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Abstract: Cooperative reductive double deprotonation of the complex [Rh
I
(bpa)(cod)]

+
 ([4]

+
, bpa = 

PyCH2NHCH2Py) with one molar equivalent of base produces the bimetallic species 

[(cod)Rh(bpa 2H)Rh(cod)] (7), which displays a large Rh
I
,Rh

I
 contribution to its electronic structure. 

The doubly deprotonated ligand in 7 hosts the two ‘Rh(cod)’ fragments in two distinct compartments: a 

‘square planar compartment’ consisting of one of the Py donors and the central nitrogen donor, and a 

‘tetrahedral -imine compartment’ consisting of the other pyridine and an ‘imine C=N’ donor. The 

formation of an ‘imine donor’ in this process is the result of substantial electron transfer from the 

{bpa 2H}
2

 ligand to one of the rhodium centers to form the neutral imine ligand bpi (bpi = 

PyCH2N=CHPy). Hence deprotonation of [Rh
I
(bpa)(cod)]

+
 represents a reductive process, effectively 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36090569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 

leading to a reduction of the metal oxidation state from Rh
I
 to Rh

I
. The dinuclear iridium counterpart, 

complex 8, can also be prepared, but it is unstable in the presence of 1 molar equivalent of the free bpa 

ligand leading to quantitative formation of the neutral amido mononuclear compound [Ir
I
(bpa H)(cod)] 

(2). All attempts to prepare the rhodium analog of 2 failed and led to spontaneous formation of 7. The 

thermodynamic differences are readily explained by a lower stability of the M
I 

oxidation state for 

iridium as compared to rhodium. The observed reductive double deprotonation leads to the formation of 

unusual structures and unexpected reactivity, which underlines the general importance of ‘redox non-

innocent ligands’ and their substantial effect on the electronic structure of transition metals. 

Introduction 

Amido ligands (R2N ) are an interesting class of cooperating ligands allowing activation of substrates 

coordinated to transition metals. Cooperative substrate activation by ruthenium-amido complexes in 

Noyori hydrogenations provides a seminal example.
1
 Rhodium-amido complexes have received 

considerably less attention in this field.
2
 Nonetheless, some recent examples reveal that amido 

complexes of the type [Rh(Ntrop2)(PR3)] (Ntrop2 = bis(tropylidenyl)amide, R = Ph) show interesting 

properties, such as cooperative substrate activation in dehydrogenative coupling reactions of alcohols.
3
 

Closely related cooperative reduction of dioxygen can be effectively catalyzed by dinuclear amido-

rhodium complexes.
4
 Additionally, these types of systems are able to promote interesting reactions such 

as amido transfer to alkenes and vinylarenes,
5
 cycloaddition reactions associated with C N bond 

formation,
6
 and C Cl

7
 and C H

8
 bond activation reactions. In other instances, related dinuclear 

complexes
9
 have been used as precursors for low-valent late transition metal imido-clusters.

10
 Our 

understanding of the redox-properties of the ‘Rh NR2’ framework is however still in its infancy, and 

therefore the outcome of electron transfer reactions is quite unpredictable. Nonetheless, a rich chemistry 

can be envisaged from both metal-centred
11

 and ligand-centred oxidations.
12,13

 This revealed among 

others the ‘redox non-innocence’ of the amido ligand, and the resulting aminyl radical ligands show 

interesting bond activations by radical hydrogen abstraction.
14
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We have previously investigated in detail the effect of one-electron oxidation of ethylene
15

 and 1,5-

cyclooctadiene
16

 (cod) iridium complexes, and some of these investigations clearly revealed the ‘redox 

non-innocence’ of the bis(2-picolyl)amine (bpa) ligand. Furthermore, bpa deprotonation proved to have 

a profound effect on the properties and reactivity of [Ir(bpa)(cod)]
+
.
17

 Sequential deprotonation of 

[Ir(bpa)(cod)]
+
 ([1]

+
) at the central amine donor, and subsequently the adjacent methylene moiety, 

allows the isolation of the neutral amido complex [Ir(bpa H)(cod)] (2) and the ‘de-aromatized’ anionic 

complex [Ir(bpa 2H)(cod)]  ([3] ), respectively (see Scheme 1).
18

 Related Ru, Rh and Ir systems have 

been reported by Schneider
19

 and Milstein,
20

 some of which are excellent catalysts for transfer 

hydrogenation and dehydrogenative coupling reactions and offer interesting opportunities for water 

splitting. 

 

Scheme 1. Formation of neutral 2 and anionic [3]  iridium complexes upon sequential deprotonation of 

cationic [1]
+
 and the double deprotonation of the rhodium complex [4]

+
 to [6] . 
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Inspired by the deprotonation results of the iridium complexes, and motivated by the interesting 

literature precedents concerning amido ligand cooperativity in rhodium-mediated hydrogenation 

catalysis and the redox non-innocence of rhodium-amido complexes revealing intriguing atom 

abstraction reactions, we decided to investigate the deprotonation of the cationic [Rh(bpa)(cod)]
+
 

complex.
21

 We aimed at preparing the neutral rhodium amido complex [Rh(bpa H)(cod)] (5 in Scheme 

1) to investigate its reactivity. However, quite unexpectedly, it turned out that a cooperative reductive 
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double deprotonation process rendering a mixed-valence dinuclear complex takes place. The reason 

behind this unusual behaviour and the unexpected results are the topics of this paper. 

 

Results and Discussion 

Cooperative double deprotonation of [Rh(bpa)(cod)]
+
. In an initial attempt to prepare the neutral 

rhodium-amido complex [Rh(bpa H)(cod)], the compound [Rh(bpa)(cod)]PF6 ([4]PF6) was treated with 

1 molar equivalent of KO
t
Bu in thf at room temperature. This did not produce the expected neutral 

square planar rhodium complex (5, Scheme 1). Only 1 equivalent of the base was enough to achieve the 

full conversion of [4]
+
 into the asymmetric dinuclear complex [(cod)Rh(bpa 2H)Rh(cod)] (7) along 

with free bpa in a 1:1 molar ratio (Scheme 2). 

 

Scheme 2. Cooperative double deprotonation of [4]
+
 leading to formation of the dinuclear complex 

[(cod)Rh(bpa 2H)Rh(cod)] (7) and free bpa. 
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In several other experiments, using  1 equivalent of the base, we always obtained the same result. 

Treatment of [4]
+
 with  2 equivalents of the base, however, produced readily and in a quantitative way 

the doubly deprotonated compound K[Rh(bpa 2H)(cod)] (K[6], Scheme 1), which contains a ‘de-

aromatized’ pyridine moiety.
18a

 Moreover, addition of [4]
+
 to thf-d8 solutions of K[6] at room 

temperature did not produce the expected acid/base comproportionation of the ligand to 

[Rh(bpa H)(cod)] (as the iridium counterpart does). On the contrary, complex 7 and free bpa were the 
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sole products from the reaction (Scheme 3). Furthermore, monitoring the reaction of [4]
+
 and KO

t
Bu 

(1:1 molar ratio) at 70º C in thf-d8 allowed the observation of [6]  in the reaction medium (along with 

the starting [4]
+
 and small amounts of the products: 7 and free bpa). No evidence for [Rh(bpa H)(cod)] 

was found in any experiment.  

 

Scheme 3. Typical acid/base behavior for iridium and cooperative reductive double deprotonation for 

rhodium. 
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It thus seems that deprotonation with only one equivalent of base leads to a cooperative double 

deprotonation to the anionic [Rh(bpa 2H)(cod)]  ([6] ), which abstracts a ‘Rh(cod)’ moiety from the 

remaining cationic complex [Rh(bpa)(cod)]
+
 ([4]

+
) complexes to give 7 along with liberation of an 

equivalent of the free bpa ligand. This is a thermodynamically driven reaction (vide infra). 

Sequential acid deprotonation and base protonation generally becomes increasingly difficult after each 

step as a result of charge accumulation (Ka1 > Ka2), and the reverse behaviour (Ka1 < Ka2) associated 

with cooperative (de)protonation is rare. Some examples of increased amine basicity of macrocyclic 

proton receptors after the first protonation have been explained by conformational rearrangements 
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enforcing hydrogen bonding and/or by the encapsulation of mediating water molecules.
22

 Apart from 

these clear examples, a few less-defined examples of (mononuclear) metal-ion induced cooperative 

deprotonation and coordination of peptide-based ligands in water have been reported, but the 

cooperativity was not explained.
23

 Chelation (i.e. bringing the fragments closer to the metal) and 

solvation must have played an important role in these observations.
24

 We are not aware of any examples 

of cooperative deprotonation sequences of coordinated ligands (mononuclear complexes). 

In a similar way, reaction of [{Rh(cod)( -OMe)}2] with bpa (in 1:2 molar ratio) again produces the 

neutral [(cod)Rh(bpa 2H)Rh(cod)] (7) and free bpa without evidence of mononuclear 

[Rh(bpa H)(cod)]. According to the stoichiometry of the reaction, complex 7 was cleanly prepared by 

reacting [{Rh(cod)( -OMe)}2] and bpa (1:1 molar ratio) in diethyl ether. From these solutions complex 

7 was isolated as dark red microcrystals suitable for X-ray diffraction studies. 

Molecular structure of [(cod)Rh(bpa 2H)Rh(cod)] (7). The molecular structure of 7 is shown in 

Figure 1 along with the labelling scheme used. Selected bond distances and angles are collected in Table 

1.  
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Figure 1. Molecular structure (ORTEP at 50% level) of complex 7. Numbers in purple corresponds to 

the middle points (centroids) of the coordinated double bonds. 
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Table 1. Selected bond distances (Å) and angles (º) for complexes [(cod)M
I
(bpa 2H)M

I
(cod)] (M = 

Rh, 7; Ir, 8). 

 7 8  7 8 

M1 N1 2.094(2) 2.081(5) M2 N3 2.216(2) 2.166(5) 

M1 N2 2.032(2) 2.028(5) M2 Ct5
[a]

 2.076(3) 2.078(6) 

M1 Ct1
[a]

 2.010(3) 2.005(6) M2 Ct3
[a]

 2.043(3) 2.036(7) 

M1 Ct2
[a]

 1.997(3) 1.981(6) M2 Ct4
[a]

 1.964(3) 1.953(6) 

M2-N2 2.254(2) 2.247(5) M2-C6 2.130(3) 2.145(6) 

C13 C14 1.394(4) 1.408(9) C21 C22 1.396(4) 1.401(9) 

C17 C18 1.401(4) 1.418(9) C25 C26 1.427(4) 1.458(8) 

N1 C1 1.355(4) 1.366(7) C1 C2 1.369(4) 1.360(8) 

C2 C3 1.401(5) 1.399(9) C3 C4 1.374(4) 1.371(9) 

C4 C5 1.407(4) 1.395(8) C5 N1 1.373(4) 1.374(7) 

C5 C6 1.434(4) 1.440(8) C6 N2 1.415(4) 1.427(7) 

N2 C7 1.460(4) 1.467(7) C7 C8 1.509(4) 1.495(8) 

C8 N3 1.341(4) 1.346(7) C8 C9 1.400(4) 1.391(8) 

C9 C10 1.374(4) 1.376(9) C10 C11 1.388(5) 1.401(9) 

C11 C12 1.375(4) 1.378(8) C12 N3 1.354(4) 1.356(8) 

N1 M1 Ct1 173.6(1) 173.1(2) N3 M2 Ct3 98.7(1) 98.0(2) 

N2 M2 Ct2 175.7(1) 174.9(2) Ct4 M2 Ct5 120.1(1) 118.1(2) 

N1 M1 N2 80.4(1) 79.8(2) N3 M2 Ct5 78.2(1) 78.4(2) 

Ct1 M1 Ct2 87.7(1) 87.0(2) Ct3 M2 Ct4 87.1(1) 86.8(2) 

[a] Ct1, Ct2, Ct3, Ct4 and Ct5 are the middle points between C13 and C14, C17 and C18, C21 and 

C22, C25 and C26, and C6 and N2, respectively. 

 

The {bpa 2H} ligand in 7 acts as a hetero-dicompartmental ligand, hosting the two ‘Rh(cod)’ 

fragments in two distinct compartments. The first compartment functions as a heterobidentate N,N’-

ligand consisting of one of the Py donors and the central amido nitrogen (N2), thus hosting a Rh(cod) 

fragment (Rh1). The coordination geometry around Rh1 is clearly square planar, with only a small twist 

(5.7(2)º) of the planes defined by N1 Rh1 N2 and Ct1 Rh1 Ct2 (Figure 1). The other Py-donor and 

the C6 N2  bond are coordinated to the second Rh atom. The angles around N2 (if Rh2 is not 
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considered) are close to 120º, and their sum (
0
 = 356º) is close to the expected value for an sp

2
 

hybridized nitrogen (Rh1 N2 C7 126.7(2)º, Rh1 N2 C6 113.7(2)º, and C6 N2 C7 115.2(2)º). A 

similar geometry is observed for C6 with values of 117.7(19), 116.1(19) and 116.0(2)º for the angles 

N2 C6 H6, C5 C6 H6, and C5 C6 N2, respectively, although their sum (
0
 = 350º) suggests same 

pyramidalization consequence of the -coordination of Rh2. In addition, the maximum deviation from 

the best plane defined by the five-membered rhodacycle Rh1 N1 C5 C6 N2 is only 0.092 Å. 

Therefore, N2 and C6 can be described as sp
2
-hybridized atoms, pointing to a relatively strong imine 

character of the C6–N2 bond. In fact, a relatively short C6 N2 bond length (1.415(4) Å) is observed. 

Although the C=N bond distance in aromatic free imines lies in the range 1.25-1.33 Å, this distance 

should be enlarged by the -coordination to rhodium. 

In this perspective, the ‘imine’ is -coordinated to Rh2, and as such, the geometry around this ‘four-

coordinate’ Rh2 centre is perhaps best described as distorted tetrahedral. The dihedral angle between the 

Ct5-Rh2-N3 and Ct3-Rh2-Ct4 planes (56.5(2)º) lies intermediate between tetrahedral (90º) and square 

planar (0º), although clearly greatly distorted from the latter (Figure 1). These structural data suggest that 

the bpa 2H bridging ligand in 7 is, in fact largely transformed into the imine PyCH=N CH2Py (bpi) 

ligand by transfer of almost two electrons from the initially dianionic {bpa 2H}
2

 ligand to rhodium 

with concomitant reduction of this rhodium centre to Rh
I
. Accordingly, the Rh2 N distances (Rh2 N2: 

2.254(2) Å, Rh2 N3: 2.216(2) Å) are longer than the Rh1 N distances (Rh1 N1; 2.094(2) and 

Rh1 N2: 2.032(2) Å) as expected for a reduced rhodium( I) center. In good agreement, Rh2 seems to 

adopt an almost tetrahedral geometry, typical for d
10

-ML4 complexes. All these features are similar to 

the complex [(nbd)Rh(bpa 2H)Rh(ndb)] previously communicated.
25

 

The structural data suggest that resonance structure 7
A
 (Scheme 4) contributes substantially to the 

electronic structure of 7.
26 

Nevertheless, a second resonance structure with a Rh
I
 ion being part of a 

rhoda(I)-aza-cyclopropane ring (7
B
, Scheme 4), cannot be completely neglected  
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Scheme 4. Contributing resonance structures of complex 7. 
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For the main resonance form (7
A
) the square-planar Rh

I
 can be considered as a d

8
 cationic 16 VE (VE 

= valence electron) centre to which the bpi ligand contributes with four electrons. The tetrahedral Rh  is 

a d
10

 anionic 18 VE centre to which the bpi also contributes with four electrons. Consequently, complex 

7 can be considered, in part, as a zwiterionic complex. Resonance structure 7
B
 leads to an identical 

electron count for both rhodium atoms, in which case the bridging {bpa-2H}
2

 ligand is a 10e donor 

ligand (4e to Rh1 and 6e to Rh2). 

 

DFT modelling of [(cod)Rh(bpa 2H)Rh(cod)] (7). The DFT-optimized geometry of 7 (Figure 2) is 

very close to the X-ray structure (Figure 1). The species is clearly diamagnetic. A closed-shell ground 

state is expected for second row metals, but nonetheless we checked for a possible singlet biradical 

ground state with two antiferromagnetically coupled electrons with broken-symmetry U DFT 

calculations. These, however, in all possible attempts, converged to the same closed-shell singlet 

configuration as in the restricted closed-shell DFT calculations. Metal-ligand biradical descriptions can 

thus be excluded. The DFT calculations indicate strong Rh d-orbital mixing, which complicates a direct 

and simple interpretation of its electronic structure. A Löwdin orbital occupancy analysis (b3-lyp, 

TZVP) indicates that both Rh atoms in 7 have a total d-orbital occupancy of almost exactly 8 electrons 

(Rh1: 8.0e; Rh2: 8.1e). These values does not allow us to unambiguously discriminate between the 

resonance structures in Scheme 4, since for the Rh
I
 based resonance structure 7

B
 and for the Rh

I
 based 

resonance structure 7
A
, with substantial -back donation to the ‘imine’ ligand *-orbitals, one expects to 

find such values. It thus seems that the Rh
I
-imine -bond is associated with a strong covalency, and 
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hence the electronic structure of 7 is best described being somewhere in between the resonance 

structures 7
A
 and 7

B
, with a rather large relative contribution of 7

A
.  

 

Rh1
Rh2

 

Figure 2. DFT optimized geometry (left) and HOMO (right) of 7. 

It should be indicated that late transition metal complexes with a 
2
-C=N bonded moiety are very 

scarce and that they are systematically described as metalla-aza-cyclopropanes (7
B
, Scheme 4) in 

complexes of palladium
27

 and iridium.
28 

The single related precedent in rhodium chemistry corresponds 

to the complex [Rh(CH2Ntrop2)(PR3)] (HNtrop2 = bis(tropylidenyl)amine, R = Ph) described by 

Grützmacher,
29 

of which the structural parameters point to a rhoda-aza-cyclopropane rather than a 
2
-

iminium ion bound to a reduced metal. In addition, related two-electron mixed-valence complexes 

M(0,II)
30

 have been synthesized using special ligands capable of stabilizing redox asymmetric 

environments as developed by Nocera et al.
31

 Some of them show interesting new mechanisms in 

hydrogenation reactions,
32

 C H activation reactions,
33

 and are photoactive in hydrogen production.
34

 

Very recently, an unusual Rh( I,III) complex has been reported.
35

 

NMR spectra of [(cod)Rh(bpa 2H)Rh(cod)] (7). The unusual structure of 7 is maintained in 

solution according to multinuclear NMR spectra. Figure 3 shows the 
1
H NMR spectrum of 7 in C6D6, 

while a selected region of the 
13

C{
1
H} NMR spectrum is included in the inset. The methylene protons 

from the intact CH2 group give rise to an AB spin system centred at  4.18 ppm, while the proton from 

the imine (HC=N) produces a singlet at  4.32 ppm.  
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Figure 3. 
1
H NMR spectrum in C6D6 of 7. A selected region of the 

13
C{

1
H}-apt NMR spectrum in 

shown in the inset. 

 

The quite different nature of the corresponding carbon atoms is detected in the 
13

C{
1
H} NMR 

spectrum, where the CH2 group resonates at the usual chemical shift (  60.53 ppm, JC,Rh = 1.5 Hz), 

while the signal for the HC=N carbon is shifted to low-field (  82.23 ppm, JC,Rh = 7.6 Hz). The two 

inequivalent pyridine rings give rise to two well-defined sets of four signals each one, easily identified 

from the 
1
H,

1
H-cosy and 

1
H,

1
H-noesy spectra. Thus, the two cross-peaks due to nOe effect between the 

CH2 and A
4
 protons and between the HC=N and B

4
, respectively, unequivocally correspond to the 

connectivity shown in Figure 3. The signals of the nearby pyridine moiety of 7 (labelled in red) are 

substantially upfield shifted (up to  5.8 ppm) suggesting some delocalization of electronic density of 

the bridging ligand into this pyridine ring.  

The cod ligands also behave in a distinct way; one of them [cod(2)] appears to have an averaged C2 

symmetry on the NMR time scale, thus producing two olefinic resonances in the 
1
H NMR spectrum and 

two in the 
13

C{
1
H}-apt spectrum (see inset in Figure 3). The other, [cod(1)], is observed as a typical cod 
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ligand lacking elements of symmetry. The olefinic protons H
21

 and H
22

 of the fluxional cod(2) give two 

relevant nOe cross-peaks with the pyridine A
1
 and B

4
 protons. Therefore, cod(2) is coordinated to the 

‘tetrahedral’ Rh2 atom. Accordingly, the olefinic protons of the unsymmetrical cod(1) ligand give rise to 

the corresponding nOe cross-peaks with the B
1
 proton, and with A

4
 with smaller intensity, so that cod(1) 

is coordinated to the square-planar Rh1 atom. 

The fluxional behavior undergone by cod(2) requires some comments. Apparently, the exchange can 

be described as the rotation of this cod ligand around the rhodium atom. Moreover, the observation of 

this fluxional process, which cannot be frozen even on cooling to –80 ºC in toluene-d8, indicates that it 

possesses a low energy barrier. The fast rotation of cod(2) around the Rh2 center is in good agreement 

with the ‘tetrahedral’ geometry of this metal. For most square-planar d
8
 Rh

I
 complexes this is a much 

higher-energy process.
36

 In the Rh
I
( -imine) description 7

B
 (Scheme 4), the d

10
 configuration of the 

‘tetrahedral’ Rh2 leads to a ligand field stabilization energy of zero (LFSE = 0), which may further 

contribute to the easy rotation of cod(2). 

 

Synthesis of [(cod)Rh
I
(bpa 2H)Rh

I
(cod)] (7) from [(cod)Rh

I
(bpa H)Rh

I
(cod)]

+
. 

The two-electron mixed-valence dinuclear complex [(cod)Rh(bpa 2H)Rh(cod)] (7) differs in only a 

proton from the cationic [(cod)Rh(bpa H)Rh(cod)]
+
 which contains two Rh

I
 centers.

37
 Therefore, we 

decided to investigate the relationships between these compounds. Indeed, addition of one mol of base 

to [(cod)Rh(bpa H)Rh(cod)]
+
 gives 7 cleanly and quantitatively. The abstraction of a proton from 

cationic [(cod)Rh(bpa H)Rh(cod)]
+
 is thus accomplished with a strong electronic reorganization, best 

described as a reduction of Rh
I
 to Rh

I
 with oxidation of the dianionic {bpa 2H}

2
 ligand to a neutral 

imine ligand PyCH2N=CHPy. To our best knowledge, this ligand-to-metal electron transfer upon 

deprotonation of [(cod)Rh(bpa H)Rh(cod)]
+
 to produce the redox asymmetric dinuclear rhodium 

complex 7 is an unprecedented reaction.
38

 Moreover, under specific conditions the dinuclear cationic 

complex evolves to 7 even in the absence of an external base (see Scheme 5). While orange solutions of 
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[(cod)Rh(bpa H)Rh(cod)]PF6 in acetone-d6 show a sharp 
1
H NMR spectrum, addition of one molar-

equivalent of [PPN]Cl as a chloride donor ([PNN]Cl = bis(triphenylphosphine)iminium chloride) leads 

to a color change of the solution from orange to red. The 
1
H NMR signals of this mixture are 

substantially broadened. Chloride coordination to the organometallic cation must be the origin of the 

enhanced fluxionality. The disappearance of the AB pattern signals of the methylenic protons clearly 

reveals the cleavage of the amido-bridge, and points to the involvement of the neutral species A 

(Scheme 5). Addition of toluene-d8 to the same NMR tube leads to a further color change to dark-red. At 

this point, lowering the polarity of the reaction medium by faster evaporation of acetone than toluene 

produces spectra showing only complex 7, while a yellow solid precipitates. The yellow compound was 

isolated and further characterized as the complex double salt [Rh(bpa)(cod)]
+
[RhCl2(cod)]  

([1][RhCl2(cod)]) (Scheme 5). 

 

Scheme 5. Spontaneous proton transfer induced by chloride coordination producing 7. 
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Species A is, in fact, a derivative of the hypothetical amido compound [Rh(bpa H)(cod)] with a 

‘RhCl(cod)’ fragment coordinated to the pendant pyridyl ring. Consequently, it undergoes the same 

atypical acid/base behaviour giving the {bpa 2H} ligand contained in 7 and bpa coordinated in the 

cation/anion complex double salt. This result represents a second example for the intrinsic instability of 

the ‘Rh(bpa H)(cod)’ framework and its tendency towards acid/base disproportionation. 
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Synthesis of homodinuclear Ir
I
,Ir

I
 and heterodinuclear Rh

I
,Ir

I
 complexes. Considering that 

[Rh(bpa 2H)(cod)]  ([6] ) is a likely intermediate in the reaction giving [(cod)Rh(bpa 2H)Rh(cod)] (7), 

we thought that the iridium counterpart [Ir(bpa 2H)(cod)]  ([3] ) could be a useful precursor for the 

generation of Ir analogs of this new class of two-electron mixed-valence complexes. Consistent with 

these ideas, complex [Ir(bpa 2H)(cod)]  ([3] ) reacts with [{Ir( -Cl)(cod)}2] to give the dinuclear 

neutral complex [(cod)Ir(bpa 2H)Ir(cod)] (8). A similar reaction of anionic [3]  with [{Rh( -

Cl)(cod)}2] produces the heterometallic [(cod)Rh(bpa 2H)Ir(cod)] (9). Both complexes were isolated as 

air-sensitive red-brown solids. Nonetheless, the homobimetallic complex 8 is more easily obtained, in a 

pure form and in good yields, by reacting [{Ir(cod)( -OMe)}2] with bpa in 1:1 molar ratio in diethyl 

ether, while reaction of the isolated iridium-amido complex 2 with [{Rh(cod)( -OMe)}2] in a 2:1 molar 

ratio produces the hetero-dinuclear Rh,Ir complex 9 in a more selective manner. Detailed NMR 

spectroscopic information for these complexes is given in the Experimental Section. The X-ray 

geometry and the bond lengths of 7 and 8 are very similar (Table 1).  

For the Rh,Ir compound 9, 
13

C-
103

Rh couplings in combination with 
1
H-

1
H noesy experiments 

unequivocally establish that the ‘Rh(cod)’ fragment is coordinated in the ‘tetrahedral -imine 

compartment’, while the Ir(cod) fragment is coordinated in the ‘square planar compartment’. The NMR 

data of 9 are clean and clearly confirm the proposed structure. However, complex 9 reveals quite 

unusual chemical shifts of the ‘imine’ (and some of the pyridine signals) in the NMR spectra as 

compared to those of 7 and 8. The 
13

C signal of the bridging C=N moiety shifts, upfield from  = 82 

ppm in the Rh,Rh compound 7 to 72 ppm in the Ir,Ir compound 8, thus reflecting the stronger covalency 

of the Ir N bond. For the Rh,Ir compound 9 one would expect an intermediate chemical shift; however, 

it is actually observed downfield relative to 7 (  = 93 ppm). This behaviour seems to be temperature 

dependent, but presently we do not entirely understand it. It seems that compound 9 is involved in a 

fluxional behaviour, which we are currently investigating. 
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Electronic structures and thermodynamic stability of amido complexes [M(bpa H)(cod)] (M = 

Rh, Ir). Since the dinuclear compounds 7-9 are all isolable and stable compounds, we still wondered 

why the rhodium amido complex [Rh(bpa H)(cod)] (5) spontaneously disproportionates to free bpa and 

the dinuclear complex [(cod)Rh(bpa 2H)Rh(cod)] (7). Are the species 2 and 5 both intrinsically 

unstable with respect to disproportionation to 8/7 and free bpa with a kinetic barrier preventing this 

reaction to occur for the iridium species? Or is formation of rhodium species 7 from 5 

thermodynamically favoured while formation of 8 from 2 is unfavourable? We tried to answer these 

questions through a set of additional experiments and DFT calculations.  

We first calculated the properties of the elusive compound [Rh(bpa H)(cod)] (5) with DFT, in order 

to compare its structure and its frontier orbitals with those of the iridium analogue 2. These calculations 

do not reveal any unusual geometrical differences between 2 and 5, which are almost completely 

isostructural, and also the frontier orbitals of these species are nearly identical. Since the filled p-type 

amido lone pair of the ligand must interact with the filled metal d -orbitals of the d
8
-transition metals, 

this unfavourable interaction could be considered as a -conflict,
19a,39

 which could in principle 

destabilize rhodium complex 5 stronger than iridium complex 2. However, for both species this 

repulsive interaction is counterbalanced by an increased -back-donation from the metal into the * 

orbital of the cod double bond trans to the amido fragment, thus resulting in some bonding character of 

the resulting HOMO. The overall effect is then a net -bonding between rhodium or iridium and the 

amido fragment (Figure 4). 

Back-donation is generally stronger for iridium than for rhodium, which might in part explain the 

increased stability of iridium complex 2 compared with that of rhodium complex 5. This is confirmed by 

the large upfield shifts of the olefinic carbons trans to the amido fragment in 2. The DFT calculations 

show that the dominating differences between 2 and 5 are mainly reflecting the stronger -interactions 

of the M N bonds in 2 (Ir) compared to 5 (Rh), which could contribute to the relative stability of 2. 
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Figure 4. DFT calculated HOMO of the hypothetical Rh compound 5, and a simplified MO scheme 

explaining the net -bonding between Rh and the amido fragment. The HOMO of 2 is very similar.
18a

 

 

While the above data hint to a better stabilisation of the {bpa H}  ligand by iridium, it still does not 

provide a straightforward explanation why Rh complex 5 is not an isolable compound. Hence, to shed 

some more light on this problem, we performed some additional experiments and DFT calculations to 

investigate the equilibrium associated with the reactions shown in Scheme 6. Quite remarkably, reaction 

of the dinuclear iridium complex [(cod)Ir(bpa 2H)Ir(cod)] (8) with the free bpa ligand in toluene 

quantitatively produces the mononuclear complex [Ir(bpa H)(cod)] (2, Scheme 6). However, no 

reaction of the dinuclear Rh complex [(cod)Rh(bpa 2H)Rh(cod)] (7) with bpa occurs at all even in a 1:5 

ratio molar ratio at 60 ºC in C6D6 for 2 h. This means that the equilibrium shown in Scheme 6 lies 

almost entirely to the right for iridium (in black), while the corresponding equilibrium for the analogous 

Rh complexes lies almost entirely to the left (in red). 
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Scheme 6. Disproportionation/comproportionation equilibria between [M(cod)(bpa H)] and 

[(cod)M(bpa 2H)M(cod)] + bpa. Relative energies ( E) of the equilibria were obtained with DFT 

calculations. 
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Because the metal in the imine compartment is best described being in the I oxidation state (vide 

supra), the reaction in Scheme 6 is in fact an oxidative process in which one of the iridium atoms is 

being oxidized from Ir
I
 to Ir

I
. Since it is well know that the tendency to undergo oxidative processes is 

generally higher for the third row transition metals as compared to the second row transition metals, it is 

understandable that the equilibrium in Scheme 6 lies to the right for iridium while the corresponding 

equilibrium for the analogous rhodium complexes lies to the left. This provides a straightforward 

explanation for the fact that the amido rhodium complex 5 cannot be prepared, while the iridium 

analogue 2 is a stable compound.
40

 It is clear that the amido rhodium complex 5 is thermodynamically 

unstable towards disproportionation, and readily forms the dinuclear complex 7 and the free bpa ligand. 

The thermodynamic differences are readily explained by a higher stability of the M
I 
oxidation state in 

the dinuclear complexes for rhodium as compared to iridium. DFT calculations in the gas phase are in 

good qualitative agreement with these experimental observations (see Scheme 6). Therefore, the two 

above commented main reactions: [M(bpa)(cod)]
+
 with KO

t
Bu (1 molar-equivalent) and 

[(cod)M(bpa 2H)M(cod)] + bpa can be considered as proton coupled electron transfer reactions, with an 

acid/base component and a hidden redox process involving the reduction of one of the metals in the 

dinuclear entity. In this perspective, the expected acid/base behaviour prevails over the redox part for the 
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iridium complexes, while the redox process dominates over the acid/base contribution for the rhodium 

ones, and consequently, they undergo a cooperative reductive double deprotonation to the mixed-

valence Rh
I
,Rh

I
 compound. 

Further experiments and DFT calculations clearly reveal that Rh feels most comfortable in the 

‘tetrahedral -imine compartment’, while Ir is most comfortable in the ‘square planar’ compartment. 

Reaction of [(cod)Rh(bpa 2H)Rh(cod)] (7) with [IrCl(cod)PPh3] in C6D6 at 60
o
C produces almost 

quantitatively [(cod)Rh(bpa 2H)Ir(cod)] (9) and [RhCl(cod)PPh3] (see also the Supporting 

Information). Thus, iridium replaces rhodium in the ‘square-planar compartment’ in this reaction. 

Similarly, reaction of [(cod)Ir(bpa 2H)Ir(cod)] (8) with [RhCl(cod)PPh3] under the same conditions 

produces almost quantitatively 9 (and [IrCl(cod)PPh3]). In this case, rhodium replaces iridium in the 

‘tetrahedral -imine compartment’ (Scheme 7).  

 

Scheme 7. Replacing Rh by Ir in the ‘square planar’ compartment and replacing Ir by Rh in the 

‘tetrahedral compartment’. 

M

N M

N

N
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Rh

N Ir

N

N
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[IrCl(cod)PPh3] [RhCl(cod)PPh3]  

 

Moreover, reaction of the dinuclear Rh complex [(cod)Rh(bpa 2H)Rh(cod)] (7) with the dinuclear Ir 

complex [(cod)Ir(bpa 2H)Ir(cod)] (8) in C6D6 at 60
o
C produces almost quantitatively the 

heterodinuclear complex 9 (Scheme 8) instead of a statistical mixture of the complexes in a 1:2:1 ratio 

(see Supporting Information).  
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Scheme 8. Comproportionation of 7 and 8 to form two molecules of 9. The relative energy ( E) for the 

comproportionation equilibrium was obtained with DFT calculations. 
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DFT calculations in the gas phase are in good qualitative agreement with these experiments. The 

comproportionation of 7 and 8 to 9 is exothermic by ~5 kcal mol
1
 according to these calculations 

(Scheme 8). The calculations further reveal that the [(cod)Rh(bpa 2H)Ir(cod)] complex 9 with Rh in the 

‘tetrahedral -imine compartment’ and Ir in the ‘square planar’ compartment is ~4 kcal mol
1
 more 

stable than the hypothetical [(cod)Ir
I
(bpa 2H)Rh

I
(cod)] isomer 9’ with Ir in the ‘tetrahedral -imine 

compartment’ and Rh in the ‘square planar’ compartment. 

Oxygenation of complexes 7 and 8. In line with the electron rich nature of their metallate( I) centers, 

the complexes 7 and 8 are very air-sensitive, and react rapidly with O2 in benzene (Scheme 9). The 

reactions proceed with formation of the carboxamido complexes [M(bpam H)(cod)] (M = Rh (10); Ir 

(11); bpam = N-(2-picolyl)picolinamide). Monitoring the reactions by NMR further revealed the 

formation of [{M(cod)( -OH)}2] (M= Rh, Ir) in roughly equimolar amounts. These reactions are similar 

to those previously communicated for the Rh(nbd) analogs.
25

 Complex 11 is also the result of the 

reaction of the anionic complex [3]  with oxygen.
18a
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Scheme 9. Oxygenation of 7 and 8 to form the carboxamido complexes 10 and 11. 
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Complex 10 was identified by comparing its spectroscopic data with those of pure samples obtained 

from the reaction of [{M(cod)( -OMe)}2] with bpam in diethyl ether (see Experimental Section). From 

these solutions, complex 10 was obtained as orange single crystals whose molecular structure is shown 

in Figure 5. Selected bond distances and angles are collected in Table 2.  
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Figure 5. Molecular structure (ORTEP at 50% level) of complex 10. 

 

Coordination of the bpam H ligand to rhodium in 10 occurs through the amido nitrogen (N2) and the 

nitrogen (N1) of the carbonyl-bound pyridyl ring. The square planar coordination geometry around 

rhodium is completed by the chelating cod ligand. The amido N2 and the carbon C6 are strictly planar 

(sum of the angles around the nitrogen 
0
 = 359.8º [359.7º for the second independent molecule] and 

0
 

= 360.0º [360.0º] for the carbon. The five-membered metallacycle was found to be almost planar (the 

maximum deviation of the plane defined by Rh, N1, C5, C6, N2 is 0.019 Å [0.028 Å]). These data 
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clearly reflect a sp
2
-hybridization for the N2 and C6 atoms. In addition, the N1 C5 and N2 C6 

distances are ca. 0.15 Å shorter than C5 C6, pointing to a single bond between the carbon atoms and 

some multiple bond character for both C N bonds. 

 

Table 2. Selected bond distances (Å) for complex 10. 

Rh N1 2.095(3) [2.144(3)] N1 C1 1.342(4) [1.342(4)] 

Rh N2 2.059(2) [2.051(2)] C1 C2 1.387(4) [1.380(4)] 

Rh Ct1
[a]

 2.013() [2.012(3)] C2 C3 1.379(5) [1.384(4)] 

Rh Ct2
[a]

 2.015() [2.016(3)] C3 C4 1.389(5) [1.384(4)] 

C13 C14 1.403(4) [1.389(3)] C4 C5 1.382(4) [1.382(4)] 

C17 C18 1.383(4) [1.395(3)] C5 N1 1.348(4) [1.348(4)] 

C5 C6 1.509(4) [1.498(4)] C6 O 1.243(4) [1.246(3)] 

C6 N2 1.340(4) [1.336(4)] N2 C7 1.457(4) [1.456(4)] 

[a] Ct1 and Ct2 are the middle points between C13 and C14 and C17 and C18, respectively. In 

brackets the data for the second independent molecule. 

 

The formation and isolation of the rhodium carboxamido compound 10 is in sharp contrast with the 

thermodynamic instability of the (structurally and electronically similar) amido complex 5. 

Delocalization of the lone pair of N2 to the adjacent carbonyl (partly removing its -interactions with 

the filled metal-d -orbitals) and the inability of 10 to host another metal atom are the most likely 

explanations for this different behavior.
41

 

 

Summary and Conclusions 

Deprotonation of [Ir
I
(bpa)(cod)]

+
 complex with 1 molar equivalent of a strong base leads to 

quantitative formation of the neutral mono-deprotonated and mononuclear [Ir
I
(bpa H)(cod)] (2) species. 

All attempts to prepare the [Rh
I
(bpa H)(cod)] analog led to spontaneous cooperative reductive double 

deprotonation of the [Rh
I
(bpa)(cod)]

+
 complex, thus producing the Rh

I
,Rh

I
 mixed-valence 
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[(cod)Rh
I
(bpa 2H)Rh

I
(cod)] (7) species. The dinuclear iridium analog 8 can be prepared, but is 

unstable in the presence of 1 molar equivalent of the free bpa ligand leading to quantitative formation of 

2. Hence, for iridium the spontaneity of the process ([8] + bpa  2 [2]) is reversed from that occurring 

for rhodium (2 [5]  [7] + bpa). These thermodynamic differences are readily explained by a lower 

stability of the M
I 
oxidation state for iridium as compared to rhodium in the dinuclear complexes 8 and 

7. Formation of two equivalents of [Ir
I
(bpa H)(cod)] from 8 and free bpa is an oxidative process, which 

is favorable for iridium. Disproportionation of [Rh
I
(bpa H)(cod)] into 7 and free bpa is a reductive 

process, which is favorable for rhodium. The observed reductive deprotonation process leads to highly 

unusual structures and unexpected reactivities, which underlines the general importance of the 

substantial effect of ‘redox non-innocent ligands’ on the electronic structure and catalytic activity of 

transition metals.
42 

 

Experimental Section 

General methods. All procedures were performed under an argon or N2 atmosphere, using standard 

Schlenk techniques. Solvents were dried and distilled under argon before use by standard methods.
43

 

NMR experiments were carried out on Bruker AV 500, AV 400, and DPX 200 spectrometers operating 

at 500, 400, and 200 MHz for 
1
H, respectively. Chemical shifts are reported in ppm and referenced to 

SiMe4, using the internal signal of the deuterated solvent as reference. The bpa numbering for the 

complexes correspond to that in Figure 3 for 7. The complexes [{M(cod)( -OMe)}2],
44

 

[Ir(bpa)(cod)]PF6 ([1]
+
)
17

 and [Rh(bpa)(cod)]PF6 ([4]
+
)
21a

 were prepared according to the literature 

descriptions. All other chemicals are commercially available and were used without further purification. 

[(cod)Rh(bpa 2H)Rh(cod)] (7). Liquid bis(2-picolyl)amine (dpa, 97%) (55.7 L, 0.31 mmol) was 

added to a yellow suspension of [{Rh(cod)( -OMe)}2] (150.0 mg, 0.31 mmol) in 10 mL of diethyl ether. 

After stirring for 15 min, the resulting dark-red/brown solution was concentrated to ca. 7 mL, layered 

with pentane (10 mL), and left in the fridge (4 ºC) overnight. The mother liquor was decanted, and the 
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solid was washed with pentane (2 x 5mL), and vacuum-dried. Yield: 147.1 mg (77%). Crystals suitable 

for X-ray diffraction resulted by layering with hexane the ethereal red-brown solution mentioned above. 

1
H NMR (500 MHz, C6D6, 25 ºC):  8.76 (br d, J = 4.2 Hz, 1H, H

A1
), 7.15 (d, J = 7.6 Hz, 1H, H

A4
), 7.01 

(td, J = 7.6, 1.7 Hz, 1H, H
A3

), 6.80 (d, J = 6.5 Hz, 1H, H
 B1

), 6.58 (m, 2H, H
B3

 and H
A2

), 6.20 (d, J = 8.5 

Hz, 1H, H
B4

), 5.78 (td, J = 6.5, 1.2 Hz, 1H, H
B2

), 4.75 (m, 2H, H
21

), 4.33 (s, 1H, HC=N), 4.22 ( A, 1H) 

and 4.12 ( B, JA,B = 17.0 Hz, 1H, CH2), 4.04 (m, 1H, H
11

), 3.70 (m, 3H, H
12

, H
15

 and H
16

), 3.41 (m, 2H, 

H
22

), 2.71 (m, 1H, H
14a

), 2.53 (m, 2H, H
24a

), 2.47 (m, 1H, H
18a

), 2.40 (m, 1H, H
13a

), 2.31 (m, 1H, H
17a

), 

2.16 (m, 2H, H
24b

), 2.12 (m, 2H, H
23a

), 2.05 (m, 1H, H
14b

), 2.01 (m, 1H, H
18b

), 1.81 (m, 2H, H
23b

), 1.77 

(m, 1H, H
17b

), 1.71 (m, 1H, H
13b

). 
13

C{
1
H} NMR (125 MHz, C6D6, 25 ºC):  162.2 (C

A5
), 149.2 (C

A1
), 

148.5 (C
B5

), 143.0 (C
B1

), 135.6 (C
A3

), 130.6 (C
B3

), 121.4 (C
A2

), 121.0 (C
A4

), 115.5 (C
B4

), 110.1 (C
B2

), 

82.2 (d, JC,Rh = 7 Hz, HC=N), 79.1 (d, JC,Rh = 14 Hz, C
11

), 76.2 (d, JC,Rh = 13 Hz, C
15

), 73.9 (d, JC,Rh = 

12 Hz, C
12

), 73.1 (d, JC,Rh = 12 Hz, C
16

), 72.7 (d, JC,Rh = 14 Hz, C
22

), 67.1 (d, JC,Rh = 14 Hz, C
21

), 60.5 

(CH2), 33.6 (C
24

), 32.7 (C
18

), 31.7 (C
14

), 31.2 (C
23

), 30.5 (C
17

), 29.6 (C
13

). Anal. Calcd. (Found) for 

C28H35N3Rh2 (619.4): C, 54.29 (54.18); H, 5.69 (5.60); N, 6.78 (6.84).  

Alternatively, complex 7 can be prepared as follows in thf: Solid KO
t
Bu (62.0 mg, 0.55 mmol) was 

added to a yellow solution of [4]PF6 (278.0 mg, 0.50 mmol) in 10 mL of thf. An immediate colour 

change to purple-brown was observed as a 1:1 mixture of bpa and 7 was obtained. The resulting mixture 

(7 contaminated with KPF6) was evaporated, washed with pentane, dried under vacuum, and was 

directly analysed by NMR. 
1
H NMR (200 MHz, thf-d8, 25 ºC):  8.81 (d, J = 5 Hz, 1H, H

A1
), 7.63 (m, 

1H, H
A3

), 7.33 (d, J = 8 Hz, 1H, H
A4

), 7.11 (m, 1H, H
A2

), 6.96 (m, 2H, H
B1

 and H
B3

), 6.48 (d, J = 8 Hz, 

1H, H
B4

), 6.11 (m, 1H, H
B2

), 4.48 (m, 2H, cod-CH), 4.19 (s, 1H, CH=N), 4.16 ( A, 1H) and 3.99 ( B, 

JA,B = 17 Hz, 1H, CH2), 3.68 (br s, 3H, cod-CH=), 3.01 (m, 2H, cod-CH=), 2.64 (m, 2H, cod-CH2), 2.44 

(m, 5H, cod-CH2 and cod-CH=), 1.95 (m, 8H, cod-CH2), 1.57 (m, 2H, cod-CH2). 
13

C{
1
H} NMR (50 

MHz, thf-d8, 25 ºC):  162.91 (C
A5

), 150.99 (C
A1

), 144.08 (C
B1

), 137.13 (C
A3

), 132.17 (C
B3

), 122.90 

(C
A2

), 122.18 (C
A4

), 116.69 (C
B4

), 111.48 (C
B2

), 81.88 (d, JC,Rh = 8 Hz, CH=N), 82.29 (d, JC,Rh = 13 Hz, 
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cod-CH=), 79.12 (d, JC,Rh = 12 Hz, cod-CH=), 76.51 (d, JC,Rh = 12 Hz, cod-CH=), 75.54 (d, JC,Rh = 14 

Hz, cod-CH=), 73.01 (d, JC,Rh = 14 Hz, cod-CH=), 66.98 (d, JC,Rh = 14 Hz, cod-CH=), 61.23 (-CH2-), 

34.58 (cod-CH2), 33.47 (cod-CH2), 32.40 (cod-CH2), 31.81 (cod-CH2), 31.54 (cod-CH2), 30.57 (cod-

CH2). 

[(cod)Ir(bpa 2H)Ir(cod)] (8) can be prepared as described for 7 starting from bis(2-picolyl)amine 

(bpa, 97%) (45.1 L, 0.23 mmol) and [{Ir(cod)( -OMe)}2] (150.0 mg, 0.23 mmol). Yield: 153.5 mg 

(85%). Crystals suitable for X-ray diffraction resulted by layering with hexane the ethereal red-brown 

solution mentioned above. 
1
H NMR (500 MHz, C6D6, 25 ºC):  9.10 (br d, J = 5.3 Hz, 1H, H

A1
), 7.52 

(br d, J = 5.6 Hz, 1H, H
B1

), 6.73 (td, J = 8.4, 1.3 Hz, 1H, H
B3

), 6.71 (td, J = 7.7, 1.4 Hz, 1H, H
A3

), 6.44 

(d, J = 8.4 Hz, 1H, H
B4

), 6.37 (d, J = 7.7 Hz, 1H, H
A4

); 6.21 (td, J = 7.7, 1.1 Hz, 1H, H
A2

), 5.79 (td, J = 

8.4, 1.2 Hz, 1H, H
B2

), 4.20 (m, 1H, H
16

), 4.07 ( A, 1H) and 3.98 ( B, JA,B = 17.2 Hz, 1H, CH2), 4.04 (m, 

2H, H
21

), 3.95 (m, 1H, H
15

), 3.54 (m, 1H, H
12

), 3.42 (m, 1H, H
11

), 3.30 (s, 1H, HC=N), 3.09 (m, 2H, 

H
24a

), 2.78 (m, 2H, H
24b

), 2.71 (m, 1H, H
17a

), 2.67 (m, 1H, H
18a

), 2.55 (m, 1H, H
14a

), 2.49 (m, 1H, H
13a

), 

2.16 (m, 2H, H
23a

), 2.11 (m, 2H, H
22

), 1.96 (m, 1H, H
14b

), 1.94 (m, 1H, H
18b

), 1.91 (m, 1H, H
13b

), 1.81 

(m, 1H, H
17b

), 1.38 (m, 2H, H
23b

). 
13

C{
1
H} NMR (125 MHz, C6D6, 25 ºC):  175.4 (C

B5
), 163.9 (C

A5
), 

153.1 (C
A1

), 143.3 (C
B1

), 133.7 (C
A3

), 132.9 (C
B3

), 122.0 (C
A2

), 121.7 (C
A4

), 117.4 (C
B4

), 114.4 (C
B2

), 

71.9 (HC=N), 65.2 (C
15

), 60.8 (CH2), 59.6 (C
12

), 55.2 (C
11

), 55.1 (C
16

), 53.2 (C
22

), 48.5 (C
21

), 40.0 

(C
24

), 33.0 (C
14

), 32.5 (C
13

), 32.0 (C
17

), 31.4 (C
18

), 30.3 (C
23

). Anal. Calcd. (Found) for C28H35N3Ir2 

(798.0): C, 42.14 (42.25); H, 4.42 (4.31); N, 5.26 (5.54). 

Alternatively, complex 8 can be prepared as follows: Two equivalents of KO
t
Bu (0.123 g, 1.1 mmol) 

were added to the light yellow solution of [1]PF6 (0.323 g, 0.50 mmol) in 10 ml of thf. [{Ir( -

Cl)(cod)}2] (0.099 g ,0.2 mmol) was added to the resulting red-brown solution. The resulting mixture (8 

still contaminated with KPF6 and KCl salts) was evaporated, washed with pentane, dried in vacuo and 

was directly analysed by NMR. 
 1

H NMR (200 MHz, thf-d8, 25 ºC):  9.17 (d, J = 5 Hz, 1H, H
A1

), 7.57 

(m, 2H, H
A3

 and H
B1

), 7.27 (m, 2H, H
A4

 and H
B3

), 7.01 (t, J = 6 Hz, 1H, H
A2

), 6.73 (d, J = 8 Hz, 1H, 
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H
B4

), 6.31 (m, 1H, H
B2

), 4.27 (m, 2H, -CH2-), 4.01 (m, 2H, cod-CH=), 3.84 (m, 2H, cod-CH=), 3.36 (m, 

2H, cod-CH=), 3.30 (s, 1H, CH=N), 3.20 (m, 2H, cod-CH=), 2.72 (m, 4H, cod-CH2), 2.43-2.24 (m, 2H, 

cod-CH2), 2.0–1.5 (m, 10H, cod-CH2). 
13

C{
1
H} NMR (50 MHz, thf-d8, 25 ºC):  176.2 (C

B5
), 164.9 

(C
A5

), 153.7 (C
A1

), 144.0 (C
B1

), 135.2 (C
A3

), 133.7 (C
B3

), 123.1 (C
A2

), 121.06 (C
A4

), 118.1 (C
B4

), 114.9 

(C
B2

) 71.9 (CH=N), 65.4 (cod-CH=), 61.2 (-CH2-), 59.7 (cod-CH=), 55.1 (cod-CH=), 54.9 (cod-CH=), 

53.0 (cod-CH=), 48.1 (cod-CH=), 40.2 (cod-CH2), 33.1 (cod-CH2), 32.8 (cod-CH2), 32.2 (cod-CH2), 

31.6 (cod-CH2), 30.2 (cod-CH2).  

[(cod)Rh(bpa 2H)Ir(cod)] (9). To a solution of [Ir(bpa H)(cod)] (50.0 mg, 0.10 mmol) in toluene (3 

mL) solid [{Rh(cod)( -OMe)}2] (24.3 mg, 0.05 mmol) was added. After stirring for 15 min, hexane (8 

mL) was added. The dark-brown solid that precipitated was filtered off, washed with hexane and 

vacuum-dried. Yield: 55.1 mg (77.5 %). 
1
H NMR (500 MHz, C6D6, 25 ºC):  8.51 (ddd, J = 4.9, 1.7, 0.8 

Hz, 1H, H
A1

), 7.43 (d, J = 7.9 Hz, 1H, H
A4

), 7.06 (td, J = 7.7, 1.8 Hz, 1H, H
A3

), 7.01 (d, J = 6.6 Hz, 1H, 

H
B1

), 6.60 (dd, J = 6.7, 5.0 Hz, 1H, H
A2

), 6.50 (ddd, J = 8.6, 6.5, 1.1 Hz, 1H, H
B3

), 6.36 (d, J = 8.7 Hz, 

1H, H
B4

), 5.78 (td, J = 6.6, 1.4 Hz, 1H, H
B2

), 5.62 (s, 1H, HC=N), 4.72 ( A, 1H) and 4.58 ( B, JA,B = 

16.5 Hz, 1H) (CH2 bpa), 4.08 (br, 2H, =CH, Rh(cod)), 3.91 (m, 1H, =CH, Ir(cod)), 3.54 (br, 2H, =CH, 

Rh(cod)), 3.40 (m, 2H, =CH, Ir(cod)), 3.25 (m, 1H, =CH, Ir(cod)), 2.52 (m, 1H, CH2, Ir(cod)), 2.33 (m, 

5H, CH2, Ir(cod)), 2.01 (m, 2H, CH2, Rh(cod)), 1.91 (m, 2H, CH2, Rh(cod)), 1.83 (m, 1H, CH2, Ir(cod)), 

1.74 (m, 5H, 4 from CH2, Rh(cod) and 1 from CH2, Ir(cod)). 
13

C{
1
H} NMR (125 MHz, C6D6, 25 ºC):  

161.9 (C
A5

), 149.1 (C
A1

), 141.5 (C
B1

), 136.4 (C
A3

), 134.6 (C
B5

), 128.1 (C
B3

), 121.6 (C
A2

), 121.1 (C
A4

), 

116.5 (C
B4

), 110.3 (C
B2

), 92.7 (d; JRh,C = 5.1 Hz; HC=N), 73.7 (d, JRh,C = 14.7 Hz) and 72.3 (d, JRh,C = 

13.7 Hz) (=CH, Rh(cod)), 62.6, 58.7, 56.9 and 56.4, (=CH, Ir(cod)), 60.7 (CH2 bpa), 34.6, 33.4, 31.1 

and 30.4 (CH2, Ir(cod)), 32.0 and 31.6 (CH2, Rh(cod)). Anal. Calcd. (Found) for C28H35N3IrRh (708.7): 

C, 47.45 (47.37); H, 4.98 (4.87); N, 5.93 (5.76). 

Alternatively, complex 9 can also be prepared in a similar way as described for the synthesis of 8 in 

thf, using [{Rh( -Cl)(cod)}2] instead of [{Ir( -Cl)(cod)}2]. 
1
H NMR (200 MHz, thf-d8, 25 ºC):  8.49 
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(d, J = 5 Hz, 1H, H
A1

), 7.62 (t, J = 7 Hz, 1H, H
A3

), 7.42 (d, J = 8 Hz, 1H, H
A4

), 7.10 (m, 2H, H
A2

 and 

H
B1

), 6.92 (m, 2H, H
B4

 and H
B2

), 6.18 (m, 1H, H
B3

), 6.02 (s, 1H, CH=N), 4.36 (m, 4H, cod-CH= and 

-CH2-), 3.71 (m, 2H, cod-CH=), 3.56 (m, 2H, cod-CH=), 3.29 (m, 2H, cod-CH=), 2.02 (m, 16H, cod-

CH2). 
13

C{
1
H} NMR (50 MHz, thf-d8, 25 ºC):  162.1 (C

A5
), 149.6 (C

A1
), 141.9 (C

B1
), 137.0 (C

A3
), 

136.3 (C
B5

), 129.1 (C
B3

), 122.2 (C
A4

), 121.6 (C
A2

), 117.3 (C
B4

), 111.1 (C
B2

), 93.1 (d, JC,Rh = 5 Hz, 

CH=N), 72.6 (d, JC,Rh = 14 Hz, cod-CH=), 70.8 (d, JC,Rh = 14 Hz, cod-CH=), 62.6 (cod-CH=), 60.9 (-

CH2-), 58.7 (cod-CH=), 56.8 (cod-CH=), 56.4 (cod-CH=), 34.8 (cod-CH2), 33.6 (cod-CH2), 32.4 (cod-

CH2), 31.9 (cod-CH2), 31.5 (cod-CH2), 30.8 (cod-CH2). 

[Rh(bpam H)(cod)] (10). Solid N-(2-picolyl)picolinamide (bpam) (134.3 mg, 0.63 mmol) was added 

to a solution of [{Rh(cod)( -OMe)}2] (150.0 mg, 0.31 mmol) in toluene (5 mL). An immediate orange 

solution was formed after mixing the reagents. The solution was evaporated to ca. 2 mL, layered with 

hexane (10 mL) and kept undisturbed in the freezer at 30 ºC overnight to render orange crystals, which 

were washed with cold hexane (3 x 3 mL) and vacuum-dried. Yield: 223.7 mg (85 %). 
1
H NMR (400 

MHz, C6D6, 25 ºC): δ 8.53 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H, H
A1

), 8.09 (ddd, J = 7.8, 1.5, 0.7 Hz, 1H, H
B4

), 

7.92 (d, J = 7.9 Hz, 1H, H
A4

), 7.15 (td, J = 7.7, 1.8 Hz, 1H, H
A3

), 6.87 (d, J = 5.3 Hz, 1H, H
B1

), 6.83 (td, 

J = 7.7, 1.5 Hz, 1H, H
B3

), 6.62 (ddd J = 7.4, 4.8, 1.1 Hz, 1H, H
A2

), 6.24 (ddd, J = 7.3, 5.3, 1.5 Hz, 1H, 

H
B2

), 4.92 (s, 2H, CH2
bpam

), 4.60 (m, 2H) and 3.50 (m, 2H), HC= (cod), 2.19 (m, 4H, CH2
exo

 (cod)), 1.65 

(m, 4H, CH2
endo

 (cod)). 
13

C{
1
H} NMR (100 MHz, C6D6, 25 ºC): δ 173.2 (d, JC,Rh = 1.5 Hz, CO), 163.2 

(C
A5

), 157.3 (C
B5

), 148.9 (C
A1

), 144.3 (C
B1

), 138.8 (C
B3

), 135.9 (C
A3

), 125.3 (C
B2

), 125.2 (C
B4

), 123.0 

(C
A4

), 121.1 (C
A2

), 84.1 (d, JC,Rh = 12.9 Hz) and 77.0 (d, JC,Rh = 12.1 Hz; HC= (cod), 51.1 (d, JC,Rh = 1.5 

Hz, CH2
bpam

), 31.3 and 30.4 CH2 (cod). Anal. Calcd. (Found) for C20H22N3ORh (423.3): C, 56.74 

(56.81); H, 5.24 (5.11); N, 9.93 (9.91). 

[Rh(bpa)(cod)][RhCl2(cod)] was independently prepared as follows: bis(2-picolyl)amine (bpa, 97%) 

(37.5 L, 0.21 mmol) was added to a solution of [{Rh( -Cl)(cod)}2] (100.0 mg, 0.21 mmol) in toluene 

(5 mL). The initial yellow solution turned pale green while a yellow solid started to precipitate. After 
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stirring for 30 min the liquor mother was decanted and the solid was washed with diethyl ether (2 x 5 

mL) and vacuum-dried. Yield: 123.5 mg (88 %). 
1
H NMR (400 MHz, CD2Cl2, 25 ºC): δ 8.63 (d, J = 4.5 

Hz, 2H, H
A1

), 7.59 (t, J = 7.4 Hz, 2H, H
A3

), 7.21 (d, J = 6.6 Hz, 2H, H
A4

), 7.16 (t, J = 7.4 Hz, 2H, H
A2

), 

6.53 (br t, J = 4.2 Hz, 1H, NH), 4.54 (s, 4H, CH2
bpa

), 4.18 (br s, 4H, HC=), 2.39 (br s, 4H, CH2
exo

) and 

1.59 (br s, 4H, CH2
exo

; (cod
A
), 3.85 (br s, 4H, HC=), 2.57 (br s, 4H, CH2

exo
) and 1.86 (br s, 4H, CH2

exo
; 

(cod
B
) [cod

A
 is that bonded to the anion while cod

B
 is that bonded to the cation]. Anal. Calcd. (Found) 

for C28H37N3Cl2Rh2 (692.3): C, 48.58 (48.38); H, 5.39 (5.55); N, 6.07 (6.20). 

Reaction of [(cod)Rh(bpa 2H)Rh(cod)] (7) with [(cod)Ir(bpa 2H)Ir(cod)] (8). Solid 

[(cod)Rh(bpa 2H)Rh(cod)] (7) (4.8 mg, 7.8 x 10
3
 mmol) and [(cod)Ir(bpa 2H)Ir(cod)] (8) (6.2 mg, 7.8 

x 10
3
 mmol) were introduced in a NMR tube and C6D6 (0.5 mL) was added. Evolution of the mixture 

was monitorized by 
1
H NMR at 60 ºC. NMR data indicate the clean and almost quantitative formation 

of complex [(cod)Rh(bpa 2H)Ir(cod)] (9) after 2h heating (see Supporting Information). 

Reaction of [(cod)Rh(bpa 2H)Rh(cod)] (7) with [IrCl(cod)(PPh3)]. Solid 

[(cod)Rh(bpa 2H)Rh(cod)] (7) (6.0 mg, 9.7 x 10
3
 mmol) and [IrCl(cod)(PPh3)] (5.8 mg, 9.7 x 10

3
 

mmol) were introduced in an NMR tube and C6D6 (0.5 mL) was added. Evolution of the mixture was 

monitored by 
1
H NMR at 60 ºC. The NMR data indicate the clean and almost quantitative formation of 

[(cod)Rh(bpa 2H)Ir(cod)] (9) and [RhCl(cod)(PPh3)] after 50 min heating (see Supporting Information). 

Reaction of [(cod)Ir(bpa 2H)Ir(cod)] (8) with [RhCl(cod)(PPh3)]. Solid [(cod)Ir(bpa 2H)Ir(cod)] 

(8) (6.0 mg, 7.5 x 10
3
 mmol) and [RhCl(cod)(PPh3)] (3.8 mg, 7.5 x 10

3
 mmol) were introduced in a 

NMR tube and C6D6 (0.5 mL) was added. Evolution of the mixture was monitored by 
1
H NMR at 60 ºC. 

The NMR data indicate the clean and almost quantitative formation of [(cod)Rh(bpa 2H)Ir(cod)] (9) 

and [IrCl(cod)(PPh3)] after 50 min heating. 

DFT geometry optimizations. The geometry optimizations were carried out with the Turbomole 

program
45a,b 

coupled to the PQS Baker optimizer.
46

 Geometries were fully optimized as minima at the ri-

DFT BP86
47 

level using the Turbomole SV(P) basis set
[45c,d]

 on all atoms (small-core 
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pseudopotentials
45c,e

 on Rh and Ir). Broken symmetry calculations were performed at the DFT b3-lyp,
48

 

def-TZVP
45c,f

 of theory. Orbitals were visualized with the Molden program.
49

 

X-ray diffraction studies on 7·0.5(C6H14), 8·0.5(C6H14), and 10. Selected crystallographic data for 

the three complexes can be found in Table S1 (Supporting information). Intensity measurements were 

collected with a Smart Apex diffractometer, with graphite-monochromated MoK  radiation. A semi-

empirical absorption correction was applied to each data set, with the multi-scan
50

 methods. All non-

hydrogen atoms were refined with anisotropic temperature factors except those corresponding to the 

disordered hexane solvent (complexes 7 and 8), which were refined with fixed isotropic thermal 

parameters. The hydrogen atoms were placed at calculated positions, with the exception of the olefinic 

cod protons and the methine HC=N proton which were found on the Fourier map. They were refined 

isotropically in riding mode. The structures were solved by the Patterson method and refined by full-

matrix least-squares with the program SHELX97
51

 in the WINGX
52

 package. Two independent 

molecules were found for complex 10. 
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Deprotonation of the complex [Rh
I
(bpa)(cod)]

+
 (bpa = bis(picolyl)amine) led to an unusual and 

spontaneous cooperative reductive double deprotonation producing the Rh
I
,Rh

I
 mixed-valence 

complex [(cod)Rh
I
(bpa 2H)Rh

I
(cod)] (see Figure) with a rhodate( I) center. The dinuclear iridium 

analog [(cod)Ir
I
(bpa 2H)Ir

I
(cod)] can be prepared, but it is unstable in the presence of 1 molar 

equivalent of the free bpa ligand leading to quantitative formation of the amido complex 

[Ir
I
(bpa H)(cod)]. The lower stability of the M

I 
oxidation state for iridium as compared to rhodium 

accounts for the reported results. 

 


