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Abstract

Technological and safety-related properties were analyzed in a coagulase-negative 

staphylococci (CNS) collection isolated from Spanish dry-cured meat products in order to use 

them as starter cultures. The highest nitrate reductase and proteolytic activity was showed by 

Staphylococcus carnosus and Staphylococcus equorum. Only a few strains were able to form 

biofilms and the presence of the ica gene was analyzed on them. In relation to antibiotic 

resistance, all S. carnosus and most of the S. equorum strains were sensitive to the antibiotics 

tested and the presence of the blaZ gene in the -lactamic resistant strains was studied. 

Biogenic amines were produced by 25% of the strains analyzed being all the S. carnosus

strains tyramine producers. Taking into account the studied properties, two S. equorum strains 

could be selected as adequate and safe potential starter cultures for the elaboration of meat 

products. 
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1. Introduction 

The role of the microbiota in fermented meat products is fundamental in the final 

characteristics of these products, influencing product quality. In these meat products the 

microorganisms isolated more frequently are lactic acid bacteria (LAB) and coagulase-

negative staphylococci (CNS). LAB are responsible for the rapid fermentation of 

carbohydrates leading to a decrease in pH with a consequent loss of water in the meat; in 

addition, the presence of salt and other additives generates a very selective environment 

(Miralles, Flores, & Pérez-Martínez, 1996). On the other hand, CNS are one of the main 

microbial groups responsible of flavour (Casaburi, Aristoy, Cavella, di Monaco, Ercolini, 

Toldrá, & Villani, 2007). CNS participate in the development and stability of the red colour 

through nitrate reductase activity that leads to the formation of nitrosomyoglobin. Furthermore, 

nitrate reduction produces nitrite that can limit lipid oxidation (Talon, R., Walter, D., Chartier, 

S., Barrier, C., & Montel, M.C., 1999). As the organoleptic properties of fermented and dry-

cured meat products are influenced by the metabolic activities of these microorganisms their 

taxonomical identification at species level is of great interest. Identification methods based on 

biochemical test may sometimes be uncertain, complicated and time-consuming due to an 

increasing number of species that varied in few of the taxonomical characters. Moreover, new 

species of staphylococci are continually being described, making further identification tools 

necessary. In this sense, many molecular methods have been developed allowing the accurate 

identification of CNS from meat products (Blaiotta , Ercolini, Mauriello, Salzano, & Villani, 

2004a; Corbière Morot-Bizot, Talon, & Leroy, 2004; Landeta, Reverón, Carrascosa, de las 

Rivas, & Muñoz, 2011).  

Traditional fermented and dry-cured meat processes favour the growth of 

autochthonous microbiota which in turn influences flavour, texture, nutritional properties and 
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safety of the final products (Martín, Colin, Aranda, Benito, & Cordoba, 2007). Nevertheless, it 

is not possible to ensure that the number and the strains of microorganisms present in the raw 

material will always be the same; therefore, the use of starter cultures in fermented dry-cured 

meat elaboration ensures a fermentation and ripening process that can be carried out under 

controlled conditions. One of the main advantages of the use of starter cultures is that food 

poisoning and food spoilage microorganisms could be suppressed. Identification of 

technologically relevant bacteria is necessary to select strains to be employed as starter 

cultures. CNS are important microorganisms used as starter cultures in meat fermentations. In 

spite that nitrate reductase and catalase activity are considered the most important properties of 

CNS to make them eligible as starter cultures for fermented meat products (Mauriello, 

Casaburi, Blaiotta, & Villani, 2004), there are other relevant technological and safety 

properties that need to be analyzed.  

The aims of this study were to taxonomically identify, and to analyze several activities 

relevant for their use as starter culture (such as nitrate reductase, catalase, proteolitic, and 

lipolitic activities, as well as the resistance to bile, biofilm formation, antibiotic susceptibility, 

and biogenic amine formation), of a collection of CNS isolated from Spanish dry-cured meat 

products. 

2. Materials and methods 

2.1. Bacterial strains and growth conditions 

Seventy-one CNS strains were analyzed in this study. Fifty-one strains were isolated 

during the elaboration of Spanish dry-cured ham industrial processes (Cornejo & Carrascosa, 

1991; Carrascosa & Cornejo, 1991) and were previously molecularly identified by sequencing 

their 16S rDNA (Landeta, Reverón, Carrascosa, de las Rivas, & Muñoz, 2011). The additional 
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twenty CNS strains were isolated from dry-cured sausages (De las Rivas, Ruiz-Capillas, 

Carrascosa, Curiel, Jiménez-Colmenero, & Muñoz, 2008) and have been molecularly 

identified in this study by sequencing their 16S rDNA . 

All the strains were grown in Brain Heart Infusion (BHI, Difco, France) medium at 37 

ºC and 150 rpm during 24 hours under aerobic conditions. The strains were grown also on BHI 

agar plates (1.5 %) at 37 ºC under aerobic conditions. 

2.2. DNA isolation 

Bacterial chromosomal DNAs from CNS were isolated from overnight cultures using a 

protocol previously described (Sambrook, Fritsch, & Maniatis, 1989). DNA precipitates were 

resuspended in an appropriate volume of TE solution (10mM Tris-HCl, pH 8.0; 1 mM EDTA). 

2.3. Taxonomical identification of CNS strains 

CNS strains were identified by PCR amplification and DNA sequencing of their 16S 

rDNA. The 16S rDNAs were PCR amplified using the eubacterial universal pair of primers 63f 

and 1387r previosly described by Marchesi, Sato, Weghtman, Martin, Fry, Hion, & Wade,  

(1998) (Table 1). The 63f and 1387r primer combination generates an amplified product of 1.3 

kb. PCR was performed in 25 L amplification reaction mixture by using the following 

cycling parameters: 35 cycles of 1 min at 94ºC, 1 min at 50ºC and 1:30 min at 72ºC. Amplified 

products were resolved on 0.7% agarose gels. The amplifications products were purified on 

QIAquick spin Columns (Quiagen, Germany) for direct sequencing. DNA sequencing was 

carried out by using an Abi Prism 377TM DNA sequencer (Applied Biosystems, USA). 

Sequence similarity searches were carried out by comparing to sequences from type strains 

included on the Ribosomal Database (http://rdp.cme.msu.edu). 155 

156  
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2.3. Technological properties of the strains 

2.3.1. Nitrate reductase assay 

Nitrate reductase activity was determined as described previously (Miralles et al., 

1996). The colorimetric assay performed was an adaptation of the method described by 

Smibert & Krieg (1994). Briefly, 1.5 mL of culture was grown during 24 h. After incubation, 

the culture was centrifuged and the cellular pellet was resuspended in induction buffer 

[Bactotryptone (Difco), 10 g/L; KNO3, 1 g/L; cysteine, 1g/L pH 7.0] to an OD550=1. A fraction 

of the cell suspension was used for the determination of the dry weight. Anaerobic induction of 

nitrate reductase activity was achieved by incubation for 2 h at 30 ºC of 1 mL of the cell 

suspension in Eppendorf tubes covered with a layer of sterile mineral oil. As a control for the 

induction process, 1mL of the cell suspension was kept on ice for 2 h. The cells were 

centrifuged and then permeabilized in 500 µL reaction buffer (50 mM KNO3, 50 mM 

potassium phosphate, 100 mM NaCl, pH 7.0) by the addition of 30 µL of an acetone-toluene 

mixture (9:1, v/v). Then the tubes were vigorously shaken in a vortex for 3 min. The reaction 

was allowed to proceed for 30 min at 30ºC. A 100 µL aliquot of the samples was transferred to 

a new Eppendorf. Then, 2 mL water, 1 mL solution A [0.6 mg N-(1-Naphthyl)-

ethylenediamine dihydrochloride in 100 mL 5 N acetic acid] and 1 mL solution B (0.8 g 

sulphanilic acid in 100 mL 5N acetic acid) were added. Absorbance at 540 nm was measure 

against a control tube. Relative activity was calculated as the ratio: OD540 x mg-1 dry weight. 

2.3.2. Catalase activity 

The catalase activity was determined as described previously by Herrero, Mayo, 

González, & Suárez, (1996). The strains were grown in BHI agar supplemented with 0.2% of 
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glucose. The plates were incubated for 24 h at 30 ºC; then, a drop of H2O2 was deposited over 

each colony. The appearance of bubbles indicated a positive response. 

In this study a second assay was also used, the spectrophotometer assay previously 

described by Essid, Ben Ismail, Bel Hadj Ahmed, Ghedamsi, & Hassouna (2007). The strains 

were incubated in BHI to an OD600=1, and then 5 mL were centrifuged and the resulting pellet 

was mixed with 1.5 mL of 60 mM H2O2 in 20 mM phosphate buffer pH 7.0. Then, 200 µL 

were deposited in 96-well plates. Catalase activity was measured spectrophotometrically at 240 

nm after 3 min of incubation at room temperature in a microplate reader (SynergyTMHT, 

Biotek, EEUU). Results were expressed in arbitrary units ( moles of degraded H2O2/min/mL 

of cells with OD600=1.0). 

2.3.3 Proteolytic activity 

To study the proteolitic activity of the CNS strains, gelatinase (Cariolato, Andrighetto, 196 

& Lombardi, 2008) and calcium caseinate agar (Martín, Hugas, Bover-Cid, Veciana-Nogués, 197 

& Aymerich, 2006) assays were used. Production of gelatinase was tested on BHI agar plates 198 

containing 10 g/L peptone (Pronadisa, Spain) and 30 g/L gelatine (Pronadisa, Spain). After 16-199 

18 h of incubation at 37 °C, the plates were placed at 4°C for 5 h before examination for a zone 200 

of turbidity around the colonies indicating hydrolysis of gelatine. In the second method, the 201 

proteolitic activity was tested in calcium caseinate agar plates (Pronadisa, Spain). The strains 202 

were grown 18-20 h in BHI broth and then 10 µL of each culture was placed in the calcium 203 

caseinate agar at 37 ºC during 3 days. The diameter of the halos formed by the proteolitic 204 

strains was measure in millimetres. 205 

206 

207 2.3.4. Lipolytic activity 
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The lipolytic activity was analyzed using two lipase assay procedures, �Spirit Blue 

Agar� (Difco) and BHI agar supplemented with Tween 80 or Tween 20 (Essid et al., 2007). 

 The assay with Spirit Blue Agar plus Lipase Reagent (tributyrin plus polysorbate 80) was 

performed according to the recommendations of the supplier. Lipolytic microorganisms 

metabolize the lipids present in the medium and halos around the colonies appear. 

In order to evaluate the lipolytic activity on BHI agar supplemented with 1% of Tween 

80 or Tween 20, an overnight culture of each strain was centrifuged and the pellet was 

resuspended in 20 mM phosphate buffer, pH 7. Each cell suspension (10 l) was inoculated on 

a spot at the surface of the BHI plates containing Tween 80 or Tween 20. After incubation at 

37 ºC for 48h, the lipolytic activity was determined by the appearance of a clear halo 

surrounding the spots which diameter was measured in mm. 

2.3.5. Resistance to bile 

Resistance to bile was tested according to methods described previously 

(Maragkoudakis, Zoumpopoulou, Miaris, Kalantzopoulos, Pot, & Tsakalidou , 2006; Saavedra, 

Taranto, Sesma, & de Valdez, 2003). In the first assay the CNS cultures were grown in BHI 

broth supplemented with Oxgall (0.3%) (Difco, France) at 37 ºC during 4h. The resistance was 

determined by the number of viable colonies after incubation during 0 and 4 h, reflecting the 

time spent by the food in the small intestine. 

In the second assay, the CNS strains were grown in LAPTg broth (g/L: peptone, 15; 

tryptone, 10; yeast extract, 10; glucose, 10; Tween 80, 0.1% v/v) and LAPTgO broth (LAPTg 

containing 0.3% Oxgall) at 37ºC. Every hour, for the first 8 h, and after 24 h of incubation, the 

A560 nm was determined using a microplate reader (SynergyTMHT, Biotek. EEUU). The time 

required for each of them to increase the A560 by 0.3 units was recorded. The difference in time 
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(min) between the LAPTg and LAPTgO cultures was considered as the growth delay. Each 

assay was performed in triplicate and repeated three times. 

2.4. Presence of relevant safety traits in the strains 

2.4.1. Biofilm formation 

The ability of CNS to form a biofilm was evaluated by two methods described 

previously (Toledo-Arana et al., 2001; Freeman, Falkiner, & Keane, 1989). In the assay 

described by Toledo-Arana et al. (2001) the CNS cultures were grown overnight at 37 ºC in 

BHI broth containing 0.25% glucose. The culture was diluted 1/20 in fresh BHI broth 

supplemented with 0.25 % glucose; 200 L of this suspension was used to inoculate sterile 96-

well polystyrene microtitre plates. After 24 h at 37ºC, wells were washed with PBS, dried in an 

inverted position and stained with 1% crystal violet (Merk, Germany) for 15 min. The wells 

were rinsed once more with PBS and the crystal violet was solubilised in methanol/acetone 

(80:20, v/v). The A595 was determined using a microplate reader (SynergyTMHT, Biotek. 

EEUU). Biofilm formation was scored as follows: -, non-biofilm forming (A595  1); +, weak 

(1 < A595 2); ++, moderate (2 < A595  3); +++, strong (A595 > 3). Each assay was performed in 

triplicate and repeated three times. 

The assay described by Freeman et al. (1989) used Congo Red Agar (CRA). The 

constituents of the CRA media were BHI broth (37g/L), sucrose (0.8 g/L), agar-agar (10 g/L) 

and Congo red stain (0.8 g/L). Congo red stain was prepared as a concentrated aqueous 

solution, autoclaved separately and added to the media when the agar had cooled to 55 ºC.  

Plates were incubated aerobically for 24 h at 37ºC. Biofilm positive strains produced black 

colonies while biofilm negative strains were pink.  
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The biofilm formation ability was also determined by PCR amplification of the icaA

gene. It has been described that this gene is involved in cellular aggregation and biofilm 

accumulation. For the PCR reaction the primers ica4f and ica2r previously described were used 

( Møretrø, Hermansen, Holck, Sidhu, Rudi, & Langsrud, 2003) (Table 1). PCR was performed 

in 25 L amplification reaction mixture by using the following cycling parameters: 35 cycles 

of 1 min at 94ºC, 1 min at 50ºC and 1:30 min at 72ºC. Amplified products were resolved on 

0.7% agarose gels. The DNA polymerase used was AmpliTaq Gold® (Applied Biosystem) 

2.4.2. Antibiotic susceptibility testing 

Susceptibility testing was assayed by the agar overlay disc diffusion test recommended 

by the National Committee for Clinical Laboratory Standard (NCCLS, 2002). SensiDisc BBL 

discs (Oxoid, England) were placed onto Mueller-Hinton agar (Difco, France) plates and 

overlayed with 3 mL of BHI soft agar broth (0.7% agar, p/v) inoculated with 150 µL of the 

cultures with a cell concentration corresponding to 0.5 MacFarland turbidity standard. After 

incubation at 37 ºC for 24 h the diameter of inhibition halos around the colonies was measured. 

Susceptibility or resistance was determined according to the recommendation of NCCLS. The 

antibiotics used were: ampicillin (10 g), chloramphenicol (30 g), clindamycin (2 g), 

erythromycin (15 g), gentamicin (10 g), kanamicin (30 g), penicillin G (10 U), tetracycline 

(30 g), vancomycin (30 g), streptomycin (10 g), and cephalotin (30 g). 

In -lactamic resistant strains the presence of the blaZ gene, which codified a protein 

involved in this resistance, was determined. The primers used were blaZ-F and blaZ-R (Resch, 

Nagel, & Hertel, 2008) (Table 1). 

2.4.3. Production of biogenic amines 
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Biogenic amine production was tested by TLC (for the detection of the biogenic amine 

produced) and PCR (for the detection of the genes encoding the enzymes responsible of their 

biosynthesis). 

The TLC method was previously described by García-Moruno, Carrascosa, & Muñoz, 

(2005). Briefly, the cultures were incubated at 37 ºC under aerobic conditions for 7 days in 

BHI broth containing 0.5% of the corresponding amino acid precursor: L-histidine 

monohydrochloride (Merk, Germany), L-tyrosine disodium salt (Merk, Germany), L-ornithine 

hydrochloride (Sigma-Aldrich, Germany), L-lysine monohydrochloride (Merk, Germany). As 

control, a stock standard solution of each amine (histamine, tyrosine, putrescine and 

cadaverine) was made by preparing a 2% solution (5% in the case of histamine)  in 40% 

ethanol. After incubation, the supernatant, containing the corresponding biogenic amine, was 

collected. Amines were converted into their fluorescent dansyl derivatives and were incubated 

in the dark at 55º C during 1h. Amine derivative extracts were applied in TLC plates (silica gel 

60 F24, Merk, Germany). The dansylated compounds were separated using 

chloroform:triethylamine (4:1). The fluorescent dansyl derivative spots were visualized using a 

ChemiDoc XRS+ (Bio Rad) under UV light exposure. 

The detection of the genes encoding the decarboxylase enzymes involved in the 

production of biogenic amines was performed by PCR using primers previously described: 

HIS1-F/HIS1-R to amplify a fragment of the histidine decarboxylase gene from Gram-positive 

bacteria; TDC-F/TDC-R to amplify a fragment of the tyrosine decarboxylase-encoding gene; 

PUT1-F/PUT1-R and PUT2-F/PUT2-R to amplify the two groups of ornithine decarboxylase 

genes, and finaly CAD2-F/CAD2-R to amplify a fragment of the lysine decarboxylase gene 

present in Gram-positive bacteria (De las Rivas, Marcobal, Carrascosa, & Muñoz, 2006) 

(Table 1). 

3. Results and discussion 
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3.1. Identification of CNS strains 

Seventy one CNS strains previously isolated from Spanish dry-cured meat products 

(Carracosa & Cornejo 1991; Cornejo & Carrascosa, 1991; de las Rivas et al., 2008) were 

analyzed in this study (Table 2). Fifty-one strains isolated from dry cured ham were identified 

by Landeta et al. (2011) as S. equorum (36 strains), S. vitulinus (5 strains), S. caprae (1 strain), 

S. capitis (1 strain), S. aureus (2 strains), S. warneri (3 strains), S. epidermidis (1 strain), S.

hominis (1 strain), and S. lugdunensis (1 strain). Twenty CNS strains were isolated from dry-

cured sausages and some of them were previously identified (de las Rivas et al., 2008). 

Using phenotypic methods the CNS species most commonly identified in traditional 

fermented sausages are S. xylosus, S. equorum, S. succinus and S. saprophyticus, being often S.

xylosus predominant (Mauriello et al., 2004; Corbiere Morot-Bizot et al., 2004). Sondergaad & 

Stahnke (2002) and Landeta et al. (2011) reported that some strains isolated from fermented 

meat products with high probability to be S. xylosus (by using API-STAPH system) were 

indeed identified by molecular methods as S. equorum. Therefore, it is probable that the 

presence of S. equorum in fermented meat products has been under-estimated for a long time 

because of its confusion with S. xylosus by traditional microbiological methods based on 

biochemical test.  

As the characterization of CNS using traditional methods may sometimes be uncertain, 

in this study the strains have been identified by sequencing its 16S rDNA. The CNS species 

more frequently isolated from dry-cured sausages was Staphylococcus carnosus (80%), 

whereas from dry-cured ham the higher incidence was for S. equorum strains (71%). In spite 

that S. carnosus and S. xylosus are the most recommended staphylococcal starter culture for 

dry sausage production in Europe (Samelis, Metaxopoulos, Vlassi, & Aristea, 1998), among 

our isolates only one strain was identified as S. xylosus. Similarly to this study, the high 
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incidence of S. equorum has been also described (Mauriello, et al. 2004, Cordero & 

Zumalacárregui, 2000). Marty, Buchs, Eugster-Meier, Lacroix, & Meile, (2012) reported that 

in spontaneously fermented Swiss meat product S. equorum was prevalent in frequency and 

cell counts during maturation and in the end products (20.3 %) followed by S. warneri, S.

saprophyticus, S. epidermidis and S. xylosus. In Slovak traditional sausages, Simonová, 

Strompfvá, Marcináková, Lauková, Vesterlund, Latorre Moratalla, Bover-Cid, & Vidal-Carou, 

(2006) identified using species-specific PCR, S. xylosus (63.6%) and S. carnosus (10.7%) as 

the predominant species. Martin et al. (2006) using molecular methods to identify the species 

present in slightly fermented sausages found a 80% of S. xylosus and only a 4.6% of S.

carnosus but none of them was identified as S. equorum.

3.2. Selection of CNS based on their technological properties 

The technological and safety related properties are important in order to select a strain 

eligible as starter culture for fermented meat products. In this study, seventy-one strains of 

CNS were screened for nitrate reductase, catalase, proteolitic, lipolytic, bile resistance, biofilm 

formation, antibiotic susceptibility, and biogenic amine production, because these activities are 

important in the development of the aroma, colour flavour, texture and in the safety of the final 

fermented meat products. The technological and safety-related properties analyzed in this 

study are reported in Table 2.  

The nitrate reductase activity is the responsible for the red colour in the fermented meat 

products. The ability to reduce nitrate is one of the first criteria in the selection of strains to be 

used as starter cultures in these products. In our study, the CNS strains showed variable nitrate 

reductase activity (Table 2). The results varied from 0.04 (S. equorum IFIJ 39, 44, and 51) to 

33.06 (S. aureus IFIJ 32) mM nitrate reduced to nitrite per milligram of dry weight. This 

variability was observed also amongst strains even belonging to the same species, e.g. in S.
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carnosus strains the valour obtained ranged from 3.45 to 23.42, and in S. equorum from 0.04 to 

15.26. This variability has been observed by the use of different methods to measure nitrate 

reductase activity (Mauriello et al., 2004; Cassaburi et al., 2007; Martín et al., 2007; García-

Varona, Santos, Jaime, & Rovira, 2000; Papamanoli, Kotzekidou, Tzanetakis, & Litopolou-

Tzanetaki, 2002). Essid et al. (2007) used an agar plate method and a spectrophotometric 

method to measure nitrate reductase activity, and concluded that the spectrophotometric 

method appears to be more suitable for the detection of low nitrate reductase activity. In our 

study a strain of S. aureus has the highest capacity to reduce nitrate (33.06) however since this 

strain belonged to an opportunistic pathogenic species (O´Gara, 2007), it is not recommended 

to be used as meat starter. Nevertheless, some strains, such as S. carnosus C-120 or S. capitis 

IFIJ 12, have also a high nitrate reductase capacity and they could be used as starter cultures.  

Hydrogen and organic peroxides are frequently formed as products of the microbial 

metabolism. Hence, the presence of catalase-producing species would improve the appearance 

and safety of fermented meat products. Catalase activity could help to prevent off-flavours 

produced by lipid oxidation during product ripening.  Peroxide radicals, involved in rancidity 

development, are detoxified by superoxide dismutase activity with consequent production of 

hydrogen peroxide, which is destroyed by catalase activity. In this study, the catalase activity 

was analyzed using a direct method (bubbles production with H2O2) and a spectrophotometric 

assay measuring the moles of degraded H2O2. All the strains analyzed were catalase positive 

by the direct method (Table 2). On the other hand, the results showed high variability ranging 

from 0.98 (S. equorum IFIJ 25) to 26.7 (S. vitulinus IFIJ 4) by using the spectrophotometric 

method. Similarly to the nitrate reductase activity, amongst strains from the same species there 

is a great variability, e. g., in S. carnosus strains catalase activity ranged from 1.3 to 14.1 

(Table 2). Essid et al. (2007), using the same method, reported a high variability in S. xylosus

strains isolated from Tunisian traditional salted meat. 
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Various aromatic substances and organic acids are released by protease and lipase 

activity of CNS. Proteolysis and lipolysis influence both texture and flavour development due 

to the formation of low molecular weight compounds (peptides, aldehydes, free fatty acids, 

etc). In order to know the proteolitic activity of the CNS strains analyzed in this study, two 

different assays were used, proteolitic activity in gelatine (Cariolato et al., 2008) and in 

calcium caseinate agar (Martín et al. 2006). The obtained results showed great variability 

depending on the method applied (Table 2). Using the gelatinase activity assay only one strain, 

S. caprae IFIJ 10, showed a positive response. This strain also was positive by using calcium 

caseinate agar as substrate. Most of the positive strains by the caseinate method (S. aureus Al-

84, S. carnosus C-120, S. epidermidis IFIJ 24, S. equorum IFIJ 39 and IFIJ 45, and S. vitulinus

IFIJ 4, IFIJ 31, IFIJ 36, IFIJ 38, and IFIJ 41) were negative by the gelatinase assay. It is 

remarkable that all strains of S. vitulinus analyzed showed high proteolytic activity by the 

calcium caseinate agar (Table 2).

Related to lipolytic activity, the agar plate assays used in this work showed that none 

strain could hydrolyze Tween 20 or Tween 80. None of the strains showed lipolytic activity in 

�Blue Spirit� except a low activity presented by the S. epidermidis strains, and S. warneri IFIJ 

52 (Table 2). Martín et al. (2006) reported that among CNS species, S. xylosus was the species 

showing the highest lipolytic activity on tributyrin agar; however, Papamaloni et al. (2002) 

found that only 30% of S. xylosus strains isolated from fermented sausages were able to 

hydrolyze tributyrin. Essid et al. (2007) showed that 76% of the S. xylosus strains could 

hydrolyze Tween 20, 33.3% tributyrin and only 10% hydrolyzed Tween 80. These apparently 

contradictory results could be explained since meat substrates (muscle proteins, sarcoplasmic, 

or pork fat) could be more suitable for the detection of lipolytic and proteolitic activities of 

potential meat starters than other substrates such as powdered milk, gelatine, tributyrin or 

Tween 80 and Tween 20 (Mauriello et al., 2004). 
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The survival ability of isolates in the presence of oxgall bile is an important 

characteristic for the selection of potentially probiotic strains. Thirty strains analyzed in this 

study showed resistance to bile salt using this method (Table 2). The results obtained with the 

spectrophotometric method showed that, in general, S. equorum and S. vitulinus strains were 

very susceptible to the presence of bile salts. Although studies about this property in 

enterococci and lactic acid bacteria isolated from milk and meat origin have been published 

(Vinderola & Reinheimer, 2003), information about CNS are limited. In S. xylosus strains 

isolated from Slovak meat products, Simonova et al. (2006) found that the capacity to survive 

in broth containing 1% oxgall varied between 54 and 99%. As adhesion to the intestinal mucus 

is one of the main selection criteria for probiotics, Simonova et al. (2006) also reported that in 

S. xylosus the adhesion ability to mucus was found to be strain-dependent. 

Taking into account the activities analyzed so far among the strains analyzed in this 

study, the CNS species possessing the best technological characteristics are S. aureus, S. 

carnosus, and S. equorum, species as they possess high nitrate reductase and catalase activity.

However, as safety aspects are also relevant, the S. aureus strains are not eligible as potential 

starter cultures. In this sense, it is important the study of safety related characteristics, such 

antibiotic susceptibility and biogenic amine production, in order to get a safe meat product. 

3.3 Selection of CNS based in their safety-related properties 

CNS in fermented meat have a long tradition in food use but have not received the QPS 

(Qualified Presumption of Safety) status from EFSA (European Food Safety Authority). They 

require, therefore, thorough assessment with regard to toxigenicity and pathogenicity 

determinants as well as presence of transferable antibiotic resistance (Hammes, 2012). 

The survival of staphylococci in food processing environments could be associated to 

their capacity to colonize abiotic surfaces (Møretrø et al., 2003).  Biofilm formation is a two-
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step process; first it involves the attachment of cells to a solid surface and, second, the 

accumulation and aggregation of cells sticking together by intercellular adhesion (Christensen, 

G. D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barret, F.F., Melton, & Beachey, 1985). 

In food industry, biofilm formation is undesirable for hygienic and safety reasons due to the 

possible attachment of food spoilage or pathogenic microorganisms to food or food surfaces. 

Nevertheless, several authors consider that in food systems, colonization of surfaces by 

bacteria used as starters could be desirable to inhibit the colonization by pathogenic or spoilage 

bacteria (Leriche & Carpentier, 2000). In this study (Table 2), biofilm formation only was 

detected in four strains when the Congo red method was used (S. equorum IFIJ 29 and IFIJ 39, 

S. vitulinus IFIJ 38, and S warneri IFIJ 15). By spectrophotometric method in spite that several 

strains seem to produce biofilms, only two strains were clearly positives, S. caprae IFIJ 10 and 

S. caprae Al-145. The results reflect a high variability depending on the method used, as 

reported previously by Jain & Agarwal (2009). In addition Møretrø et al. (2003) described the 

dependence of external factors in biofilm formation, such as stress conditions. 

Among CNS biofilm formation has been studied in S. aureus (Jain & Agarwal, 2009), S.

epidermidis (Jain & Agarwal, 2009), S. hominis (Kotilainem, 1990), S. sciuri (Leriche & 

Carpentier, 2000) and S. equorum (Leroy, Lebert, Charcornac, Chavant, Bernardi, & Talon, 

2009). These studies concluded that, in general, biofilm formation is a strain-dependent 

characteristic. However, it have been described that S. carnosus strains are not able to form 

biofilm and this could explain why this microorganism is rarely isolated in meat processing 

environments (Planchon, Gaillard-Martinie, Leroy, Bellon-Fontaine, Fadda, & Talon, 2007). 

Planchon, Gaillard-Martinie, Dordet-Frisoni, Bellon-Fontaine, Leroy, Labadie, Hébraud, & 

Talon, (2006) studied the ability of S. xylosus strains to form biofilm and found that the 

majority of the strains analyzed could form biofilm preferentially on hydrophilic supports. In 

addition, in the positive S. xylosus strains the presence of the bap and ica4 genes, important for 

biofilm formation in some staphylococci, was analyzed and all the biofilm-positive strains 
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were bap positive but ica4 negative. In this sense, in the present study the presence of the ica

gene have been checked (Figure 1). However, the presence of the ica gene was positive only in 

some strains that previously were positive using Congo red and/or spectrophotometric 

methods, therefore, this result indicates the existence of other genes involved in biofilm 

formation (e.g the presence bap gene. 

Due to the intensive use of antibiotics in public health and animal husbandry, studies 

showed that resistance to antibiotics could occur in strains from S. carnosus and S. xylosus

species (Martín et al., 2006). Antibiotic resistance determinants contained in starter organisms 

or naturally occurring CNS may thus be transferred to commensals or pathogenic bacteria as 

horizontal transfer of resistance genes occurs in food (Teuber, 1999). In this study, all the 

strains analyzed were sensitive to gentamicin (except S. caprae Al 145), kanamycin and 

cephalotin (Table 2). Regarding to -lactamic antibiotics, all the ampicillin resistant strains (7 

strains) were also resistant to penicillin G. In relation to vancomycin resistance, only 9 strains 

were resistant, being among them all the S. aureus and S. warneri strains. As soon as 1998, 

Holley & Blaszyk reported the isolation of vancomycin-resistant S. carnosus strains which 

grown in presence of 250 g/mL vancomycin (S. aureus MIC is 32 g/mL). However, later 

studies showed that none of the CNS analyzed exhibited resistance against vancomycin 

(Mauriello, Moschetti, Villani, Blaiotta, & Coppola, 2000; Martin et al., 2006; Resch et al., 

2008).  

Among the CNS strains analyzed, the strain possessing resistance to the high number of 

antibiotic were S. epidermidis IFIJ 24 (which was resistant to ampicillin, chloramphenicol, 

clindamycin, erythromycin, and penicillin G) and S. hominis IFIJ 26 (resistant to ampicillin, 

clindamycin, erythromycin and penicillin G). Contrarily, all the S. carnosus strains analyzed 

were sensitive to all the antibiotics assayed. Resch et al. (2008) reported that food-associated 

CNS were sensitive to the clinically important antibiotics chloramphenicol, clindamycin, 

cotrimoxazol, gentamicin, kanamycin, linezolid, neomycin, streptomycin, synercid and 
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vancomycin. However, other studies showed that strains of S. carnosus and S. xylosus could be 

resistant to gentamicin, kanamycin, neomycin and clindamycin (Mauriello et al., 2000). 

The -lactamic resistance also was evaluated by a molecular method based on the blaZ 

gene amplification by PCR (Figure 2). All the penicillin G resistant strains, by the disc 

diffusion test, from the S. aureus, S. epidermidis, S. hominis, S. lugdunensis, and S. warneri 

species were able to amplify the blaZ gene. Nevertheless, the S. equorum and S. xylosus -

lactamic resistant strains were blaZ-negative by PCR. A possible explanation for this 

resistance in absence of the blaZ gene could be due to the presence of differences in the 

penicillin binding proteins which could have less affinity by -lactamic antibiotics (Chambers, 

1988).  

The presence of biogenic amines is a relevant food issue in meat products. In spite that 

biogenic amine production by some strains used in this study was previously published (de las 

Rivas et al., 2008; Landeta, Carrascosa, de las Rivas, & Muñoz, 2007), in this work, the study 

of biogenic amine production have been completed. Biogenic amine production was analyzed 

by two different methods, by TLC (Garcia-Moruno et al., 2005) and by PCR (de las Rivas et 

al., 2006). The obtained results are showed in Table 2. Most of the strains analyzed were not 

able to produce biogenic amines (75 % using the TLC method and 94.5% using the PCR 

method). By the TLC method, strains producing histamine, tyramine, putrescine, and 

cadaverine were found. In agreement with previous results only S. capitis IFIJ 12 strain 

produced histamine (Landeta et al 2007). All the S. carnosus strains produced tyramine (Figure 

3) and two strains, S. epidermidis Al-190 and S. lugdunensis IFIJ 47, produced simultaneously 

two different amines, putrescine and cadaverine (data not shown). Previously, it have been 

reported that S. carnosus was able to produce biogenic amines in contrast with S. xylosus and 

S. equorum that were non-producer species [Seitter (née Resch), Geng, & Christian, 2011a]. In 

S. carnosus, 2-phenylethylamine, tryptamine, and/or tyramine were often detected whereas, 

cadaverine and putrescine were only rarely detected, and histamine was not produced. Other 
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authors reported similar results and concluded that amino acid decarboxylase activity is a 

strain dependent characteristic in staphylococci (Ansorena, Montel, Rokka, Talon, Eerola, 

Rizzo, Raemaekers, & Demeyer, 2002; Even et al., 2010). 

In order to correlate the production of biogenic amines with the presence of the 

corresponding decarboxylase genes, PCR assays for the detection of these genes was 

performed. The results obtained by PCR are in agreement with the results obtained by TLC 

except in the tyramine-producer S. carnosus strains on which the PCR was negative. The 

production of this amine by S. carnosus strains was studied by Seitter (née Resch), Nerz, 

Rosenstein, Götz & Christian, (2011b) and reported that, in the production of tyramine and 2-

phenylethylamine by S. carnosus strains, discrepancies between the phenotype and genotype 

were observed, probably due that the corresponding genes are not still identified. 

In conclusion, in this study the technological and safety characterization of CNS 

allowed to select several strains, such as S. equorum IFIJ 23 and IFIJ 30 strains, possessing 

interesting profiles to be used as starter cultures for fermented meat products. In general, S.

equorum strains were good candidates to be selected in spite that some of them were bile salt 

sensitive and six strains (IFIJ 5, IFIJ 34, IFIJ 42, IFIJ 43, IFIJ 46, and IFIJ 53) presented 

several antibiotic resistances. In this study the S. equorum strains were isolated from dry-cured 

ham but this species is also present in sausages. Different studies have shown that S. equorum

species represents 49% of the staphylococcal isolates from French naturally fermented 

sausages (Corbiere_Morot-Bizot, Leroy, Talon, 2006), 10 to 40% from southern Italian 

sausages (Blaiotta , Pennacchia, Villani, Ricciardi, Tofalo, &. Parente, 2004b; Mauriello et al. 

2004) and fresh sausages (Rantsiou , Iacumin, Cantoni, Comi, & Cocolin, 2005). The S.

carnosus strains analyzed, despite this species is one of the most used in meat starter cultures, 

produce tyramine, and for this reason do not be selected anyone. On the other hand, several 

strains showing good technological characteristics (such as S. caprae IFIJ 10, and S. vitulinus
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IFIJ 31, IFIJ 36 and IFIJ 38) could not be selected due that strains from these species present 

some virulence factors and pathogenicity (Moodley, & Guardabassi, 2009).  
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Figure captions 

Fig. 1. PCR amplification of the icaA gene involved in cellular aggregation and biofilm 

accumulation by using primers ica4f and ica2r that give an amplicon of 568 pb. PCR was 

performed by using DNA from S. caprae Al-145 (lane 1), S. caprae IFIJ 10 (lane 2), S.

equorum IFIJ 5 (lane 3), S. carnosus C-9 (lane 4), S. carnosus C-120 (lane 5), S. epidermidis 

Al-90 (lane 6) and S. lugdunensis IFIJ 47 (lane 7). A 100-pb ladder marker was included in the 

right of the gel. 

Fig. 2. PCR amplification of the blaZ gene involved in -lactamic resistance by using primers 

blaZ-F and blZ-R that give an amplicon of 173 pb. PCR was performed by using DNA from S.

aureus IFIJ 13 (lane 1), S. epidermidis IFIJ 24 (lane 2), S. hominis IFIJ 26 (lane 3), S. aureus

IFJ32 (lane 4), S. equorum IFIJ 42 (lane 5) and, S. equorum IFIJ 43 (lane 6). Some of the sizes 

of the 100-pb ladder marker are indicated on the right. 

Fig.3. Biogenic amine production by CNS strains. (A) TLC detection of tyramine production 

by S. carnosus strains. The strains were grown in BHI containing tyrosine and the tyramine 
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produced was converted into its fluorescent dansyl derivative and detected.  The analyzed 

strains were E. faecium RM 58 (positive control) (lane 1); S. equorum IFIJ 6 as negative 

control (lane 2); S. carnosus C-23 (lane 3); S. carnosus C-47 (lane 4); S. carnosus C-120 (lane 

5). Tyramine standard solution (lane T). (B) PCR amplification of the tyrosine decarboxylase 

encoding gene. Oligonucleotides TDC-F and TDC-R were used to amplify a 825-bp internal 

fragment of the tyrosine decarboxylase from S. carnosus C-6 (lane 1); S. carnosus C-9 (lane 

2); S. carnosus C-23 (lane 3); S. carnosus C-42 (lane 4); S. carnosus C-47 (lane 5); S. carnosus

C-48 (lane 7); S. carnosus C-67 (lane 8), S. carnosus C-76 (lane 9); S. carnosus C-93 (lane 

10); S. carnosus C-10 (lane 11). E. faecium RM 58 (lane 6) was included as positive control. A 

DNA marker standard (EcoRI/HindIII digested  DNA) was included in the gel and some of 

their fragments indicated on the right of the figure. 
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Figure 2 (Landeta et al.) 
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Figure 3 (Landeta et al.) 
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TABLE 1. Primers used in this study 

Gene Primer Sequencea Amplicon 
size (bp)

references 

16S 63f CAGGCCTAACACATGCAAGTC 1324 Marchesi  et al., 1998 
1387R GGGCGGWGTGGTTACAAGGC   

ica ica4f TGGGATACTGAYAATGATTAC 568 Moretro et al., 2003 
ica2r CCTCTGTCTGGGCTTGACCATG   

blaZ blaZ-F ACTTCAACACCTGCTGCTTTC 173 Resch et al., 2008 
blaZ-R TGACCACTTTTATCAGCAACC   

hdc HIS1-F GGNATNGTNWSNTAYGAYMGNGCNGA 372 De las Rivas et al., 2006
 HIS1-R ATNGCDATNGCNSWCCANACNCCRTA   

tdc TDC-F TGGYTNGTNCCNCARACNAARCAYTA 825 De las Rivas et al., 2006
 TDC-R ACRTARTCNACCATRTTRAARTCNGG   

odc PUT1-F TWYMAYGCNGAYAARACNTAYTTYGT 1440 De las Rivas et al., 2006
 PUT1-R ACRCANAGNACNCCNGGNGGRTANGG

 PUT2-F ATHWGNTWYGGNAAYACNATHAARAA 624 De las Rivas et al., 2006
 PUT2-R GCNARNCCNCCRAAYTTNCCDATRTC   

ldc CAD2-R CAYRTNCCNGGNCAYAA 1185 De las Rivas et al., 2006
 CAD2-F GGDATNCCNGGNGGRTA   

a Y = C or T; R = A or G; W = A or T; S = C or G;  M = A or C; D = A, G, or T; H = A, 
C, or T; B = C, G, ot T; N = A, C, G, or T. 
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