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Rhabdoviruses infect a variety of hosts, including mammals, birds, reptiles, fish, insects and plants.

As bats are the natural host for most members of the genus Lyssavirus, the specificity of the

amplification methods used for active surveillance is usually restricted to lyssaviruses. However,

the presence of other rhabdoviruses in bats has also been reported. In order to broaden the scope

of such methods, a new RT-PCR, able to detect a diverse range of rhabdoviruses, was designed.

The method detected 81 of 86 different rhabdoviruses. In total, 1488 oropharyngeal bat swabs

and 38 nycteribiid samples were analysed, and 17 unique rhabdovirus-related sequences were

detected. Phylogenetic analysis suggested that those sequences detected in bats did not

constitute a monophyletic group, even when originating from the same bat species. However, all

of the sequences detected in nycteribiids and one sequence obtained from a bat did constitute a

monophyletic group with Drosophila melanogaster sigma rhabdovirus.

The family Rhabdoviridae is one of the most host-range-
diverse families of RNA viruses, with members infecting a
wide range of organisms (Kuzmin et al., 2009) of marine,
freshwater and terrestrial environments (Walker et al.,
2011). It currently comprises six genera (Lyssavirus,
Vesiculovirus, Ephemerovirus, Novirhabdovirus, Cytorhab-
dovirus and Nucleorhabdovirus) containing about 50 species,
and more than 150 viruses that have not been formally
classified (Walker et al., 2011).

Within the family Rhabdoviridae, the lyssaviruses are the
most significant for public health, and most of them have
been detected in bats, like other rhabdoviruses such as Oita
virus (OITAV) (Iwasaki et al., 2004), Mount Elgon bat
virus (MEBV) (Metselaar et al., 1969) and Kern Canyon

virus (KCV) (Murphy & Fields, 1967). Interestingly,
although not implicated as a cause of disease in humans
or animals, both OITAV and MEBV cause fatal encephalitis
when inoculated experimentally into newborn mice
(Iwasaki et al., 2004; Metselaar et al., 1969; Patel, 1979).
In contrast, the vesiculovirus Chandipura virus has caused
a number of arthropod-borne epidemic outbreaks of severe
febrile encephalitis in different parts of India (Basak et al.,
2007). Some cases of mild human disease due to the
arthropod-borne vesicular stomatitis virus (VSV) have
been described (Quiroz et al., 1988). Some studies have
suggested the presence of VSV-specific antibodies in bats
(Ubico & McLean, 1995; Zuluaga & Yuill, 1979), although
virus has not been detected. Finally, Le Dantec virus was first
isolated in 1965 in Senegal from a 10-year-old girl with fever
and hepatosplenomegaly (Buck, 1961;Woodruff et al., 1977).

Generic amplification methods able to detect a wide range
of rhabdoviruses in cell-culture supernatants (Bourhy et al.,
2005; Kuzmin et al., 2006), as well as a microarray

The GenBank/EMBL/DDBJ accession numbers for the sequences
obtained in this study are available in Tables 1 and S1.

Two supplementary tables are available with the online version of this
paper.
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(Dacheux et al., 2010), have been described. Nevertheless,
both the PCR and microarray approaches have been
limited in their ability to detect rhabdovirus RNA from
natural samples, such as ectoparasites and oropharyngeal
swabs from bats. In this study, we describe a new generic
nested RT-PCR method named DimLis PCR, able to detect
most of the viruses included on a panel of 86 rhabdoviruses
belonging to different genera associated with mammals,
birds, reptiles and arthropods (Calisher et al., 1989), as well
as other rhabdovirus-related sequences from samples taken
from bats and their ectoparasites. The RT-PCR primers
(Fig. 1) were designed to target the polymerase (L) gene
because it is responsible for the majority of enzymic
activities involved in viral transcription and replication and
exhibits a high degree of conservation amongst the
rhabdoviruses, with strongly invariant amino acids embed-
ded in conserved blocks separated by variable regions
(Poch et al., 1990). A similar approach has recently been
applied to the development of a pan-paramyxovirus RT-
PCR that targets conserved regions within the viral
polymerase gene (van Boheemen et al., 2012). Although
the nucleoprotein (N) gene has previously been used to
determine the phylogenetic relationships within the family
Rhabdoviridae (Kuzmin et al., 2006), more recent studies
have shown that L provides a much greater phylogenetic
resolution than N, even when looking at closely related
viruses (Bourhy et al., 2005; Longdon et al., 2010).

Forty available rhabdovirus complete L gene sequences,
from viruses belonging to the genus Lyssavirus and
the dimarhabdovirus supergroup, were obtained from
GenBank and aligned using CLUSTAL_X (Fig. 1). The
selected external primers were DimLis1F, 59-GGKM-
GRTTYTTYKCHYTDATG-39 (position 7063–7083), and
DimLis1R, 59-CARAARGGNTGGASYNTHBT-39 (position
7510–7529), which generate a 461–467 nt amplicon
depending on the rhabdovirus sequence being amplified.
Nested primers DimLis2F, 59-YTNTTYVANGSVYTR-
ACNATG-39 (position 7147–7167), and DimLis2R, 59-
TGGAAYAAYCAYCARMGRHWD-39 (position 7267–7296),
were used to generate a 150 nt second-round amplicon. All
genome positions were calculated using the rabies virus
CVS strain (GenBank accession no. GQ918139). Control
RT-PCRs were performed using an Access RT-PCR kit
internal control template and primers as described in the
manufacturer’s instructions (Promega). Single-step reverse
transcription and primary amplification were performed
by using an Access RT-PCR kit (Promega). Briefly, 5 ml
nucleic acid extract was added to 45 ml reaction mixture
containing: 10 ml 56 reaction buffer; 3 mM magnesium
sulphate; 500 mM each dNTP; 1.5 mM DimLis1F and
DimLis1R primers; 5 mM internal control kit primers;

5 U avian myeloblastosis virus reverse transcriptase; and
5 U Thermus flavus DNA polymerase. Amplification was
performed in a PTC-200 Peltier Thermal Cycler (MJ
Research) programmed for a first reverse-transcription step
of 45 min at 48 uC, followed by 94 uC for 2 min, then 30
cycles of 93 uC for 1 min, 49 uC for 4 min and 72 uC for
1 min, and a final incubation at 72 uC for 5 min. For
nested PCR, 1 ml of the primary amplification product was
added to the nested PCR mixture containing: 5 ml 106
buffer II (Roche Molecular Systems); 4 mM magnesium
chloride; 500 mM each dNTP; 1.5 mM DimLis2F and
DimLis2R primers; 5 mM internal control kit primers;
and 1.25 U AmpliTaq DNA polymerase (Roche Molecular
Systems). Reaction conditions were as follows: 94 uC for
2 min, then 30 cycles of 93 uC for 1 min, 55 uC for 3 min
and 72 uC for 1 min, and a final incubation at 72 uC for
5 min. PCR products were visualized by UV excitation
following gel electrophoresis in 2% agarose containing
0.5 g ethidium bromide ml21 in TBE buffer. All PCR
products with the expected size were sequenced on an ABI
PRISM 377 DNA sequencer (Applied Biosystems) using
each of the nested primers. In the first approach, all edited
consensus sequences were submitted manually to the
nucleotide–nucleotide BLASTN query (http://www.ncbi.
nlm.nih.gov/BLAST), to determine the closest match to
sequences available in GenBank. All sequences with a
degree of similarity to pre-existing rhabdovirus sequences,
together with all representative strains of rhabdoviruses
obtained from genomic databases, were aligned using
the CLUSTAL_X 1.81 program. Before conducting further
analyses, jModelTest (https://code.google.com/p/jmodeltest2/)
was used to select the best-fitting substitution model for
our sequences according to the corrected Akaike informa-
tion criterion. A Bayesian phylogenetic inference (BPP)
was then obtained by using MrBayes version 3.1 (http://
mrbayes.sourceforge.net/) with random starting trees
without constraints. Four simultaneous runs of 5 million
generations were conducted, each with five Markov chains,
and trees were sampled every 300 generations. Maximum-
likelihood (ML) reconstruction and bootstrap support to
the nodes after 1000 iterations were obtained in PhyML
(http://www.atgc-montpellier.fr) (Guindon et al., 2010).

Results of the 86 rhabdoviruses analysed with the DimLis
PCR are shown in Table S1 (available in JGV Online).
Products of the expected size were obtained in 81 of 86
strains analysed (94%). The use of nested amplification
seems to be necessary when using highly degenerated
primers like those used in this study, as 30 viruses were
only detected following second-round amplification. This
is likely to be a factor of very low levels of target viral RNA,
as well as potential low-level first-round amplification

Fig. 1. Alignment of the external (DimLis1F and DimLis1R) and internal (DimLis2F and DimLis2R) primers with the sequences of
the 40 different rhabdoviruses available. Matches in non-degenerated positions are displayed as dashes. The first column
shows the virus abbreviation, the classification (L, Lyssavirus; V, Vesiculovirus; E, Ephemerovirus; H, Hart Park group; T,
Tibrogargan group; U, unassigned) and the GenBank accession no. All virus abbreviations are as detailed in Table S1.
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DimLis1F DimLis1R

G G K M G R T T Y T T Y K C H Y T D A T G 3 ′ C A R A A R G G N T G G A S Y N T H B T 3 ′

VSIV (V) X00939 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ISFV (V) AJ810084 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CHPV (V) AJ810083 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SVCV (V) NC_002803 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PFRV (V) FJ872827 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G - -

COCV (V) EU373657 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

BEFV (E) NC_002526 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ARV (E) AF234534 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

RABV (L) NC_001542 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ABLV (L) NC_003243 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MOKV (L) NC_006429 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

LBV (L) GU170202 - - A - - T - - - - - - - - G - - - - - - - - - - - - - - - - - - - - - - - G - -

DUVV (L) EU293120 - - C - - - - - - - - - - - - - - C - - - - - - - - - - - - - - - - - - - - - - -

EBLV 1 (L) EF157976 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G - -

EBLV 2 (L) EF157977 - - - - - - - - - - - - - - G - - - - - - - - - - - - - - - - - - - - - - - - - -

ARAV (L) EF614259 - - A - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G - -

KHUV (L) EF614261 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

IRKV (L) EF614260 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G - -

WCBV (L) EF614258 - - - - - - - - - - - - - - - - - C - - - - - - - - - - - - - - - - - - - - G A -

Ozernoe Virus (U) FJ905105 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SHIBV (L) GU170201 - - C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

FLANV (H) AF523199 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - A - - - - -

NGAV (U) NC_013955 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - - - G - - -

MOUV (U) FJ985749 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G - -

DAffSV (U) GQ410980 - - A - - - - - - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DObsSV (U) GQ410979 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DMelSV (U) GQ375258 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

OFV (U) AB516441 - C C - - - - - - - - - - - - - - - - - - - - - - - - T A - - - - - - - - - - A -

SCRV (U) NC_008514 - - A - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

WONV (U) NC_011639 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - A - - - - -

TUPV (U) NC_007020 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

VSAV (V) EU373658 - - C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

OVRV (U) JF705876 - - C - - - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - A - - - A C

SMRV (U) HQ003891 - - - - - - - - - - - - - - G - - - - - - - - - - - - - - - - - - - - - - - - - -

TIBV (T) GQ294472 - - - - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - T - A - - - - -

CPV (T) GQ294473 - - A - - - - A - - - - - - - - - - - - - - - - - - - - - - - - - T - A - - - - -

BBLV (L) JF311903 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EVEX (U) FN557213 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MARAV (V) HQ660076 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DURV (U) FJ952155 - - A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - - - - - - -

DimLis 2F DimLis 2R

Y T N T T Y V A N G S V Y T R A C N A T G 3´ T G G A A Y A A Y C A Y C A R M G R H W D 3´

VSIV (V) X00939 A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ISFV (V) AJ810084 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

CHPV (V) AJ810083 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SVCV (V) NC_002803 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

PFRV (V) FJ872827 - - - - - - - - - - - - - - C - - - - - - - - - - - - - - - - - - - - - - - - - - -

COCV (V) EU373657 A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C - - -

BEFV (E) NC_002526 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - - - - - - - - - - -

ARV (E) AF234534 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T - - - - - - - - - G -

RABV (L) NC_001542 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ABLV (L) NC_003243 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MOKV (L) NC_006429 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - C

LBV (L) GU170202 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DUVV (L) EU293120 - - - - - - - - - T - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EBLV 1 (L) EF157976 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EBLV 2 (L) EF157977 - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ARAV (L) EF614259 - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

KHUV (L) EF614261 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

IRKV (L) EF614260 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

WCBV (L) EF614258 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Ozernoe Virus (U) FJ905105 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

SHIBV (L) GU170201 - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

FLANV (H) AF523199 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

NGAV (U) NC_013955 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MOUV (U) FJ985749 A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A - - - - - - - C - - -

DAffSV (U) GQ410980 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G C -

DObsSV (U) GQ410979 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DMelSV (U) GQ375258 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G G -

OFV (U) AB516441 - A - - - - - C - A T - G - C - - - - - - - - - - - - C - A - - G A T - - - - G - -

SCRV (U) NC_008514 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - G -

WONV (U) NC_011639 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

TUPV (U) NC_007020 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

VSAV (V) EU373658 A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

OVRV (U) JF705876 - - - - - - - - - - - - A - - - - - - - - - - - - - - - - - - - - - - - - - - G G -

SMRV (U) HQ003891 - - - - - - - - - - - - - - - G - - - - - - - - - - - - - - - - - - - - - - - - - -

TIBV (T) GQ294472 - - - - - - - - - - - T - - - - - - - - - - - - - - - - - - T - - - - - - - - - - -

CPV (T) GQ294473 - - - - - - T C - - - - - - - - - - - - - - - - - - - - - - T - - - - - - - - - G -

BBLV (L) JF311903 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

EVEX (U) FN557213 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MARAV (V) HQ660076 A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

DURV (U) FJ952155 - - - - - - - - - - - T - - C - - - - - - - - - - - - - - - - - - - - - - - - - - -
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using highly degenerate primers. The nucleotide sequences
of the genomic fragments obtained from the 53 rhabdo-
viruses without previously published sequences are avail-
able in GenBank (Tables 1 and S1).

In total, 1488 oropharyngeal samples were taken from bats
throughout Spain between 2004 and 2010 as described

previously (Echevarrı́a et al., 2001; Vázquez-Morón et al.,
2008), stored in lysis buffer and kept at 280 uC until RNA
extraction (Casas et al., 1995). An additional swab on viral
transport medium was taken from the majority of bats. Ten
(0.7%) of them, from five of the 27 bat species sampled
(Table 1), were positive and, after sequencing, BLAST

analysis (Altschul et al., 1990) showed similarity to existing

Table 1. DimLis RT-PCR results from samples of bats and bat parasites

Species Negative Inhibited Positive Total sample

Bat samples

Barbastella barbastellus 16 16

Eptesicus isabellinus 365 48 5* 418

Hypsugo savii 28 4 1D 33

Miniopterus schreibersii 119 8 1d 128

Myotis bechsteinii 17 1 18

Myotis blythii 19 19

Myotis capaccinii 26 26

Myotis daubentonii 214 4 218

Myotis emarginatus 49 49

Myotis escalerai 10 10

Myotis myotis 55 2 57

Myotis mystacinus 5 5

Myotis cf. nattereri 34 34

Nyctalus lasiopterus 128 5 133

Nyctalus leisleri 14 1 15

Nyctalus noctula 31 31

Pipistrellus kuhlii 9 3 12

Pipistrellus pipistrellus 8 8

Pipistrellus pygmaeus 14 4 18

Pipistrellus sp. 18 18

Plecotus auritus 25 1 1§ 27

Plecotus austriacus 17 17

Rhinolophus euryale 82 6 88

Rhinolophus ferrumequinum 68 4 2|| 74

Rhinolophus hipposideros 9 9

Rhinolophus mehelyi 5 1 6

Tadarida teniotis 1 1

Total bat samples 1385 93 10 1488

Bat parasite samples

Nycteribia kolenatii 0 1 1 (7 individuals)

Penicillidia conspicua 0 4# 4

Nycteribia schmidli 0 4** 4

Cimex pipistrelli 3 3

Argas vespertilionis 20 20

Total bat parasite pool samples

(individual number)

23 0 9 32 (38)

*The five sequences detected were named Eptesicus isabellinus rhabdovirus 1–5 (EIR1, EIR2, EIR3, EIR4 and EIR5) and their respective GenBank

accession numbers are JX276976, JX276977, JX276978, JX276961 and JX276974.

DHypsugo savii rhabdovirus 1 (HSR1, JX276962).

dMiniopterus schreibersii rhabdovirus 1 (MSR1, JX276981).

§Plecotus auritus rhabdovirus 1 (PAR1, JX276980).

||Rhinolophus ferrumequinum rhabdovirus 1 (RFR1, JX276975) and RFR2, JX276979.

Nycteribia kolenatii rhabdovirus 1 (NKR1, JX276967).

#Penicillidia conspicua rhabdovirus 1 and 2 (PCR1, JX276972 and PCR2, JX276973).

**Nycteribia schmidli rhabdovirus 1–4 (NSR1, JX276968; NSR2, JX276969; NSR3, JX276970; NSR4, JX276971).

C. Aznar-Lopez and others

72 Journal of General Virology 94



7BeAn

33KANV

45MALV

38KOLV

64OUAV

TIBV

69PUCV

EIR4

74SJAV

NSR4

HDOOV

MSR1

40KWAV

43LJAV

KOTV

NSR3

CHPV

57NAVV

48MCOV

PCR2

50MNTBV

32KAMV

60NKOV

EIR5

COCV

67PIRYV

CPV

RFR1

85YBV

WCBV

11BTKV

BBLV

EIR3

TUPV

ISFV

DUVV

ABLV

19CNTV

DObsSV

EBLV1

9BBOV

83XIVB

KIMV

ARAV

63OITAV

42LJV

EIR2

MOKV

BEFV

WONV

NSR1

DAffSV

HSR1

76SMV

71RADIV

NGAV

FLANV

PCR1

55MSV

DURV

5BGNV

MARAV

62OBOV

SVCV

SCRV

10BAV

RFR2

84YATAV

ARV

SHIBV

52MQOV

49MTYV

IRKV

VSV

56NASV

SMRV

BRMV

NKR1

LDV

31JURV

30JOIV

54MEBV

73RBUV

EBLV2

NSR2

ALMV

27HPV

20DakArk

VSAV

15CHOV

EIR1

KHUV

PCRV

EVEX

17CHVV

68PORV

PAR1

MOUV

RABV

46MSPV

26GLOV

PERV

35KEUV

37KLAV

PFRV

6BARV

79SWBV

58NMV

FUKAV

14CJSV

34KCV

LBV

OVRV

DMelSV

3ARUV

0.53

0.95

1

0.55

1

0.97

1/93

1/99

0.99

0.86

1/82

0.86

0.57

0.73

0.74

0.98/79

0.7

0.7

0.89

0.92/62
0.97/86

0.5

0.63

0.76

0.86

0.94

1

0.98

0.56

0.74/50

0.98/58

1/73

0.9

0.56

0.69

0.65

0.63

0.82

0.71

0.88

0.94

0.82

1/92

0.93

1/98

0.81

0.72

0.79

1

1/99

1/96

1

0.59

0.56

0.91

0.56

0.99/71

0.53

Lyssavirus

Ephemerovirus

Vesiculovirus

Group 2

Group 1

Vesiculovirus

D
im

a
rh

ab
d

ov
iru

s 
su

p
er

g
ro

up

Fig. 2. Phylogenetic hypothesis for the
sequences detected in this work, as well as
those available in GenBank of members of the
genus Lyssavirus and the dimarhabdovirus
supergroup, obtained from an L-gene fragment
using BPP and ML criteria. Bayesian posterior
probabilities of clusters are shown in bold, and
ML bootstrap values for clusters are given to
the right, separated by /.
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members of the family Rhabdoviridae. Five of these 10
samples with an available aliquot on viral transport
medium were inoculated intracranially into mice, which
survived and remained healthy for 28 days post-inocu-
lation. No successful amplifications were obtained from the
brain, saliva swabs or salivary glands collected post-
mortem. It is important to note that the samples were
taken from healthy bats, while other bat rhabdoviruses
inducing neurological disease in mice were isolated from
bats showing clinical signs (Iwasaki et al., 2004; Metselaar
et al., 1969).

Thirty-eight bat parasites, corresponding to 32 pools, were
collected during 2009–2011 from different bats from
Andalusia (southern Spain). All samples (either individual
or pooled) of nycteribiids were positive using the DimLis
RT-PCR, while all three bat true bugs (Cimex pipistrelli)
and bat ticks (Argas vespertilionis) were negative (Table 1).
Such a high frequency observed in insects could reflect
either infection with rhabdoviruses or amplification of
genomic DNA fragments of rhabdoviral origin, which have
recently been reported to be present in insect DNA (Fort
et al., 2012). The only sample from Nycteribia kolenatii
consisted of a pool of seven individuals from Daubenton’s
bats (Myotis daubentonii) and contained a rhabdoviral
sequence that we have designated NKR1. The four samples
of Penicillidia conspicua that were taken from Miniopterus
schreibersii tested positive for two different rhabdovirus-
related sequences, designated PCR1 (detected in three
samples) and PCR2 (detected in one sample). The four
samples of Nycteribia schmidli that were also taken from
Miniopterus schreibersii tested positive for four different
rhabdovirus-related sequences designated NSR1, NSR2,
NSR3 and NSR4.

Despite the fact that the majority of rhabdoviruses detected
in bats worldwide are lyssaviruses (Banyard et al., 2011), no
lyssavirus-related sequences were found in the bat oro-
pharyngeal swabs tested in this study. In contrast to
previous studies (Kuzmin et al., 2009), these bat-associated
sequences did not form a monophyletic group (Fig. 2). The
short sequence fragment generated in this study is
unsuitable for use as the basis for a solid phylogenetic
hypothesis, as it was not our purpose when designing the
method. In spite of this fact, five of the rhabdovirus-related
sequences found in bat oropharyngeal swabs grouped
together in a distinct cluster (group 1, Fig. 2), supported by
a posterior probability of 0.76, but they could not be
related to any previously described rhabdovirus. Another
four bat-associated sequences did not group with any other
virus. However, one sequence detected in Miniopterus
schreibersii (MSR1) grouped into a well-supported cluster
(group 2, Fig. 2) together with the seven sequences
associated with bat nycteribiids (NSR1–4, PCR1–2 and
NKR1) and Drosophila melanogaster sigma rhabdovirus
(DMelSV), which is also a dipteran rhabdovirus (Longdon
et al., 2010). Interestingly, this bat-associated sequence was
almost identical to the sequences NSR1, 2, 3 and 4 (Table
S2), which were amplified from Nycteribia schmidli

collected from the same bat species. Whether the sequence
found in the mouth of the bat came from parasites eaten
just before sampling or from rhabdoviruses that were
infecting the bat remains unclear. Although there is no
direct evidence of nycteribiid consumption by bats, feeding
on other ectoparasites has been demonstrated (Goiti et al.,
2003; Jones et al., 2006). The second option would reflect
the ability of rhabdoviruses to adapt to new hosts through
parasitic relationships.

In conclusion, the RT-PCR assay described here was able to
detect a wide range of rhabdoviruses and has been used
successfully to detect new rhabdoviruses in bats and bat
parasites. We believe that this molecular assay can be
applied to the detection of novel rhabdoviruses from
different hosts and can serve as an effective tool for future
research to increase our knowledge of the complex
diversity of the family Rhabdoviridae, which may help
our understanding of the natural mechanisms of viral
spillover and adaptation that might underlie the emergence
of viral diseases.

Acknowledgements
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Salicini, Carlos Ruiz, Jesús Nogueras, David Pastor, Juan Quetglas,

Olvido Tejedor and everyone who participated in the collection of

field samples, as well as to the Genomic Unit of the National Center

of Microbiology for sequencing work. We acknowledge Professor

Charles Calisher (Colorado State University, Fort Collins, CO, USA)

for the panel of rhabdoviruses, as well as Inazio Garin for reviewing

the manuscript and participating in the bat sampling. This work was

supported by a grant from the Spanish Ministry of Health and the

Instituto de Salud Carlos III (05/0003), by the general research

programme of the Spanish Ministry of Science (projects SAF2006-

12784-CO2 and SAF2009-09172), by a grant from the UK

Department for Environment, Food and Rural Affairs (ROAME

SE0423/SE0424) and by the EU FP7-funded Research Infrastructure

Grant European Virus Archive (no. 19 228292).

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.
(1990). Basic local alignment search tool. J Mol Biol 215, 403–

410.

Banyard, A. C., Hayman, D. T., Johnson, N., McElhinney, L. & Fooks,
A. R. (2011). Bats and lyssaviruses. Adv Virus Res 79, 239–289.

Basak, S., Mondal, A., Polley, S., Mukhopadhyay, S. &
Chattopadhyay, D. (2007). Reviewing Chandipura: a vesiculovirus

in human epidemics. Biosci Rep 27, 275–298.

Bourhy, H., Cowley, J. A., Larrous, F., Holmes, E. C. & Walker, P. J.
(2005). Phylogenetic relationships among rhabdoviruses inferred

using the L polymerase gene. J Gen Virol 86, 2849–2858.

Buck, R. W. (1961). Mushroom toxins – a brief review of the

literature. N Engl J Med 265, 681–686.

C. Aznar-Lopez and others

74 Journal of General Virology 94



Calisher, C. H., Karabatsos, N., Zeller, H., Digoutte, J. P., Tesh, R. B.,
Shope, R. E., Travassos da Rosa, A. P. & St George, T. D. (1989).
Antigenic relationships among rhabdoviruses from vertebrates and

hematophagous arthropods. Intervirology 30, 241–257.

Casas, I., Powell, L., Klapper, P. E. & Cleator, G. M. (1995). New
method for the extraction of viral RNA andDNA from cerebrospinal fluid

for use in the polymerase chain reaction assay. J Virol Methods 53, 25–36.

Dacheux, L., Berthet, N., Dissard, G., Holmes, E. C., Delmas, O.,
Larrous, F., Guigon, G., Dickinson, P., Faye, O. & other authors
(2010). Application of broad-spectrum resequencing microarray for

genotyping rhabdoviruses. J Virol 84, 9557–9574.

Echevarrı́a, J. E., Avellón, A., Juste, J., Vera, M. & Ibáñez, C. (2001).
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