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A thermal-spike model has been applied to characterize the damage structure of the latent tracks
generated by high-energy ion irradiations on LiNbO3 through electron excitation mechanisms. It
applies to ions having electronic stopping powers both below and above the threshold value for
lattice amorphization. The model allows to estimate the defect concentrations in the heavily
damagedspreamorphizedd regions that have not reached the threshold for amorphization. They
include thehalo andtail surrounding thecoreof a latent track. The existence of the preamorphized
regions accounts for a synergy between successive irradiations and predicts a dependence of the
amorphization threshold on previous irradiation fluence. The predicted dependence is in accordance
with irradiation experiments using Ns4.53 MeVd, O s5.00 MeVd, F s5.13 MeVd, and Si s5 and
7.5 MeVd. For electronic stopping powers above the threshold value the model describes the
generation of homogeneous amorphous layers and predicts the propagation of the amorphization
front with fluence. A theoretical expression, describing this propagation, has been obtained that is in
reasonable agreement with silicon irradiation experiments at 5 and 7.5 MeV. The accordance is
improved by including in a simple phenomenological way thevelocity effecton the threshold. At the
highest fluencessor depthsd a significant discrepancy appears that may be attributed to the
contribution of the nuclear collision damage. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1896444g

I. INTRODUCTION

High-energy ion bombardment of materials is a well-
known method for material modification.1–4 This includes
ion implantation that is routinely used in the semiconductor
industry for impurity doping. During the trajectory of the
bombarding ion in the target material two mechanisms ac-
count for energy losses. At high energy electronic excitation
losses are dominant whereas at lower energies elastic nuclear
collisions are mainly responsible for the slowing down of the
ions. The nuclear damage mechanism is well-documented
and proceeds via displacement cascades. It becomes most
effective for the low ion energies occurring at the end of the
track. For high-enough fluences the lattice becomes heavily
damaged and finally amorphized. This amorphization has of-
ten been used in the case of transparent insulator materials
for the fabrication of optical waveguides and integrated op-
tics devices.4

In many analysis the generation of stable lattice damage
as a consequence of electronic excitation is ignored. How-
ever, it is known for a long time that the electronic excitation

mechanism may lead to permanent damage along the ion
track if a certain threshold in the electronic stopping power is
reached or surpassed.5–8 In this case, an amorphous linear
region, known as a latent track, is formed along the ion tra-
jectory. These latent tracks can be chemically etched and
they provide a sensitive method for ionsparticularly fission
fragmentsd detection and counting in dosimetry and dating
applications.7 More recently a large number of micro- and
nanosystems, that use etched or etched and filled tracks, are
being proposed or tested. They include a variety of photonic
and magnetic media.9–14

Most theoretical models dealing with the formation of
the latent track use the concept of thermal spike.15–24 The
deposited electronic excitation energy densitySe during the
passage of the ion is rapidly transferred to the ion lattice. It
causes a sudden increase of the temperature and eventually
the local melting of the crystal. Subsequent fast quenching of
the structure turns the melt into an amorphous state. Differ-
ent mathematical approaches have been considered. In par-
ticular, the detailed model put forward by Toulemondeet
al.,17,18 describes the electron–electron and electron–phonon
interactions by a set of differential equations and predicts
track diameters in accordance with experiments after a suit-

adAuthor to whom correspondence should be addressed; electronic mail:
fal@uam.es

JOURNAL OF APPLIED PHYSICS97, 093514s2005d

0021-8979/2005/97~9!/093514/8/$22.50 © 2005 American Institute of Physics97, 093514-1

Downloaded 22 Jan 2013 to 161.111.22.141. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1896444
http://dx.doi.org/10.1063/1.1896444


able choice of the electron mean free path.20,24 Similar
thermal-spike models have been applied to describe other
effects related to strong electron excitation such as ion
sputtering,25,26 laser damage,25 and swelling.27 Although
powerful molecular-dynamics26,28,29 and hydrodynamics30

methods have been developed to tackle these complex prob-
lems, they require extensive numerical calculations and are
not free of some critical assumptions. Moreover, they have
been, so far, applied to simple solids containing a single
atomic species. Therefore, thermal-spike models are still
needed since they offer simple analytical expressions that
may reasonably describe many experimental features and
trends.

The purpose of this paper is to extend the thermal-spike
model16,24 to discuss preamorphization stages in LiNbO3,
i.e., the generation of preamorphized regions during ion irra-
diation. As far as we know this problem has not been inves-
tigated and we consider that thermal-spike models provide a
suitable framework to deal with these stages and the transi-
tion to a fully amorphous crystal. It is appropriate to state
here that it is not essential for the model to assume a thermal
equilibrium distribution of atom velocities. The key point is
to assume that the distribution can be adequately character-
ized by an average value or an effective temperature. Previ-
ous experimental data31–33and particularly those described in
this paper show that a homogeneous amorphous layer with a
sharp boundary is generated under irradiation for fluences
above a critical value. Moreover, a threshold in the electronic
stopping power appears to be required to initiate amorphiza-
tion. All these data suggest that the formation of the amor-
phous layer is caused by electronic excitation mechanisms
and, therefore, related to the generation of individual latent
tracks. When a critical fluence corresponding to overlapping
of such tracks is achieved, the layer is formed. On the other
hand, it is shown in this paper that the thickness of the amor-
phous layer increases with fluence, i.e., the inner boundary of
the layer moves into the crystal. We consider that the
preamorphization concept appears useful or even necessary
to account for all these relevant results.

Section II presents the essentials of the thermal-spike
model as applied to the preamorphization stages. Section III
describes the morphology of the preamorphized regions
around a single latent track. Section IV A summarizes the
main experimental results showing the synergy between suc-
cessive irradiations. Sections IV B and IV C present in detail
the model to account for the memory effect, i.e., the depen-
dence of threshold on previous irradiation fluence and the
propagation of the amorphization boundary. Comparison of
the theoretical predictions to the experimental results is dis-
cussed in Sec. IV A. Finally, Sec. V offers a summary of the
results and some final conclusions. It is expected that the
model will contribute to stimulate further theoretical and ex-
perimental work on these topics.

II. THEORETICAL MODEL

The proposed theoretical model is based on the thermal-
spike approach by Szenes.16,19 It has the advantage of not
requiring a detailed formulation of the electron and ion dy-

namics after irradiation accounting for the heat transport pro-
cesses. Moreover, it can be easily extended to take into ac-
count preamorphization stages. The model is summarized
here. The ion transfers an energySe per unit length to the
electron system. This energy is then passed onto the ionic
lattice with a certain efficiency factorg,1 independent of
Se. The transferred energy generates a certain temperature
distribution DT=DTsr ,t ,Sed. At t=0 we assume a Gaussian
distribution:

DTsr,0,Sed =
Q

2pa0
2rC

e−r2/2a0
2
, s1d

wherea0 is the width of the initial Gaussian distribution,r
the crystal density, andC the specific heat.DT=T−Ts, Ts

being the substrate temperature andQ=gSe the energy per
unit length transferred to the ionic lattice. To describe the
evolution of the temperature profile with time the model uses
some assumptions that are, here, explicitly summarized:

sad The area under the Gaussian is preserved. This condi-
tion requires that heat conduction is the only heat trans-
port mechanism, i.e., radiation is neglected.

sbd The mechanical and thermal parameters do not depend
on temperature, which is a reasonable assumption at
high temperaturessnear the melting pointd.

scd The heat conduction in the direction perpendicular to
the input surface is ignored so that at every depth the
transport processes are two dimensional.

From these assumptionsDTsr ,t ,Sed can be obtained for
t.0 arbitrarily. The maximum temperature obtained for any
t.0 at a given distancer from the impact point is then16

DTmaxsr,Sed =
gSe

2pa0
2rC

e−r2/2a0
2
, 0 , r , Î2a0, s2ad

DTmaxsr,Sed =
gSe

perC

1

r2, r . Î2a0. s2bd

Notice that the maximum of those temperatures is attained at
r =0:

DTmaxs0,Sed =
gSe

2pa0
2rC

. s3d

In particular, takingDTmax=DTm=Tm−Ts, Tm being the melt-
ing temperature of the crystal, the critical required stopping
powerSm is obtained through

DTm =
gSm

2pa0
2rC

. s4d

One can then calculate the radius of the region that has
reached a temperatureTmax above a given value ofT. Par-
ticularly, selectingTmax.Tm one defines thecore of the
track. The core radiusRc is thus

Rc
2 = r2sTmd = 2a0

2 log
Se

Sm
, 0 ø Rc

2 ø 2a0
2, s5ad
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Rc
2 = r2sTmd =

2a0
2

e

Se

Sm
, Rc

2 ù 2a0
2. s5bd

At any depthz the radius of the core is determined by the
electronic stopping power curveSeszd. Equationss3d–s5d are
the basis of the analysis that follows.

The key proposal of our model is that the defect struc-
ture of the region at and around the track is determined from
the maximum temperature reached after the passage of the
ion. The quenching rate is assumed to be fast enough to
freeze the thermally generated defect concentration. In fact,
although the melting point is not reached the concentration
of intrinsic defects causing lattice disorder in the crystal may
become very high and generate what can be designated as a
preamorphizedregion ssee Sec. IIId.

We will assume that the concentration of intrinsic de-
fects generated by the swift ion and responsible for the struc-
tural damage is given2 by some effective Arrhenius law,

csTd = Ae−«/kT. s6d

This Arrhenius dependence is well established for the defect
concentration achieved in thermal equilibrium at a tempera-
ture T. Then, « is the formation energy of the responsible
defect andA a factor related to the formation entropys of the
defect,A=es/k. However, in our case where thermal equilib-
rium is not guaranteed the dependence should still apply with
a different meaning for the parameter«. In fact, Eq.s1d sim-
ply states the probability for fast atoms with average kinetic
energy 3kT/2 to overcome a certain effective energy barrier
« and cause disorder. In a way, the production of defects may
follow a quite analogous path to that involved in nuclear
collision damage. In expressions1d T is the maximum tem-
perature reached in the spike caused by the bombarding ion.
It is not easy to decide on the kind of defects responsible for
the thermally induced disorder and eventually the melting of
the crystal.2,34 At the present stage of the model the energy
barrier « should be, essentially, considered as an adjustable
parameter.

Our approach also assumes that the radiation-induced
defects at the damagedspreamorphizedd regions add to those
generated by another irradiation, i.e., damage is cumulative.
This behavior is well established for nuclear collision dam-
age but it is less assured for electronic excitation damage.
However, one may quote evidence of damage accumulation
under swift-ion irradiation35 as well as other types of elec-
tronic excitation.36 In our experiments the irradiation-
induced defects generated in the spike rearrange through
some short-range processes into stable structuressdistorted
octahedra, dislocation loops, amorphized spots, etc.d that
cause a local distortion of the lattice. It may be stable versus
additional swift-ion irradiation. Anyhow, the experimental
data to be described in this paper and those reported in pre-
vious publications31,33 clearly point out to the generation of
stable damage by electronic processes and also to the accu-
mulative nature of such damage even below threshold. In
spite of the uncertainties in the microscopic description of
the damage, which are inherent to spike models, our theoret-

ical analysis provides a satisfactory description of the main
features and trends of the irradiation behavior in terms of«
as a key adjustable parameter.

III. TRACK STRUCTURE: CORE, HALO, AND TAIL

In order to determine the lattice structure around the ion
trajectory one should define a certain critical defect concen-
tration to initiate or nucleate the melted and subsequently
amorphous phasescored as well as to characterize the dam-
aged or preamorphized regions aroundshalod and below
staild the core. In many crystals the critical melting concen-
trationcm, derived from a comparison to experimental data,37

is roughly around 10−3 snormalized to atomic concentrationd.
As to the so-called preamorphized regionsshalo and taild,
one may safely consider that they should contain a defect
concentrationch/cmù10−3, i.e., ch over 10−6, which repre-
sents some typical background concentration of defects.
Anyhow, the particular values assumed for these concentra-
tions,cm andch, are a matter of convention and do not enter
directly in any of the predictions of the modelssee belowd.
By replacingch into expressions6d one obtains that the tem-
perature reached at this boundary is

Th =
Tm

1 −
kTm

«
loge

ch

cm

. s7d

Then, following the same procedure leading tos5d one ob-
tains that the radiusRh of the halo at a depthz is

Rh
2szd = r2sThd = 2a0

2 logefSeszd/Shg

= Rc
2 + 2a0

2 loge
Sm

Sh
, 0 ø Rh

2 ø 2a0
2, s8ad

Rh
2szd = r2sThd =

2a0
2

e

Seszd
Sh

= Rc
2Sm

Sh
, Rh

2 ù 2a0
2, s8bd

whereSh is the electronic stopping power leading to a maxi-
mum temperatureTh. Notice thatSm/Sh can be replaced by
DTm/DTh fsee Eq.s3dg, which can in turn be obtained from
Eq. s7d. The core radius squared of the latent track is in-
creased in the fixed amount 2a0

2 logesSm/Shd for values ofSe

close to the threshold. For high-enough electronic stopping
power whereRh

2 andRc
2 depend linearly onSe, the ratio of the

halo and core radii squared remains constant and equal to
Sm/Sh. The profiles ofRc and Rh in LiNbO3 under silicon
irradiation at 7.5 MeV are illustrated in Fig. 1 as a function
of depthz. The halo profiles for other choices ofch are also
included for comparison. Notice that it is not necessary to
assume any specific value forcm but just cm/ch. For this
particular example the selected parameters have beena0

=5.5 nm, Sm=4.75 keV/nm, andkTm/«=0.2 s«=0.63 eVd.
These values have been chosen in order to clearly illustrate
the appearance of the track core. A slightly higher value of
5.2 keV/nm forSm, obtained from direct comparison to ex-
perimental data, is used in the following sections. On the
other hand, the length of the tail along the ion trajectory is
given by
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Lt = zsShd − zsSmd, s9d

wherezsSd is obtained by inverting the electronic stopping
power functionSeszd. As observed in Fig. 1 the length of the
tail for LiNbO3 irradiated with a silicon beam at 7.5 MeV is
much larger than that of the latent track.

IV. FLUENCE DEPENDENCE OF THE AMORPHIZATION
THRESHOLD: MEMORY EFFECT

A. Experimental results

High-energy silicon irradiation experiments at random
incidence were performed at 5 and 7.5 MeV on congruent
LiNbO3 samples in the 5-MV tandetron accelerator recently
installed38 at the Centro de Microanálisis de MaterialssUni-
versidad Autónoma de Madridd. The samples wereY- and
Z-cut plates of integrated optics quality purchased from Pho-
tox Optical Systems, U.K. The near-surface damage was
monitored by measuring the refractive index profile with the
dark m-lines technique. For comparison Rutherford back-
scattering spectroscopysRBSd channeling data using H and
He at 3 MeV were also taken along thec axial channel. The
data are described in detail elsewhere.32 Main relevant re-
sults from this study as well as from a recent work31,33using
O, N, and F ions are as follows:

sad For input energies such that the electronic stopping
power at the surfaceSe is close or above a threshold
valueSe,th, a homogeneous optically isotropics“amor-
phous”d surface layer is generated for fluences
ù1013 cm−2. They present an abrupt refractive index
profile as inferred from the resonancessunbound solu-
tions of the wave equationd observed through the dark-
modem-lines techniquesFig. 2d. The refractive index
of the layer is n=2.10 which coincides with that
reported39 for amorphous LiNbO3.

sbd The fluence necessary to initiate the surface layer de-
pends critically on the value of the electronic stopping
at the surface. ForSe.Sm the layer starts just after
overlapping of the individual latent tracks. ForSe

,Sm a certain fluence is required to start the amor-

phization process that increases with the difference
Sm−Se. Moreover, on increasing fluence the thicknessh
of the layer increases, as shown in Fig. 3sad. For equal
fluences the thickness layer is thicker for the silicon
beam at 7.5 MeV in comparison to 5 MeV as expected
from the higher electronic stopping power. However,
when the depth is scaled to the stopping power using
the results ofSRIM 2003calculations the data for the two
energies closely lie on the same curve, as illustrated in
Fig. 3sbd.

scd RBS/channeling data using H and He ions at 3 MeV
reveal that damage is cumulative until the homoge-
neous randomsamorphousd layer is generated. This is

FIG. 1. Structure of the core, halo, and tail for 7.5-MeV Si ions on crystal-
line LiNbO3. The ratioch/cm is taken to be 10−1 sad, 10−2 sbd, and 10−3 scd.
The parameter values used arekTm/«=0.20, Sm=4.75 keV/nm, anda0

=5.5 nm. The value ofSm has been chosen for the purpose of illustrating the
appearance of the track core.

FIG. 2. Illustration of the steplike refractive index profilesssolid lines,no

and ned determined for two representative silicon implantation fluences: 5
31013 cm−2 sad and 331014 cm−2 sbd at 7.5 MeV. The dashed lines corre-
spond to the estimated buried profiles due to the nuclear stopping power.

FIG. 3. Fluence dependence of the depth of the amorphous layersad and the
corresponding modified electronic stopping power thresholdSth sbd. The
square symbols correspond to data from LiNbO3 samples irradiated with
7.5-MeV silicon and to optical measurementssthe closed symbols forY cut
and open symbols forZ cutd. The closed circles correspond to data from
LiNbO3 samples irradiated with 5-MeV silicon and to optical measure-
ments. The open circles correspond to the data obtained from RBS/
channeling performed with He at 3 MeVfi.e., curvesscd andsdd in Fig. 4g.
The open triangles correspond to complementary data obtained from RBS/
channeling performed with H at 3 MeV onZ-cut LiNbO3 irradiated with
silicon at 5 MeVsupright trianglesd and 7.5 MeVsinverted trianglesd.

093514-4 Agulló-López, García, and Olivares J. Appl. Phys. 97, 093514 ~2005!

Downloaded 22 Jan 2013 to 161.111.22.141. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



clearly illustrated by the data taken with He for several
irradiation fluences and displayed in Fig. 4.

These data cannot be explained by nuclear collision
damage since no correlation is found with the nuclear stop-
ping curve that peaks well inside the crystal and not at the
surface. On the other hand, the existence of a threshold and
the good correlation of the thickness of the amorphous layer
sfor different input energiesd with the electronic stopping
power fFig. 3sbdg clearly supports an electronic excitation
mechanism. Our basic assumption is that latent tracks are
generated by electron excitation damage. After the fluence
has reached a critical value to assure track overlapping a
homogeneous amorphous layer is observed. By extrapolating
the curve in Fig. 3sad to zero thickness one finds a threshold
value around or slightly above 5 keV/nm, consistent with
those reported in the literature. In fact, reported data23,24 for
LiNbO3 are in the range of 3–6 keV/nm.

The increase in thickness of the layer on going to higher
fluencesfFig. 3g is not consistent with a fluence-independent
threshold and clearly suggests that the threshold decreases
with increasing fluencesmemory effectd. This effect implies a
synergybetween successive irradiations associated to either
nuclear or electronic damage. The model we propose is that
irradiation introduces some substantial electronic damage be-
low the threshold value for amorphizationspreamorphization
staged. How to describe this stage and its effect on the thresh-
old are the key points to be addressed in the paper.

B. Theoretical analysis: Surface amorphization

The preamorphized areas, particularly the tail, play an
important role in the subsequent stages of damage, i.e., on
the memory effect. This situation is well accepted for nuclear
damage that is assumed to be permanent or accumulativesat
low-enough temperaturesd. However, the situation has not
been addressed for the case of the electronic damage, in spite
of the extensive effort devoted to investigating the physical
basis and finding technological applications for latent tracks.
Let us consider an ion beam with energyE having an elec-
tronic stopping powerSe at a given depthz in the crystal. In
this section we will refer, as a particular case, toz=0, i.e., to
the input surface of the crystal. In the case ofSe,Sm, the
maximum local concentration of defects generated isc,cm.

Therefore, latent tracks are not produced since electronic en-
ergy losses are below threshold. However, during irradiation
intrinsic lattice defects will be introduced, facilitating the
eventual achievement of threshold conditions for the next
ions moving through the damaged areas.

After a fluence f an average defect concentration
c̄sf ,Sed has been produced. Ifc̄ùcm the crystal is already
amorphized. Let us consider the case ofc̄,cm. The addi-
tional defect concentration that another test particle must in-
troduce in order to reach the threshold value for amorphiza-
tion cm is then c=cm− c̄sf ,Sed. From s6d, the temperature
that should be reached to generate thatadditionaldefect con-
centration, and so to melting of the previously damaged crys-
tal is

Tmax,th=
«/k

loge A − loge c̄sf,Sed
=

Tm

1 −
kTm

«
logeS1 −

c̄

cm
D . s10d

The required increase in temperature over that of the sub-
strate is then

Tmax,th− Ts = DTth =
DTm

1 −
kTm

«
logeS1 −

c̄

cm
D

3F1 +
Ts

DTm

kTm

«
logeS1 −

c̄

cm
DG , s11d

with DTm=Tm−Ts. The threshold value ofSe that leads to
this increase in temperature can then be obtained by replac-
ing in s3d and will be designated asSth. It represents the
threshold for amorphization after the crystal has received an
irradiation fluencef. One arrives at

Sthsf,Sed =
Sm

1 −
kTm

«
logF1 −

c̄sf,Sed
cm

G
3H1 +

Ts

DTm

kTm

«
logeF1 −

c̄sf,Sed
cm

GJ,

c̄sf,Sed , cm. s12d

Note that in the absence of any previous irradiationc̄=0 and
Sths0,Sed=Sm. The functionc̄sf ,Sed can be readily calculated
as

c̄sf,Sed = NE E
A

cfTmaxsr,Sedg
dxdy

A
, s13d

wherex andy are the Cartesian coordinates at the surface,A
the area of the irradiated region, andN the total number of
incident particles. Noticing that the fluence is justf=N/A
and that the integrand is nonzero in a very small region as
compared to the macroscopic domainA, the limits of the
integral can be extended to infinity. Transforming to polar
coordinates one obtains

FIG. 4. Channeling RBSswith He at 3 MeVd spectra obtained along thec
axis fromZ-cut LiNbO3 samples previously irradiated with 5-MeV silicon
ions at fluences of 231012 at./cm2 sbd, 131013 at./cm2 scd, and 4
31013 at./cm2 sdd. Curve sad is the aligned spectrum in the virgin crystal
and curvesed the random spectrum.
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c̄sf,Sed = 2pfE
0

`

rcfTmaxsr,Sedgdr. s14d

This integral uses expressionss2d and s6d. It has to be di-
vided into two summands, according to the piecewise defi-
nition of DTsr ,Sed. The result of the calculation, that requires
some algebra is

c̄sf,Sed
cm

= 2pfa0
2HE

1

e 1

u
expF−

«

kTm
SSm

Se
t − 1DGdu

+
1

e

kTm

«

Se

Sm
expF−

«

kTm
SSm

Se
e− 1DGJ . s15d

This result can be readily replaced ins12d to yield the
modified threshold for lattice amorphization after an irradia-
tion of fluencef with ions having a stopping powerSe in a
material having a thresholdSm prior to irradiation. Note that
the critical concentrationscm andch do not explicitly appear
in s12d after inserting the result ofs15d. In fact, the only
relevant parameters of the theory are« and a0 saside from
Smd.

The theoretical dependenceSthsf ,Sed, obtained by nu-
merical calculation of expressionss12d and s15d, has been
plotted in Fig. 5 for the following reasonable set of param-
eters: kTm/«=0.2, Sm=5.2 keV/nm, anda0=5.5 nm. The
value for the thermal activation energy represents the best
choice to fit all the experimental data described in this paper
as well as those recently reported.33 The threshold lies within
the range reported from single track experiments.23,24 The
value fora0 gives the best fitting to our data and it is close to
the value of 4.5 obtained for a variety of insulator crystals.16

Sthsf ,Sed constitutes auniversalor referencesurface in the
sense that it applies to any bombarding ion and energy on
LiNbO3.

In Fig. 6 we show the fluence necessary to start amor-
phization at the surface, as a function of Se. It has been
obtained from Fig. 5 after the cutting of the reference surface
by the bisector planeSth=Se. The theoretical curve has been
compared to experimental data33 on N s4.53 MeVd, O
s5.00 MeVd, and F s5.13 MeVd, and to those presented in

this work for Si s5 MeVd. The data very well fit the model
predictions for the selected set of parameters.

C. Theoretical analysis: Propagation of the
amorphization front

A main consequence of the memory effect described in
Sec. IV B is the propagation of the amorphous-crystalline
boundary into the crystal during irradiation. The reason is
that previous irradiation decreases the threshold at any depth
z below the ion range. In order to describe how the amo-
phization front propagates into the sample one just needs to
add to formula s12d, valid for all depths, the constraint
Sthsf ,Sed=Se. This is an implicit equation from whichSe can
be obtained as a function off si.e., the same procedure fol-
lowed at the end of the previous section in order to analyze
the behavior at the surfaced. ReplacingSe by the stopping
power curveSeszd of the bombarding ion derived fromSRIM

2003sFig. 7d, one finally obtains the relation amongz, f, and
Se, schematically written as

FIG. 5. Electronic stopping power threshold for amorphizationsSthd as a
function of prior irradiation with a fluence of ions having an electronic
stopping powerSe. The parameter values used arekTm/«=0.20, Sm

=5.2 keV/nm, anda0=5.5 nm.

FIG. 6. Theoretical prediction of the fluence necessary to start amorphiza-
tion at the surface of a LiNbO3 crystal as a function of the electronic stop-
ping power of the bombarding ions. The parameter values used arekTm/«
=0.20,a0=5.5 nm, andSm=5.2 keV/nmfcurvesadg, 4.94 keV/nmsbd, and
5.3 keV/nmscd. Experimental data taken from Ref. 33scrossesd and from
this workssquaresd are given for comparison.Sm valuesfsbd andscdg include
a linear ion velocity-dependent correctionfsbd for crosses andscd for
squaresg.

FIG. 7. Theoretical electronicfsad and sbdg and nuclearscd stopping power
curves for silicon 7.5 MeV in LiNbO3 calculated withSRIM 2003. Curvessbd
and scd correspond to the crystalline LiNbO3 phase. Curvesad, used in the
calculations of the model, is the corrected curve assuming an amorphous
layer with a progressively increasing thickness and a 15% decrease of
density.

093514-6 Agulló-López, García, and Olivares J. Appl. Phys. 97, 093514 ~2005!

Downloaded 22 Jan 2013 to 161.111.22.141. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



Sthff,Seszdg = Seszd. s16d

In other words one is able to obtain the depth of the amor-
phization front after a fluencef.

Although the problem is essentially similar to the one
dealt with in Sec. IV, it is more complex. In fact, the ions
arriving into the amorphous-crystalline boundary have
moved through a previously amorphizedslower densityd
layer and so they undergo a lower stopping power than in
crystalline LiNbO3. Therefore, one has to use a corrected
Seszd curve ssee Fig. 7d that takes into account the reduced
stopping power of the amorphous layer on top of the consid-
eredz plane. The corrected function calculated also with the
SRIM 2003 code for amorphous LiNbO3 sdensity of 15%
lowerd and displayed in Fig. 7 has been introduced ins16d to
find numerically the dependencezsfd. Figure 8 shows the
numerical solutions for 7.5 and 5-MeV silicon irradiations
on LiNbO3 together with the set of data points of Fig. 4. The
values selected for the parameters are the same as in Fig. 6.
The prediction of the model with this chosen set of param-
eters is depicted as a solid line. It is clear that the main
experimental trend is well accounted for by theory. There is
an initial rapid propagation ofz with f, followed by a nearly
saturating stage. The quantitative agreement is worse. The
data points corresponding to the highest fluences appear at
depths significantly larger than the predicted ones. However,
from Fig. 7 one sees that the contribution of nuclear damage
is very relevant at this large depth and it has not been taken
into account in our analysis.

Within the purely electronic losses regime, there may be
another contribution to the discrepancy between theory and
experiment. It is well known that the threshold for latent
track formation markedly decreases on decreasing ion
velocity24,40–42svelocity effectd. This effect has been investi-
gated at various energies within a broad range going from
0.05 to 2 MeV/nucleon, in which range the threshold
varies23 from around 3 to around 6 keV/nm. It has been
concluded that a substantial decrease in thresholdsincrease
in the efficiency factorgd occurs when passing from the

high-velocity to the low-velocity regime. This effect, that
acts in the right direction to reduce the discrepancy between
theory and experiment, has not been considered in our model
and it is outside the scope of this paper. However, as an
orientation of the trend that the calculation would take by
including it, the fixed valueSm=5.2 has been replaced by a
function linear on the ion velocity, such asSm

=5.2 keV/nm for Si at 7.5 MeV andSm=4.68 keV/nm at
2.8 MeV. This implies a reduction of 10% in the threshold
value on going from 0.27 to 0.1 MeV/amu. The result of
this modification to the calculation is shown as the dashed
curves in Fig. 8. Notice that the agreement between model
and data is already much better even with this very naive
implementation of the velocity dependence of the threshold.
For the sake of consistency, the same velocity dependence
has been included in Fig. 6.

V. SUMMARY AND FINAL COMMENTS

A simple model has been proposed to describe the dam-
age along and around the trajectory of high-energy bombard-
ing ions in insulating crystals. For electronic stopping pow-
ers above a threshold value the damage region includes a
surrounding halo and a tail aside from the amorphous core
slatent trackd. Estimates for the radius of the halo and the
length of the tail have been given as a function of the input
stopping power. The model predicts that previous irradiation
reduces the latent track threshold at the surface and yields a
simple analytical expression for the dependence of this
threshold on prior fluence,memory effect. Experimental data
using N s4.53 MeVd, O s5.00 MeVd, F s5.13 MeVd, and Si
s5 MeVd fit very well the theoretical curve. Moreover, the
propagation of the amorphization front with fluence has been
theoretically described. The results are in reasonable agree-
ment with experiments using Sis5 and 7.5 MeVd, that can be
markedly improved when anad hoccorrection for the veloc-
ity effect on the threshold is considered. The agreement de-
teriorates for the largest fluences or depths, possibly due to
the contribution of nuclear collision damage. In summary,
the model is simple and versatile enough to provide useful
predictions and guide experimental work.
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