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Modeling of Complex Planetary Gear Sets Using
Power-Oriented Graphs

Roberto Zanasi , Member, IEEE, and Davide Tebaldi

Abstract—In this paper, a systematic approach for the dynamic
modeling of complex planetary gear sets is presented. The ap-
proach relies upon a set of rules for building the system matrices
and vectors of the system full dynamic model for any planetary
gear set. A congruent state-space transformation is applied to
obtain a reduced-order rigid model of the system, which allows
for faster simulations. The behavior of the tangential forces ac-
counting for the gears interactions is proven to be obtained from
the reduced-order model. Furthermore, the kinematic relations
of the considered planetary gear set are automatically generated
when developing the reduced-order rigid model. As an example,
two systems of interest in the vehicle industry are then modeled
with the proposed approach and simulated in Matlab/Simulink: a
Ravigneaux planetary gear set and a double-stage planetary gear
set.

Index Terms—Automotive systems, planetary gear sets, energetic
modeling, power-oriented graphs, simulation.

I. INTRODUCTION

THE trend in the development of modern road transportation
systems is strongly oriented toward the hybridization of

propulsion systems, since this represents the most promising
solution allowing to limit the exhaust emissions. The advantages
that Hybrid Electric Vehicles (HEVs) can potentially bring to
the world community are several. A vast array of different
architectures have been proposed in the literature for the de-
velopment of different HEVs topologies with different control
strategies [1]–[2]. Based on the architecture type, it is possible to
distinguish among series [3], parallel [4] and power-split [5]–[6]
hybrid types. Among the variety of architectures, power-split
HEVs definitely stick out, since they combine the advantages of
series and parallel hybrid architectures [5]. Power-split HEVs
exploit a device whose purpose is to split the power coming
from the endothermic source of energy, i.e. the ICE (Internal
Combustion Engine), into two different power flows driving
the vehicle transmission system. The first power path is fully
mechanical, whereas the second includes some mechanical-to-
electrical and electrical-to-mechanical energy conversion. The
mechanical power-splitting device is typically a planetary gear
set, which can be of several types: single-stage [7], double-
stage [8] or more articulated solutions for specific applications
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such as Ravigneaux planetary gear sets [9]–[11] and many
others.

In order to achieve the full potential of HEVs, the power
management problem must be solved. This is the problem of de-
livering the power demand from the transmission system while
minimizing the specific fuel consumption of the ICE. The latter
requirement can be achieved by performing a careful analysis of
the most frequent operating points of all the physical elements
of the architecture, with the final goal to make them work in
the most efficient operating regions. The first step is therefore
the mathematical modeling of the physical elements composing
the architecture. This task is essential when developing the
control strategy for the considered hybrid architecture, since
it allows to carefully investigate its dynamic behavior and to
properly control it. Different works can be found in the literature
regarding the modeling of power-split HEVs, including plane-
tary gear sets and all the main elements of the transmission
system. When focusing on planetary gear sets, an interesting
approach for easily and quickly determining the kinematics of
a coupled epicyclic spur-gear train can be found in [12]. Next,
the well-known Lever Analogy was introduced back in 1981
by Benford and Leising [13]. This is still nowadays one of
the most effective tools for analyzing the kinematics and the
dynamics of planetary gear sets. In fact, several works refer to
the Lever Analogy to establish a fundamental understanding of
the speed and torque relationships characterizing the considered
planetary gear sets [5], [14]–[16]. In [17], the planetary gear set
is modeled by using basic physics laws and introducing some
simplifying assumptions about the mechanical dynamics, i.e.
all the connections in the powertrain are supposed to be rigid.
With all these methods, the natural constraints relating the gears
angular speeds, as well as the input torques relations at steady-
state, can be found. The mathematical modeling of physical
systems can also be effectively derived by exploiting suitable
modeling techniques [18]. Among those, the Power-Oriented
Graphs (POG) technique [19] is adopted in this paper. The
POG is a graphical modeling technique which relies on power
and energy variables to describe the energy exchanges between
the physical elements present in the system. Some examples
showing the application of the POG technique in the automotive
field can be found in [20]–[22].

In this paper, it is our intent to present an extension of the
systematic approach for modeling planetary gear sets introduced
in [22]. The contributions of this paper compared to our previous
work are: a) formal proofs of the model properties; b) the intro-
duction of the relative friction coefficients present between two

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5507-825X
https://orcid.org/0000-0003-1432-0489
mailto:roberto.zanasi@unimore.it
mailto:davide.tebaldi@unimore.it


ZANASI AND TEBALDI: MODELING OF COMPLEX PLANETARY GEAR SETS USING POWER-ORIENTED GRAPHS 14471

in-contact gears; c) the comparison of the proposed method with
the well-known Lever Analogy; d) new considerations about the
possible operating conditions of planetary gear sets; e) the pre-
sentation of a new case study and its simulation in a power-split
HEV; f) the extension of a case study, which was previously
shown in our previous work [22], with the introduction of the
relative friction coefficients; g) new considerations about the
energy and the angular momentum of the system. The presented
approach is deemed more effective than the current state of the
art for the following reasons:

1) The dynamic model is general for any planetary gear set
and is directly implementable in Matlab/Simulink.

2) The user is only required to compute two matrices, which
fully and uniquely define the considered planetary gear
set, using the algorithms presented in Section III. The
procedure for building the system vectors and matrices
is entirely systematic.

3) The model includes both the friction accounting for the
rotation of the gears around their own axes and the relative
friction associated with the in-contact gears exhibiting a
relative movement.

4) Two state space models are obtained: a full dynamic
model accounting for the gears elastic interaction, and a
reduced-order model assuming rigid connections between
the gears. The latter is proven suitable for fixed-step sim-
ulations.

5) In the reduced-order dynamic model, the time behavior
of the tangential forces exchanged between the gears can
still be obtained offline, even if the tangential forces are
no longer present in the reduced-order model.

6) In the reduced-order dynamic model, the inherent kine-
matic speed and torque relations of the considered system
automatically turn out.

The remainder of this paper is organized as follows. Section II
concerns the introduction of the basic rules for the system
definition. Next, the general full dynamic model and the POG
scheme are introduced and described. In Section III, the direct
computation of the radii matrixR and of the relative friction ma-
trix BΔω uniquely defining the system are addressed, followed
by the derivation of the reduced-order model. In order to show
how to use the proposed approach, we address the systematic
modeling of two case studies: the Ravigneaux planetary gear set
used in [9]–[11], see Section III, and a double-stage planetary
gear set, see Section IV. In Section III, the comparison of the
systematic POG-based approach with the Lever Analogy is
addressed as well. Furthermore, the Ravigneaux planetary gear
set model is tested with reference to a real case scenario. Finally,
the conclusions of this work are given in Section V.

II. MODELING A THREE-GEARS SYSTEM

This section focuses on the modeling of the three-gears system
shown in Fig. 1. This system is used as a simple case study
to introduce the notations adopted for the systematic modeling
procedure presented in this paper. The horizontal colored arrows
“ ” “ ” and “ ” , shown in Fig. 1.a), highlight the
orientation of the rotation axes of the three considered gears.

Fig. 1. Structure of the considered three-gears system.

Fig. 2. Use of the Right-hand rule to compute: the positive direction of rotation
of ω1, ω2 and ω3; the positive orientation of F12 and F23.

The same color coding is used in Fig. 2, showing the equivalent
3D representation of Fig. 1.a). By relying upon the well-known
Right-hand rule and aligning the right thumb with the three
colored arrows “ “ “ ” and “, the reader can verify
that the positive direction of rotation is clockwise for all the
three angular speeds ω1, ω2 and ω3. This is also highlighted by
the black dashed arrows in Fig. 2. Additionally, the input torques
τ1, τ2 and τ3 are assumed to have the same positive directions as
the respective angular speedsω1,ω2 andω3, as denoted in Fig. 1.
This ensures that the power flowing through the corresponding
energetic port (ωi, τi) is positive if it is entering the system. Each
gear is characterized by a one-digit subscript “i” and a specific
color. The one-digit subscript “i” denotes all the parameters
associated with the gear: Ji and bi are the moment of inertia
and the linear friction coefficient of gear “i”. If two gears “i”
and “j” are arranged in a mechanical configuration causing the
presence of some relative friction between them, the symbol bij
will denote the relative friction coefficient between gear “i” and
gear “j”.

The gears of the considered system interact with each other
by means of their teeth, which represent an elastic coupling.
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Fig. 3. General POG scheme of gearing systems.

This elastic coupling is denoted in Fig. 1 by red lines (i.e. “ ”)
representing the tangential springs acting between the gears.
Each tangential spring is characterized by a subscript “ij”. The
term Kij denotes the stiffness coefficient, whereas the variable
Fij denotes the tangential force associated with the spring “ij”.
The presence of these springs is also highlighted in the 3D
drawing in Fig. 2, where the two tangential springs K12 and
K23 are physically located at the contact points between the
gears “1” and “2” and at the contact points between the gears
“2” and “3”, respectively.

The red vertical arrows “ ” “ ” shown in Fig. 1.a) highlight
the positive orientation of both the tangential force Fij and the
tangential spring Kij , for ij ∈ {12, 23}. As far as the system in
Fig. 1.a) and Fig. 2 is concerned, it is possible to see that spring
K12 has its first terminal connected to gear “1” and its second
terminal connected to gear “2”. Similarly, springK23 has its first
terminal connected to gear “2” and its second terminal connected
to gear “3”. Fig. 2 shows that the forces F12 and F23 exchanged
at the contact points are indeed tangential to the gears, which is
the reason why the contact springs are referred to as tangential
springs. With reference to Fig. 2, the positive direction of forces
Fij can be determined as follows. Since the second terminal of
spring Kij is connected to gear Jj , the right thumb has to be
aligned with the colored arrow identifying the positive direction
of the angular speed ωj . By applying the Right-hand rule, one
finally obtains the positive direction of the tangential force Fij

associated with spring Kij . With reference to Fig. 1, the positive
direction of tangential force Fij is:

1) entering the page (i.e. “⊗”) if force Fij is on the right-
hand side of the horizontal arrow identifying the positive
direction of angular speed ωj ;

2) exiting the page (i.e. “�”) in the opposite case.
The subscript “ij” also denotes the linear friction coefficient

dij in parallel with the tangential spring “ij”.
The systematic modeling approach proposed in this paper

allows to model any type of complex gear train, planetary or
parallel gear set using the general POG scheme shown in Fig. 3.
POG schemes are based on two fundamental blocks, namely
the elaboration and the connection blocks [19]. The first is used
to model all the physical elements storing and/or dissipating
energy, while the second models all the physical elements per-
forming energy conversion. Moving from left to right in the POG

scheme of Fig. 3, the first block is an elaboration block describ-
ing the dynamics of the gears inertial elements present within
the system. The second block is an elaboration block accounting
for the gears viscous and relative friction. The third block is a
connection block describing the energy conversion between the
mechanical rotational and the mechanical translational energetic
domains. The fourth block is an elaboration block accounting for
the dynamics of the gears elastic contact points. Finally, the fifth
block is an elaboration block describing the friction coefficients
associated with the tangential springs. The crossed circles in
the upper part of the elaboration blocks are called summation
nodes. The presence of a black spot in a summation node means
that the considered power variable entering the node has to be
subtracted. By reading the POG scheme of Fig. 3, the following
state space equations of the system can be directly obtained:[

J 0
0 K-1

]
︸ ︷︷ ︸

L

ẋ=

[−BJ −RTBkR −RT

R 0

]
︸ ︷︷ ︸

A

x+

[
I
0

]
︸ ︷︷ ︸

B

u︸︷︷︸
τ

,
(1)

where x is the state vector:

x =

[
ω

F

]
, ω =

⎡
⎣ω1

ω2

ω3

⎤
⎦ , F =

[
F12

F23

]
, (2)

ω is the speed vector, F is the force vector, u = τ is the
input torque vector and y = BT x = ω is the output vector. The
meaning of the matrices within the state space model (1) is the
following: L, A and B are the energy, power and input-power
matrices of the system, respectively; I is an identity matrix
of proper dimension; J and BJ are the inertia and friction
matrices related to the gears; K and BK are the stiffness and
friction matrices related to the tangential springs; R is the radii
matrix defining the kinematic relations between the gears and
the tangential springs. The friction matrix BJ is given by the
sum of two terms:

BJ = Bω +BΔω. (3)

The matrix Bω is the friction matrix associated with the rotation
of the gears around their own rotation axes. The matrix BΔω is
the relative friction matrix associated with the relative angular
speed between two different gears. The structures of matrices J,
Bω, K, BK and vector τ are:

J =

⎡
⎣J1 0 0

0 J2 0
0 0 J3

⎤
⎦ , Bω =

⎡
⎣b1 0 0

0 b2 0
0 0 b3

⎤
⎦ , τ =

⎡
⎣τ1

τ2

τ3

⎤
⎦ , (4)

K =

[
K12 0

0 K23

]
, BK =

[
d12 0
0 d23

]
. (5)

One can easily verify that: a) the structures of matrices J, Bω

and vector τ in (4) are completely defined by the order of the
angular speedsωi within the speed vectorω defined in (2); b) the
structures of matrices K and BK in (5) are completely defined
by the order of the tangential forcesFij within the force vectorF
in (2). As the positive direction of the speeds ωi and the positive
orientation of the tangential forces Fij change, only the radii
matrix R and the relative friction matrix BΔω vary. By adopting
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the particular choice of positive directions and orientations as in
Fig. 1.a), matrices R and BΔω assume the following form:

(6)

The green terms in (6) denote the subscripts of the state space
variables ωi and Fij . With reference to [19], one can prove that
the following two statements hold:

1) The change of sign for the positive direction of the angular
speed ωi (and of torque τi) implies the change of sign for all the
coefficients of: a) the i-th column of the radii matrix R; b) the
i-th column and the i-th row of the relative friction matrix BΔω .

Example. The gearing system in Fig. 1.b) differs from the one
in Fig. 1.a) because the positive direction of the angular speed
ω3 has been changed. Using the Right-hand rule, as described in
Fig. 2, one can conclude that the positive direction of rotation of
the gear J3 has now changed into counter-clockwise. The new
structures of matrices R and BΔω are the following:

(7)

where the black coefficients have not changed sign with respect
to (6). The red coefficients in (7) have changed their sign,
whereas the blue coefficients in (7) are those whose sign has
not changed because a double sign change has occurred.

According to statement 1), matrices R and BΔω need to be
updated as described next. Since the positive direction of ω3 has
changed, the signs of all the coefficients in the third column of
matrixR in (6) need to be changed, as shown in (7). Additionally,
the signs of all the coefficients in the third column and in the
third row of BΔω in (6) need to be changed, as shown in (7).
The blue coefficient b13 belongs to both the third row and the
third column of matrix BΔω. Consequently, the coefficient b13

changes sign twice.

2) The change of the positive orientation of the tangential forces
Fij implies the change of sign for all the coefficients of the ij-th
row of the radii matrix R.

Example. The gearing system in Fig. 1.c) differs from the sys-
tem in Fig. 1.b) because the positive orientation of the tangential
forceF12 has been changed. As a consequence, the new structure
of matrix R is the following:

(8)

The color coding is the same as in (7). According to statement
2), matrix R needs to be updated as follows. Since the positive
orientation of F12 has changed, the signs of all the coefficients
in the row corresponding to i = 1 and j = 2 of matrix R in (7),
namely the first row, need to be changed, as shown in (8).

Fig. 4. Structure of the considered Ravigneaux planetary gear set.

III. MODELING A RAVIGNEAUX PLANETARY GEAR SET

Let us now consider the Ravigneaux planetary gear set shown
in Fig. 4. This system has been studied and modeled in [9] using
a different approach. Let us introduce the following symbols:⎧⎪⎨

⎪⎩
NJ = {c, p, q, t, s, r}, nJ = dim(NJ ) = 6,

NK = {pr, pt, qp, qs}, nK = dim(NK) = 4,

NB = {cp, cq, cr, st}, nB = dim(NB) = 4,

(9)

where NJ is the set containing the one-digit subscripts identi-
fying the system gears, nJ is the number of gears, NK is the
set containing the two-digit subscripts identifying the tangential
springs, nK is the number of tangential springs, NB is the set
containing all the two-digit subscripts identifying the relative
friction coefficients bij and nB is the number of relative friction
elements present within the system.

The considered system can be modeled using the general POG
block scheme shown in Fig. 3. The corresponding state space
equations are given in (1). Let us choose the speed vector ω and
the force vector F as:

ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

ωc

ωp

ωq

ωt

ωs

ωr

⎤
⎥⎥⎥⎥⎥⎥⎦ , F =

⎡
⎢⎢⎣
Fpr

Fpt

Fqp

Fqs

⎤
⎥⎥⎦ . (10)

The order of the speed variables ωi in ω completely defines the
structures of matrices J, Bω and vector τ :

J=

⎡
⎢⎢⎢⎢⎢⎢⎣

Jc 0 0 0 0 0
0 Jp 0 0 0 0
0 0 Jq 0 0 0
0 0 0 Jt 0 0
0 0 0 0 Js 0
0 0 0 0 0 Jr

⎤
⎥⎥⎥⎥⎥⎥⎦, Bω=

⎡
⎢⎢⎢⎢⎢⎢⎣

bc 0 0 0 0 0
0 bp 0 0 0 0
0 0 bq 0 0 0
0 0 0 bt 0 0
0 0 0 0 bs 0
0 0 0 0 0 br

⎤
⎥⎥⎥⎥⎥⎥⎦, τ =

⎡
⎢⎢⎢⎢⎢⎢⎣

τc
τp
τq
τt
τs
τr

⎤
⎥⎥⎥⎥⎥⎥⎦. (11)
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Fig. 5. Effective radii rh. (a) Direct contact. (b) Indirect contact.

The order of the force variables Fij within vector F in (10)
completely defines the structures of matrices K and BK :

K=

⎡
⎢⎢⎣
Kpr 0 0 0

0 Kpt 0 0
0 0 Kqp 0
0 0 0 Kqs

⎤
⎥⎥⎦, BK=

⎡
⎢⎢⎣
dpr 0 0 0
0 dpt 0 0
0 0 dqp 0
0 0 0 dqs

⎤
⎥⎥⎦. (12)

The only two matrices which are not yet defined in (1) are the
radii matrix R and the relative friction matrix BΔω.

A. Algorithm 1: Calculation of Radii Matrix R.

Let rij,h denote the generic coefficient of matrix R = [rij,h],
where ij ∈ NK and h ∈ NJ , see (9). Coefficient rij,h links the
angular speed ωh of gear h to the tangential speed of one of the
two terminals of the tangential force Fij .

Property 1: The generic coefficient rij,h of the radii matrix
R can be computed as follows:

rij,h = SFij
Sωh

rh, (13)

where:
a) rh is the “effective radius” which links the angular speed ωh

to the tangential force Fij . We distinguish the two cases: 1) if
the angular speed ωh directly affects the force Fij , see the direct
contact of Fig. 5(a), then the effective radius rh coincides with
the radius of the gear which links velocityωh to forceFij; 2) if the
angular speed ωh affects the force Fij through an intermediate
gear “p”, see the indirect contacts of Fig. 5.b, then the effective
radius rh coincides with the distance between the rotation axes
of the two angular speeds ωh and ωp.
b) SFij

is the sign of the positive orientation of vector Fij:

SFij
=

{
1 if i = h (direct) or i = p (indirect),
−1 if j = h (direct) or j = p (indirect).

c) Sωh
is related to the sign of the velocity vector ωh:

Sωh
=

{
1 if force Fij is on the left of vector ωh,
−1 if force Fij is on the right of vector ωh.

The left and right sides of vector ωh are determined by moving
along the positive direction of vector ωh.

Example. By applying the previous rules to the gears shown
in Fig. 5, one obtains: a) the coefficient rih,h associated with the
“direct” contact is rih,h = −rh because SFih

= −1 and Sωh
=

1; b) the coefficients rpj,h and rip,h associated with the “indirect”

Fig. 6. Angular speeds ωh and tangential velocities ẋhj . (a) Direct contact.
(b) Indirect contact.

contacts are: rpj,h = rh becauseSFpj
= 1 andSωh

= 1; rip,h =
−rh because SFip

= −1 and Sωh
= 1.

From (1), it can be easily shown that ẋij = rij,h ωh is the
tangential speed of one of the two terminals of the spring Kij

when the angular speed ωh moves along its positive direction.
Since the sign of ẋij directly affects the sign of Fij , it results
that ẋij must change sign both when the velocity vector ωh

and the force vector Fij change their positive direction. Fig. 6
graphically shows why the effective radii are equal to rh for both
the cases a) and b) of direct and indirect contact. In particular,
with reference to the indirect contact case b), the tangential speed
ẋhp = rh ωh is equal to the tangential speeds ẋpj and ẋip of
the two elastic elements Kpj and Kip. This holds because the
angular speed ωp is kept equal to zero when ωh moves along its
positive direction.

By applying the systematic rules given in Prop. 1 to the Rav-
igneaux planetary gear set of Fig. 4, one obtains the following
radii matrix R:

(14)

The coefficient rqp,c = rc1 − rc2 highlighted in (14) describes
the interaction between the angular speed ωc and the tangential
force Fqp. This coefficient is obtained using the superposition
principle: a) the first term r′qp,c = rc1 is related to ωc affecting
Fqp through gear “q”, being rc1 the effective radius, for which:
SFqp

= 1 and Sωc
= 1 hold; b) the second term r′′qp,c = −rc2

is related to ωc affecting Fqp through gear “p”, being rc2 the
effective radius, for which SFqp

= −1 and Sωc
= 1 hold. The

parameters within the radii matrix R in (14) are constrained as
follows:

rq =
rt
2
− rs

2
, rp =

rr
2

− rt
2
,

rc1 =
rs
2

+
rt
2
, rc2 =

rr
2

+
rt
2
.

(15)

The constraints in (15) easily follow from Fig. 4. Substituting
(15) in (14), one obtains the following equivalent form of the
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radii matrix R:

(16)

Remark 1: Let us consider all the planetary gear sets that can
rotate along a fixed axis when all the gears in the set are locked
together. As an example, refer to the case studies shown in Fig. 4
and Fig. 16. Let dω = [d1 d2 . . . dnJ ]

T denote a vector whose
components di are defined as follows:

di =

{
1 if the vectors �ωi and �ω1 have the same direction,

−1 otherwise.

One can easily verify that, for the considered planetary gear sets,
vectordω belongs to the kernel of matrixR, that isRdω = 0. As
far as the Ravigneaux planetary gear set in Fig. 4 is concerned,
di = 1 holds for i = [1, 2, . . . , nJ ]. Therefore, the relation
Rdω = 0 implies that the sum of all the elements contained
within each row of matrix R equals zero. This property can be
easily proven true by referring to the matrix R in (16) as an
example. From a physical point of view, this property means
that d1ω1 = d2ω2 = . . . = dnJ

ωnJ
�= 0 is a feasible operating

condition for the considered system. Note: this property does
not apply to the three-gears system in Fig. 1.

B. Algorithm 2: Calculation of Relative Friction Matrix BΔω.

Let Bij denote the generic coefficient of matrix BΔω=[Bij ]
where i, j∈NJ , with the set NJ is defined in (9).

Property 2: The generic coefficientBij of the relative friction
matrix BΔω can be computed as:

Bij =

⎧⎪⎨
⎪⎩

∑
pq∈Ni

bpq if i = j,

Sij b̄ij if i �= j,

(17)

where Ni is a set of subscripts “pq” defined as follows:

Ni = {all the subscripts pq ∈ NB such that p = i or q = i}
NB is defined in (9), b̄ij is the relative friction coefficient defined
as:

b̄ij =

⎧⎪⎨
⎪⎩

bij if ij ∈ NB ,

bji if ji ∈ NB ,

0 if otherwise,

and Sij is a sign function defined as:

Sij =

⎧⎪⎨
⎪⎩

−1 if ωi and ωj have the same positive direction,

1 if ωi and ωj have different positive direction,

0 if b̄ij = 0.

Note: according to (17), all the coefficients Bii on the diagonal
of matrix BΔω are always positive.
Applying the systematic rules given in Prop. 2, one can build
the following relative friction matrix BΔω for the considered

Ravigneaux planetary gear set:

(18)

The generic relative friction coefficient bij within matrix BΔω,
acting in between gears “i” and “j”, can have two different
meanings. In fact, it can either be an actual relative friction
coefficient within the system or be used to represent a lockup
clutch between the two gears. The two limit cases of bij → 0 and
bij → b∞ij , where b∞ij has to be sufficiently large, represent the
case of open and closed lockup clutch, respectively. This enables
the simulation of different operating modes of the transmission
system. The proposed model also allows to apply a nonlinear
control to a lockup clutch inserted in between two gears of the
system: this can be done by inserting an external control acting
on the system input and output vectors u = τ and y = ω.

The vectors and the matrices defined in (10), (11), (12), (14)
and (18) completely define the full elastic model (1) of the
considered Ravigneaux planetary gear set.

C. Ravigneaux Planetary Gear Set: Reduced-Order
Rigid Model.

Let us assume all the coefficients Kij , for ij ∈ NK , within
the stiffness matrix K in (12) to tend to infinity. From the state
space model (1), one obtains the following nK = 4 constraints
among the gears angular speeds:

Rω = 0 ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
rc2 ωc + rp ωp − rr ωr = 0,

rc2 ωc − rp ωp − rt ωt = 0,

rp ωp + rq ωq + ωc(rc1 − rc2) = 0,

rc1 ωc − rq ωq − rs ωs = 0.

(19)

These constraints can be used to express nK angular speeds of
the system as a function of the remaining nr = nJ − nK = 2
angular speeds. The integer nr also represents the order of the
reduced-order rigid model obtained when K → ∞. Let x1 =
[ ωc ωr ]T be the state vector of the reduced-order rigid model.
Using constraints (19) and (15), the original state vector x can
be expressed as a function of the new state vector x1 as:

x = T1 x1 ⇔
[
ω
F

]
︸︷︷︸
x

=

[
Q1

0

]
︸ ︷︷ ︸
T1

[
ωc

ωr

]
︸ ︷︷ ︸
x1

,
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Fig. 7. Reduced-order rigid POG scheme of gearing systems.

where the matrix Q1 is defined as follows:

ω = Q1 x1 ⇔ Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

− n1−1
n1+1

2n1
n1+1

n1+n2−2n1n2
n1+n2

2n1n2
n1+n2

1 − n1 n1

1 − n2 n2

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

The parameters n1 and n2 in (20) denote the ring-over-large sun
and the ring-over-small sun gear ratios, respectively:

n1 = −rr/rt, n2 = rr/rs. (21)

By applying the congruent transformation x = T1 x1 to system
(1), see [19], one obtains the following state space modelL1ẋ1 =
A1x1 +B1u of the reduced-order rigid system:[

J11 J12

J12 J22

]
︸ ︷︷ ︸

L1

ẋ1 =

[
a11 a12

a12 a22

]
︸ ︷︷ ︸

A1

x1 + QT
1︸︷︷︸

B1

τ︸︷︷︸
u

, (22)

where matrices L1, A1 and B1 have the following structure:⎧⎪⎪⎨
⎪⎪⎩
L1 = TT

1LT1 = QT
1JQ1,

A1 = TT
1AT1 = −QT

1R
TBKRQ1︸ ︷︷ ︸

0

−QT
1BJQ1,

B1 = TT
1B = QT

1 .

(23)

The term QT
1R

TBKRQ1 in (23) is equal to zero because Q1 ∈
ker(R):

Rω = 0 ⇔ RQ1 x1 = 0 ⇔ RQ1 = 0. (24)

The full expressions of the elements Lij and aij within the
energy matrix L1 and the power matrix A1 are not reported for
the sake of brevity, as they can be straightforwardly computed
using (23). The reduced-order rigid model given in (22) can be
graphically represented using the POG block scheme in Fig. 7.

The constraints among the angular speeds of the Ravigneaux
planetary gear set that were derived in [9] using the Willis
equation (see Eqs. (3)-(4) in [9]) are the same as those obtained
using the presented systematic approach: see the fourth and
fifth rows of system (20). Additionally, the static input torques
balance given in Eqs. (5)-(6) in [9] is equivalent to the following
constraint:

B1 τ = QT
1 τ = 0. (25)

The latter equation can be obtained at steady-state from the first
equation of system (1) when BJ = 0, that is when the friction
terms within the system are neglected.

D. Calculation of the Vector Force F.

The reduced-order rigid system (22) no longer contains any
information regarding the force vector F. Nevertheless, vector
F can be obtained from the reduced-order rigid system (22), as
described by Prop. 3 illustrated in the following.

Property 3: The time behavior of the force vector F can be
obtained from the state vector x1 and the input vector u = τ of
the reduced rigid system (22) using the following relation:

F = (RJ-1RT)-1RJ-1(τ −BJQ1x1). (26)

The proof of this property is reported in Appendix.
Remark 2: The relation (26) can be very useful because

it provides the tangential forces Fij between the gears as a
function of the input vector τ and of the state vector x1 in the
reduced-order rigid model (22). Note that relation (26) can be
implemented offline.

E. Ravigneaux Planetary Gear Set: Lever Analogy.

A different approach for computing the kinematic relations of
a planetary gear set is the Lever Analogy [13]. The considered
Ravigneaux planetary gear set can be seen as the combination
of two planetary gear sets:

i) a single planetary gear set PG1, where the sun, the planet
pinions, the ring and the carrier are represented by gears
“t”, “p”, “r” and “c”, respectively;

ii) a planetary gear set PG2 with two sets of planet pinions,
where the sun, the outer planet pinions, the inner planet
pinions, the ring and the carrier are represented by gears
“s”, “p”, “q”, “r” and “c”, respectively.

PG1 and PG2 share the same ring and the same carrier
inertial elements. The procedure to follow in order to build a
Lever Diagram [13] is the following:

1) replacement of each gear with a vertical lever;
2) rescaling, interconnection and/or combination of levers

accordingly;
3) identification of the lever connections, according to the

gears connections.
The lever diagrams of the two planetary gear setsPG1 andPG2
are shown in Fig. 8.a). The interconnections between the gears
are denoted in Fig. 8.a) by horizontal links [13] highlighted in
magenta. The whole lever diagram of the Ravigneaux planetary
gear set [23] is obtained by rescaling the diagram of PG1
with respect to the diagram of PG2 according to the following
proportion:

rr : rx = rt : rs.

The resulting diagram is shown in Fig. 8.b). In order to derive the
kinematic relations between the angular speedsωi, two different
scenarios can be considered. In the first scenario, gear “c” is held
fixed and gear “r” rotates clockwise. In the second scenario, gear
“r” is held fixed and gear “c” rotates clockwise. By applying the
superposition principle to these two scenarios, one obtains the
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Fig. 8. Ravigneaux planetary gear set: Lever Diagrams.

following speed equations:

ωt = ωc

(
1 +

rr
rt

)
− ωr

rr
rt
, ωs = ωc

(
1 − rr

rs

)
+ ωr

rr
rs

,

which coincide with those reported in the fourth and fifth rows of
system (20) using (21). In order to derive the torque equations,
two torque balances can be applied, considering the ring first and
the carrier next as fulcrum, respectively. The obtained torque
equations coincide with those given by constraint (25). The
rotational inertias can finally be included in the diagram by
attaching masses to the lever and solving force and moment
balance equations [13].

F. Systematic POG-Based Approach Versus Lever Analogy

The main differences between the POG-based approach and
the Lever Analogy approach are listed in the following:

a) In the POG-based approach, step 1) of the Lever Diagram
procedure reported in Section III-E is replaced by the
drawing of a simple 2D graphical representation of the
considered planetary gear set, such as the one shown in
Fig. 4.

b) In the POG-based approach, step 2) of the Lever Diagram
procedure is not required, since the elements in common to
PG1 and PG2 are not treated as two separated elements,
but as a unique inertial element interacting with PG1 and
PG2.

c) In the POG-based approach, step 3) of the Lever Diagram
procedure is automatically incorporated in the definition
of set NJ , set NK and set NB .

d) The POG-based approach gives both a full dynamic model
and a reduced-order rigid model of the considered system.

The reduced-order model allows for faster simulations. Fur-
thermore, the behavior of the forces that are exchanged at the
gears contact points is not lost, as it can be recovered using
Prop. 3.

The POG-based approach proposed in this paper offers the ad-
vantages of being systematic, flexible, and of providing a general
model which is directly implementable in the Matlab/Simulink
environment. The systematic property refers to the fact that the

TABLE I
RAVIGNEAUX PLANETARY GEAR SET: SIMULATION PARAMETERS

procedure for building the model lies on two simple algorithms
which can be automatically implemented, once sets NJ , NK

and NB are defined. The flexibility property refers to the fact
that the user can very easily choose which relative frictions bij
must be present in the system by defining set NB . Additionally,
the user can freely choose which angular speedsωi are to be kept
in the state vector of the reduced-order rigid model. The general
scheme shown in Fig. 3 can be used to model any planetary gear
set, and is composed of basic blocks that can be found in the
standard Simulink libraries.

In conclusion, the Lever Analogy is mainly suitable for the
system kinematic analysis and gives a good understanding of
the system thanks to the intuitive comparison with levers. On
the other hand, the proposed systematic POG-based approach is
suitable for simulation and control purposes. This is thanks to the
fact that the system model is general and directly implementable
in the Matlab/Simulink environment, and thanks to the fact that
the system matrices and vectors are systematically built.

G. Ravigneaux Planetary Gear Set: Simulation Results.

The Ravigneaux planetary gear set of Fig. 4 has been simu-
lated in order to compare the dynamic behavior and the simu-
lation time of the following two models: the full elastic model
given in (1) and the reduced-order rigid model given in (22). The
two simulations described in Section III-G1 and Section III-G2
have been performed using the parameters, input signals and
initial conditions given in Table I. The simulation results re-
ported in Section III-G3 refer to a real case scenario, where
the Ravigneaux planetary set gear is exploited as a power-split
device in a HEV architecture.

1) First Simulation: this simulation has been performed
adopting the positive directions shown in Fig. 4 for the angu-
lar speeds ωi and for the tangential forces Fij . The obtained
simulation results are shown in Fig. 9. In particular, the time
behavior of the angular speeds ωi, for i ∈ NJ , is shown on the
left subplot of Fig. 9, whereas the time behavior of the tangential
forces Fij , for ij ∈ NK , is shown on the right subplot. The
continuous colored characteristics within the figure refer to the
simulation results obtained using the elastic state-space model
(1). The red dashed characteristics of angular speeds ωi on the
left subplot of Fig. 9 refer to the simulation results obtained
using the rigid reduced-order model (22). The red dashed char-
acteristics of the tangential forces Fij on the right subplot of
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Fig. 9. First simulation of the Ravigneaux planetary gear set.

Fig. 9 have been obtained offline using (26). Fig. 9 shows the
good matching between the simulation results obtained using
the full and reduced-order models. The right subplot of the
figure shows the fast oscillations that the tangential forces Fij

exhibit. This is due to the fact that the stiffness coefficients
Kij in Table I are quite high, and the period of the forces
oscillations is inversely proportional to the stiffness coefficients.
It is possible to conclude that the full model is more suited to
be used when accurate simulations need to be performed. In
this way, the exact oscillating behavior of the tangential forces
Fij can be determined. Conversely, the reduced-order model
is more suited to be used when real-time execution is sought.
Fixed-step simulations are enabled by the reduced-order model,
because the fast dynamics arising from the tangential springs
are no longer present. Nevertheless, the average behavior of the
tangential forces Fij can still be recovered exploiting Prop. 3,
as shown in the right subplot of Fig. 9.

2) Second Simulation: this simulation has been performed
adopting the following positive directions for the variables ωi

and Fij shown in Fig. 4:

(27)

The variables encircled in the red dashed ellipses in (27) are
those whose sign has been changed with respect to positive
directions reported in Fig. 4. Using the rules given in Prop. 1,
one obtains the following new radii matrix R:

(28)

The color coding for the coefficients in matrix R is the same
as the one adopted in (7) for the three-gears system example.
Indeed, the red coefficients and the red subscripts in (28) are
those for which a sign change has occurred with respect to the
radii matrix R shown in (14), according to statements 1) and

Fig. 10. Second simulation of the Ravigneaux planetary gear set.

2) depicted in Section II. The new relative friction matrix BΔω

obtained using (27) and the rules given in Prop. 2 is the following:

(29)

The color coding for the coefficients in matrix BΔω is the same
as the one adopted in (7) for the three-gears system example.
Indeed, the red coefficients and the red subscripts in (29) are
those for which a sign change has occurred with respect to the
friction matrix BΔω given in (18), according to statement 1)
depicted in Section II. The blue coefficients in (28) and in (29)
are those whose sign has not changed because a double sign
change has occurred. The simulation results obtained using (28)
and (29) are shown in Fig. 10: the color and the meaning of the
variables plotted in the figure are the same as in Fig. 9. Since the
parameters, inputs and initial conditions are the same, the new
simulation results coincide with those in Fig. 9 except for the
sign of the power variables ωp, ωq , ωt and Fqp. These changes
of sign can be clearly noted by comparing the results reported
in Fig. 9 and Fig. 10.

3) Third Simulation: reference is made to the power-split
architecture of a hybrid agricultural vehicle shown in Fig. 11.
The architecture is composed of three power sources. The first
one is an ICE rigidly connected to gear “s”. The other two
power sources are the electric machines EM1 and EM2, which
are rigidly connected to gears “t” and “r”, respectively. The
gear denoted by subscript “c” is rigidly connected to a 2-Speed
gearbox, which allows for gear shifting in the considered ar-
chitecture. The gearbox output shaft is connected to the load
inertia JL through a rotational spring KL, which accounts for
the gearbox elasticity. Furthermore, a friction coefficient dL is
associated with the rotational spring KL, accounting for the
losses occurring during the transients. The overall load inertia
JL includes the inertia of the gearbox output shaft, the inertia of
the wheels through the differential, as well as the vehicle mass
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Fig. 11. Power-split architecture of a hybrid agricultural vehicle.

Fig. 12. Electric machines EM1 and EM2: control and modeling.

through the differential and the wheels radius. The external load
torque τL accounts for the load that the transmission experiences
when the agricultural vehicle is operating. Since the objective
is to test the full and reduced-order dynamic models of the
considered Ravigneaux planetary gear set, a simplified model
has been adopted for the three power sources. The ICE is
assumed to be a torque generator providing a constant torque
τs = 820 Nm. Since the ICE is rigidly connected to gear “s”,
its inertia is included in Js within matrix J in (11). In the
considered scenario, the ICE is controlled to maintain a desired
constant speed ωsd = 1400 [rpm]. The electric machines EM1
and EM2 are assumed to have a first-order step torque response
with a time constant ξ. The considered first-order dynamics only
accounts for the electric part of the machines, since EM1 and
EM2 are rigidly connected to gears “t” and “r”, respectively.
A speed control is applied to each electric machine using two
PID (Proportional-Integral-Derivative) regulators, as shown in
Fig. 12. The two PID regulators are characterized by the follow-
ing transfer function:

GPID(s) = CP (CD s+ 1) +
CP

CI s
, (30)

where CP , CD and CI are three design parameters. The PID
regulator of EM2 determines a desired torque τrd in order to
keep the ICE speed ωs equal to the desired speed target ωsd .
Similarly, the PID regulator of EM1 determines a desired torque
τtd in order to make the gearbox input shaft speed ωc follow the
desired speed profile ωcd . The gearbox input and output shafts
speeds ωc and ω′

c are related as follows:

ω′
c = ωc gi,

where gi ∈ {g1, g2} is the engaged gear ratio. The angular
speed ω′

c is equal to the load angular speed ωL at steady-state,
while they are slightly different during the transients because
of the presence of the stiffness KL. The positive directions of
the angular speeds ωi and of the tangential forces Fij in the

TABLE II
ARCHITECTURE IN FIGS. 11 AND 12: TRANSMISSION PARAMETERS

AND INITIAL CONDITIONS

Fig. 13. Hybrid agricultural vehicle: simulation results from the gearbox to
the load.

Fig. 14. Hybrid agricultural vehicle: angular speeds of the Ravigneaux plan-
etary gear set.

Ravigneaux planetary gear set are those given in Fig. 4, whereas
the planetary gear set parameters are those given in Table I.
The parameters of the mechanical transmission connected to the
carrier “c” and the initial conditions of the system are reported
in Table II. The simulation results of the controlled system are
shown in Fig. 13, Fig. 14 and. Fig. 15. The time behaviors
of the load speed ωL, the gearbox output shaft speed ω′

c, the
motive torque τ ′c, the load torque τL and of the engaged gear
signal are shown in Fig. 13. The profile of the load torque τL
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Fig. 15. Hybrid agricultural vehicle: torques and tangential contact forces of
the Ravigneaux planetary gear set.

has been chosen to simulate a realistic load torque profile for
an agricultural vehicle, which typically travels over an uneven
ground. The time behaviors of the angular speeds ωi of the
Ravigneaux planetary gear set, as well as the desired angular
speeds ωcd and ωsd of the carrier “c” and of the small sun
“s”, are shown in Fig. 14. The figure clearly shows that the
objective of the control is achieved: the angular speeds ωc and
ωs follow the desired speeds ωcd and ωsd , respectively. Finally,
the time behaviors of the torques τi and of the forces Fij of the
Ravigneaux planetary gear set are shown in Fig. 15.

The simulation results shown in Fig. 13, Fig. 14 and Fig. 15
have been obtained using the reduced-order model (22) of
the Ravigneaux planetary gear set, together with Eq. (26) in
Prop. 3 for the offline calculation of the contact forces. The
same simulation has also been performed using the full model
(1): the corresponding simulation results are not reported in this
paper because they almost coincide with the ones reported in
Fig. 13, Fig. 14 and Fig. 15. The resulting simulation times ob-
tained using a “ode23s (stiff/Mod. Rosenbrock)”
variable-step solver are the following: 57.43 s using the full
model and 29.95 s using the reduced-order model. The simu-
lation times could change by employing a different computer
and/or a different version of Matlab/Simulink, but still the result
clearly shows the saving in terms of simulation time given by
the use of the reduced-order model with respect to the full one.

The power-split architecture in Fig. 11 has also been simulated
using a “ode4 (Runge/Kutta)” fixed-step solver with a
step size of 10−4 s. The obtained simulation time using the
reduced-order model of the Ravigneaux planetary gear set in
the considered hybrid architecture is 7.24 s. The corresponding
simulation results are not reported in this paper because they
almost coincide with the ones reported in Fig. 13, Fig. 14 and
Fig. 15. The simulation using the full model could not be ter-
minated with the considered step size due to the high-frequency
internal dynamics caused by the high stiffness of the planetary
gear set contact points, meaning that a lower step size is needed
when using the full model.

Fig. 16. Structure of the considered double-stage planetary gear set.

In conclusion, both the full and the reduced-order dynamic
models of the planetary gear set are suitable for being used in the
simulation of HEVs, but with different purposes. The full model
represents a more detailed modeling of the planetary gear set,
because it accounts for the gears elastic contact points as well.
On the other hand, the reduced-order model is more suitable for
real-time execution, because it allows to use fixed-step solvers
with a larger step size.

IV. MODELING A DOUBLE-STAGE PLANETARY GEAR SET

Let us now consider the double-stage planetary gear set shown
in Fig. 16. For this system, the sets NJ , NK , NB and the
parameters nJ , nK , nB defined at the beginning of Section III
are:⎧⎨
⎩

NJ = {s, c, p, a, r, b, q}, nJ = dim(NJ ) = 7,
NK = {sp, sa, pr, ba, bq}, nK = dim(NK) = 5,
NB = {sr, ca, cb, cp, cq}, nB = dim(NB) = 5.

(31)

The considered system can be modeled using the POG scheme
shown in Fig. 3. Let us choose the speed vector ω, the input
torque vector τ and the force vector F as follows:

ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ωs

ωc

ωp

ωa

ωr

ωb

ωq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τs
τc
τp
τa
τr
τb
τq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fps

Fsa

Fpr

Fba

Fbq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

The order of the speed variablesωi and of the force variablesFij

within vectors ω and F in (32) completely defines the structures
of the following matrices J, Bω, K and BK :

J = diag (Js, Jc, Jp, Ja, Jr, Jb, Jq) ,

Bω = diag (bs, bc, bp, ba, br, bb, bq) ,

K = diag (Kps, Ksa, Kpr, Kba, Kbq) ,

BK = diag (dps, dsa, dpr, dba, dbq) .
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The radii matrix R can be easily obtained using the rules given
in Prop. 1:

(33)

The parameters within the radii matrix R in (33) are constrained
as follows:

rr = 2rp + rs1,

rcp = rp + rs1, rcb = 2ra + rb + rs2,
rca = ra + rs2, rq = 2ra + 2rb + rs2,

where the constraints can be easily extracted from Fig. 16. The
relative friction matrix BΔω can be obtained using the rules
given in Prop. 2, and results to be the following:

(34)
When K → ∞, from the state space model (1) one obtains the
following constraints on the gears speeds:

Rω = 0 ⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

rcp ωc − rp ωp − rs1 ωs = 0,
ra ωa − rca ωc + rs2 ωs = 0,
rcp ωc + rp ωp − rr ωr = 0,
−ra ωa − rb ωb − ωc(rca − rcb) = 0,
rb ωb + rcb ωc − rq ωq = 0.

(35)

These constraints can be used to obtain the reduced-order rigid
model for the considered system whenK → ∞. Choosingx1 =
[ωs ωr ]

T and applying the following state space congruent
transformation to system (1):

x = T1 x1 ⇔
[
ω
F

]
︸︷︷︸
x

=

[
Q1

0

]
︸ ︷︷ ︸
T1

[
ωs

ωr

]
︸ ︷︷ ︸
x1

,

where the matrix Q1 has the following structure:

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
rs1

2rcp
rr

2rcp

− rs1
2rp

rr
2rp

rcars1−2rcprs2

2rarcp
rcarr

2rarcp

0 1
rcbrs1−2rcars1+2rcprs2

2rbrcp
− 2rcarr−rcbrr

2rbrcp
rcbrs1−rcars1+rcprs2

rcprq
− rcarr−rcbrr

rcprq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

one obtains a reduced-order rigid model having the same struc-
ture as the model given in (22) and (23), obtained in the previous
section. The analytical expressions of the elements Lij and aij

TABLE III
DOUBLE-STAGE PLANETARY GEAR SET: SIMULATION PARAMETERS

Fig. 17. Simulation of the double-stage planetary gear set.

within matrices L1 and A1 are not given for the sake of brevity
and can be computed using (23).

A. Double-Stage Planetary Gear Set: Simulation Results

The double-stage planetary gear set shown in Fig. 16 has
been simulated using the parameters, input signals and initial
conditions shown in Table III. Even in this case, the time
behavior of the full elastic model (1) has been compared with the
time behavior of the reduced-order rigid model (22). Note that:
the input torque vector τ is set to zero, τ = [0 . . .]; the initial
condition of the force vectorF is set to zero,F0 = [0 . . .]; all the
friction coefficients bi, for i ∈ NJ , are set to zero; all the relative
friction coefficients bij , for ij ∈ NB , are set to zero except for
bcp = 0.1 Nm/rpm. Furthermore, the following initial condition
ω0 of the speed vector ω:

ω0 = [−31.9 277 715.9 415.4 405.3 116.4 243.8]T rpm,
(37)

has been chosen to satisfy the constraint Rω = 0 imposed by
the reduced-order rigid model.

The obtained simulations results are shown in Fig. 17 and
Fig. 18. The angular speeds ωi, for i ∈ NJ , are reported in the
left subplot of Fig. 17, whereas the tangential forcesFij , for ij ∈
NK , are reported in the right subplot. The continuous colored
lines refer to the time behaviors obtained using the full elastic
model (1). The dashed red lines refer to the results obtained using
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Fig. 18. Stored energy E(t) and angular momentum Q(t).

the reduced-order rigid model (22). Note that, for the reduced-
order model, the red dashed plots of the tangential forces Fij on
the right subplot have been computed offline using (26). From
Fig. 17, the good matching between the time behaviors obtained
using the full and the reduced-order models, especially at steady-
state, can be appreciated. Since all the direct and the relative
friction coefficients bj and bij have been set to zero except for the
coefficient bcp, all the angular speeds ωi tend to be constant and
equal to each other at steady-state. Additionally, all the forces
Fij tend to zero. This is exactly the case of a closed lockup clutch
acting between gears “c” and “p”, thus simulating the operation
of the transmission in direct drive mode. The right subplot of
Fig. 17 shows the stretched oscillating behavior of the tangential
forces Fij . This is due to the fact that the stiffness coefficients
of the tangential springs Kij reported in Table. III are quite
low, i.e. the system exhibits a high elasticity. This choice was
intentionally made to highlight the impact that the tangential
springs can have on the system. The full model is therefore
more suitable for being used when accurate simulations of the
tangential forces are required. On the other hand, the reduced-
order model is to be used when real-time execution is demanded.
Fixed-step simulations are enabled by the reduced-order model,
because the fast dynamics associated with the tangential springs
are no longer present. However, the average time behavior of the
tangential forces when using the reduced-order model can still
be computed thanks to Prop. 3. Note that the initial values of the
tangential forces given by the full and reduced-order models in
the right subplot of Fig. 17 are initially different: this is due to
the fact that the initial conditions for the tangential forces Fij in
the full model have been set to zero, as shown in Table III. Using
the POG modeling approach [19], the energy E(t) stored in the
system and the angular momentum Q(t) of the mechanical part
of the system can be expressed as follows:

E(t) =
1
2
x(t)TLx(t), Q(t) = [1 . . . 1]TJω(t).

The time behaviors of the stored energy E(t) and of the angular
momentum Q(t) are shown in Fig. 18. The stored energy E(t)
tends to a constant value, whereas the angular momentum Q(t)
remains constant during the simulation, since there are no exter-
nal inputs acting on the system, as shown in Table III. The light
blue lines in Fig. 18 refer to the full elastic model (1), whereas
the red dashed lines refer to the reduced-order rigid model (22).

V. CONCLUSION

In this paper, a systematic methodology for modeling plan-
etary gear sets has been presented. The proposed approach

relies upon a general model, which can be used to model any
planetary gear set and is directly implementable in the Mat-
lab/Simulink environment. All the system matrices and vectors
are either automatically defined or directly computable using
the two presented algorithms. The potentiality of inserting some
relative friction between any two of the system gears allows to
insert lockup clutches in the planetary gear set, thus allowing to
simulate different operating modes of the transmission system.
The proposed approach allows to obtain two dynamic models
of the system: a full elastic model accounting for the gears
elastic interaction and a reduced-order rigid model. The first
one is suitable for accurately simulating the system, whereas
the second one is suitable for fixed-step simulations which are
needed for real-time execution. In the reduced-order model, the
time behavior of the tangential forces can still be recovered,
even if they are no longer present in the system. Furthermore,
the kinematic speed and torque equations automatically turn out
when the reduced-order model is computed. The proposed mod-
eling approach has been applied to two case studies implemented
in the Matlab/Simulink environment: a Ravigneaux planetary
gear set and a double-stage planetary gear set. The full and
reduced-order models of the Ravigneaux planetary gear set have
also been tested in simulation when mounted in a power-split
architecture of a HEV, in order to simulate a real case scenario.
The simulation results show the good superposition between the
results given by the full and the reduced-order models, and point
out the gain which has been achieved in terms of simulation time
thanks to the reduced-order model.

APPENDIX

PROOF OF PROPERTY 3

The first equation of (1) can be rewritten as follows:

RTF = τ − J ω̇ − (BJ+RTBkR)ω. (38)

When K → ∞, from (19) and (20) it follows: ω = Q1x1.
Replacing ω in (38), one obtains:

RTF = τ − JQ1ẋ1 −BJQ1x1︸ ︷︷ ︸
τ̄

−RTBk RQ1︸ ︷︷ ︸
0

x1. (39)

The last term of (39) is equal to zero becauseRQ1 = 0, see (24).
By substituting the time derivative ẋ1 = L-1

1 A1 x1 + L-1
1 B1 τ

obtained from the reduced system (22) in (39), one obtains:

RTF = (I−JQ1L
−1
1 QT

1 )τ−(BJQ1+JQ1L
−1
1 A1)x1. (40)

By substituting the expressions of matrices L1 and A1 given in
(23) within (40), one obtains the following relation:

RTF = (I− JQ1(Q
T
1JQ1)

-1QT
1 )τ+

− (BJQ1 − JQ1(Q
T
1JQ1)

-1QT
1BJQ1)x1. (41)

The latter relation can be easily rewritten as follows:

RTF = (I− JQ1(Q
T
1JQ1)

-1QT
1 )︸ ︷︷ ︸

Mp

(τ −BJQ1x1). (42)

Let functions Im(A) andker(A)denote the image and the kernel
of matrix A, respectively. From linear matrix algebra, it is well
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known that matrix Mp in (42) is a projection matrix on ker(QT
1 )

along Im(JQ1). From (19) and (20), it follows that: Rω =
0 ↔RQ1x1=0↔RQ1=0↔QT

1R
T=0, which implies that

ker(QT
1 )= Im(RT). Furthermore, it is true that Im(JQ1) =

ker(ST), where S is a matrix such that Im(S) = ker[(JQ1)
T] =

ker(QT
1J). From QT

1R
T=0, it follows that QT

1JJ
-1RT=0,

which implies that ker(QT
1J)= Im(J-1RT)= Im(S). From the

previous considerations, it follows that Mp can be rewritten as
reported in the following:

Mp = RT(STRT)-1ST = RT(RJ-1RT)-1RJ-1. (43)

Substituting (43) in (42), one obtains:

RTF = RT(RJ-1RT)-1RJ-1(τ −BJQ1x1), (44)

which directly implies the relation given in (26), since RT is a
full rank matrix. �
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