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evoked potentials analysis 
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Age-related macular degeneration (AMD) is a progressive and degenerative disorder of the macula. In 
advanced stages, it is characterized by the formation of areas of geographic atrophy or fibrous scars 
in the central macula, which determines irreversible loss of central vision. These patients can benefit 
from visual rehabilitation programmes with acoustic “biofeedback” mechanisms that can instruct the 
patient to move fixation from the central degenerated macular area to an adjacent healthy area, with 
a reorganization of the primary visual cortex. In this prospective, comparative, non-randomized study 
we evaluated the efficacy of visual rehabilitation with an innovative acoustic biofeedback training 
system based on visual evoked potentials (VEP) real-time examination (Retimax Vision Trainer, 
CSO, Florence), in a series of patients with advanced AMD compared to a control group. Patients 
undergoing training were subjected to ten consecutive visual training sessions of 10 min each, 
performed twice a week. Patients in the control group did not receive any training. VEP biofeedback 
rehabilitation seems to improve visual acuity, reading performances, contrast sensitivity, retinal 
fixation and sensitivity and quality of life in AMD patients.

Age-related macular degeneration (AMD) is a progressive and degenerative disorder of the macula, representing 
the leading cause of severe visual loss and legal blindness among elderly (> 65 years) in the western population1. 
AMD leads to a progressive and irreversible loss of central vision, due to both the formation of areas of geo-
graphic atrophy and fibrous scars in the central macula, thus causing a central scotoma, which determines visual 
impairment2,3.

Despite recent research advancements for innovative retinal therapies, including gene and cellular therapies, 
there are currently no effective treatments for advanced stages of AMD and the prognosis of this disabling 
disease is poor.

Due to central macular atrophy, patients with low central vision attempt to develop an eccentric fixation area, 
also known as Preferred Retinal Location (PRL). The PRL is generally located in a healthy part of the retina, often 
on the superior or horizontal meridian of the fovea4–6. It has been shown that patients with central vision loss can 
develop multiple PRLs, located in different areas depending upon different tasks7–10. However, patients are often 
unaware of how to use the PRLs and where exactly to move the eye in order to fixate objects in everyday skills.

Recently, the use of support for neuronal plasticity of the visual system in adults has grown. Visual rehabilita-
tion of healthy eccentric areas in patients with macular diseases with loss of central fixation, with specific training 
for the reorganization of the primary visual cortex, has proven advantageous11–14. Rehabilitative programs with 
acoustic “biofeedback” mechanisms instruct the patient to move fixation from the central degenerated macular 
area to the adjacent healthy PRL15–17. Biofeedback rehabilitation programs can be performed with microperimetry 
or with visual evoked potentials (VEP) real-time analysis.

Retimax (CSO, Firenze, Italy) is a medical device for the detection, recording, amplification and visualiza-
tion of ocular electrical conduction. It combines electrophysiological measurements with rehabilitative inter-
vention, especially useful in the context of low vision. The “Vision Trainer” module is specifically designed for 
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visual rehabilitation, and it includes an auditory biofeedback system combined to VEP measurements, which 
has been shown to be an efficient technique in helping patients with different ocular diseases to increase visual 
performance18,19. The VEP recorded at the level of the visual cortex is digitally analyzed in real-time, with direct 
patient feedback in the form of an acoustic signal. The signal is related to the amplitude and latency of the VEP, 
thus to the quality of vision. The more the patient maintains a stable fixation with the healthy paracentral PRL, 
the greater and more stable the intensity of the sound will be. This rehabilitative system instructs the patient to 
voluntarily control and coordinate ocular movements in order to use the healthy PRL, increasing visual perfor-
mances by the stimulation of the visual pathway.

Currently, the VEP biofeedback rehabilitation training program has been evaluated for patients affected by 
amblyopia18 and acquired brain injury19, reporting significant improvements in visual function and fixation 
stability. To our knowledge, there are no current studies available investigating the utility of VEP biofeedback 
rehabilitation for AMD patients. The authors hypothesize that AMD patients may have neuronal plasticity and 
be suitable for VEP rehabilitation which should improve quality of life. The current study aims to evaluate the 
efficacy of VEP biofeedback rehabilitation with Retimax Vision Trainer and quality of life in a group of consecu-
tive patients with advanced stage AMD compared with a control group.

Methods
This prospective, non-randomized, observational study enrolled a group of consecutive patients with advanced 
AMD, recruited at the Institute of Ophthalmology, University of Modena (Italy). The Ethical Committee of 
the University of Modena and Reggio Emilia (Modena, Italy) approved the study (prot. NO. 6684/19, study 
number 968/2018/DISP/AOUMO). The study was conducted in accordance with the Declaration of Helsinki. 
Registration number in a public registry was obtained (number NCT04084587). All patients gave their written, 
informed consent.

Protocol criteria outlined the inclusion of < 90 years old patients with advanced atrophic AMD, unstable or 
relatively unstable fixation, best corrected visual acuity (BCVA) between 20/100 (0.7 logMar) and 20/320 (1.3 
logMar) in the eye with the highest BCVA, and good patient compliance. Criteria specified the exclusion of 
patients ≥ 90 years old with active neovascular AMD, stable fixation, significant cataract, glaucoma, optic nerve 
disease/abnormalities, diabetic retinopathy, previous ocular surgery other than cataract intervention and patients 
unable to collaborate during the Retimax or the microperimetric evaluation.

Patients were assigned to the training or control groups depending upon their availability to attend 2 train-
ing sessions/week for the study period of 5 weeks. Patient enrollment and training was performed between May 
2018 and May 2019.

All patients underwent a complete ophthalmic examination at baseline (T0) and after 6 weeks from enrol-
ment (T1). Examinations included BCVA, contrast sensitivity (CS), reading ability, vision-related quality of life 
test (VFQ-25), microperimetry with fixation analysis. BCVA was evaluated with the Early Treatment Diabetic 
Retinopathy Study (ETDRS) charts (Lighhouse Int., New York, NY) at 4 m and assessment was in letters. CS was 
evaluated using Pelli-Robson Contrast Sensivity Chart (Precision Vision La Salle Illinois, USA) at a distance of 
2 m. Reading ability was evaluated with MNRead charts (Precision Vision La Salle Illinois, USA) distributed 
in the Italian version by Carl Zeiss (Jena GmbH, Germany) at a 25 cm distance. For all patients, we added a 
+ 3.00 spherical lens. Maximum reading speed (MRS) was measured in words per minute (wpm), reading acuity 
was assessed in logMAR units. Microperimetry was performed in the eye with the highest BCVA with spec-
tral domain OCT (OCT-SLO, Optos, Scotland, UK), following pupil dilation with 0.5% tropicamide and 2.5% 
phenylephrine and a period of adaptation of 10 min to dim room illumination. A pattern with 28 locations in 
the macular area was used to assess sensitivity. “White” test lights (stimulus size Goldmann III, 200 ms in dura-
tion) were presented on a dim “white” background (1.27 cd/m2) using a 4–2 procedure. With the untested eye 
occluded, the patient was asked to maintain fixation on a 2° green point (fixation target). All patients had prior 
experience of microperimetric tests of visual function. Retinal sensitivity was measured and recorded with the 
average sum of all test locations obtained during the test. We analyzed location and stability of fixation. Stability 
was defined in terms of the percentage of fixation points that fell within a 2° and 4° diameter circle during the test 
defining stable (more than 75% of recorded fixation points within the 2° diameter circle), relatively unstable (less 
than 75% within the 2° diameter circle but more than 75% within the 4° diameter circle) and unstable fixation 
(less than 75% fixation points within the 4° diameter circle) as described by Fujii20. The National Eye Institute 
Visual Functioning Questionnaire-25 (NEI VFQ-25) was translated into Italian21 and constituted the VFQ-25.

Rehabilitation procedure.  The patient is seated 60–80 cm from the monitor of the pattern stimulator. 
After carefully cleaning the skin with “nuprep” gel, electrodes are applied using “Ten20” conductive paste con-
figured as in VEP test recording. The negative electrode (black) is applied according to the 10–20 system of 
electrodes placed on the FPz position, the positive electrode (red) is placed on the Oz position and the Earth 
electrode (green) is placed in the Cz position.

The patient is fitted with a corrective lens over the selected eye (highest BCVA) for rehabilitation. The session 
is performed under scotopic conditions keeping the eye not undergoing training closed. Prior to initiating train-
ing, each patient is left to adapt to the ambient room lighting, until a natural pupil diameter of approximately 
5 mm is obtained (about 10 min).

During the 10-min examination, a structured stimulus appears on the screen in the form of an alternating 
chess board at the reversal rate of 15 reversal/second with a fixation target (red point) in the center of the screen. 
In our study, we used the standard chessboard used in pattern 60 ‘VEP at the reversal rate of 15 reversal/s.

Whilst the patient fixes the target, a stimulus from the optical pathways through to the cortical visual areas 
is created and read by surface electrodes, which then produce a bioelectric VEP. During the session, the patient 
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is instructed to maintain the target using the retinal area that produces the real-time sound (highest amplitude 
VEP with lower latency; a continuous, uninterrupted sound) corresponding to a better visual perception. The 
sound is more intense and continuous when the patient fixes the fixation target with a healthy area of the retina 
or becomes intermittent when the fixation is interrupted. The aim of the training is to ensure that the patient 
uses a retinal area with optimal biological activity. During the training sessions, operators (SP, VR) monitor the 
progress of the target fixation and the intensity of the sound, encouraging patients’ consistent attention to the 
sound produced. All examinations were performed in the same room, with the same lighting settings.

A complete ophthalmic examination was repeated for all patients at six weeks from baseline (T1). Clinical 
examination controlled for any ocular events over the study period which could have affected study results. Reti-
nal sensitivity was retested at the same points, using the “retest mode.” This modality stores information about 
the landmarks used in previous exams, enabling a perfect overlapping of the new exam image with previous ones.

Statistical analysis was performed using the R software (A language and environment for statistical comput-
ing, version 3.3.3, R Foundation for Statistical Computing, Vienna, Austria). Given the non-normal distribution 
verified with the Shapiro–Wilk test and the small sample size, the pre- and post-rehabilitation values of each 
evaluated metric were compared with the nonparametric Wilcoxon test. Comparisons of paired samples (T0, 
T1) were performed with a one-sided Wilcoxon signed rank test and comparisons among treated and control 
samples were assessed with a Wilcoxon rank sum test (two-sided for pre-treatment and one-sided for post treated 
samples). Whiskers in box plots extend to the most extreme data point, which is no more than 1.5 times the 
interquartile range from the box. P-values were not corrected for multiple comparisons given the small number 
of comparisons. Differences were considered significant at p < 0.05.

Results
Twenty-four patients (11 males and 13 females, 11 right eyes and 13 left eyes) with advanced AMD were included 
in the study. Fifteen patients were available for training and were enrolled into the training group and 9 patients 
were unavailable for training and were enrolled into the control group. Average patient age was 79.38 ± 6.94 (range 
67–89 years). Patient demographic details are summarized in Table 1. No significant differences were observed 
between the groups for all considered parameters, reported in Tables 2 and 3.   

In the Retimax group, BCVA, CS, quality of life and 4° fixation stability improved significantly. Insignificant 
improvements were also observed in reading ability, macular sensitivity and 2° fixation acuity (Table 2; Figs. 1, 

Table 1.   Table of subjects and fixation results in both groups. R right eye, L left eye, Rel.Unst. relatively 
unstable; T0 baseline; T1 6-week follow-up, RETIMAX patients who completed the training sessions, 
CONTROLS patients unavailable to attend the training sessions.

Patient

Age (years) Eye Gender

Stability of fixation (% within 2° and 4°)

RETIMAX T0 T1

R1 75 R F Rel. Unst. 71%, 99% Stable 83%, 100%

R2 72 R M Unstable 64%, 73% Stable 97%, 99%

R3 68 R M Unstable 47%, 69% Stable 80%, 93%

R4 87 L M Unstable 32%, 74% Rel. Unst. 55%,100%

R5 89 L F Rel Unst 70%, 86% Rel. Unst. 62%, 93%

R6 84 R M Rel. Unst. 53%, 98% Rel. Unst. 71%,99%

R7 85 R M Rel. Unst. 66%, 85% Rel Unst. 74%, 91%

R8 80 R M Rel. Unst. 74%, 96% Rel Unst. 68%, 94%

R9 74 R M Rel Unst. 43%, 80% Rel Unst. 65%, 95%

R10 89 L F Rel. Unst. 68%, 98% Stable 83%,100%

R11 75 L M Rel. Unst. 70%, 78% Rel. Unst. 70%, 94%

R12 88 L F Rel. Unst. 50%, 89% Rel. Unst. 68%,100%

R13 67 R M Rel Unst . 58%, 91% Stable 87%,100%

R14 79 R F Rel Unst. 39% 81% Rel. Unst. 55%, 96%

R15 80 R F Rel Unst. 66%, 92% Stable 78%, 91%

Controls

C1 83 R F Rel. Unst. 72%, 99% Rel. Unst. 72%, 95%

C2 83 R F Rel. Unst. 66%, 100% Rel. Unst. 72%,99%

C3 84 L F Rel. Unst. 68%, 99% Rel. Unst. 69%, 96%

C4 80 R F Rel. Unst. 37%, 98% Rel. Unst. 42% 96%

C5 71 L M Rel. Unst. 42%, 95% Rel. Unst. 55% 91%

C6 87 L F Rel. Unst. 73%,100% Unstable 57%, 74%

C7 78 L M Rel. Unst. 70%,99% Rel. Unst. 74%,100%

C8 67 R F Rel. Unst. 66%,99% Rel. Unst. 59%,93%

C9 80 R F Rel. Unst. 72%,99% Rel. Unst. 55%,98%
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2). Patients’ visual fixation passed from relatively unstable to stable in 6 (40%) in the Retimax group (Table 1; 
Fig. 3), whereas all parameters either remained unchanged or worsened in the control group (Table 2).

At T6, a mean BCVA improvement of 33% was observed for patients in the Retimax group compared to a 
mean worsening of 10% reported in the control group (p = 0.03; Table 3). Similar changes were observed for 
quality of life, where a mean improvement of + 12% was recorded for patients in the Retimax Group vs. 11% in 
the control group (p = 0.02; Table 3).

Discussion
Our study suggests that VEP auditory biofeedback rehabilitation is a useful method to improve residual visual 
function in patients with advanced AMD. As has been proven for amblyopia18 and acquired cerebral damage19, 
VEP training seems to stimulate a re-adaptation of the vision pathway, thereby significantly improving visual 
acuity following rehabilitation, also in patients with low vision for advanced AMD.

The results of our investigation show an improvement of BCVA, CS, fixation stability and quality of life in 
comparison to a control group. Our data are in agreement with previous studies that showed stabilization of 
fixation and consequent improvement in visual acuity, retinal sensitivity and reading abilities in patients with 
AMD and different macular diseases using a microperimetric biofeedback training22–26.

Differently from microperimetric training, VEP visual rehabilitation is based on the training of patient’s 
spontaneous PRL by guiding the patient through an independent search for fixation on the retinal point that 
generates a wider VEP response, inducing a progressive voluntary control of eye movements. The process is 
therefore operator-independent. Microperimetric rehabilitation is based on the training of a PRL established by 
the physician and auditory biofeedback is therefore generated according to the proximity of patients’ fixation to 
this predefined healthy area of the retina. Results reported for Microperimetric rehabilitation for AMD patients 
have been few, but promising. A small study of 5 AMD patients treated with microperimeter (Nidek MP-1) 
biofeedback training (10 sessions/10 min) was reported by Vingolo et al.22. The authors reported significant 
improvements in all parameters considered. A larger study of 15 AMD patients with the same device (Nidek 
MP-1) reported increased fixation stability with improved reading abilities15.

Optimization with specific training was demonstrated by Tarita-Nistor et al.14 in the exploration of plasticity 
of fixation. The PRL was relocated in 6 AMD patients with the assistance of auditory biofeedback (Nidek MP-1) 
and fixation and reading speed were improved by 53% and 38% respectively, following training.

In a recent meta-analysis23, including 9 studies (885 eyes), reading speed was reported to be significantly 
improved (regardless of rehabilitation type) in AMD patients treated with microperimeter biofeedback reha-
bilitation systems, whilst mood and depression scores remained unchanged.

Table 2.   Table of results in both groups. T0 = baseline values; T1 = values at 6-week follow-up.

RETIMAX (15) Controls (9)

T0 T1 p value T0 T1 p value

BCVA (ETDRS) 20.33 27.07  < 0.001 20.67 18.56 0.99

Contrast sensibility (logSC) 1.17 1.31 0.042 1.23 1.17 0.97

Reading acuity (logMar) 0.29 0.27 0.13 0.33 0.34 0.98

Reading speed (WpM) 31.60 33.91 0.19 43.82 29.07 1.00

Quality of life (VFQ-25) 48.50 54.29  < 0.001 41.86 37.31 0.99

Macular sensitivity (dB) 5.79 5.95 0.40 6.17 6.06 0.53

Fixation 2° (%) 61.07 69.73 0.13 68 65.22 0.59

Fixation 4° (%) 89.13 95.53 0.019 98.33 96.11 0.61

Table 3.   Comparison of the results of the two groups (%) for the considered parameters with statistical 
significance.

Retimax (%) Controls (%) p value

BCVA  + 33.12  − 10.22 0.03

Contrast sensitivity  + 11.97  − 5.41 0.07

Reading acuity  + 9.09  − 3.33 0.90

Reading speed  + 7.29  − 33.66 0.08

QoL  + 11.93  − 10.88 0.001

Retinal sensibility  + 2.76  − 1.80 0.51

Fixation 2°  + 13.06  − 4.09 0.79

Fixation 4°  + 7.18  − 2.26 0.82
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Two recent articles24,25 compared the effectiveness of two different techniques of low vision rehabilitation 
with the MP-1 microperimeter in AMD patients. The techniques included a standard sound biofeedback or a 
luminous flickering biofeedback stimulus in place of the fixation target. Vingolo et al. 24 showed that the biofeed-
back method associated with the projection of a visual luminous pattern presented better results in training the 
patients to modify their PRL. Amore et al.25 noted more benefits associated with the flickering pattern biofeed-
back training compared to standard feedback for all visual function assessments considered.

Figure 1.   Box plot for baseline (T0) and 6 weeks (T1) assessments in the two groups. The horizontal bar of the 
box represents the median. ns (p > 0.05); *(p < .05); **(p < .01); ***(p < .001).

Figure 2.   Microperimetry and fixation stability at baseline and after the training sessions in patient R1.
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The MAIA microperimeter has also be used for biofeedback rehabilitation. A recent study confirmed its utility 
in healthy retinal area training of 77 consecutive AMD patients with bilateral central vision loss17. Daibert-Nido 
et al.26, in a retrospective review of 30 cases, also reported improvements for visual acuity, however with a nega-
tive trend for fixation stability, confirming the utility of the same tool in AMD patients.

In our study, a control group who did not receive training was included. Complete ophthalmic examinations 
were performed during the same study period under the same clinical settings. As expected, we found improve-
ments for all parameters considered in the Retimax group, especially for BCVA, CS, quality of life and 4° fixation 
stability over the study period. In the control group, all parameters either remained unchanged or worsened. 
Comparisons between the groups highlighted an improvement in favour to the Retimax group, especially for 
BCVA and quality of life.

The majority of the patients in the Retimax group reported subjective improvements in everyday skills and 
a better confidence in fixation tasks. Most patients requested the continuation of rehabilitation sessions. We 
speculate that further rehabilitative sessions may be required to maintain the achieved improvements and may 
further improve results.

We are aware of some limitations of our study. Firstly, microperimetric sensitivity and fixation values may be 
inaccurate due to the unstable fixation of patients despite the eye-tracking system present in the OCT machine. 
Moreover, reading data could be inaccurate based on many possible extrinsic variabilities (eg. patient fatigue or 
concern). Finally, a larger sample size, patient randomization and longer follow-up are needed to investigate the 
duration of improved efficacy over time.

Conclusions
VEP rehabilitation with Retimax low-vision training system optimizes residual vision function in AMD patients. 
Fixation is stabilized with improved visual acuity, contrast sensitivity and quality of life. Our study confirms the 
evidence of the plasticity of the visual system that can be successfully trained to optimize residual vision, creating 
new connections between the retina and the visual cortex with a rearrangement of neurons in this area. Further 
studies are needed to confirm these results and determine the duration of treatment over time.

Figure 3.   Fixation stability at baseline (T0) and after 6 weeks(T1) in patients R4 (a) and R3 (b).
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