} \frac{\partial}{\partial \theta_{1}}-\frac{\partial}{\partial \theta_{2}} B_{22} \frac{\partial}{\partial \theta_{2}}+V\left(\theta_{1}, \theta_{2}\right),
\end{aligned}
$$

where $B_{1}\left(\theta_{1}, \theta_{2}\right), B_{2}\left(\theta_{1}, \theta_{2}\right)$, and $B_{12}\left(\theta_{1}, \theta_{2}\right)$ are the kinetic parameters and $V\left(\theta_{1}, \theta_{2}\right)$ is the potential energy function. Both types of parameters depend on the two torsional angles. The analytic expression for them is a ten term double Fourier expansion. ${ }^{32-34}$ The first seven terms are totally symmetric with respect to the exchange of the two torsional angles:

$$
\begin{aligned}
& V\left(\theta_{1}, \theta_{2}\right) \\
& =\sum_{L>K}^{2} \sum_{K=0}^{1} A_{K L}^{c c}\left[\cos 3 K \theta_{1} \cos 3 L \theta_{2}\right. \\
& \left.\quad+\cos 3 L \theta_{1} \cos 3 K \theta_{2}\right]+\sum_{K}^{2}\left(A_{K K}^{c c} \cos 3 K \theta_{1}\right. \\
& \quad
\end{aligned}
$$

The last three are antisymmetric. Both types of terms, however, are invariant with respect to the double-switchexchange operation, $W V$.

The r - $\mathrm{NRG}^{34} G_{18}$ contains all the symmetry operations that commute with the torsional Hamiltonian. This group can be defined by the products

$$
G_{18}=\left[C_{3}^{I} \otimes C_{3^{\prime}}^{I}\right] \wedge\left[W V^{I}\right],
$$

where the subgroups are defined as

$$
C_{3}^{I}=\left[\hat{E}+\hat{C}_{3}+\hat{C}_{3}^{2}\right], \quad W V^{I}=[\hat{E}+\hat{W} \hat{V}]
$$

and \hat{C}_{3} and $\hat{W} \hat{V}$ are the rotation and double-switch-exchange operators, respectively. This last operation is defined by the expression:

$$
\hat{W} \hat{V} f\left(\theta_{1}, \theta_{2}\right)=f\left(-\theta_{2},-\theta_{1}\right)
$$

Table I shows the character table of the G_{18} group. ${ }^{33}$ This group contains six symmetry species. The nondegenerate A_{1} and A_{2} are symmetric and antisymmetric with respect to the double-switch-exchange operation. The pseudodegenerate representations E_{1} and E_{2} include a complex conjugate pair of one-degenerate representations ($E_{1 a}$ and $E_{1 b}, E_{2 a}$ and $\left.E_{2 b}\right) . E_{3}$ is a two-degenerate representation and G contains a complex conjugate pair of two-degenerate representations $\left(G_{1 a}, G_{1 b}, G_{2 a}\right.$, and $\left.G_{2 b}\right)$.

The nuclear Hamiltonian is solved variationally by expanding the solutions onto the basis of the symmetry eigenvectors, which factorize the Hamiltonian matrix in eight boxes. Six correspond to the $A_{1}, A_{2}, G_{1}, G_{2}, E_{1}$, and E_{2} representations and two to the E_{3} two-degenerate specie. Boxes containing pseudo-degenerate representations cannot be factorized without including the wagging coordinate as a third degree of freedom. The symmetry eigenvectors for the G_{18} group may be determined from those of G_{36} group developed for the analysis of the torsional spectra of acetone. ${ }^{35}$ Thus, the set of eigenvectors for the A_{1} representations contains the A_{1} and A_{2} ones of the G_{36} group. In the same way, the G_{18} representations A_{2} and E_{3} can be related to the A_{3} and A_{4}, and $E_{3 x}$ and $E_{4 y}$ representations of the G_{36} group. The vectors for the pseudo-degenerate representations G_{1}, G_{2}, E_{1}, and E_{2} can be obtained from the G_{1} and G_{2}, G_{3} and $G_{4}, E_{1 x}$ and $E_{1 y}$, and $E_{2 x}$ and $E_{2 y}$ of the G_{36} group.

TABLE I. Character table of the $G_{18} r$-NRG. ${ }^{\text {a }}$

	\hat{E}	$\begin{gathered} \hat{C}_{3 \prime}^{2} \\ C_{3} \end{gathered}$	$\begin{gathered} \hat{C}_{3}^{2} \\ \hat{C}_{3} \end{gathered}$	$2 \hat{C}_{3} \hat{C}_{3}{ }^{\prime}$	$\hat{C}_{3} \hat{C}_{3}{ }^{\prime}$	$\hat{C}_{3}^{2} \hat{C}_{3}{ }^{\prime}$	$\begin{gathered} \hat{W} \hat{V} \\ \hat{W} \hat{V} \hat{C}_{3}^{2} \hat{C}^{2} \\ \hat{W} \hat{V} \hat{C}_{3} \hat{C}_{3^{\prime}}^{\prime} \end{gathered}$	$\begin{gathered} \hat{W} \hat{V} C_{3} C_{3}^{2} \\ \hat{W} \hat{V} \hat{C}^{2} \\ \hat{W} \hat{V} \hat{C}^{\prime} \\ { }^{\prime} \end{gathered}$	$\begin{gathered} \hat{W} \hat{V} \hat{C}_{3}^{2} \hat{C}_{3}{ }_{3} \\ \hat{W} \hat{V} \hat{C}_{3}^{2} \\ \hat{W} \hat{V} \hat{C}_{3} \end{gathered}$
A_{1}	1	1	1	1	1	1	1	1	1
A_{2}	1	1	1	1	1	1	-1	-1	-1
$E_{1 a}$	1	ω^{2}	ω	1	ω^{2}	ω	1	ω^{2}	ω
$E_{1 b}$	1	ω	ω^{2}	1	ω	ω^{2}	1	ω	ω^{2}
$E_{2 a}$	1	ω^{2}	ω	1	ω^{2}	ω	-1	$-\omega^{2}$	$-\omega$
$E_{2 b}$	1	ω	ω^{2}	1	ω	ω^{2}	-1	$-\omega$	$-\omega^{2}$
E_{3}	2	-1	-1	-1	2	2	0	0	0
$G_{1 a}$	2	$-\omega^{2}$	$-\omega$	-1	$2 \omega^{2}$	2ω	0	0	0
$G_{1 b}$	2	$-\omega$	$-\omega^{2}$	-1	2ω	$2 \omega^{2}$	0	0	0

${ }^{\mathrm{a}} \bar{\omega}=\exp (2 \pi i / 3)$.

TABLE II. Selection rules for DMA and DMP.

FIR	$\mu_{x} \mu_{y}$	μ_{z}
Raman	$\alpha_{x x}, \alpha_{y y}, \alpha_{z z}$	
$A_{1} \rightleftarrows A_{1}$	$A_{1} \rightleftarrows A_{2}$	
$A_{2} \rightleftarrows A_{2}$	$G \rightleftarrows G$	
$G \rightleftarrows G$	$E_{1} \rightleftarrows E_{2}$	
$E_{1} \rightleftarrows E_{1}$		
$E_{2} \rightleftarrows E_{2}$	$E_{3} \rightleftarrows E_{3}$	
$E_{3} \rightleftarrows E_{3}$		

The intensities of each type of bands are determined into the electric dipole moment variation approximation. In this aim, the intensity equation adapted for a two symmetric top problem ${ }^{36}$ is used:

$$
f_{f i}=\frac{g}{3 B}\left(E_{f}-E_{i}\right)\left(C_{f}-C_{i}\right)\left\langle\psi_{i}\right| \frac{\mu\left(\theta_{1}, \theta_{2}\right)}{\operatorname{Re}}\left|\psi_{j}\right\rangle^{2}
$$

In this expression, $E_{f}, E_{i}, C_{f}, C_{i}, \psi_{f}$, and ψ_{i} are the energies, populations, and torsional wave functions of the final and initial states, respectively. $\mu\left(\theta_{1}, \theta_{2}\right)$ is the dipole moment vector expressed as a function of the rotation angles. g is the nuclear statistical weight, R and B are the average rotation radius and kinetic parameter of a methyl group, and e the elemental electric charge.

The electric dipole moment components μ_{z}, μ_{y}, and μ_{x} with respect to the principle axis a, b, and c, have to be deduced from the $a b$ initio calculations. It is easy to verify that these components transform according to the A_{2}, A_{1}, and A_{1} representations of the G_{18} group. In Table II, the selection rules obtained from the nonzero conditions of the transitions moments, are given. Because of the vectorial nature of the spin functions, the nuclear statistical weights for
each symmetry coincide with those determined for the G_{36} molecules. ${ }^{26}$ Finally, the populations are given by a Boltzmann statistics.

III. CALCULATIONS

Fully optimized $a b$ initio calculations were performed at the MP2/RHF level with the program GAUSSIAN $92 .{ }^{37}$ Torsional energies, frequencies and intensities were determined with the program ROCA25 especially written for this paper. The potential energy functions were calculated by fitting the relative electronic energy values (with respect to the minima) of ten selected conformations to Eq. (2). In Table III, these relative electronic energies calculated with $6-31 \mathrm{G}(d, p)$, $6-311 \mathrm{G}(d, p)$, and $6-311 \mathrm{G}(d f, p)$ are given. The angles $\theta_{1}=0.0$ y $\theta_{2}=0.0$ correspond to the planar conformation in which two of the hydrogens are lying on the CNC (CPC) plane and pointing outward. The relative energies for these conformations were determined to be $33.588 \mathrm{~cm}^{-1}$ in DMA and $149.776 \mathrm{~cm}^{-1}$ in DMP [MP2/6-31G $\left.(d f, p)\right]$. Table III shows also the effective barrier height (saddle-point) and the maxima of the surface, as well as the conformational angles of the minima. In Table IV, the expansion coefficients of the potential energy functions are given.

The minimum energy conformation of DMA shows torsion angles of $\theta_{1}=3.3^{\circ}$ and $\theta_{2}=-3.3^{\circ}[\mathrm{MP} 2 / 6-311 \mathrm{G}(d f, p)]$. The wagging and bending coordinates at this equilibrium geometry were found to be equal to 55° and 111.6°, respectively. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond distances were found to be 1.449 and $1.012 \AA$. The minimum energy conformation of DMP possesses torsion angles of $\theta_{1}=10.8^{\circ}$ and $\theta_{2}=-10.8^{\circ}$. The bending and wagging angles of this structure were found to be 99.9° and 67°. The values for the $\mathrm{C}-\mathrm{P}$ and $\mathrm{P}-\mathrm{H}$ bond distances are equal to 1.84 and $1.41 \AA$. The separation be-

TABLE III. Relative energies (in cm^{-1}) with respect to the equilibrium geometry at the MP2/RHF approximation.

θ_{1}^{b}	θ_{2}^{v}	DMA ${ }^{\text {a }}$			DMP ${ }^{\text {a }}$		
		I	II	III	I	II	III
0.0	0.0	39.967	40.320	33.588	150.362	151.356	149.776
60.0	0.0	1259.180	1222.850	1197.378	770.059	731.396	747.963
60.0	60.0	2385.832	2372.815	2334.771	1506.754	1480.753	1536.449
30.0	0.0	766.030	743.204	710.012	704.215	677.945	684.424
60.0	30.0	1661.300	1626.821	1614.142	865.429	829.613	860.862
30.0	30.0	1213.572	1174.133	1148.663	760.542	717.255	731.962
30.0	-30.0	1418.349	1414.472	1356.711	1349.330	1331.405	1356.750
0.0	30.0	454.536	425.325	423.462	203.830	180.321	183.978
30.0	60.0	1951.405	1936.607	1884.283	1413.513	1381.757	1417.870
-30.0	30.0	861.653	836.060	848.160	297.289	277.826	293.521
$V_{\text {eff }}$		1263.578	1228.356	1201.238	762.117	726.434	744.954
Maximum		2420.453	2412.709	2364.790	1690.390	1672.736	1727.413
Equilibrium structure							
$\theta_{1}=-\theta_{2}$		3.6	4.0	3.3	10.9	11.1	10.8
Total energy ${ }^{\text {c }}$		-134.73767	-134.829 33	-134.87540	-420.974 01	-420.17256	-420.220 11

[^0]TABLE IV. Calculated expansion coefficients for the potential energy in dimetylamine and dimethylphosphine ${ }^{\text {a }}$.

	DMA ${ }^{\text {b }}$			DMP ${ }^{\text {b }}$		
	V_{1}	V_{2}	V_{3}	V_{1}	V_{2}	V_{3}
$A_{00}^{c c}$	1207.112	1181.297	1157.792	796.492	767.277	786.656
$A_{10}^{c c}$	-609.461	-609.682	-597.945	-427.789	-424.612	-437.577
$A_{11}^{c c}$	-26.676	-11.001	-9.422	41.539	54.967	59.376
$A_{20}^{c c}$	15.612	18.061	17.091	4.298	7.436	9.124
$A_{21}^{c c}$	4.347	6.505	6.747	5.192	6.428	5.723
$A_{22}^{c c}$	-1.434	-0.064	-0.157	-1.432	-0.748	-0.573
$A_{11}^{s s}$	34.433	21.328	21.202	-20.057	-30.558	-33.680
$A_{01}^{c s}$	-30.237	-25.673	-30.894	-37.482	-35.024	-35.068
$A_{11}^{c s}$	-7.334	-5.032	-6.496	4.806	5.872	5.686
$A_{21}^{c s}$	-6.960	-8.127	-7.676	-1.113	-2.267	-1.196

${ }^{\mathrm{a}} \mathrm{In} \mathrm{cm}^{-1}$
${ }^{\mathrm{b}} V_{1}$ from MP2/6-31G (d, p) energies; v_{2} from MP2/6-311G $(d, p) ; v_{3}$ from MP2/6-311G($\left.d f, p\right)$ energies.
tween the methyl hydrogen atoms appears to be larger in DMP than in DMA. The variations of the coordinates with the torsion are weaker in DMP than in DMA, since the steric interactions are smaller.

The kinetic parameters were determined for each conformation from the optimized geometries. For this purpose, the derivatives of the Cartesian coordinates with respect to the torsional coordinates were calculated numerically. In Table V , the expansion coefficients of the kinetic functions, obtained by fitting the parameters for each structure to a symmetry adapted Fourier expansion, are given.

The torsional energy levels were determined by using six different potentials of G_{36} and G_{18} symmetries obtained by using three different basis set in the electronic calculations. The G_{36} potential and the G_{36} kinetic parameters were determined from the G_{18} functions of Tables IV and V by dropping the nonsymmetric terms with respect to the exchange operator. An accurate variational calculation of the levels requires 37×37 torsional basis functions. Thus, the Hamiltonian matrix factorizes in eight boxes of dimensions: $A_{1}(91), \quad A_{2}(78), \quad G(2 \times 312), \quad E_{1}(156), \quad E_{2}(132), \quad$ and
$E_{3}(2 \times 144)$. Boxes G, E_{1}, and E_{2} contain two pseudodegenerate and inseparable representations. Table VI shows the levels for both molecules obtained with four of these potentials and classified according to the vibrational quanta and the symmetry species of the G_{36} and G_{18} groups. In Tables VII, the calculated and observed band positions are given.

For the intensities, ${ }^{36}$ the values of the dipole moment components, obtained for each conformation at the RHF/6$311(d f, p)$ level, were retained and fitted to A_{2}, A_{1}, and A_{1} symmetry adapted Fourier expansions. Intensities for the inseparable degenerate species were the sums of those of the separate allowed transitions. The $G-G$ transitions were found to be the most intense because of the effect of the nuclear statistical weights. These intensities are given in Table VIII.

The rotational contours ${ }^{38}$ of the bands were simulated from the expectation values of the A, B, and C rotational constants at the two first A_{1} levels as well as at the first A_{2}. Figures 2 and 3 show a plot of the calculated rotational structures corresponding to $b c$-hybrid and a-type bands. Both

TABLE V. Expansion coefficients for the kinetic energy. ${ }^{\text {a }}$

	MP2/6-31G(d, p)		MP2/6-311G(d, p)		MP2/6-311G($d f, p$)	
	B_{1}	B_{12}	B_{1}	B_{12}	B_{1}	B_{12}
DMA ${ }^{\text {b }}$						
$A_{00}^{c c}$	6.696	-1.111	6.626	-1.090	6.651	-1.110
$A_{10}^{c c}$	-0.054	0.051	-0.051	0.048	-0.053	0.050
$A_{11}^{c c}$	0.020	-0.024	0.016	-0.021	0.019	-0.023
$A_{11}^{s s}$	-0.027	0.032	-0.025	0.030	-0.027	0.032
$A_{01}^{c s}$	-0.020	0.021	-0.016	0.016	-0.019	0.019
DMP ${ }^{\text {c }}$						
$A_{00}^{c c}$	5.856	-0.259	5.805	-0.255	5.812	-0.262
$A_{10}^{c c}$	-0.011	0.009	-0.012	0.010	-0.013	0.010
$A_{11}^{c c}$	0.006	-0.006	0.006	-0.006	0.006	-0.007
$A_{11}^{s s}$	-0.007	0.008	-0.007	0.009	-0.083	0.008
$A_{01}^{c s}$	0.003	-0.006	0.003	-0.005	0.031	-0.005

${ }^{9} \mathrm{In} \mathrm{cm}^{-1}$.
${ }^{\mathrm{b}}$ Experimental values are $B_{1}=B_{2}=6.622 \mathrm{~cm}^{-1}$ and $B_{12}=-1.115 \mathrm{~cm}^{-1}$.
${ }^{\text {c }}$ Experimental values are $B 1=B 2=5.728 \mathrm{~cm}^{-1}$ and $B_{12}=-0.255 \mathrm{~cm}^{-1}$.

TABLE VI. (a) Dimethylamine and (b) dimethylphosphine energy levels. ${ }^{\text {a }}$

	$V_{3}\left(G_{36}\right)$			$V_{1}\left(G_{18}\right)$	$V_{2}\left(G_{18}\right)$	$V_{3}\left(G_{18}\right)$
(a)						
00	A_{1}	240.392	A_{1}	248.791	240.454	237.541
	G	240.392	G	248.791	240.454	237.541
	E_{1}	240.392	E_{1}	248.791	240.454	237.541
	E_{3}	240.392	E_{3}	248.791	240.454	237.541
10	A_{3}	461.562	A_{2}	481.603	463.867	458.767
	G	461.561	G	481.602	463.867	458.766
	E_{2}	461.560	E_{2}	481.602	463.866	458.765
	E_{3}	461.560	E_{3}	481.602	463.866	458.765
01	A_{2}	491.478	A_{1}	509.064	494.859	490.330
	G	491.477	G	509.064	494.859	490.329
	E_{1}	491.476	E_{1}	509.064	494.858	490.328
	E_{4}	491.476	E_{3}	509.064	494.858	490.328
20	A_{1}	677.741	A_{1}	707.107	682.433	675.153
	G	677.759	G	707.123	682.448	675.170
	E_{1}	677.778	E_{1}	707.138	682.464	675.188
	E_{3}	677.778	E_{3}	707.138	682.464	675.188
11	A_{4}	701.276	A_{2}	729.945	707.152	700.143
	G	701.304	G	729.968	707.176	700.171
	E_{2}	701.332	E_{2}	729.991	707.200	700.198
	E_{4}	701.332	E_{3}	729.991	707.200	700.198
02	A_{1}	739.400	A_{1}	763.525	745.222	738.909
	G	739.409	G	763.532	745.230	738.918
	E_{1}	739.418	E_{1}	763.539	745.238	738.927
	E_{3}	739.418	E_{3}	763.539	745.238	738.927
30	A_{3}	887.090	A_{2}	923.897	894.329	884.838
	G	886.907	G	923.753	894.182	884.663
	E_{2}	886.729	E_{2}	923.613	894.040	884.493
	E_{3}	886.729	E_{3}	923.613	894.040	884.493
21	A_{2}	903.181	A_{1}	940.348	911.629	902.170
	G	902.854	G	940.092	911.357	901.849
	E_{1}	902.523	E_{1}	939.834	911.082	901.525
	E_{4}	902.523	E_{3}	939.834	911.082	901.525
12	A_{3}	937.734	A_{2}	972.710	946.199	937.202
	G	937.571	G	972.595	946.060	937.038
	E_{2}	937.407	E_{2}	972.479	945.918	936.872
	E_{3}	937.406	E_{3}	972.479	945.918	936.872
03	A_{2}	982.308	A_{1}	1011.478	990.273	982.045
	G	982.287	G	1011.470	990.256	982.024
	E_{1}	982.266	E_{1}	1011.463	990.239	982.003
	E_{4}	982.266	E_{3}	1011.463	990.239	982.003
(b) ${ }^{\text {d }}$						
00	A_{1}	179.505	A_{1}	184.902	175.592	177.339
	G	179.505	G	184.902	175.592	177.340
	E_{1}	179.506	E_{1}	184.903	175.593	177.340
	E_{3}	179.506	E_{3}	184.903	175.593	177.340
10	A_{3}	345.013	A_{2}	359.855	340.440	343.268
	G	345.003	G	359.846	340.429	343.258
	E_{2}	344.993	E_{2}	359.837	340.418	343.249
	E_{3}	344.993	E_{3}	359.837	340.418	343.249
01	A_{2}	367.201	A_{1}	376.200	361.209	365.437
	G	367.190	G	376.191	361.196	365.427
	E_{1}	367.179	E_{1}	376.181	361.184	365.415
	E_{4}	367.179	E_{3}	376.181	361.184	365.415
20	A_{1}	510.287	A_{1}	530.442	504.459	508.916
	G	510.406	G	530.572	504.597	509.034
	E_{1}	510.530	E_{1}	530.712	504.743	509.157
	E_{3}	510.530	E_{3}	530.712	504.743	509.157
1	A_{4}	518.943	A_{2}	535.907	511.788	517.494
	G	519.146	G	536.107	512.018	517.695
	E_{2}	519.345	E_{2}	536.299	512.240	517.891
	E_{4}	519.345	E_{3}	536.299	512.240	517.891
02	A_{1}	552.637	A_{1}	564.212	544.443	551.170
	G	552.711	G	564.262	544.521	551.243
	E_{1}	552.785	E_{1}	564.313	544.599	551.316
	E_{3}	552.785	E_{3}	564.313	544.599	551.316

TABLE VI. (Continued.)

		$V_{3}\left(G_{36}\right)$		$V_{1}\left(G_{18}\right)$	$V_{2}\left(G_{18}\right)$	$V_{3}\left(G_{18}\right)$
21	A_{2}	669.439	A_{1}	689.951	660.753	668.235
	G	665.800	G	686.144	656.806	664.635
	E_{1}	665.576	E_{1}	685.854	656.402	664.396
	E_{4}	665.576	E_{3}	685.853	656.401	664.395
30	A_{3}	669.496	A_{2}	690.430	661.351	668.344
	G	669.470	G	690.210	661.086	668.295
	E_{2}	666.033	E_{2}	686.475	657.279	664.887
	E_{3}	666.034	E_{3}	686.475	657.280	664.888
12	A_{3}	697.148	A_{2}	718.157	688.600	696.055
	G	696.767	G	718.029	688.294	695.686
	E_{2}	696.385	E_{2}	717.901	687.989	695.318
	E_{3}	696.385	E_{3}	717.901	687.989	695.318
03	A_{2}	733.976	A_{1}	746.434	723.291	732.735
	G	733.784	G	746.378	723.114	732.547
	E_{1}	733.588	E_{1}	746.321	722.933	732.355
	E_{4}	733.588	E_{3}	746.321	722.933	732.355

${ }^{\mathrm{a}} \mathrm{In} \mathrm{cm}^{-1}$.
contours show a prominent Q branch. The Q branch of the hybrid structure is due from the c-type component.

IV. ASSIGNMENT AND DISCUSSION

Assignments of the Q branches have to be accomplished from the calculations and from the comparative analysis of the Raman and FIR spectra. ${ }^{1-3}$ From the rotational band profiles in Figs. 2 and 3, it is clear that the $b c$-hybrid and a-type bands have sharp Q branches. Transitions attached to the a^{\prime} mode are active in Raman, whereas the $a^{\prime \prime}$ transitions are nonactive. The pattern observed in the FIR spectrum of DMA between 235.0 and $256.3 \mathrm{~cm}^{-1}$ (see Fig. 4) is also visible in the Raman spectrum. Thus, it has to be assigned to the a^{\prime} mode. Furthermore, bands observed between 202 and $220 \mathrm{~cm}^{-1}$ should be assigned to $a^{\prime \prime}$ mode. In DMP spectrum (see Fig. 5), four of the six recorded bands can be assigned to the a^{\prime} mode. Calculations support this assignment.

The fundamental transitions present the strongest intensities (see Table VIII). They correspond to the sharpest bands of each symmetry. In DMA, the most prominent bands of each pattern were observed at 256.3 and $219.4 \mathrm{~cm}^{-1}$. They were predicted theoretically at 252.788 and $221.225 \mathrm{~cm}^{-1}$ into the MP2/6-311G $(d f, p)$ approximation. In DMP, the two bands were observed at 190.4 and $169.9 \mathrm{~cm}^{-1}$ and they were predicted at 188.087 and $165.918 \mathrm{~cm}^{-1}$ at the same level of approximation. The separation between the two fundamentals of DMA was observed and calculated to be 36.9 and $31.563 \mathrm{~cm}^{-1}$, respectively. In DMP, 20.5 and 22.169 cm^{-1}.

Divergences between the experimental and calculated values for the fundamental frequencies arise from the potential energy parameters rather than the kinetic parameters, since they were calculated accurately and are in agreement with the experimental data. ${ }^{1-3}$ In DMA, one of the calculated fundamental's is overestimated and the other is underestimated. In consequence, divergences are related to the sin $\times \sin$ gearing term rather than to the barrier. However, in DMP, the two fundamentals are slightly underestimated. The

TABLE VII. The frequencies (in cm^{-1}) for (a) dimethylamine and (b) dimethylphosphine. ${ }^{\text {a }}$

	$V_{3}^{\prime} a\left(G_{36}\right)$		$V_{1}\left(G_{18}\right)$	$V_{2}\left(G_{18}\right)$	$V_{3}\left(G_{18}\right)$
(a)					
Mode ν_{12}					
$00 \rightarrow 01$					
$A_{1}-A_{2}$	251.086	$A_{1}-A_{1}$	260.273	254.405	252.789
G-G	251.085	$G-G$	260.273	254.405	252.788
$E_{1}-E_{1}$	251.084	$E_{1}-E_{1}$	260.273	254.404	252.787
$E_{3}-E_{4}$	251.084	$E_{3}-E_{3}$	260.273	254.404	252.787
$01 \rightarrow 02$					
$A_{2}-A_{1}$	247.922	$A_{1}-A_{1}$	254.461	250.363	248.579
G-G	247.932	$G-G$	254.468	250.371	248.589
$E_{1}-E_{1}$	247.942	$E_{1}-E_{1}$	254.475	250.380	248.599
$E_{4}-E_{3}$	247.942	$E_{3}-E_{3}$	254.475	250.380	248.599
$02 \rightarrow 03$					
$A_{1}-A_{2}$	242.908	$A_{1}-A_{1}$	247.953	245.051	243.136
G-G	242.878	$G-G$	247.938	245.026	243.106
$E_{1}-E_{1}$	242.848	$E_{1}-E_{1}$	247.924	245.001	243.076
$E_{3}-E_{4}$	242.848	$E_{3}-E_{3}$	247.924	245.001	243.076
$03 \rightarrow 04$					
$A_{2}-A_{1}$	235.977	$A_{1}-A_{1}$	240.327	238.099	236.021
G-G	235.943	$G-G$	240.293	238.078	235.985
$E_{1}-E_{1}$	235.910	$E_{1}-E_{1}$	240.259	238.058	235.951
$E_{4}-E_{3}$	235.906	$E_{3}-E_{3}$	240.257	238.054	235.946
$10 \rightarrow 11$					
$A_{3}-A_{4}$	239.714	$A_{2}-A_{2}$	248.342	243.285	241.376
G-G	239.743	$G-G$	248.366	243.309	241.405
$E_{2}-E_{2}$	239.772	$E_{2}-E_{2}$	248.389	243.334	241.433
$E_{3}-E_{4}$	239.772	$E_{3}-E_{3}$	248.389	243.334	241.433
Mode ν_{24}					
$00 \rightarrow 10$					
$A_{1}-A_{3}$	221.170	$A_{1}-A_{2}$	232.812	223.413	221.226
G-G	221.169	$G-G$	232.811	223.413	221.225
$E_{1}-E_{2}$	221.168	$E_{1}-E_{2}$	232.811	223.412	221.224
$E_{3}-E_{3}$	221.168	$E_{3}-E_{3}$	232.811	223.412	221.224
$10 \rightarrow 20$					
$A_{3}-A_{1}$	216.179	$A_{2}-A_{1}$	225.504	218.566	216.386
G-G	216.198	$G-G$	225.521	218.581	216.404
$E_{2}-E_{1}$	216.218	$E_{2}-E_{1}$	225.536	218.598	216.423
$E_{3}-E_{3}$	216.218	$E_{3}-E_{3}$	225.536	218.598	216.423
$20 \rightarrow 30$					
$A_{1}-A_{3}$	209.349	$A_{1}-A_{2}$	216.790	211.896	209.685
G-G	209.148	$G-G$	216.630	211.734	209.493
$E_{1}-E_{2}$	208.951	$E_{1}-E_{2}$	216.475	211.576	209.305
$E_{3}-E_{3}$	208.951	$E_{3}-E_{3}$	216.475	211.576	209.305
(b)					
Mode ν_{12}					
$00 \rightarrow 01$					
$A_{1}-A_{2}$	187.696	$A_{1}-A_{1}$	191.298	185.617	188.098
G-G	187.685	$G-G$	191.289	185.604	188.087
$E_{1}-E_{1}$	187.673	$E_{1}-E_{1}$	191.990	185.591	188.075
$E_{3}-E_{4}$	187.673	$E_{3}-E_{3}$	191.990	185.591	188.075
$01 \rightarrow 02$					
$A_{2}-A_{1}$	185.436	$A_{1}-A_{1}$	188.012	183.234	185.733
G-G	185.521	$G-G$	188.071	183.325	185.816
$E_{1}-E_{1}$	185.606	$E_{1}-E_{1}$	188.132	183.415	185.901
$E_{4}-E_{3}$	185.606	$E_{3}-E_{3}$	188.132	183.415	185.901
$02 \rightarrow 03$					
$A_{1}-A_{2}$	181.339	$A_{1}-A_{1}$	182.222	178.848	181.565
G-G	181.073	$G-G$	182.116	178.593	181.304
$E_{1}-E_{1}$	180.803	$E_{1}-E_{1}$	182.008	178.334	181.039
$E_{3}-E_{4}$	180.803	$E_{3}-E_{3}$	182.008	178.334	181.039
$03 \rightarrow 04$					
$A_{2}-A_{1}$	174.949	$A_{1}-A_{1}$	175.871	172.495	175.176
G-G	175.580	$G-G$	176.064	172.983	175.799
$E_{1}-E_{1}$	176.199	$E_{1}-E_{1}$	176.260	173.473	176.409
$E_{4}-E_{3}$	176.189	$E_{3}-E_{3}$	176.255	173.465	176.399

TABLE VII. (Continued.)

	$V_{3}^{\prime} a\left(G_{36}\right)$		$V_{1}\left(G_{18}\right)$	$V_{2}\left(G_{18}\right)$	$V_{3}\left(G_{18}\right)$
$10 \rightarrow 11$					
$A_{3}-A_{4}$	173.930	$A_{2}-A_{2}$	176.052	171.348	174.226
$G-G$	174.143	$G-G$	176.261	171.589	174.437
$E_{2}-E_{2}$	174.352	$E_{2}-E_{2}$	176.462	171.822	174.642
$E_{3}-E_{4}$	174.352	$E_{3}-E_{3}$	176.462	171.822	174.642
Mode ν_{24}					
$00 \rightarrow 10$					
$A_{1}-A_{3}$	165.508	$A_{1}-A_{2}$	174.953	164.848	165.929
$G-G$	165.498	$G-G$	174.944	164.837	165.918
$E_{1}-E_{2}$	165.487	$E_{1}-E_{2}$	174.934	164.825	165.909
$E_{3}-E_{3}$	165.487	$E_{3}-E_{3}$	174.934	164.825	165.902
$10 \rightarrow 20$					
$A_{3}-A_{1}$	165.274	$A_{2}-A_{1}$	170.587	164.019	165.648
$G-G$	165.403	$G-G$	170.726	164.168	165.776
$E_{2}-E_{1}$	165.537	$E_{2}-E_{1}$	170.875	164.325	165.908
$E_{3}-E_{3}$	165.537	$E_{3}-E_{3}$	170.875	164.325	165.908

errors are due to the calculated barrier height which is underestimated even in the calculations with the largest basis set.

The torsional barriers of DMA and DMP were calculated to be 1201.2 and $745.0 \mathrm{~cm}^{-1}$ with MP2/6-31G $(d f, p)$. Recently, Durig et al. ${ }^{1-3}$ and Wolrab et al. ${ }^{9,10}$ have calculated the barrier heights from MW and IR data. In both molecules, the barriers fitted from IR data were found to be approximately $100 \mathrm{~cm}^{-1}$ lower than those obtained from MW spectroscopy. ${ }^{1}$ In DMA, ${ }^{1,9,10}$ this difference comes from the average of the inversion splitting performed with the MW data. ${ }^{1-3,10}$ On the contrary, the error in $\mathrm{DMP}^{2,3}$ derives from the geometry employed in the calculations of the kinetic energy parameters. ${ }^{1,2}$ The improvements of the basis decrease the DMA barrier height $\left(1201.2 \mathrm{~cm}^{-1}\right)$, whereas they introduce only barrier fluctuations around $750 \mathrm{~cm}^{-1}$ in DMP. Anyway, the ab initio DMP barrier values remain always between those obtained from MW and IR spectroscopies, ${ }^{2,3}$ in particular, they are larger than the IR values given by Durig et al. ${ }^{2}$ (700.8 and $733 \mathrm{~cm}^{-1}$).

Barriers of DMA and DMP may be compared with those of dimethylether ${ }^{29}$ (DME) and dimethyl-sulfide ${ }^{30}$ (DMS). The barrier shape and origin of both types of molecules may be correlated. The $\sin \times \sin$ gearing term in DMA shows a positive sign, as in DME. This term arises from the interactions between the bending and torsion modes. It is easy to verify, during the optimization procedure, that the bending angle of both molecules does open to evade the steric effects between the methyl hydrogens. In exchange, the $\mathrm{N}-\mathrm{C} / \mathrm{P}-\mathrm{C}$ bond-length ratio is comparable to the $\mathrm{O}-\mathrm{C} / \mathrm{S}-\mathrm{C}$ one. The nonbonding interactions may be thus expected to be small in DMP as in DMS. Smaller steric effects give rise to lower barriers and a negative or very small $\sin \times \sin$ gearing term for DMP when compared with DMA.

Figure 2 show the intensities derived from c-type bands of the $b c$-hybrid. Selection rules in Table II relate the c-type bands with the a^{\prime} mode and the a-type with the $a^{\prime \prime}$ mode. It can be inferred than relative intensities are well reproduced by this model. The ratio between c and a fundamental inten-

TABLE VIII. Calculated frequencies ${ }^{\mathrm{a}}$ and intensities ${ }^{\mathrm{b}}[\mathrm{MP} 2 / 6-311 \mathrm{G}(d f, p)]$.

Assign.	Freq.	Int.	Expt. ${ }^{\text {c }}$	Freq.	Int.	Expt. ${ }^{\text {c }}$
		DMA			DMP	
Mode ν_{12}						
$00 \rightarrow 01$						
$A_{1}-A_{1}$	252.789	3.690		188.098	0.404	
G-G	252.788	7.379	256.3 vs	188.087	0.807	190.4 vw
$E_{1}-E_{1}$	252.787	1.845		188.075	0.202	
$E_{3}-E_{3}$	252.787	1.845		188.075	0.202	
$01 \rightarrow 02$						
$A_{1}-A_{1}$	248.579	2.038		185.733	0.237	
G-G	248.589	4.077	250.8 s	185.816	0.476	188.6 vw
$E_{1}-E_{1}$	248.599	1.019		185.901	0.120	
$E_{3}-E_{3}$	248.599	1.019		185.901	0.120	
$02 \rightarrow 03$						
$A_{1}-A_{1}$	243.136	0.834		181.565	0.108	
G-G	243.106	1.657	245.3 ms	181.304	0.213	183.0 vvw
$E_{1}-E_{1}$	243.076	0.417		181.039	0.053	
$E_{3}-E_{3}$	243.076	0.417		181.039	0.053	
$03 \rightarrow 04$						
$A_{1}-A_{1}$	236.021	0.000		175.176	0.000	
G-G	235.985	0.000	239.8 s	175.799	0.000	177.2 vvw
$E_{1}-E_{1}$	235.951	0.000		176.409	0.000	
$E_{3}-E_{3}$	235.946	0.000		176.399	0.000	
$10 \rightarrow 11$						
$A_{2}-A_{2}$	241.376	0.926		174.226	0.117	
G-G	241.405	1.854	239.8 s	174.437	0.234	177.2 vvw
$E_{2}-E_{2}$	241.433	0.464		174.642	0.059	
$E_{3}-E_{3}$	241.433	0.464		174.642	0.059	
Mode ν_{24}						
$00 \rightarrow 10$						
$A_{1}-A_{2}$	221.226	0.101		165.929	0.006	
$G-G$	221.225	0.203	219.4 m	165.918	0.012	169.9 vvw
$E_{1}-E_{2}$	221.224	0.051		165.909	0.003	
$E_{3}-E_{3}$	221.224	0.051		165.902	0.003	
$10 \rightarrow 20$						
$A_{2}-A_{1}$	216.386	0.023		165.929	0.003	
G-G	216.404	0.046	213.0 w	165.776	0.005	166.1 vvw
$E_{2}-E_{1}$	216.423	0.012		165.908	0.002	
$E_{3}-E_{3}$	216.423	0.012		165.908	0.002	

${ }^{\mathrm{a}} \mathrm{In} \mathrm{cm}{ }^{-1}$.
${ }^{\mathrm{b}} \times 10^{-4}$.
${ }^{c}{ }^{\mathrm{vs}}=\mathrm{very}$ strong; $\mathrm{s}=$ strong; $\mathrm{ms}=$ medium strong; $\mathrm{w}=$ weak; $\mathrm{vw}=$ very weak; $\mathrm{vvw}=$ very very weak.
sities was found 36.44 for DMA and 34.94 for DMP. Intensities are stronger in DMA than in DMP.

The first and second sequences of the a^{\prime} mode in DMA were calculated to be 248.589 and $243.106 \mathrm{~cm}^{-1}$ with the largest basis set. The differences between calculated and experimental bands ${ }^{1}$ are $-2.2 \mathrm{~cm}^{-1}$. Corresponding values for the a^{\prime} mode were determined to be 216.404 and 209.493 cm^{-1}. Divergences are equal to +3.4 and $+6.8 \mathrm{~cm}^{-1}$. In DMP, the calculated values were 185.816 and $181.304 \mathrm{~cm}^{-1}$ for the a^{\prime} mode and 165.918 and $165.776 \mathrm{~cm}^{-1}$ for $a^{\prime \prime}$. It can be deduced that the main diagonal of the potential surface (where $\theta_{1}=\theta_{2}$) related to the $a^{\prime \prime}$ mode is well described in the calculations, whereas the secondary diagonal is not so well reproduced.

Durig et al. ${ }^{1}$ have assigned the IR band of DMA at 239.8 cm^{-1} to the third sequence of the a^{\prime} mode. This assignment have to be supported by the intensities. The observed intensity of this band, however, is unusually stronger than the second sequence one, whereas the calculated intensity is relatively weak. If one remarks that the calculated a^{\prime} third sequence and the $10 \rightarrow 11$ ($a^{\prime \prime}$ torsionally excited a^{\prime} funda-

FIG. 2. The rotational contours for the single degenerate A component simulated for a-type $A_{1}(00) \rightarrow A_{2}(10)$ and $b c$-hybrid $A_{1}(00) \rightarrow A_{1}(01)$ bands of dimethylamine.

FIG. 3. The rotational contours for the single degenerate A component simulated for a-type $A_{1}(00) \rightarrow A_{2}(10)$ and $b c$-hybrid $A_{1}(00) \rightarrow A_{1}(01)$ bands of dimethylphosphine.
mental) transitions are found approximately at the same frequency (taking into account that the theoretical values for the $a^{\prime \prime}$ levels are found $2 \mathrm{~cm}^{-1}$ too high), the $239.8 \mathrm{~cm}^{-1}$ band could be due thus the superimposition of both transitions. The observed band at $235.0 \mathrm{~cm}^{-1}$, assigned to the $10 \rightarrow 11$ transition by Durig et al. could be reassigned to the $21 \rightarrow 11$ overtone. The Raman band observed at $476 \mathrm{~cm}^{-1}$ attached with the $01 \rightarrow 12$ overtone (approx $239.8+235.0$) does agree with this reassignment.

In DMP^{2}, the band observed at $177.2 \mathrm{~cm}^{-1}$ contains in the same way the a^{\prime} third sequence and the $10 \rightarrow 11$ transi-

FIG. 4. Observed and calculated far infrared spectra of dimethylamine. Observed spectrum is from Ref. 1.

FIG. 5. Observed and calculated far infrared spectra of dimethylphosphine. Observed spectrum is from Ref. 2.
tions. The experimental relative intensities support also this assignment.

In the present paper, the $a b$ initio calculations appear to be an useful tool to evaluate the effects of the extra potential energy (and kinetic) terms on the band locations. These terms change drastically the symmetry properties of the Hamiltonian operator. The energy levels of Tables IV and V are calculated from one G_{36} and three G_{18} different potential energy functions. It is shown that the effects on the energy levels are relatively small. Calculations confirm generally the assignments performed with the experimental potentials fitted with only five terms. The calculations, however, allow to reassign the observed band at $239.8 \mathrm{~cm}^{-1}$ in DMA and 177.2 cm^{-1} in DMP to the superimposition of two different transitions: the third sequence and a vibrationally excited fundamental.

ACKNOWLEDGMENTS

This work has been supported by the European Union under the Human Capital and Mobility Scheme (contract CHRZ CT 93-0157). The authors also acknowledge the financial assistance from the 'Comision Interministerial de Ciencias y Technologia'" of Spain through grant no. PB 930185.
${ }^{1}$ J. R. Durig, M. G. Griffin, and P. Groner, J. Phys. Chem. 81, 554 (1977).
${ }^{2}$ J. R. Durig, M. G. Griffin, and W. J. Natter, J. Phys. Chem. 81, 1588 (1977).
${ }^{3}$ J. R. Durig, P. Groner, and Y. S. Li, J. Chem. Phys. 67, 2216 (1977).
${ }^{4}$ J. G. Aston, M. L. Edinoff, and W. S. Forster, J. Am. Chem. Soc. 61, 1539 (1939).
${ }^{5}$ J. R. Barcelo and J. Bellanato, Spectrochim. Acta 8, 27 (1956).
${ }^{6}$ W. G. Fateley and F. A. Miller, Spectrochim. Acta 18, 977 (1962).
${ }^{7}$ K. D. Möller, A. R. De Meo, D. R. Smith, and L. H. London, J. Chem. Phys. 47, 2609 (1967).
${ }^{8}$ G. Dellepiane and G. Zerbi, J. Chem. Phys. 48, 3573 (1968).
${ }^{9}$ J. E. Wollrab and V. W. Laurie, J. Chem. Phys. 48, 5058 (1968).
${ }^{10}$ J. E. Wollrab and V. W. Laurie, J. Chem. Phys. 54, 532 (1971).
${ }^{11}$ G. Gamer and H. Wolff, Spectrochim. Acta Part A 29, 129 (1973).
${ }^{12}$ Y. G. Smeyers, A. Huertas-Cabrera, Theor. Chim. Acta 64, 97 (1983).
${ }^{13}$ Y. G. Smeyers, M. Fernandez, and V. Botella, J. Mol. Struct. (Teochem) 210, 273 (1990).
${ }^{14}$ K. Siam, C. Van Alsenoy, and L. Schåfer, J. Mol. Struct. (Teochem) 209, 387 (1990).
${ }^{15}$ D. Consalvo, J. W. I. van Bladel, R. Engeln, and J. Reuss, Chem. Phys. 171, 221 (1993).
${ }^{16}$ H. C. Beachell and B. Katlafsky, J. Chem. Phys. 27, 182 (1957).
${ }^{17}$ L. S. Bartell, J. Chem. Phys. 32, 832 (1960).
${ }^{18}$ T. Kojima, E. L. Breig, and C. C. Lin, J. Chem. Phys. 6, 2139 (1961).
${ }^{19}$ R. Nelson, J. Chem. Phys. 39, 2382 (1963).
${ }^{20}$ J. R. Durig and J. E. Saunders, J. Raman. Spectrosc. 4, 121 (1975).
${ }^{21}$ P. C. Fox, J. P. Bowen, and N. L. Allinger, J. Am. Chem. Soc. 114, 8536 (1992).
${ }^{22}$ M. Kreglewski, in Structure and Conformations of Non-Rigid Molecules, NATO ASI Series C, edited by J. Laane (Kluwer Academic, The Netherlands, 19XX), Vol. 410, p. 29.
${ }^{23}$ D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys. 28, 572 (1958).
${ }^{24}$ T. Kojima, E. L. Breig, and C. C. Lin, J. Chem. Phys. 35, 2139 (1961).
${ }^{25}$ D. C. Moule, Y. G. Smeyers, M. L. Senent, D. J. Clouthier, J. Karolczak, and R. Judge, J. Chem. Phys. 95, 3137 (1991).
${ }^{26}$ Y. G. Smeyers, M. L. Senent, V. Botella, and D. C. Moule, J. Chem. Phys. 98, 2754 (1993).
${ }^{27}$ M. L. Senent, D. C. Moule, Y. G. Smeyers, A. Toro-Labbé, and F. J. Peñalver, J. Mol. Spectrosc. 164, 66 (1994).
${ }^{28}$ M. L. Senent, D. C. Moule, and Y. G. Smeyers, Can. J. Phys. 73, 425 (1995).
${ }^{29}$ M. L. Senent, D. C. Moule, and Y. G. Smeyers, J. Chem. Phys. 102, 5952 (1995).
${ }^{30}$ M. L. Senent, D. C. Moule, and Y. G. Smeyers, J. Phys. Chem. 99, 7970 (1995).
${ }^{31}$ M. L. Senent, D. C. Moule, and Y. G. Smeyers, J. Mol. Struct. 372, 257 (1996).
${ }^{32}$ Y. G. Smeyers, J. Mol. Struct. 107, 3 (1984).
${ }^{33}$ Y. G. Smeyers and A. Niño, J. Comput. Chem. 8, 380 (1987).
${ }^{34}$ Y. G. Smeyers, in Advances in Quantum Chemistry, edited by P. O. Lowden (Academic, New York, 1992), Vol. 24, pp 1-77.
${ }^{35}$ Y. G. Smeyers and M. N. Bellido, Int. J. Quantum Chem 19, 553 (1981).
${ }^{36}$ Y. G. Smeyers and A. Hernández-Laguna, Int. J. Quantum Chem. 22, 681 (1982).
${ }^{37}$ Gaussian 92, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Repongle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Steward and J. A. Pople (Gaussian, Inc., Pittsburg PA, 1992).
${ }^{38}$ R. H. Judge, Comput. Phys. Commun. 47, 361 (1987).

[^0]: ${ }^{\text {a }}$ Basis set $\mathrm{I}(6-31 \mathrm{G}(d, p)$; basis set $\mathrm{II}=6-311 \mathrm{G}(d, p)$; basis set $\mathrm{III}=6-311 \mathrm{G}(d f, p)$.
 ${ }^{\mathrm{b}}$ In degrees.
 ${ }^{\text {c }}$ In a.u.

