
 
 
 
 
 

 
 
 
 

A bird and small mammal BACI and IG design 
studies in a wind farm in Malpica (Spain) 

 

 
MANUELA DE LUCAS*, GUYONNE  F.E.  JANSS and 
MIGUEL  FERRER 
Department  of Applied Biology, Estación Biológica deDoñana (CSIC), Av. Ma Luisa s/n, Pabellón 
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Abstract.  Wind farms have shown a spectacular growth during the last 10 years. As far as we 
know, this study is the first where the relationship between wind power and birds and small 
mammals have been considered. Before–after control impact (BACI) study design to birds and 
Impact Gradient (IG) study design to small mammals to test the null hypothesis of no impact of a 
wind farm were used. In the BACI model Windfarm Area and a Reference Area were considered. 
Distance from turbines was considered in the IG model. Windfarm installations did not clearly 
affect bird and small mammal populations. Flight height of nesting and no nesting birds did not 
show a clear tendency. Small mammals populations suffered high variations in numbers through 
times by intrinsic population factors. There are many practical problems of detection of human 
influence on abundances of populations so sampling in the long run can be suggested. 

 
 

Introduction 
 

Wind farms are a relatively new form to obtain ‘clean’ energy by avoiding air 
pollution and other forms of environmental degradation associated with fossil 
fuel technologies (Nelson and Curry 1995) and have received  strong public 
support as an alternative  energy source (Leddy et al. 1999). Moreover, wind 
farms have shown a spectacular growth because they have reduced the costs of 
energy production  and produced a clean energy. This phenomenon has gen- 
erated a  proliferation of  wind farms around the world (Germany, Spain, 
United States, etc) (Osborn et al. 2000). 

Most of studies about possible effects of wind power on wildlife animals have 
been focused on birds, specifically  on avian activity, habitat use and bird 
mortality (Winkelman 1990; Orloff and Flannery 1992; Musters et al. 1996; 
Howell 1997; Dirksen et al. 1998; Morrison and Sinclair 1998; Strickland et al. 
1998; Thelander and Rugge 1998; Osborn et al. 2000; Erickson et al. 2001; 
de Lucas et al. 2004). None have studied the effects of wind power on small 
mammal communities. 

The Before-after control impact (BACI) design has been called the ‘optimal 
impact study design’ (Anderson  et al. 1999). The aim of BACI studies is to 
compare environmental variables before and after a human activity (e.g. the 
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construction of the windfarm) and between the area presumably affected by the 
development and a control area (Stewart-Oaten 1986; Guillemette et al. 1998). 
Use  of  reference areas increases the  reliability of  conclusions concerning 
quantification of impact (Underwood 1994). 

We used bird abundance to assess the impact of a construction of a wind 
farm. Changes in the abundance of organisms is a good impact indicator, but 
abundance vary  naturally through time,  so  any  change observed in  an 
assessment area between the pre- and post-impact periods could conceivably be 
unrelated to the treatment. In the analysis of impact the percentage of bio- 
logical indicators that are significantly different (positive and negative) when 
tested at a given level of significance (Page et al. 1993; Stekoll et al. 1993) is 
used to determine the direction and magnitude of the impact. In this study 
rodents were also studied using an Impact-Gradient (IG) Design. This study 
design is used for impact quantification in relatively small assessment areas on 
homogeneous environments. The  analysis was based on  the  relationship 
between the impact indicator and distance of rodent captures from the wind 
turbines. 

We tested the null hypothesis of no effect of a wind farm on birds and small 
mammals in Malpica (A Coruna, Spain). We used a BACI design to analyse: 
(1) the possible impacts of the wind farm on nesting and no nesting bird 
communities, (2)  flight behavioural of  both  nesting and no  nesting birds 
resulting from the presence of a wind farm; and we used a IG design to analyse 
the possible impacts of the wind farm on rodents. 

 
 

Study area 
 

The study area was conducted  in Malpica (A Coruna), in the northwestern 
Spain (Figure 1) from June 1995 to June 1997. In this part of Spain high 
density of migrating and shore birds can be observed. Here, the shore birds 
arrive when the weather is bad. This area was swept away by strongest winds 
from Atlantic storm (Natural 1995a, b; Alonso 2002). 

In this area 73 breeding passerine and raptor species can be found (see 
Table 1 and 3). Only Montagu’s Harriers was classified like vulnerable in Spain 
by the Red Book (Blanco and Gonzalez 1992) Colonies of breeding Yellow- 
legged Gulls Larus  cachinnans were distributed along the coastline (Natural 
1995a). 

Small mammals community were composed by Western Hedgehog Erinaceus 
europaeus,  Iberian Mole Talpa  occidentalis,  Common Shrew Sorex  araneus, 
Pygmy Shrew S. minutus, Wood Mouse Apodemus sylvaticus, Miller’s Water 
Shrew Neomys anomalus, Greater White-toothed Shrew Crocidura russula, and 
Lesser  White-toothed Shrew C.  suaveolens  (Natural  1995b).  Blanco  and 
Gonzalez (1992) had classified Iberian Mole like insufficient acquaintance. 

The study was carried out in the Malpica Windfarm. This windfarm  was 
150–200 m above sea level and 160–200 m far from the coast. The wind farm 



  
 

consisted of 67 wind turbines Ecotecnia 28/225. This model has a tubular 
steel tower of 32 m and its rotor is 20 m in diameter. Rotor  was orientated 
windward, and have three blades. The total power of wind farm was 15 MW. 
The turbines strings were aligned in 7 rows and they were orientated from 
North–West to  South-East.  Within strings, wind turbines were separated 
between 60 and 90 m. From now on, we will refer to this area as the WF 
Area (Windfarm). 

 
 
 

 
 

Figure 1.    Map of the study areas in Malpica (Galicia Region, northwestern Spain). 



  
 

Table 1.   Abundance (numbers of birds/km) of nesting bird species in the two study areas and in 
all study period. 

 
Nesting species Wind farm area Reference area 

 

 1995 1996 1997 1995 1996 1997 
Alauda arvensis (Skylark) 1.54 1.46 1.99 0.34 0.19 0.00 
Anthus trivialis (Tree pipit) 0.00 0.31 0.13 0.05 0.22 0.13 
Carduelis cannabina (Linnet) 3.03 5.58 6.92 7.60 3.49 8.91 
Carduelis carduelis (Goldfinch) 1.32 0.81 1.41 0.87 1.96 0.83 
Carduelis chloris (Greenfinch) 0.81 1.31 1.35 0.77 0.83 0.51 
Cisticola juncidis (Fan-tailed warbler) 0.00 0.00 0.00 0.00 0.32 0.06 
Emberiza cirlus (Cirl bunting) 0.00 0.00 0.00 0.00 0.00 0.06 
Erithacus rubecula (Robin) 0.04 0.00 0.06 0.00 0.13 0.13 
Fringilla coelebs (Chaffinch) 0.04 0.00 0.00 0.00 0.00 0.00 
Hyppolais polyglota (Melodious warbler) 0.00 0.04 0.00 0.00 0.13 0.00 
Lullula arborea  (Woodlark) 0.00 0.00 0.13 0.00 0.03 0.00 
Muscicapa striata  (Spotted flycatcher) 0.21 0.00 0.00 0.05 0.00 0.00 
Parus  ater (Coal tit) 0.00 0.23 0.00 0.29 0.26 0.06 
Parus  major (Great tit) 0.00 0.00 0.06 0.00 0.00 0.26 
Prunella modularis (Dunnock) 0.47 0.58 2.12 0.77 1.28 1.99 
Saxicola torquata  (Stonechat) 2.74 2.77 4.68 1.83 1.57 2.95 
Sylvia atricapilla  (Blackcap) 0.00 0.00 0.00 0.00 0.00 0.13 
Sylvia conspicillata (Spectacled warbler) 0.00 0.00 0.00 0.00 0.35 0.06 
Sylvia undata (Dartford warbler) 0.00 1.96 2.63 2.12 0.64 1.03 
Troglodytes troglodytes (Wren) 0.34 0.73 1.35 0.29 0.22 0.64 
Turdus merula (Blackbird) 0.26 0.27 0.96 0.53 1.70 1.35 
Total 10.94 16.04 23.97 15.48 13.33 19.23 
Birds/km 256/23.4  417/26  374/15.6  322/20.8  416/31.2  300/15.6 

 
 
 

Table 2.   IKA index of nesting species between study areas and study periods were analysed with 
Wilcoxon Test. 

 
Years Areas Mean SD  n Z  p 

 

1995 (pre) WF 0.332 0.216 24 0.302 0.763 
 R 0.349 0.168    
1996 (const) WF 0.337 0.225 32 —2.348 0.019 
 R 0.462 0.131    1997 (post) WF 0.375 0.502 36 —1.168 0.243 
 R 0.305 0.364    

 
 

A near area without turbines was included  in this study to be used as a 
reference area. This area and WF Area were separated by 6 km. The reference 
area was 100–150 m a.s.l. and 150–170 m far from the coast. From now on, we 
will refer to this area as the R Area (Reference). 

The flora’s species on both study areas were very similar, consisting  in bush 
of Ulex sp. and small wood of Southern Blue-gum Eucaliptus  globulus and 
Maritime pine Pinus pinaster  (Rivas-Martınez 1987). Some area were cut by 



  
 

Table 3.   Abundance (numbers of birds/km) of no nesting bird species in the two study areas and 
in all study period. 

 
No nesting species Wind farm area Reference area 

 

 1995 1996 1997  1995 1996 1997 
Apus apus (Swift) 0.00 0.08 0.00  0.14 0.38 0.32 
Buteo buteo (Buzzard) 0.26 0.27 0.06  0.24 0.06 0.06 
Columba palumbus (Woodpigeon) 0.00 0.12 0.13  0.34 0.10 0.13 
Corvus corax (Raven) 0.04 0.00 0.00  0.00 0.00 0.00 
Corvus corone corone (Carrion Crow) 0.00 0.04 0.45  1.06 1.12 1.22 
Corvus monedula (Jackdaw) 0.00 0.00 0.00  0.05 0.00 0.00 
Delichon urbica (House martin) 0.00 0.04 0.00  0.00 0.00 0.00 
Dendrocopos major (Great spotted 0.09 0.04 0.00  0.00 0.06 0.06 
woodpecker)        
Emberiza citrinella (Yellowhammer) 0.30 0.00 0.00  0.00 0.00 0.00 
Falco tinnunculus (Common kestrel) 0.13 0.04 0.06  0.05 0.00 0.00 
Hirundo rustica (Swallow) 0.00 0.00 0.13  0.00 0.00 0.00 
Larus cachinnans (Yellow-legged gull) 2.52 2.54 0.77  7.16 2.85 1.99 
Luscinia megarhynchos (Nightingale) 0.00 0.00 0.00  0.05 0.00 0.00 
Motacilla  alba (Pied wagtail) 0.00 0.00 0.00  0.05 0.00 0.00 
Phoenicurus ochruros (Black redstart) 0.00 0.00 0.13  0.00 0.00 0.00 
Picus viridis (Green woodpecker) 0.00 0.12 0.13  0.05 0.10 0.00 
Streptopelia  turtur  (Turtle dove) 0.00 0.08 0.00  0.10 0.77 0.83 
Sturnus unicolor (Spotless starling) 0.00 0.00 0.06  0.00 0.00 0.06 
Total 3.59 3.35 3.33  9.23 5.45 5.58 
Birds/km 84/23.4 87/26 52/15.6  192/20.8 170/31.2 87/15.6 

 
 
 

farmers, then grazing land and heather proliferated. Also, in R  Area some 
fields were sowed with corn Zea mays and wheat Triticum sp. 

 
 

Methodology 
 

The study was carried out through three years (1995, 1996 and 1997), during 
the second fortnight of June. BACI and IG models  were used for this study. 
Three periods were defined: pre-construction  (June 1995), construction (June 
1996) and post-construction (June 1997) of the wind farm. 

We  studied several variables concerning birds analysing for  differences 
among study areas and study periods. Variables were recorded along fixed 
length transects in both areas. We also studied several variables concerning 
small mammals comparing study periods in WF Area only. Three groups of 
variables were recorded in this comparative study: (1) specific composition 
(number of species present), relative abundance (IKA: no. birds/km) and den- 
sity (birds/km2) of nesting and no nesting birds; (2) flight behavioural of nesting 
and no nesting birds (direction and flight height); and (3) specific composition 
(number of species present) and abundance of small mammals in WF Area. 



  
 

We distinguish  between nesting birds and no nesting birds based in the 
following criteria: (1) nesting birds were all passerine  birds (except corvids) 
which were in the study areas during reproductive period; (2) nesting birds were 
all those bird species whose breed in the study areas were known; and (3) 
nesting birds were all those bird species whose reproductive requirements were 
in the study areas. 

Avian mortality was not studied because the windfarm had been operating 
as full potential only for a few months. 

 
 

Composition, abundance and density of birds 
 

The abundance, density and composition of bird’s communities in both study 
areas were detected by transect method (Tellerıa 1986). In each study area, we 
selected a census’ transect and recorded all visual contact with birds or flocks 
of birds walking to constant velocity. Both transects were circular and mea- 
sured 2.6 km over the 3 year study (the second fortnight of June). A total of 
32 h was dedicated to monitoring transects per year. In all cases, the census 
were executed at the first hours in the morning or at dusk. 

When we observed a bird, several variables such as date, hour, species, 
number of birds, sex, age, climatic conditions  (wind velocity and wind direc- 
tion), habitat where birds were (rocks, bushes, trees and grazing land) and 
distance to transect were recorded. With this data, an index of avian abun- 
dance per km (IKA)  and an avian density per km2  in each study area were 
calculated (Ferry and Frochot 1958). 

 
 

Flight behaviour of birds 
 

Flight behaviour was recorded by direct observation from linear-transects by 
foot in each area (as above). When we observed birds the same variables as 
those mentioned for avian abundance and composition were recorded. Ane- 
mometer towers located in the wind farm measured climatic conditions (wind 
velocity and wind direction). These data were used in R Area too due to the 
proximity of both areas and their similar morphology characteristics. 

Flight behaviour was described by flight altitude, flight direction, kind of 
flight and singing (if  bird was singing or  not).  Flight  altitude and flight 
direction were calculated by direct observations. 

 
 

Composition and abundance of small mammals 
 

The specific composition was detected with ‘capture – marked – recapture’ 
model using live trap with bate (Orrock et al. 2000).  The traps measured 
28 · 10 · 7 cm. Traps were checked twice at day: in the morning and in the 



  
 

afternoon, every 10 study days per study period. When a small mammal was 
captured, several variables such as species, sex and reproductive condition were 
recorded. The captured small mammals were marked by cutting a lock. 

The relative abundance were detected with footprint searches on specific 
gadgets. Therefore we used PVC tubes with 29 cm long and 7 cm in diameter 
with a  white paper with a  mixture of  charcoal and oil inside. The small 
mammal’s footprints were imprinted in  these white papers when passing 
through the oil mixture. 

The traps and tubes were distributed alternated and separated by 20 m along 
4 line transects covering WF Area (Figure 2). The same points were used in all 
the study period. They were classified in four categories:  less than 40 m to the 
turbines, between 40 and 80 m to the turbines, between 80 and 120 m to the 
turbines and more than 120 m to the turbines. The line transects were placed 
from the North to  the South. Also, to each point several variables about 
landscape were recorded such as kind of morphological features and vegetation 
(rocks, bushes, pines and grassland), vegetation cover (open, middle and dense) 
and homogeneity of landscape (uniform and edge). 

An index of captures in each study year was calculated  dividing the number 
of captured small mammals by study days and by number of active traps. 

 
 
 
 

 
 

Figure 2.    Map of the transects (dark lines) used to distributed all traps and tubes covering all WF 
Area. 



  
 

Statistical  methods 
 

Avian density (birds/km2) according to distance of bird observation to the 
transect were calculated by DISTANCE 4.0 Beta 6 program (Thomas et al. 2002). 

We used non-parametric statistics for those variables that were not normally 
distributed. We used the Wilcoxon Test to compare the IKA  index of birds 
(birds/km) between areas. Kruskal–Wallis Test were used to compare the flight 
height between areas. When statistical differences  appeared, post  hoc com- 
parisons  were made with Mann–Whitney U-Test. Analysis of v2  (goodness of 
fit) was used to analyse the predominated  flight direction of birds between 

study area. 
Kolmogorov–Smirnov  Test was used to test normal distribution of bird’s 

density. We used two ways ANOVA to analyse the density of birds through 
study periods and study areas. 

Small-mammals are mainly caught one at each time in small traps. So, each 
capture can be recorded as an independent observation. Two forward stepwise 
logistic regression  procedure  were used to create the models of captures and 
signals, because this multivariate statistical technique permits the prediction of 
binary attributes such as presence/absence. 

We used an alfa value of p=0.05. SPSS 10.0 software statistical  package was 
used to perform all statistical analyses. 

 
Results 

 
Composition, avian abundance and avian density 

 
(1) Nesting birds 
A total of 2121 birds from 21 different species in the two study areas in all 
study period (total observation 32 h) were recorded. In 1995, 614 birds from 12 
species were observed. In 1996, 833 birds from 16 species were observed. In 
1997, 669 birds from 18 species were recorded (Table 1). Four species through 
study period were only detected in R Area: Fan-tailed Warbler, Cirl Bunting, 
Blackcap and Spectacled Warbler, and only one in WF Area: Greenfinch. 

When comparing the IKA  index of each species between study areas sig- 
nificant differences were observed only in 1996 (Table 2). 

No significant differences were detected in IKA index between study periods 
neither in WF Area (Kruskal–Wallis Test, X2  = 1.027, df = 2, p = 0.599), nor 
in R Area (Kruskal–Wallis Test, X2  = 0.106, df = 2, p = 0.948). 

No significant differences in bird’s density were detected between both study 
areas among study years (two-way ANOVA, F5,30 = 0.794, p = 0.565). 

 
(2) No nesting birds 
A total of 672 birds from 18 different species were recorded in the two study 
areas in the whole study period (total observation 32 h) (Table 3). Five species 
were only detected in  WF  Area  (Raven,  House Martin,  Yellowhammer, 



  

1995 (pre) WF 0.239 0.310 18 —1.025 0.305 
 R 0.406 0.280    1996 (const) WF 0.552 0.285 20 —1.022 0.307 
 R 0.433 0.324    1997 (post) WF 0.334 0.265 32 0.000 1.000 
 R 0.327 0.267    
 

 
Swallow and Black Redstart) and Jackdaw, Nightingale and Pied Wagtail only 
in R Area. 

When comparing the IKA  index of each species between study areas no 
significant  differences were detected (Table 4). 

No significant differences in IKA index were detected between study years 
neither in WF  Area (Kruskal–Wallis Test, X2  = 0.187, df = 2, p = 0.911) 
nor in R Area (Kruskal–Wallis Test, X2  = 0.4296, df = 2, p = 0.808). 

Significant differences  in bird’s density were detected (two-way ANOVA, 
F5,32 = 3.501, p = 0.016) between both study areas (F = 6.045, p = 0.022) 
among study years (F = 3.779, p = 0.037). This variable showed higher val- 
ues during 1995 in R Area. 

 
 

Flight behaviour of birds 
 

(1) Nesting birds 
Only in 1996 significant differences were detected (WF Area rank = 376.74, R 
Area rank = 457.36; Mann–Whitney Test; Z = —5.576; n = 833; p < 0.0001) 
when the height flight of birds between study areas were analysed. Nesting birds 
flew higher in R Area than in WF Area. Significant differences in flight height 
were detected between study periods in  R   Area  (Kruskal–Wallis  Test, 
X2  = 53.056, df  = 2, p < 0.0001). Birds flew higher in 1996 (rank = 591.53) 
than 1995 (rank = 477.94; Mann–Whitney Test, Z = —5.831, p < 0.0001) and 
1997 (rank = 464.23; Mann–Whitney Test, Z = —6.253, p < 0.0001). In WF 
Area flight height between study periods were not statistically different (Kruskal– 
Wallis Test, X2  = 5.426, df = 2, p = 0.066). 

 
(2) No nesting birds 
Only in 1996 significant differences were detected when the flight height of birds 
between study areas  were analysed (WF   Area  rank = 168.09,  R   Area 
rank = 108.99;  Mann–Whitney Test,  Z = —6.092,  n = 257,  p < 0.0001). 
Nesting birds flew higher in WF Area than in R Area. Significant differences in 
flight height were detected between study periods in R Area (Kruskal–Wallis 
Test,   X2  = 13.809,   df = 2,   p = 0.001).    Birds   flew  higher   in   1995 
(rank = 217.56) than 1996 (rank = 251.06; Mann–Whitney Test, Z = —2.642, 

 
Table 4.   IKA index of no nesting species between study areas were analysed with Wilcoxon Test. 

Years Areas Mean SD  n Z  p 



  
 

p = 0.008) and than 1997 (rank = 190.50; Mann–Whitney Test,Z = —1.901, 
p = 0.057). Also in WF Area significant differences in flight height were detected 
between  study  periods  (Kruskal–Wallis  Test,   X2  = 64.036,   df    = 2, 
p < 0.0001).   Birds   flew  higher  in   1996   (rank = 154.58)   than   1995 
(rank = 89.62;  Mann–Whitney Test,  Z = —6.584,  p < 0.0001)  and 1997 
(rank = 76.91; Mann–Whitney Test, Z = —6.965, p < 0.0001). 

In 1995 (northern directions = 54, eastern directions = 4, southern direc- 
tions = 14 and western directions = 9; expected ratio 25% in each direction; 
X2  = 77.469,  df   = 3,  p < 0.0001),  and  1996  Northern  flight direction 
predominated  when flight direction were analysed in WF Area. 

Statistical differences R Area in 1995 were detected. However in WF Area no 
predominated flight direction were detected (X2  = 2.586, df  = 3, p = 0.460) 
in 1995. 

In  1996 in R  Area predominated  northern flight direction was detected 
(northern directions = 39, eastern directions = 11, southern directions = 13 
and   western  directions = 19;   expected  ratio   25%    in   each   direction; 
X2  = 23.951, df  = 3, p < 0.0001), but not in WF Area (X2  = 3.895, df 
= 3, p = 0.273). 

In  1997  predominated  eastern flight direction were detected in R  Area 
(northern directions = 12, eastern directions = 18, southern directions = 3 
and western directions = 7; expected ratio 25% in each direction; X2  = 12.6, 
df   = 3,  p = 0.006).  In  WF  Area  flight  directions not  were statistical 
differences (X2  = 2.048, df  = 3, p = 0.563). 

 
 

Small mammals 
 

Through the day, no small mammals were captured. In 1995, total capture 
effort was 897 traps-night and 936 tubes. Index of captures was 0.0025 small 
mammals per study day and number of traps-night (n = 13). All were Wood 
Mouse Apodemus sylvaticus and there were placed all in bushes. In middle 
vegetation cover 69.2%  of total captures  were situated, and in uniform land- 
scapes the same percentage were found. About 53.85%  of captures were sit- 
uated in  the second category of  distance (40–80 m).  The  index of  small 
mammal signs was 0.003 signs of small mammals per study day and number of 
tubes (n = 18). About 38.9% of these were placed in grassland, 66.7% in open 
vegetation cover, 72.2%  in edge landscape and 50% were in the second cate- 
gory of distance. 

In 1996, total capture effort was 886 traps-night and 1842 tubes. Index of 
captures was 0.001 small mammals per study day and number of traps (n = 7). 
All of these were identified as Wood Mouse Apodemus sylvaticus. The 57% of 
these were placed in rocks, the 57%  were in middle vegetation  cover, 71.4% 
were in edge landscape and 71.4% were in the second category of distance. The 
index of small mammal signs was 0.0005 signs of small mammals per study day 
and number of tubes (n = 24). The 57%  of these were placed in grassland, 



  
 

71.4%  were in dense vegetation cover, 71.4%  were in edge landscape and 
66.7% were in the third category of distance. 

In 1997, total capture effort was 728 traps-night and 1442 tubes. Index of 
captures was 0.012  small mammals per study day and number of  traps 
(n = 59). One small mammals was Greater White-toothed Shrew Crocidura 
russula and the others were Wood Mouse Apodemus sylvaticus. About 51.2% 
of these were in grassland, 44.2% were in middle vegetation cover, 51.2% were 
in edge landscape and 33.9%  were in the second category of distance. The 
index of small mammals signs was 0.016 signs of small mammals per study day 
and number of tubes (n = 118). The 49.5% of these were in bushes, 58% were 
in middle vegetation cover, 84.12% were in edge landscape and 38.13% were in 
the second category of distance. 

The logistic regression model quantified the linear combination of  inde- 
pendent variables best discriminating between presence/absence of captures in 
traps only study year variable entered the model (B = —0.191, Wald  = 6.1, 
df  = 1, p = 0.014) and distance from turbines variable did not (B = —0.201, 
Wald  = 2.727, df  = 1, p = 0.099). Only study year entered into the logistic 
regression model in  quantifying track  signs in  tubes (B = 1.022,  Wald 
= 55.865, df  = 1, p < 0.0001).This variable, in traps and tubes analysis, 
showed higher values in 1997. 

 
 

Discussion 
 

Windfarm installations did not clearly affect bird and small mammal popula- 
tions, so the presence of turbines  seemed not to be a significant problem for 
these populations. Avian abundance and avian density in breeding does not 
differ by study years (pre windfarm, windfarm installation and post windfarm) 
and between areas (R and WF). Avian density in no breeding birds show a light 
tendency to decrease with time. In contrast, Lucas et al. (2004) detected more 
abundance of passerines in a control area than the others (another control and 
windfarm areas). Leddy et al. (1999) supported the hypothesis of those areas 
without turbines support higher densities of grassland birds than areas near the 
turbines, and also Larsen and Madsen (2000) detected that wind farms caused 
a habitat loss equivalent to 4% of the total field area around the turbines for 
pink-footed  geese (Anser brachyrhynchus). 

Flight height of nesting and no nesting birds did not show a clear tendency. 
No nesting birds flew higher in 1996 in WF Area. This effect could be related to 
the machines and personal working in the construction of  the windfarm. 
However, this effect did not appear in flight height of nesting birds. In Lucas 
et al. (2004) soaring birds we detected a significantly higher flight height in WF 
Area than in the others control areas. 

Flight of nesting birds had not been considered because their flight were local 
distances and between bushes (Rodewald and Yahner 2001). In no nesting 
birds the predominated flight direction in R Area suggest that birds flew mainly 



  
 

in one direction (South–North), while in WF Area birds did not have a clear 
flight direction, changing often their direction of flight. Lucas et al. (2004) 
detected that  71.2%  of  soaring birds changed their flight direction when 
detecting the turbines on the top of the mountain, and Dirksen et al. (1998) 
also showed that birds changed their flight direction more often when the 
turbines were operating than when they were not. So turbine lines might act as 
flight path barriers. 

Small-mammals  populations suffered  high variations in numbers through 
times by several factors (Snyder 1978). The higher index of captures and signs 
in 1997 could be assumed to  (1)  several factors affecting populations, (2) 
change in  vegetation variables with the  construction of  windfarm (open 
landscape, less bushes) and (3) umbrella effects of small-mammals predators 
(Chase et al. 2000). 

There was a spatial distribution on small-mammals captures. The strip of 
distance more used were 40–80 m in all study years. Because an increase of 
captures near turbines is expected through study years, the second hypothesis 
can not supported. The impact of the construction of turbines specially could 
be only in the immediate vicinity of the wind park. This contradicts findings of 
Guillemette and Larsen (2002) that the wind park did not influence the dis- 
tribution of eiders because their experiments conducted at a small spatial scale 
(around the wind park) showed that wind turbines did not have a negative 
influence on the distribution and the abundance of small-flock common eiders 
when correcting  food availability. The third hypothesis has not been out but 
avian community have not changed through study years. 

In conclusion, our results do not support an important effect of the wind- 
farm on birds and small-mammals populations. The BACI design we had used 
was criticised by Hurlbert (1984) on the basis that the control site would need 
to be very similar to the impact site in order to come up with a sound con- 
clusion. Therefore our study areas (Reference and Windfarm)  were chosen to 
be very similar in characteristic of landscape, vegetation and altitude. 

 
 

Management  applications 
 

Our study may have important implications for the future development  of 
wind farms. Bird and small-mammals populations might not affected by the 
presence of  turbines. Soaring birds detected the turbines and change their 
flight direction and small-mammals  seems not  to  be affected by the new 
constructed windfarm. These results could not be extrapolated to  another 
areas with different avian community and sampling in the long run can be 
suggested. 

Attention to the intricate relationship that may exist between the presence/ 
absence of disturbance and the probability of collisions with turbines. There- 
fore,  absence of  disturbance may increase the probability of  collisions 
(Guillemette and Larsen 2002). We did not study mortality because in the After 



  
 

period the windfarm had been operating as full potential only for  a  few 
months. 

There are many practical problems of  detection of  human influence on 
abundances of populations, but two are paramount in designing sampling pro- 
grams. First is the large temporal variance of many populations, so that their 
abundances are very ‘noisy’. Second, many populations show a marked lack of 
concordance in their temporal trajectories from one place to another. This results 
in considerable statistical interaction between changes in mean abundance from 
time to time and differences from place to place (Underwood 1994). 

Any difference in abundance between the impact and the control sites could 
be explained by a priori differences in the two sites and that no causal rela- 
tionship of presence/absence of an impact could be derived from this design 
(Hurlbert 1984).  So  post-development  experiences should be considered a 
complement to  BACI  studies rather than an  alternative (Guillemette and 
Larsen 2002). 

 
 

Acknowledgements 
 

We thank all the people who took part in the field work, in particular R. 
Roozen, J.L.  Arroyo, N. Selva and A. Garcıa. J. Sanchez and A. Lazo from 
Asistencias Tecnicas CLAVE  S.L.  helped us with the technical report. Dr 
Vincenzo Penteriani, Dr Jordi Figuerola, Dr Ramon Soriguer and Roger Jo- 
vani helped us with their comments that improved the manuscript. The field 
study was supported by Ecotecnia S. Coop. and by a fellowship grant from a 
group of seven Spanish wind developers  (ENDESA,  Cogeneracion y Renov- 
ables S.A., Aerogeneradores del Sur S.A., Microcentrales de Andalucıa S.A., 
WIGEP  Andalucıa S.A.,  Wind Iberica Espana S.A.,  PEESA,  Alabe la 
Ahumada S.L.) and from Estacion Biologica de Donana (Consejo Superior de 
Investigaciones Cientıficas). Manuela de Lucas would like to extend special 
thanks to F. Romero, for whose help and support she is indebted. 

 
 

References 
 

Alonso C. 2002. Parque Natural de las Islas Atlanticas de Galicia. La fuerza del mar. Ambienta 
(http://hispagua.cedex.es). 

Anderson R.,  Morrison M.,  Sinclair K.  and Strickland D.  1999. Studying Wind Energy/Bird 
Interactions:  A  Guidance Document.  National  Wind Coordinating Committee (NWCC), 
Washington. 

Blanco J.C. and Gonzalez J.L. 1992. Libro Rojo de los Vertebrados de Espana. Coleccion Tecnica 
ICONA, Madrid. 

Chase M.K., Kristan W.B. III, Lynam A.J., Price M.V. and Rotenberry J.T. 2000. Single species as 
indicators of species richness and composition in California coastal sage scrub birds and small 
mammals. Conserv. Biol. 14: 474–487. 

Dirksen S., Winden J.v.d. and Spaans A.L.  1998. Nocturnal collision risks of birds with wind 
turbines in tidal and semi-offshore areas. Wind Energy Landscape 99–107. 



  
 

Erickson W.P., Johnson G.D., Strickland M.D., Young D.P., Sernka K.J.  and Good R.E.  2001. 
Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to 
Other Sources of Avian Collision Mortality in the United States. National Wind Coordinating 
Committee (NWCC) Resource Document. 

Ferry C. and Frochot B. 1958. Une methode pour denombrer les oiseaux nicheurs. Terra e Vie 
105(2): 85–102. 

Green R.H.  1979. Sampling Design and Statistical Methods for Environmental Biologist. John 
Wiley and Sons, New York. 

Guillemette M. and Larsen J.K.  2002. Postdevelopment experiments to detect anthropogenic  dis- 
turbance: the case of Sea Ducks and Wind Park. Ecol. Appl. 12(3): 868–877. 

Guillemette M., Larsen J.K. and Clausager I. 1998. Impact Assessment of an Off-shore Wind Park 
on Sea Ducks. National Environmental Research Institute, Report number 227. 

Hurlbert S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Mo- 
nogr. 54(2): 187–211. 

Howell J.A.  1997. Avian Use and Mortality at the Sacramento Municipal Utility District Wind 
Energy Development Site, Montezuma Hills, Solano County, California. Sacramento Municipal 
Utility District, California. 

Larsen J.K.  and Madsen J.  2000. Effects of wind turbines and other physical elements on field 
utilization by pink-footed geese (Anser brachyrhynchus):  a landscape perspective. Landscape 
Ecol. 15: 755–764. 

Leddy K.L., Higgins K.F. and Naugle D.E. 1999. Effects of wind turbine on upland nesting birds in 
conservation reserve program grasslands. Wilson Bull. 111(1): 100–104. 

Lucas M.d., Janss G. and Ferrer M. 2004. The effects of a wind farm on birds in a migration point: 
the Strait of Gibraltar. Biodiv. Conserv. 13: 395–407. 

Morrison M.L.  and Sinclair K.  1998. Avian Risk and Fatality Protocol. National Renewable 
Energy Laboratory (NREL),  Colorado. 

Musters C.J.M.,  Noordervliet M.A.W. and Terkeus W.J. 1996. Bird casualties caused by a wind 
energy project in an estuary. Bird Study 43: 124–126. 

Natural S.G.d.H. 1995a. Atlas de Vertebrados  de Galicia. Tomo II: Aves. Santiago de Compostela. 
Natural S.G.d.H. 1995b. Atlas de Vertebrados Terrestres de Galicia. Tomo I: Peixes, Anfibios, 

Reptiles e Mamıferos. Santiago de Compostela. 
Nelson H.K. and Curry R.C. 1995. Assessing avian interactions with windplant development and 

operation. Trans. 60th No. Am. Wildl. & Natur. Resour. Conf. 266–277. 
Orloff S.  and Flannery A.  1992. Wind Turbine Effects on Avian Activity, Habitat Use, and 

Mortality in Altamont Pass and Solano County Wind Resource Areas. California Energy 
Commission (CEC), California. 

Orrock J.L.,  Pagels J.F.,  McShea W.J.  and Harper E.K.  2000. Predicting presence and abun- 
dance of a small mammal species: the effect of scale and resolution. Ecol. Appl. 10(5): 1356– 
1366. 

Osborn R.G.,  Higgins K.F.,  Usgaard R.E.,  Dieter C.D.  and Neiger R.D.  2000. Bird mortality 
associated with wind turbines at the buffalo ridge wind resource area, Minnesota. Am. Midland 
Nat. 143: 41–52. 

Page D.S., Gilfillan E.S., Boehm P.D. and Harner E.J. 1993. Shoreline ecology program for Prince 
William Sound, Alaska, flowing the Exxon Valdez oil spill: Part 1- Study design and methods. 
DRAFT.  Third Symposium on Environmental Toxicology and Risk: Aquatic Plant, and Ter- 
restrial. American Society for Testing and Materials. Philadelphia, PA. 

Rivas-Martınez S. 1987. La vegetacion de Espana. Universidad Alcala, Madrid. 
Rodewald A.D. and Yahner R.H. 2001. Influence of landscape composition on avian community 

structure and associated mechanisms. Ecology 82(12): 3493–3504. 
Snyder D.P.  1978.  Populations of  small mammals under natural condition. The  University, 

Pittsburgh. 237 pp. 
Stekoll M.S., Deyster L., Highsmith R.C., Saupe S.M., Guo Z., Erickson W.P., McDonald L. and 

Strickland D. 1993. Coastal Habitat Injury Assessment: Intertidal communities and the Exxon 



  
 

Valdez oil spill. Presented at  the Exxon Valdez Oil Spill Symposium, February 2–5,  1993. 
Anchorage, Alaska. 

Stewart-Oaten A. 1986. The Before-After/Control-Impact-Pairs  Design for Environmental Impact 
Assessment. Marine Review Committee, California. 

Strickland D.,  Johnson G.D.,  Erickson W.P., Sarappo S.A. and Halet R.M.  1998. Avian Use, 
Flight Behavior, and Mortality on the Buffalo Ridge, Minnesota, Wind Resource Area. National 
Avian - Wind Power Planning Meeting III, San Diego, California. 

Tellerıa J.L.  1986. Manual para el Censo de los Vertebrados Terrestres. Madrid. 
Thelander C.G.  and Rugge L. 1998. Bird Risk Behaviors and Fatalities at the Altamont Wind 

Resource Area. National Avian - Wind Power Planning Meeting III. San Diego, California. 
Thomas L., Laake J.L.,  Strindberg S., Marques F.F.C.,  Bochers D.L.,  Buckland S.T., Anderson 

D.R.,  Burham K.P.,  Hedley S.L.  and Pollard J.H.  2002. Distance 4.0 Beta 6. Research Unit 
for  Wildlife Population Assessment University of  St.  Andrews, UK.   (http://www.ruwpa. 
stand.ac.uk/distance). 

Underwood A.J.  1994. On beyond BACI:  sampling  designs that might reliably detect environ- 
mental disturbances. Ecol. Appl. 4(1): 3–15. 

Winkelman J.E. 1990. Bird collision victims in the experimental wind park near Oosterbierum (Fr), 
during building and partly operative situations (1986–1989).  Instituut voor Bos-  en Natu- 
uronderzoek, Wageningen. 


