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Abstract
Koiran’s real 𝜏-conjecture claims that the number of real zeros

of a structured polynomial given as a sum of m products of

k real sparse polynomials, each with at most t monomials, is

bounded by a polynomial in mkt. This conjecture has a major

consequence in complexity theory since it would lead to super-

polynomial lower bounds for the arithmetic circuit size of the

permanent. We confirm the conjecture in a probabilistic sense

by proving that if the coefficients involved in the description

of f are independent standard Gaussian random variables, then

the expected number of real zeros of f is (mk2t).
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1 INTRODUCTION

We study the number of real zeros of real univariate polynomials. A polynomial f is called t-sparse if it

has at most t monomials. Descartes rule states that a t-sparse polynomial f has at most t−1 positive real

zeros, no matter what is the degree of f . Therefore, a product f1 · · · fk of k many t-sparse polynomials

fj can have at most k(t − 1) positive real zeros. What can we say about the number of zeros of a sum of

m many products? So we consider real univariate polynomials F of the following structure

F =
m∑

i=1

ki∏
j=1

fij, (1.1)

where all fij are t-sparse. In other words, F is given by a depth four arithmetic circuit with the structure

ΣΠΣΠ, where the parameters m, k ∶= maxi ki, and t bound the fan-in at the different levels except at

the lowest (since we do not require a bound on the degrees of the fij).
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The following conjecture was put forward by Koiran [12].

Conjecture 1 (Real 𝜏-conjecture). The number of real zeros of a polynomial F of the form (1.1) is
bounded by a polynomial in m, k, and t.

Koiran [12] proved that the real 𝜏-conjecture implies a major conjecture in complexity theory,

namely the separation of complexity classes VP0 ≠ VNP0 over C. In Tavenas’ PhD thesis [17] it

is shown that the real 𝜏-conjecture also implies that VP ≠ VNP over C. Tavenas also shows that a

seemingly much weaker upper bound on the number of real zeros of F is sufficient to deduce VP ≠
VNP: in fact, an upper bound polynomial in m, t, 2maxi ki is sufficient [17, §2.1, Cor. 3.23]. In other

words, the real 𝜏-conjecture implies that the permanent of n by n matrices requires arithmetic circuits

of superpolynomial size. For known upper bounds on the number of real zeros of polynomials of the

form F, we refer to [13] and the references given there.

The motivation behind Conjecture 1 is Shub and Smale’s 𝜏-conjecture [15] asserting that the num-

ber of integer zeros of a polynomial computed by an arithmetic circuit is polynomially bounded by the

size of the circuit. If true, it gives a superpolynomial lower bound on the circuit complexity of the per-

manent polynomial [4]. Moreover, it also entails the separation PC ≠ NPC in the Blum-Shub-Smale

model [3, 15]. One drawback of the 𝜏-conjecture is that, by referring to integer zeros, it leads to

number theory, which is notorious for its hard problems. The 𝜏-conjecture is false when we replace

“integer zeros” by “real zeros.” Koiran’s observation is that when restricting to depth four circuits,

the conjecture may be true and we can still derive lower bounds for general circuits. We refer to

Hrubes [9] for statements equivalent to the real 𝜏-conjecture that are related to complex zero counting.

A 𝜏-conjecture for the Newton polygons of bivariate polynomials, having the same strong complexity

theoretic implications, has been formulated by Koiran et al. in [14]. Hrubes [10] recently showed that

the real 𝜏-conjecture implies this conjecture on Newton polytopes.

In this work, we prove that the real 𝜏-conjecture is true for random polynomials. More specifi-

cally, let k1,… , km and t be positive integers and for 1 ≤ i ≤ m and 1 ≤ j ≤ ki we fix supports

Sij ⊆ N with |Sij| ≤ t for the t-sparse polynomials fij. We choose the coefficients uijs of the

polynomials

fij(x) =
∑
s∈Sij

uijsxs

as independent standard Gaussian random variables. The resulting F given by (1.1) is a struc-

tured random polynomial and we investigate the random variable defined as the number of real

zeros of F.

Our main result states that the expectation of the number of real zeros of F is polynomially bounded

in m, k ∶= maxi ki, and t. In fact, we get an at most quadratic bound in the number of parameters!

Theorem 1.1. The expectation of the number of real zeros of a polynomial F of the form (1.1)
is bounded as (mk2t) if the coefficient uijs are independent and standard Gaussian. Thus the real
𝜏-conjecture is true on average.

Our result can be interpreted in two ways: on the one hand, it supports the real 𝜏-conjecture since

we show it is true on average; on the other hand it says that for finding a counterexample to the real

𝜏-conjecture, it is not sufficient to look at generic examples.

We do not think the assumption of Gaussian distributions is relevant. In fact, we have a partial result

confirming this (Theorem 6.3). If we assume the coefficients uijs are independent random variables
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whose distributions have densities satisfying some mild assumptions, then the expected number of real

zeros of F in [0, 1] is bounded by a polynomial in k1 + · · · + km and t, provided 0 ∈ Sij for all i, j. The

latter condition means that all the fij almost surely have a nonzero constant coefficient.

The main proof technique is the Rice formula from the theory of random fields, which has to

be analyzed very carefully in order to achieve the good upper bounds. (In fact, we rely on a “Rice

inequality,” which requires less assumptions.) An interesting intermediate step of the proof is to express

the expected number of real zeros of the random structured F from (1.1) in terms of the expected

number of real zeros of random linear combinations R(x) =
∑m

i=1 uiqi(x)x𝑑i of certain weight functions

qi(x)x𝑑i . The deterministic functions qi(x) are obtained by multiplying and dividing sparse sums of

squares in a way reflecting the build-up of the arithmetic circuit forming F; see (6.11). The randomness

comes from independent coefficients ui, whose distribution is the one of a product of ki standard

Gaussians.

It would be interesting to strengthen our result by concentration statements, showing that it is very

unlikely that a random F of the above structure can have many real zeros.

1.1 Outline of paper

Section 2 provides hands-on information on how to deal with conditional expectations, which is mainly

basic calculus. In Section 3 we outline the idea of the Rice formula and state a weak version of it

(Theorem 3.2), which requires only few technical assumptions. In Section 4 we prepare the ground

by proving general estimates on conditional expectations of random linear combinations. Section 5

develops general results of independent interest on the expected number of real zeros of random lin-

ear combinations
∑m

i=1 wi(x)ui of weight functions wi, for independent random coefficients ui having

densities satisfying some mild assumptions. We upper bound this in terms of quantities LV(wi), for

which we coined the name logarithmic variations, and which are crucial for achieving good estima-

tions (see Definition 5.6). Finally, combining everything, we provide the proof of the main results in

Section 6.

2 PRELIMINARIES

We provide some background on conditional expectations in a general continuous setting, relying on

some results from calculus related to the coarea formula. Then we discuss some specific properties

pertaining to the distribution of products of Gaussian random variables.

2.1 Conditional expectations

We fix a smooth function f ∶ RN → R with the property that {u ∈ RN ∶ 𝛻f (u) = 0} has measure zero.

In most of our applications, f will be a nonconstant polynomial function, which satisfies this property.

By Sard’s theorem, almost all a ∈ R are regular values of f . For those a, the fiber f −1(a) is a smooth

hypersurface in RN .

Suppose we are further given a probability distribution on RN with the density 𝜌. To analyze its

pushforward measure with respect to f , we define for a regular value a ∈ R

𝜌f (a) ∶= ∫f−1(a)

𝜌‖𝛻f‖ 𝑑f −1(a) ∈ [0,∞]; (2.1)
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here 𝑑f −1(a) denotes the volume element of the hypersurface f −1(a). The coarea formula is a crucial

tool going back to Federer [7], see [6, Thm. III.5.2, p. 138] for a comprehensive account. We only need

its smooth version [6, p. 159]; see also [8, Appendix] for a short and self-contained proof. The smooth

coarea formula implies that 𝜌f defined in (2.1) is a probability density on R, namely the density of the

random variable f (a). More precisely, 𝜌f is the pushforward measure with respect to f of the measure

on RN with density 𝜌.

Let us point out the following simple rule, which we will use all the time: for 𝜆 ∈ R∗

𝜌𝜆f (𝜆a) = 1|𝜆|𝜌f (a). (2.2)

We view now u ∈ RN as a random variable with the density 𝜌. Let a ∈ R be a regular value of f such

that 𝜌f (a) > 0. We want to define a conditional probability measure on the hypersurface H ∶= f −1(a)
that captures the idea that we constrain u to lie in H. We do this by defining the conditional density for

u ∈ H as

𝜌H(u) ∶=
1

𝜌f (a)
𝜌(u)‖𝛻f (u)‖ .

Note that we indeed have ∫H 𝜌H 𝑑H = 1 by construction, where 𝑑H denotes the volume measure of

H. (As a warning, let us point out that in general, 𝜌H does not only depend on H, but also on the

representation of H by the function f .) Using the conditional density, we can define the conditional
expectation

E (Z ∣ f = a) ∶= ∫H
Z𝜌H𝑑H ∈ [0,∞]

of a nonnegative measurable function Z ∶ RN → [0,∞]. (This quantity is only defined for regu-

lar values a such that 𝜌f (a) > 0.) In our application, we will always use the following equivalent

formula

E (Z ∣ f = a) 𝜌f (a) = ∫H
Z

𝜌‖𝛻f‖ 𝑑H, (2.3)

which is valid for all regular values a of f , when interpreting the left-hand side as 0 if 𝜌f (a) = 0. Thus

by Sard’s theorem, the equation makes sense for almost all a ∈ R.

After defining all these notions, we summarize our discussion by stating the following impor-

tant fact, which is an immediate consequence of the smooth coarea formula (cf. [6, p. 159]

or [8, Appendix]).

Proposition 2.1. Let f ∶ RN → R be a smooth function such that {u ∈ RN ∶ 𝛻f (u) = 0} has
measure zero. Moreover, let 𝜌 be a probability density on RN and Z ∶ RN → [0,∞] be measurable.
Then we have

E (Z) = ∫
R

E (Z ∣ f = a) 𝜌f (a) 𝑑a.

We next discuss how to compute the right-hand side in concrete situations. As a first step, we

express the volume element of the hypersurface H in local coordinates. If 𝜕u1
f ≠ 0, then by the implicit

function theorem, we can locally express u1 as a function of u2,… , uN . The following lemma is well

known. For the understanding of the following, it is helpful provide the proof.
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Lemma 2.2. We have

𝑑H =
‖𝛻f‖|𝜕u1

f | 𝑑u2 · · · 𝑑uN .

Proof. Generally, if we parametrize H by u = 𝜓(t1,… , tN−1), using local coordinates t1,… , tN−1,

it is well known that the volume element of H is given by 𝑑H =
√

det((D𝜓)TD𝜓) 𝑑t1 · · · tN−1. In

our situation, we locally write u1 = h(u2,… , uN) and use the parametrization 𝜓(u2,… , uN) ∶=
(h(u2,… , uN), u2,… , uN) of H. A straightforward calculation shows (D𝜓)TD𝜓 = I +𝛻h(𝛻h)T . More-

over, det(I + 𝛻h(𝛻h)T ) = 1 + ‖𝛻h‖2. (In order to see this, use the orthogonal matrix S ∈ O(N) such

that S𝛻h = (0,… , 0, ‖𝛻h‖).) Hence the volume element of H satisfies

𝑑H =
√

1 + ‖𝛻h‖2 𝑑u2 · · · 𝑑uN .

By implicit differentiation we get 𝜕ui h = −𝜕ui f∕𝜕u1
f . Hence,

1 + ‖𝛻h‖2 =
‖𝛻f‖2

(𝜕u1
f )2
,

and the assertion follows.

Assume now that H is parametrized when (u2,… , uN) runs over (an open dense subset of) RN−1.

Then, due to Lemma 2.2, we can express the pushforward density 𝜌f as follows:

𝜌f (a) = ∫
RN−1

𝜌|𝜕u1
f | 𝑑u2 · · · 𝑑uN . (2.4)

Moreover, Formula (2.3) reads as

E (Z ∣ f = a) 𝜌f (a) = ∫
RN−1

Z
𝜌|𝜕u1

f | 𝑑u2 · · · 𝑑uN . (2.5)

Example 2.3. Consider the linear function f (u) =
∑N

i=1 wiui for a nonzero w ∈ RN . Then H = f −1(a)
is a hyperplane and 𝛻f = w. We have by definition

𝜌f (a) =
1‖w‖ ∫H

𝜌 𝑑H, 𝜌H(u) =
(
∫H

𝜌𝑑H
)−1

𝜌(u).

If w1 = 𝜕u1
f ≠ 0, Formula (2.5) gives

E (Z ∣ f = a) 𝜌f (a) =
1|w1| ∫RN−1

Z𝜌 𝑑u2 · · · 𝑑uN .

In the special case f (u) = uN , we retrieve the known notion of the marginal distribution 𝜌uN (a) =
∫
RN−1 𝜌(u1,… , uN−1, a) 𝑑u1 · · · 𝑑uN−1, and the conditional density of Z satisfies

E (Z ∣ uN = a) 𝜌uN (a) = ∫
RN−1

Z(u1,… , uN−1, a)𝜌(u1,… , uN−1, a) 𝑑u1 · · · 𝑑uN−1. (2.6)



284 BRIQUEL AND BÜRGISSER

Example 2.4. Consider the product function f (y) = y1 ⋅… ⋅ yk, and for nonzero a ∈ R the smooth

hypersurface

Ca ∶= {y ∈ R
k ∶ y1 ⋅… ⋅ yk = a}.

If 𝜌 is the joint density of y ∈ Rk, then the pushforward density 𝜌f of the product f (y) satisfies, by (2.1)

and Lemma 2.2, that

𝜌f (a) = ∫Ca

𝜌‖𝛻f‖ 𝑑Ca = ∫
Rk−1

𝜌

𝜕y1
f
𝑑y2 · · · 𝑑yk = ∫

Rk−1

𝜌
𝑑y2|y2| · · · 𝑑yk|yk| , (2.7)

since 𝜕y1
f = y2 · · · yk. We also note that ‖𝛻f (y)‖ = |a|(∑k

i=1 y−2
i )

1

2 . Moreover, (2.3) combined with

Lemma 2.2, reads as

E (Z ∣ f = a) 𝜌f (a) = ∫H
Z

𝜌‖𝛻f‖ 𝑑Ca = ∫
Rk−1

Z𝜌
𝑑y2|y2| · · · 𝑑yk|yk| . (2.8)

2.2 Products of Gaussians

In the sequel, we denote by𝜛k the density of the product y1 ⋅… ⋅ yk of independent standard Gaussian

distributed random variables y1,… , yk; see [16]. According to (2.7) we have for a ∈ R∗

𝜛k(a) = ∫(y2,…,yk)∈Rk−1

𝜑( a
y2 ⋅… ⋅ yk

)𝜑(y2) ⋅… ⋅ 𝜑(yk)
𝑑y2|y2| · · · 𝑑yk|yk| , (2.9)

where 𝜑(y) = (2𝜋)−
1

2 e−
y2

2 denotes the density of the standard Gaussian distribution.

More generally, if yi ∼  (0, 𝜎2
i ) are independent centered Gaussians with variance 𝜎2

i , then we

may write yi = 𝜎iỹi with ỹi ∼  (0, 1). The density 𝜌f of the product f (y) = y1 ⋅… ⋅ yk = 𝜎1 ⋅… ⋅𝜎kỹ1 ⋅
… ⋅ ỹk then can be expressed via (2.2) as

𝜌f (a) =
1

𝜎1 ⋅… ⋅ 𝜎k
𝜛k

( |a|
𝜎1 ⋅… ⋅ 𝜎k

)
. (2.10)

It is easy to see that the density 𝜛k of the product of k standard Gaussians is unbounded for k ≥ 2:

we have lima→0 𝜛k(a) = ∞, which causes some technical problems. However, the following lemma

states that the growth of 𝜛k for a → 0 is slow, which will be needed for the proof of Theorem 1.1:

more specifically, for guaranteeing the assumption (4.1) so that Proposition 5.5 can be applied to the

random linear combination R(x) =
∑m

i=1 uiqi(x)x𝑑i , where the coefficients ui are independent random

variables with the distribution 𝜛ki .

Lemma 2.5. (1) 𝜛k is monotonically decreasing on (0,∞) and 𝜛k(−a) = 𝜛k(a).
(2) For 0 < 𝛿 ≤ 1

2
and a ∈ R∗ we have 𝜛2(a) ≤ |a|𝛿−1.

(3) For a ∈ R∗ we have 𝜛k(a) ≤ e |a| 1

2k
−1.

Proof. (1) Taking the derivative in (2.9) we obtain, using symmetry, that

𝜛′
k(a) = 2k−1 ∫(y2,…,yk)∈Rk−1

+

𝜑′
(

a
y2 ⋅… ⋅ yk

)
𝜑(y2) ⋅… ⋅ 𝜑(yk)

𝑑y2

y2
2

· · ·
𝑑yk

y2
k

.
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Since 𝜑′(y) ≤ 0 for y ≥ 0, we see that 𝜛′
k(a) ≤ 0 for a > 0. It is clear that 𝜛k(−a) = 𝜛k(a).

(2) By (2.9) we have

𝜛2(a) = ∫
R

𝜑

(
a
y

)
𝜑(y)

𝑑y|y| = 2

2𝜋 ∫
∞

0

1

y
e−

a2

2y2 e−
y2

2 𝑑y,

which we bound as follows:

𝜛2(a) ≤ 1

𝜋 ∫
1

0

1

y
e−

a2

2y2 𝑑y + 1

𝜋 ∫
∞

1

e−
y2

2 𝑑y ≤ 1

𝜋 ∫
1

0

1

y
e−

a2

2y2 𝑑y + 1√
2𝜋
. (2.11)

Let 0 < 𝛿 ≤ 1

2
. Since 2x

1−𝛿
2 e−x ≤ 1 for x ≥ 0, we obtain e−

a2

2y2 ≤ 2− 1

2 |a|𝛿−1 y1−𝛿 for all y > 0.

Integrating, we obtain

∫
1

0

1

y
e−

a2

2y2 𝑑y ≤ 2− 1

2 |a|𝛿−1 ∫
1

0

y−𝛿 𝑑y = 2− 1

2
|a|𝛿−1

1 − 𝛿
≤ 2

1

2 |a|𝛿−1.

Altogether, we get from (2.11) for |a| ≤ 1,

𝜛2(a) ≤
√

2

𝜋
|a|𝛿−1 + 1√

2𝜋
≤

(√
2

𝜋
+ 1√

2𝜋

) |a|𝛿−1 < |a|𝛿−1.

One can check that a1−𝛿𝜛2(a) ≤ a𝜛2(a) < 1 for a ≥ 1. The assertion follows.

(3) The case k = 1 follows from (1). Suppose now k ≥ 2. We have by (2.9)

𝜛k(a) = ∫(y2,…,yk)∈Rk−1

𝜑

(
a

y2 ⋅… ⋅ yk

)
𝜑(y2) ⋅… ⋅ 𝜑(yk)

𝑑y2|y2| · · · 𝑑yk|yk|
= ∫(y3,…,yk)∈Rk−2

[
∫y2∈R

𝜑

(
a

y2 ⋅… ⋅ yk

)
𝜑(y2)

𝑑y2|y2|
]
𝜑(y3) ⋅… ⋅ 𝜑(yk)

𝑑y3|y3| · · · 𝑑yk|yk|
= ∫(y3,…,yk)∈Rk−2

𝜛2

(
a

y3 ⋅… ⋅ yk

)
𝜑(y3) ⋅… ⋅ 𝜑(yk)

𝑑y3|y3| · · · 𝑑yk|yk| .
By item (2) we can bound this by

𝜛k(a) ≤ |a|𝛿−1

(
∫y∈R

|y|−𝛿𝜑(y) 𝑑y
)k−2

= |a|𝛿−1
(
E |y|−𝛿)k−2

.

Is well known that

E |y|−𝛿 = 1√
𝜋

2− 𝛿

2 Γ
(

1 − 𝛿
2

) ≤ 1√
𝜋
Γ
(

1 − 𝛿
2

)
.

The Taylor expansion
1√
𝜋
Γ( 1−𝛿

2
) = 1 + 0.9819… ⋅ 𝛿 + O(𝛿2) gives the growth for small 𝛿: it is

straightforward to verify that
1√
𝜋
Γ( 1−𝛿

2
) ≤ 1 + 2𝛿 for 0 < 𝛿 ≤ 1

2
. Setting 𝛿 = 1∕(2k), we obtain(

E |y|−𝛿)k−2 ≤ (1 + 2𝛿)k = (1 + 1

k
)k < e and assertion follows.
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3 THE RICE FORMULA

3.1 Outline

The Rice formula is a major tool in the theory of random fields. It gives a concise integral expression

for the expected number of zeros of random functions. For comprehensive treatments we refer to [1,2].

We are going to apply this formula in the following special situation. Let R[X]≤D denote the finite

dimensional space of polynomials of degree at most D in the single variable X. We study a family of

structured polynomials given by a parametrization RN → R[X]≤D, u → Fu(X), where Fu(X) is a poly-

nomial function in the parameter u and the variable X. In our case of interest, it is the parametrization

of polynomials by arithmetic circuits of depth four in terms of their parameters.

Here is a rough outline of the method. We fix a probability density on the space RN of parameters.

Its pushforward measure on R[X]≤D defines a class of random polynomial functions F∶ R → R. (It is

common to notationally drop the dependence on the parameter u.) The number #{x ∈ [0, 1] ∶ F(x) =
0} of real zeros of F then becomes a random variable, whose expectation we wish to analyze. For

this, let us assume that for almost all x ∈ R, the real random variable F(x) has a density, denoted by

𝜌F(x). Moreover, we assume that the conditional expectation E
(|F′(x)| ∣ F(x) = 0

)
is well defined for

almost all x ∈ R. The Rice formula states that, under some technical assumptions,

E (#{x ∈ [0, 1] ∶ F(x) = 0}) = ∫
1

0

E
(|F′(x)| ∣ F(x) = 0

)
𝜌F(x)(0) 𝑑x.

While the idea behind this formula can be easily explained (e.g., see [2, §3.1]), the rigorous justifica-

tion can be quite hard, especially in case of non-Gaussian distributions that we encounter in our work;

compare [2, Thm. 3.4]). For this reason, we will rely on a weaker version of the Rice formula, tai-

lored to our situation, that only claims the inequality ≤ above, but has the advantage of requiring less

assumptions. This is the topic of the next subsection. Let us emphasize that we do not attempt to state

this weaker version of the Rice formula in the greatest generality possible.

3.2 A Rice inequality

Let RN × I → R, (u, x) → Fu(x) be a polynomial function, where I is a compact interval. We think of

F as a parametrization of structured polynomial functions in the variable x in terms of the parameters

u1,… , uN . We assume that for all x ∈ I, the polynomial function

F(x)∶ R
N → R, u → Fu(x)

is not constant and thus {u ∈ RN ∶ 𝛻F(x)(u) = 0} has measure zero.

Example 3.1. (1) Fix integers 0 = 𝑑1 < 𝑑2 < · · · < 𝑑t. Then Fu(x) ∶= u1 + u2x𝑑2 + · · · + utx𝑑t

parametrizes sparse polynomials with support {𝑑1,… , 𝑑t}. Note that for all x ∈ R, F(x) is a

nonconstant linear function (of the argument u). In particular, F(x) does not have singular values.

(2) Fix integers 0 = 𝑑1 < 𝑑2 < · · · < 𝑑t and 0 = e1 < e2 < · · · < et. The family Fu,v(x) ∶=
(u1+u2x𝑑2 +· · ·+utx𝑑t )(v1+v2xe2 +· · ·+vtxet ) parameterizes products of two sparse polynomials

with supports given by {𝑑1,… , 𝑑t} and {e1,… , et}. The set of singular points of F(x) consists of

the pairs (u, v) such that u1+u2x𝑑2 +· · ·+utx𝑑t = 0, v1+v2xe2 +· · ·+vtxet = 0. Thus, for all x ∈ R,

F(x) is surjective and 0 is its only singular value. (We generalize this example in Lemma 6.1.)
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Following Section 2.1, if a probability distribution with a density 𝜌 is given on the space RN of

parameters, for all x ∈ I, F(x) becomes a random variable with a well-defined density 𝜌F(x).

The following “Rice inequality” is the version of Rice’s formula that we apply in this paper. It is

essentially Azaïs and Wschebor [2, Exercise 3.9, p. 69]. We state it in a way that makes the method

convenient to apply in our setting. We provide the proof for lack of a suitable reference.

Theorem 3.2. Let RN × [x0, x1] → R, (u, x) → Fu(x) be a smooth function such that, for all x ∈
[x0, x1], {u ∈ RN ∶ 𝛻F(x)(u) = 0} has measure zero. Moreover, we assume that, for almost all u ∈ RN,
the function [x0, x1] → R has only finitely many zeros. Furthermore, let a probability density 𝜌 be
given on RN. We assume there exists an integrable function g∶ [x0, x1] → [0,∞] and 𝜀 > 0 such that
for all x ∈ [x0, x1] and almost all a ∈ (−𝜀, 𝜀) we have

E (|F′(x)| ∣ F(x) = a) 𝜌F(x)(a) ≤ g(x).

Then, for a random u with the density 𝜌, we can bound the expected number of zeros of the random
function x → Fu(x) in the interval [x0, x1] as follows:

E (#{x ∈ [x0, x1] ∶ F(x) = 0}) ≤ ∫
x1

x0

g(x) 𝑑x.

The starting point for the proof of Theorem 3.2 is Kac’s counting formula [11, Lemma 1 and

Remark 1]. A turning point of function is a point where its derivative changes sign.

Lemma 3.3. A C1 function f ∶ [x0, x1] → R with only finitely many turning points satisfies

N(f ) ∶= #{x ∈ (x0, x1) ∶ f (x) = 0} ≤ lim
𝛿→0

1

2𝛿 ∫
x1

x0

1{|f (x)|<𝛿} |f ′(x)| 𝑑x.

In fact, for sufficiently small 𝛿 > 0, the right-hand side equals N(f ) + 𝜂, where 𝜂 = 0,
1

2
, 1 according

to as none, one, or both of the numbers x0, x1 are zeros of f .

Proof of Theorem 3.2. In the setting of this theorem, we apply Lemma 3.3 to f = Fu for a random

u ∈ RN . Taking expectations over u and using Fatou’s lemma, we obtain (for convenience, we drop

the index u)

E (N(F)) ≤ lim inf
𝛿→0

E

(
1

2𝛿 ∫
x1

x0

1{|F(x)|<𝛿} |F′(x)| 𝑑x
)
.

Due to Tonelli’s lemma (nonnegative integrands), we can interchange the integral over x and the

expectation. We obtain

E (N(F)) ≤ lim inf
𝛿→0 ∫

x1

x0

J𝛿(x) 𝑑x,

where we have put

J𝛿(x) ∶=
1

2𝛿
E

(
1{|F(x)|<𝛿} |F′(x)|) .
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Proposition 2.1 gives for x ∈ (x0, x1),

J𝛿(x) =
1

2𝛿 ∫
𝛿

−𝛿
E

(|F′(x)| ∣ |F(x)| = a
)
𝜌F(x)(x) 𝑑a.

By assumption, the integrand is upper bounded by g(x) for almost all a ∈ (−𝜀, 𝜀), hence we obtain

J𝛿(x) ≤ g(x) for 𝛿 < 𝜀. Therefore,

E (N(F)) ≤ lim inf
𝛿→0 ∫

x1

x0

J𝛿(x) 𝑑x ≤ ∫
x1

x0

g(x) 𝑑x.

Finally, E (#{x ∈ (x0, x1) ∶ f (x) = 0}) = E (N(F)) since F(x0) = 0 and F(x1) = 0 happens with

probability zero.

4 CONDITIONAL EXPECTATIONS OF RANDOM LINEAR
COMBINATIONS

Throughout, we assume that u1,… , um are independent real random variables having the densities

𝜑1,… , 𝜑m, respectively. We fix real weights w1,… ,wm, not all being zero, and study the random

variable

f ∶= w1u1 + · · · + wmum.

We shall study bounds for the quantity E (|ui| ∣ f = a) 𝜌f (a). Since 𝛻f = w ≠ 0, there is no singular

value of f .

We begin with a simple bound on the density 𝜌f of f . It is only useful if the densities𝜑i are bounded

(which is not the case for 𝜑 = 𝜛k).

Lemma 4.1. Suppose that ‖𝜑i‖∞ ≤ A for all i. Then ‖𝜌f‖∞ ≤ A
maxi |wi| . In particular, we have‖𝜌f‖∞ ≤ A if wi = 1 for some i.

Proof. For a ∈ R we have by (2.4)

𝜌f (a) =
1|w1| ∫

Rk−1

𝜑1(w−1
1
(a − w2u2 − · · · − wmum))𝜑2(u2) ⋅… ⋅ 𝜑m(um)𝑑u2 · · · 𝑑um,

which we can bound as

𝜌f (a) ≤ A|w1| ⋅ ∫Rk−1

𝜑2(u2) · · ·𝜑m(um)𝑑u2 · · · 𝑑um = A|w1| .
Since the same argument works for wi, this finishes the proof.

Definition 4.2. We call a probability density 𝜑 on R convenient if 𝜑 is monotonically decreasing on

(0,∞) and symmetric around the origin, that is, 𝜑(−u) = 𝜑(u) for all u ∈ R. Moreover, we require

E 𝜑 ∶= ∫
R

|u|𝜑(u) 𝑑u < ∞.
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Clearly, a distribution with a convenient density 𝜑 is centered: ∫
R

u𝜑(u) 𝑑u = 0. The densities 𝜛k
of the products of independent Gaussian random variables provide examples of convenient densities

(see Section 2.2). Note that E𝜛k = (E 𝜑)k ≤ 1 with 𝜑 denoting the density of the standard Gaussian

distribution.

Lemma 4.3. Let 𝜑 and 𝜓 be densities on R and assume that 𝜑 is convenient. Then:

(1) |u|𝜑(u) ≤ 1

2
.

(2) ∫
R
|u|𝜑(u)𝜓(u)𝑑u ≤ 1.

Proof. (1) We have u𝜑(u) ≤ ∫ u
0
𝜑(t) 𝑑t ≤ ∫ ∞

0
𝜑(t) 𝑑t = 1

2
, for u > 0.

(2) By Fubini,

∫
∞

0

u𝜑(u)𝜓(u)𝑑u = ∫
∞

0

(
∫

u

0

𝑑t
)
𝜑(u)𝜓(u)𝑑u

= ∫0≤t≤u
𝜑(u)𝜓(u)𝑑t 𝑑u = ∫

∞

0 ∫
∞

t
𝜑(u)𝜓(u)𝑑u𝑑t.

Now we use that 𝜑 is monotonically decreasing on (0,∞) to upper bound this by

∫
∞

0

𝜑(t)∫
∞

t
𝜓(u)𝑑u 𝑑t ≤ ∫

∞

0

𝜑(t)𝑑t = 1

2
.

The assertion follows by the symmetry of 𝜑.

Proposition 4.4. Consider f = w1u1 + · · · +wmum, where (w1,… ,wm) ≠ 0. If the density 𝜑i of ui is
convenient, then we have for any a ∈ R

|wi|E (|ui| ∣ f = a) 𝜌f (a) ≤ 1.

Proof. We begin with a general observation. Let v1 and v2 be independent random variables with the

densities 𝜓1 and 𝜓2 and assume 𝜓1 to be convenient. Consider the sum g(v1, v2) ∶= v1 + v2. By (2.5)

we have for a ∈ R,

E (|v1| ∣ g(v1, v2) = a) 𝜌g(a) = ∫
R

|v1|𝜓1(v1)𝜓2(a − v1) 𝑑v1

and Lemma 4.3(2) implies E (|v1| ∣ v1 + v2 = a) 𝜌g(a) ≤ 1. Applying this observation to v1 ∶= wiui
and v2 ∶=

∑
j≠i wjuj yields the assertion.

We provide now another bound on the conditional expectation, which is better for small weights

wi. For this we need a stronger assumption on the densities. We will have to deal with unbounded

densities, namely with the density 𝜛k of the product of k ≥ 2 standard Gaussian random variables.

Lemma 2.5 will allow us to apply the following result to these densities.

Proposition 4.5. Suppose ui has a convenient density 𝜑i with E 𝜑i ≤ B, for i = 2,… ,m.
Furthermore, assume the density 𝜑1 of u1 satisfies

∀u 𝜑1(u) ≤ C |u|𝛿−1 (4.1)
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for some constants C > 0 and 0 < 𝛿 ≤ 1. Then, for all w2,… ,wm ∈ R, the random linear combination
f ∶= u1 + w2u2 + · · · + wmum satisfies for i ≥ 2 and all a ∈ R,

E (|ui| ∣ f = a) 𝜌f (a) ≤ C
(
𝛿−1 + B

) |wi|𝛿−1.

Proof. Using the symmetry of 𝜑i, we can assume w.l.o.g. that all the weights wi are positive. We

first provide the proof in the case m = 2. Let f = u1 + wu2 with w > 0. By (2.5) we have

I ∶= E (|u2| ∣ f = a) 𝜌f (a) = ∫
R

|u2|𝜑1(a − wu2)𝜑2(u2)𝑑u2. (4.2)

By assumption, we have 𝜑1(a − wu2) ≤ C|a − wu2|𝛿−1 for all u2 ∈ R. Using this, we obtain

I ≤ C ∫
R

|a − wu2|𝛿−1|u2|𝜑2(u2) 𝑑u2 ≤ C|w|𝛿−1 ∫
R

||| a
w

− u2
|||𝛿−1|u2|𝜑2(u2) 𝑑u2.

We bound this integral by splitting according to whether || a
w
− u2

|| is smaller or larger than one. Using

that |u2|𝜑2(u2) ≤ 1

2
, which holds since 𝜑2 is convenient (see Lemma 4.3(1)), we get

∫
R

|| a
w

− u2
||𝛿−1|u2|𝜑2(u2) 𝑑u2 ≤ 1

2 ∫|u2−a∕w|≤1

|| a
w

− u2
||𝛿−1

𝑑u2 + ∫|u2−a∕w|≥1

|u2|𝜑2(u2) 𝑑u2

≤ 1

2 ∫
1

−1

|x|𝛿−1 𝑑x + E 𝜑2
≤ 1

𝛿
+ B.

We have thus shown that E (|u2| ∣ f = a) 𝜌f (a) ≤ C′|w|𝛿−1, where C′ ∶= C(𝛿−1 + B), settling the case

m = 2.

We now turn to the general case m ≥ 2. Let f ∶= u1 + w2u2 + · · · + wmum and w.l.o.g. i = 2. As

for (4.2),

E (|u2| ∣ f = a) 𝜌f (a) =
∫
Rm−1 ∫R

|u2|𝜑1((a − w3u3 − · · · − wmum) − w2u2)𝜑2(u2) 𝑑u2 𝜑3(u3) · · ·𝜑m(um)𝑑u3 · · · 𝑑um.

We bound the inner integral using the case m = 2 and obtain,

E (|u2| ∣ f = a) 𝜌f (a) ≤ C′|w2|𝛿−1 ∫
Rm−1

𝜑3(u3) · · ·𝜑m(um)𝑑u3 · · · 𝑑um = C′|w2|𝛿−1,

which finishes the proof.

5 RANDOM LINEAR COMBINATIONS OF FUNCTIONS

Throughout this section we fix analytic functions w1,… ,wm ∶ [x0, x1] → R and study for u ∈ Rm their

linear combination

F(x) ∶=
m∑

i=1

wi(x)ui.

We assume that w1,… ,wm do not have a common zero in [x0, x1]. Note that 𝛻F(x) =
(w1(x),… ,wm(x)) ≠ 0 for all x.
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Lemma 5.1. The set of u ∈ Rm such that
∑m

i=1 wi(x)ui has finitely many zeros is of measure zero.

Proof. W.l.o.g. we can assume that w1,… ,wk is a basis of the span of w1,… ,wm, where k ≥ 1. If

we write wi =
∑k

j=1 𝜆ijwj, for i > k with 𝜆ij ∈ R, then F(x) =
∑m

i=1 wi(x)ui =
∑k

j=1 wj(x)vj, where

vj = uj +
∑m

i=k+1 𝜆ijui. If the analytic function F(x) has infinitely many zeros in [x0, x1], then it must

vanish identically and thus vj = uj +
∑m

i=k+1 𝜆ijui = 0 for all j ≤ k. Since the set of u ∈ Rm satisfying

these conditions lie in a lower dimensional subspace, the assertion follows.

We note that any family of polynomials without common zeros in [x0, x1] satisfies the above

assumptions. For instance, we can take the family of monomials wi(x) = x𝑑i with 𝑑1 = 0 ≤ 𝑑2 ≤ · · · ≤
𝑑m, which amounts to studying the random fewnomial F(x) =

∑m
i=1 uix𝑑i .

We assume now that the u1,… , um are independent real random variables with the densities

𝜑1,… , 𝜑m and consider random linear combination F(x). (Notationally, we again drop the dependence

on u.) Our goal is to bound the expected number of real zeros of F via the Rice inequality.

We begin with a simple estimation.

Proposition 5.2. Suppose A,B are constants such that

∀i ‖𝜑i‖∞ ≤ A, E 𝜑i ≤ B.

Then F(x) ∶= u1 +
∑m

i=2 wi(x)ui satisfies for all x ∈ [x0, x1] and a ∈ R,

E
(|F′(x)| ∣ F(x) = a

)
𝜌F(x)(a) ≤ AB

m∑
i=2

|w′
i(x)|.

Moreover, we have

E #{x ∈ [x0, x1] ∶ F(x) = 0} ≤ AB
m∑

i=2
∫

x1

x0

|w′
i(x)|𝑑x.

Proof. We have F′(x) =
∑m

i=2 w′
i(x)ui, hence |F′(x)| ≤ ∑m

i=2 |w′
i(x)| ⋅ |ui|. If we put wj ∶= wj(x) for

fixed x, we have

E
(|F′(x)| ∣ F(x) = a

) ≤
m∑

i=2

|w′
i(x)| ⋅ E

(|ui| || m∑
j=1

wjuj = a

)
.

Then u2 and v ∶= u1 +w3u3 + · · · +wmum are independent random variables and F(x) = w2u2 + v. Let

𝜗 denote the density of v. By Lemma 4.1 we have ‖𝜗‖∞ ≤ A. Hence, by (2.5),

E
(|u2| ∣ F(x) = a) 𝜌F(x)(a) = ∫

R

|u2|𝜑2(u2)𝜗(a − w2u2) 𝑑u2 ≤ A ⋅ E 𝜑2
≤ AB.

The same bound holds for all ui with i ≥ 2 and the first assertion follows.

By the assumptions on the functions wi made at the beginning of Section 5, we can apply

Theorem 3.2 and the second assertion follows.

The following corollary is of independent interest.
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Corollary 5.3. In the situation of Proposition 5.2, if all functions wi are monotonically increasing,
then

E #{x ∈ [x0, x1] ∶ F(x) = 0} ≤ AB
m∑

i=2

(wi(x1) − wi(x0)).

In particular, in the case of monomials wi(x) = x𝑑i with 𝑑1 = 0 < 𝑑2 < · · · < 𝑑m, the random

fewnomial F(x) =
∑m

i=1 uix𝑑i satisfies E #{x ∈ [0, 1] ∶ F(x) = 0} ≤ AB (m − 1), which can be seen

as a probabilistic version of Descartes rule.

Remark 5.4. Better bounds can be obtained for particular probability distributions of the coefficients

ui. For instance, one can show that E #{x ∈ R ∶ F(x) = 0} = (√m log m) for the random sparse

polynomial F(x) =
∑m

i=1 uix𝑑i with independent standard Gaussian coefficients; see [5].

Following Proposition 4.5, we now provide an estimation, which is better for small values of wi(x).
It is relevant that this does not require the density 𝜑i to be bounded. This estimation can be applied to

the distributions of products of independent Gaussians, which will be of importance for the proof of

the main result.

Proposition 5.5. Suppose ui has a convenient density 𝜑i with E 𝜑i ≤ B, for i = 2,… ,m. Further-
more, assume there are C ≥ 1 and 0 < 𝛿 ≤ 1 such that the density 𝜑1 of u1 satisfies 𝜑1(u) ≤ C |u|𝛿−1

for all u. Then, for all w2,… ,wm ∈ R, the random linear combination F(x) ∶= u1 +
∑m

i=2 wi(x)ui
satisfies for all x ∈ [x0, x1] and all a ∈ R:

E
(|F′(x)| ∣ F(x) = a

)
𝜌F(x)(a) ≤ C(𝛿−1 + B)

m∑
i=2

|w′
i(x)|

max{|wi(x)|, |wi(x)|1−𝛿} .
Proof. Put C′ ∶= C(𝛿−1 + B). Proposition 4.5 gives for i ≥ 2, a ∈ R, and x ∈ [x0, x1],

E (|ui| ∣ F(x) = a) 𝜌F(x)(a) ≤ C′|wi(x)|1−𝛿 .
On the other hand, Proposition 4.4 gives

E (|ui| ∣ F(x) = a) 𝜌F(x)(a) ≤ 1|wi(x)| .
Therefore, since C′ ≥ C ≥ 1,

E (|ui| ∣ F(x) = a) 𝜌F(x)(a) ≤ C′ 1

max{|wi(x)|, |wi(x)|1−𝛿} .
The assertion follows now with |F′(x)| ≤ ∑m

i=2 |w′
i(x)||ui|.

In order to make effective use of Proposition 5.5 for certain structured weight functions having

product form, we introduce the following notion, related to the total variation ∫ 1

0
|q′(x)|𝑑x of a

function q.

Definition 5.6. The logarithmic variation of a function q∶ [x0, x1] → (0,∞) is defined as

LV(q) ∶= ∫
x1

x0

|||| 𝑑𝑑x
ln q(x)

|||| 𝑑x = ∫
x1

x0

|q′(x)|
q(x)

𝑑x.
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The logarithmic variation has the following basic properties, whose proof is obvious.

Lemma 5.7. (1) If q is monotonically increasing, then LV(q) = ln q(x1) − ln q(x0).
(2) LV(q1 ⋅ q2) ≤ LV(q1) + LV(q2).
(3) LV(qr) = |r|LV(q) for r ∈ R.

For reasons to become clear in the next section, we assign to a finite subset S ⊆ N the sparse sum

of squares with “support” S defined as the polynomial

𝛼S(x) ∶=
∑
s∈S

x2s.

We will assume 0 ∈ S, hence 𝛼S(x) ≥ 1 for all x ∈ R and 𝛼S(0) = 1. Moreover, 𝛼S(1) = |S|.
Assume now we have a family of subsets Si ⊆ N satisfying 0 ∈ Si and |Si| ≤ t, for 1 ≤ i ≤ 𝓁. We

choose 1 ≤ k ≤ 𝓁 and define the function

q(x) ∶=
(
𝛼S1

(x) ⋅… ⋅ 𝛼Sk (x)
𝛼Sk+1

(x) ⋅… ⋅ 𝛼S𝓁 (x)

) 1

2

.

Proposition 5.8. Let 𝑑 ∈ N and 0 < 𝛿 ≤ 1. The function w∶ [0, 1] → [0,∞), x → q(x)x𝑑 satisfies
LV(q) ≤ 1

2
𝓁 ln t. Moreover,

∫
1

0

|w′(x)|
max{w(x),w(x)1−𝛿}

𝑑x ≤ 2LV(q) + kt + 1

𝛿
.

Proof. 1. By Lemma 5.7, we have LV(𝛼Si) ≤ ln t, since 𝛼Si is monotonically increasing Moreover,

𝛼Si(0) = 1, and 𝛼Si(1) ≤ t. Again using Lemma 5.7, we get LV(q) ≤ 1

2

∑𝓁
i=1 LV(𝛼Si) ≤ 1

2
𝓁 ln t, showing

the first assertion.

2. We will choose 𝜀 = 𝜀(k, t, 𝑑) ∈ (0, 1) and bound

∫
1

0

|w′(x)|
max{w(x),w(x)1−𝛿}

𝑑x ≤ ∫
𝜀

0

|w′(x)|
w(x)1−𝛿

𝑑x + ∫
1

𝜀

|w′(x)|
w(x)

𝑑x.

For bounding the left-hand integral, we take logarithmic derivatives to get from w(x) = q(x)x𝑑

w′(x)
w(x)

=
q′(x)
q(x)

+ 𝑑

x
, (5.1)

and hence

w′(x)
w(x)1−𝛿

=
q′(x)
q(x)

w(x)𝛿 + 𝑑

x
w(x)𝛿 =

q′(x)
q(x)

q(x)𝛿x𝑑𝛿 + 𝑑q(x)𝛿x𝑑𝛿−1.

For 0 ≤ x ≤ 𝜀 we have 𝛼Si (x) ≤ 1+ 𝜀2(t − 1) ≤ 1+ 𝜀2t, and hence q(x) ≤ (1+ 𝜀2t)
k
2 . We can therefore

bound |w′(x)|
w(x)1−𝛿

≤ (1 + 𝜀2t)
k𝛿
2 𝜀𝑑𝛿

|q′(x)|
q(x)

+ 1

𝛿
(1 + 𝜀2t)

k𝛿
2
𝑑

𝑑x
x𝑑𝛿.
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Integrating over [0, 𝜀], we obtain

∫
𝜀

0

|w′(x)||w(x)|1−𝛿 𝑑x ≤ (1 + 𝜀2t)
k𝛿
2 𝜀𝑑𝛿 ∫

𝜀

0

|q′(x)|
q(x)

𝑑x + 1

𝛿
(1 + 𝜀2t)

k𝛿
2 𝜀𝑑𝛿

≤ (
(1 + 𝜀2t)

k
2 𝜀𝑑

)𝛿 (
LV(q) + 1

𝛿

)
.

We now choose 𝜀 ∶= e−
kt
𝑑 . Then 𝜀𝑑 = e−kt and

(1 + 𝜀2t)
k
2 𝜀𝑑 ≤ (1 + t)

k
2 𝜀𝑑 ≤ e

kt
2 𝜀𝑑 = e−

kt
2 ≤ 1.

With this choice of 𝜀, we therefore have

∫
𝜀

0

|w′(x)||w(x)|1−𝛿 𝑑x ≤ LV(q) + 1

𝛿
.

We next bound the integral over [𝜀, 1], again using (5.1),

∫
1

𝜀

|w′(x)|
w(x)

𝑑x ≤ ∫
1

𝜀

|q′(x)|
q(x)

𝑑x + 𝑑 ∫
1

𝜀

𝑑x
x

≤ LV(q) + 𝑑 ln
1

𝜀
= LV(q) + kt,

where we used 𝑑 ln
1

𝜀
= kt by our choice of 𝜀. Altogether, we obtain

∫
1

0

|w′(x)|
max{w(x),w(x)1−𝛿}

𝑑x ≤ LV(q) + 1

𝛿
+ LV(q) + kt ≤ 2LV(q) + kt + 1

𝛿

completing the proof.

6 SUM OF PRODUCTS OF SPARSE POLYNOMIALS

Let us first fix some notation. We assign to a finite subset S ⊆ Z of exponents and a collection of

coefficients us, for s ∈ S, the Laurent polynomial

fS(x) ∶=
∑
s∈S

usxs.

Note that fS(x−1) = f−S(x) and f𝑑+S(x) = x𝑑 fS(x) for 𝑑 ∈ Z. This allows to achieve a normalization by

shifting exponents: let 𝑑 be the minimum of S and put S′ ∶= S − 𝑑. Then S′ ⊆ N and 0 ∈ S′. Since

fS(x) = x𝑑 fS′ (x), the functions fS and fS′ have the same number of nonzero roots.

Let now k1,… , km and t be positive integers and fix supports Sij ⊆ Z for 1 ≤ i ≤ m and 1 ≤ j ≤ ki
such that |Sij| ≤ t. We study the number of nonzero real roots of the sum of products

∑m
i=1 fi1 ⋅… ⋅ fiki ,

where fij ∶= fSij .

By shifting exponents, we assume without loss of generality

∀i, j Sij ⊆ N, 0 ∈ Sij and |Sij| ≤ t,
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and consider

F(x) ∶=
m∑

i=1

fi1(x) ⋅… ⋅ fiki (x)x
𝑑i . (6.1)

where we allow for a degree pattern 0 = 𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑m consisting of natural numbers 𝑑i.

The probabilistic setting is as follows. For each i, j and s ∈ Sij we fix a convenient probability

density 𝜑ijs on R and assume that there are constants A,B such that

∀i, j, s ‖𝜑ijs‖∞ ≤ A, E 𝜑ijs ≤ B.

We suppose that we have random univariate polynomials

fij(x) =
∑
s∈Sij

uijsxs (6.2)

with independent real coefficients uijs having the convenient density 𝜑ijs. The goal is to study the

expected number of real zeros of the resulting random polynomial F.

We assign to the support Sij the following generating functions

𝛼ij(x) ∶=
∑
s∈Sij

x2s, 𝛽ij(x) ∶=
∑
s∈Sij

xs. (6.3)

Note that E (fij(x)2) = 𝛼ij(x) if E (u2
ijs) = 1, since E (uijs) = 0.

The next lemma makes sure we can apply Theorem 3.2 in the above setting.

Lemma 6.1. Let N ∶=
∑m

i=1

∑ki
j=1

|Sij| denote the number of parameters. For x ∈ R consider the
polynomial map F(x)∶ RN → R sending a system u = (uijs) ∈ RN of coefficients to F(x), as defined
in (6.1). For all x ∈ R we have:

(a) F(x) is surjective and thus nonconstant.
(b) All nonzero a ∈ R are regular values of F(x).
(c) 0 is a singular value of F(x) unless k1 = · · · = km = 1.

The conditional density 𝜌F(x)(a) is defined at every nonzero a ∈ R. However, it is undefined at
a = 0, unless k1 = · · · = km = 1.

Proof. We fix x ∈ R.

(a) After specializing uijs ∶= 0 for s ≠ 0, F(x) becomes the function mapping (uij0) to
∑m

i=1 ui10⋅…⋅uiki0,

which clearly is a surjective function.

(b) The fij(x) are linear functions in disjoints sets of variables and all have a nonzero coefficient. There-

fore, their gradients, viewed as vectors in RN , are linearly independent. Suppose now u = (uijs) ∈ RN

is a singular point of F(x). We have (dropping the argument u)

𝛻F(x) =
m∑

i=1

fi,1 ⋅… ⋅ fi,j−1𝛻fi,jfi,j+1 ⋅… ⋅ fi,ki .

Since the 𝛻fi,j are linearly independent, we must have fi,1 ⋅… ⋅ fi,j−1𝛻fi,jfi,j+1 ⋅… ⋅ fi,ki = 0 for all i, j. This

means that for all i there are different j and j′ such that fij(x) = 0 and fij′ (x) = 0. In particular, we have
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F(x)(u) = 0 for such u and hence 0 is the only possible singular value of F(x). If ki > 1 for some i,
then u = 0 is a singular point of F(x) and thus 0 is a singular value.

(c) This follows from the reasoning in (b).

For applying Theorem 3.2, the main work consists now in exhibiting a “small” integrable function

g(x) that upper bounds the conditional expectations. We embark on this next.

6.1 Products of sparse polynomials

We analyze here the case m = 1 of one product

g(x) ∶= f1(x) ⋅… ⋅ fk(x)

of random t-sparse polynomials fj(x) =
∑

s∈Sj
ujsxs, where for convenience, we drop the index i = 1.

In particular, we write 𝛽j(x) ∶=
∑

s∈Sj
xs. So we assume 0 ∈ Sj and |Sj| ≤ t for all j.

By Lemma 6.1, every nonzero a ∈ R is a regular value of the map g(x)∶ RN → R, thus the

conditional density 𝜌g(x)(a) is well defined and so are the conditional expectations with respect to the

condition g(x) = a, provided 𝜌g(x)(a) > 0.

Lemma 6.2. For all x ∈ R and all nonzero a ∈ R we have

E

(|||||
f ′j (x)

fj(x)

||||| ∣ g(x) = a

)
𝜌g(x)(a) ≤ AB

𝛽′j (x)|a| ,

E (|g′(x)| ∣ g(x) = a)𝜌g(x)(a) ≤ AB
k∑

j=1

𝛽′j (x).

Proof. Fix x ∈ R and consider the random variables yj ∶= fj(x) and zj ∶= f ′j (x). If 𝜓j(yj, zj) denotes

the joint density of (yj, zj), then by the independence of (y1, z1),… , (yk, zk), the probability density of

(y, z) ∈ Rk × Rk is given by 𝜓1(y1, z1) ⋅… ⋅ 𝜓k(yk, zk). Note that g(x) = y1 ⋅… ⋅ yk.

We are going to apply some insights from Section 2. Namely, we apply Equation (2.3) to the

function f ∶ Rk × Rk → R, (y, z) → y1 ⋅ … ⋅ yk and the random variable Z(y, z) ∶= | z1

y1

|. For

nonzero a ∈ R we consider the hypersurface Ca ∶= {y ∈ Rk ∶ y1 · · · yk = a} and note that‖𝛻(y1 ⋅… ⋅ yk)‖ = |a|(∑k
i=1 y−2

i )
1

2 . We obtain

E

(|||| z1

y1

|||| ||| y1 ⋅… ⋅ yk = a
)
𝜌g(x)(a)

= ∫Ca×Rk

|||| z1

y1

||||𝜓1(y1, z1) ⋅… ⋅ 𝜓k(yk, zk)
𝑑(Ca × Rk)

|a| (∑k
i=1 y−2

i

) 1

2

= ∫y∈Ca

[
∫z∈Rk

|||| z1

y1

||||𝜓1(y1, z1) ⋅… ⋅ 𝜓k(yk, zk) 𝑑z1 · · · 𝑑zk

]
𝑑Ca

|a| (∑k
i=1 y−2

i

) 1

2

.

(6.4)
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For fixed y ∈ Ca, the inner integral can be simplified to

∫z1∈R

|||| z1

y1

||||𝜓1(z1, y1)
[
∫(z2,…,zk)∈Rk−1

𝜓2(y2, z2) ⋅… ⋅ 𝜓k(yk, zk) 𝑑z2 · · · 𝑑zk

]
𝑑z1

= ∫z1∈R

|||| z1

y1

||||𝜓1(y1, z1) 𝑑z1 ⋅ 𝜓2(y2) ⋅… ⋅ 𝜓k(yk),

with the marginal densities 𝜓i defined by 𝜓i(yi) ∶= ∫
R
𝜓i(yi, zi)𝑑zi. By (2.6) we have for y1 ∈ R∗,

∫z1∈R

|||| z1

y1

||||𝜓1(y1, z1) 𝑑z1 = E

(|||| z1

y1

|||| ||| y1

)
𝜓1(y1).

We thus obtain from (6.4)

E

(|||| z1

y1

|||| ||| y1 ⋅… ⋅ yk = a
)
𝜌g(x)(a)

= ∫y∈Ca

E

(|||| z1

y1

|||| ||| y1

)
𝜓1(y1)𝜓2(y2) ⋅… ⋅ 𝜓k(yk)

𝑑Ca

|a| (∑k
i=1 y−2

i

) 1

2

.
(6.5)

Proposition 5.2 applied to the random linear combination fj(x) =
∑

s∈Sj
ujsxs implies

E (|z1| ∣ y1)𝜓1(y1) ≤ AB 𝛽′
1
(x).

Here we essentially use that, due to the assumption 0 ∈ Sj, the polynomial fj(x) = uj0 + … has a

constant term. Using this bound, we get from (6.5),

E

(|||| z1

y1

|||| ||| y1 ⋅… ⋅ yk = a
)
𝜌g(x)(a) ≤ AB ⋅ 𝛽′

1
(x)∫y∈Ca

1|y1|𝜓2(y2) ⋅… ⋅ 𝜓k(yk)
𝑑Ca

|a| (∑k
i=1 y−2

i

) 1

2

.

Using (2.8), the integral over Ca simplifies to

∫(y2,…,yk)∈Rk−1

|y2 ⋅… ⋅ yk||a| ⋅ 𝜓2(y2) ⋅… ⋅ 𝜓k(yk)
𝑑y2 · · · 𝑑yk|y2| · · · |yk|

= 1|a| ∫R

𝜓2(y2)𝑑y2 ⋅… ⋅ ∫
R

𝜓k(yk)𝑑yk =
1|a| .

Therefore, indeed

E

(|||||
f ′
1
(x)

f1(x)

||||| ||| g(x) = a

)
𝜌g(x)(a) ≤ AB

𝛽′
1
(x)|a| .

The same argument works with fj instead of f1, so that we have proved the first statement.

In order to show the second statement, taking logarithmic derivatives, we get

g′(x)
g(x)

=
k∑

j=1

f ′j (x)

fj(x)
,
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hence ||||g′(x)
g(x)

|||| ≤
k∑

j=1

|||||
f ′j (x)

fj(x)

||||| .
Therefore,

E

(||||g′(x)
g(x)

|||| ||| g(x) = a
)

≤
k∑

j=1

E

(|||||
f ′j (x)

fj(x)

||||| |||g(x) = a

)

hence

E
(|g′(x)| ∣ g(x) = a

)
𝜌g(x)(a) ≤

k∑
j=1

|a|E (|||||
f ′j (x)

fj(x)

||||| ||| g(x) = a

)
𝜌g(x)(a).

Inserting here the bound of the first statement yields the second statement.

6.2 Polynomials with nonzero constant coefficient

We deal here with the special case 𝑑1 = · · · = 𝑑m = 0. So we are in the situation where all the fij almost

surely have a nonzero constant coefficient. It turns out that this situation is way easier to analyze than

the general case.

The next result shows that the real 𝜏-conjecture is true on average under the assumption 𝑑1 = · · · =
𝑑m = 0, if we only count zeros in [0, 1]. It is worthwhile noting that this results holds for any convenient

distribution of the coefficients uijs, as long as they are independent.

Theorem 6.3. Under the assumptions from the beginning of Section 6, the random polynomial F =∑m
i=1 fi1 ⋅… ⋅ fiki satisfies

E #{x ∈ [0, 1] ∶ F(x) = 0} ≤ AB (k1 + · · · + km)(t − 1).

Proof. Lemma 6.1 guarantees that (u, x) → g(x)(u) satisfies the assumptions of Theorem 3.2.

We are going to show that forall x ∈ R and all nonzero a ∈ R,

E (|F′(x)| ∣ F(x) = a)𝜌F(x)(a) ≤ AB
m∑

i=1

ki∑
j=1

𝛽′ij(x), (6.6)

where we recall that 𝛽ij(x) was defined in (6.3). Then, taking into account Lemma 6.1 and ∫ 1

0
𝛽′ij(x)𝑑x =

𝛽ij(1) − 𝛽ij(0) ≤ t − 1, the assertion will follow by Theorem 3.2.

Towards proving (6.6), we put gi(x) ∶= fi1(x) ⋅… ⋅ fiki(x). Then we have F(x) = g1(x) + · · · + gm(x)
and hence |F′(x)| ≤ ∑m

i=1 |g′
i(x)|. Therefore,

E (|F′(x)| ∣ F(x) = a)𝜌F(x)(a) ≤
m∑

i=1

E (|g′
i(x)| ∣ F(x) = a)𝜌F(x)(a).

Lemma 6.2 gives for nonzero b ∈ R that

E (|g′
i(x)| ∣ gi(x) = b)𝜌gi(x)(b) ≤ AB

ki∑
j=1

𝛽′ij(x). (6.7)
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For proving (6.6), it suffices to show that the same bound holds when conditioning on F(x) = a, namely

E (|g′
i(x)| ∣ F(x) = a)𝜌F(x)(a) ≤ AB

ki∑
j=1

𝛽′ij(x). (6.8)

For showing this, we fix 1 ≤ i ≤ m. We put yi ∶= gi(x) and zi ∶= g′
i(x), and denote by 𝜓i(yi, zi) the

joint density of (yi, zi). Moreover, we write 𝜓i(yi) ∶= ∫
R
𝜓i(yi, zi) 𝑑zi for the first marginal distribution.

By construction, the pairs (y1, z1),… , (ym, zm) are independent. We claim that

E (|z1| ∣ y1 + · · · + ym = a) 𝜌y1+···+ym(a) = ∫
R

E (|z1| ∣ y1 = b)𝜓1(b) 𝜌y2+···+ym(a − b) 𝑑b. (6.9)

It remains to prove this claim, since it implies, combined with (6.7), that

E

(|g′
1
(x)| |||

m∑
j=1

gj(x) = a

)
𝜌F(x)(a) = ∫b∈R

E
(|g′

1
(x)| || g1(x) = b

)
𝜌g1(x)(b) 𝜌∑j≠1 gj(x)(a − b) 𝑑b

≤ AB
ki∑

j=1

𝛽′
1j(x)∫b∈R

𝜌∑
j≠i gj(x)(a − b) 𝑑b = AB

ki∑
j=1

𝛽′
1j(x),

which is (6.8) (for w.l.o.g. i = 1).

We deduce now the claim (6.9). By (2.5) we have

E (|z1| ∣ y1 + · · · + ym = a) 𝜌y1+···+ym(a)

= ∫
Rm−1 ∫Rm

|z1|𝜓1(a − y2 − · · · − ym, z1)𝜓2(y2, z2) · · ·𝜓m(ym, zm) 𝑑z1 · · · 𝑑zm 𝑑y2 · · · 𝑑ym

= ∫
Rm−1

[
∫

R

|z1|𝜓1(a − y2 − · · · − ym, z1) 𝑑z1

]
𝜓2(y2) · · ·𝜓m(ym) 𝑑y2 · · · 𝑑ym.

(6.10)

For fixed y2,… , ym and b = a − y2 − · · · − ym, the expression in parenthesis equals

E (|z1| ∣ y1 = b)𝜓1(b).

By applying Proposition 2.1 to the map T ∶ Rm−1 → R, (y2,… , ym) → a − y2 − · · · − ym, taking into

account Lemma 2.2, we can express the above integral (6.10) as

∫
R

E (|z1| ∣ y1 = b)𝜓1(b)

[
∫T−1(b)

𝜓2(y2) · · ·𝜓m(ym)
𝑑T−1(b)√

m − 1

]
𝑑b.

By definition, the expression in the parenthesis equals the pushforward density 𝜌y2+···+ym(a− b), which

shows the claim (6.9) and finishes the proof.

6.3 Proof of main result

We specialize the setting described at the beginning of Section 6 to the case where all the coefficients

uijs are standard Gaussian.
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For 1 ≤ i ≤ m we define the auxiliary analytic weight functions

qi(x) ∶=
ki∏

j=1

(
𝛼ij(x)
𝛼1j(x)

) 1

2

, (6.11)

and recall that 𝛼ij(x) was defined in (6.3). Note that qi(x) > 0 for all x ∈ R and q1(x) = 1. We define

the analytic weight function wi(x) ∶= qi(x)x𝑑i for 1 ≤ i ≤ m and note that w1(x) = 1.

We will reduce the problem of counting the expected number of zeros of the structured random

polynomial F(x) to the study of the expected number of zeros of random linear combinations

R(x) ∶=
m∑

i=1

uiqi(x)x𝑑i = u1 + u2q2(x)x𝑑2 + · · · + umqm(x)x𝑑m ,

of the weight functions wi(x), where the coefficients ui are independent and follow the distribution𝜛ki

of a product of ki standard Gaussians (cf. Section 2.2). We note that, due to Lemma 5.1, for almost all

u ∈ Rm, the function R has only finitely many zeros in [x0, x1]. Thus it satisfies the assumptions stated

at the beginning of Section 5.

Proposition 6.4. For x ∈ R and nonzero a ∈ R, we have

E
(|F′(x)| ∣ F(x) = a

)
𝜌F(x)(a) ≤ 1√

2𝜋

m∑
i=1

ki∑
j=1

𝛽′ij(x) +
m∑

i=1

|||||
q′

i(x)
qi(x)

|||||
+ E

(|R′(x)| ∣ R(x) = a
)
𝜌R(x)(a).

Proof. We write F(x) = h1(x) + · · · + hm(x), where

hi(x) ∶= gi(x)x𝑑i and gi(x) ∶= fi1(x) ⋅… ⋅ fiki(x).

Note that h′
i(x) = g′

i(x)x
𝑑i + gi(x)𝑑ix𝑑i−1. We bound with the triangle inequality:

|F′(x)| ≤
m∑

i=1

|||g′
i(x)x

𝑑i ||| + |||||
m∑

i=1

gi(x)𝑑ix𝑑i−1
||||| .

Here, it is essential not to upper bound further the right-hand contribution by
∑m

i=1 |gi(x)𝑑ix𝑑i−1|.
Continuing, we get

E
(|F′(x)| ∣ F(x) = a

)
𝜌F(x)(a) ≤

m∑
i=1

E
(|g′

i(x)x
𝑑i | ∣ F(x) = a

)
𝜌F(x)(a)

+ E

(|| m∑
i=2

gi(x)𝑑ix𝑑i−1|| ∣ F(x) = a

)
𝜌F(x)(a).

(6.12)

By the same reasoning as for (6.9), we have for nonzero a ∈ R

E
(|g′

i(x)x
𝑑i | ∣ F(x) = a

)
𝜌F(x)(a) = ∫

R

E
(|g′

i(x)x
𝑑i | ∣ hi(x) = b

)
𝜌hi(x)(b)𝜌Hi(x)(a − b) 𝑑b,
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where Hi(x) ∶=
∑

j≠i hj(x). Moreover, setting b̃ ∶= b
x𝑑i

, we get for nonzero b ∈ R

E
(|g′

i(x)x
𝑑i | ∣ hi(x) = b

)
𝜌hi(x)(b) = E

(|g′
i(x)x

𝑑i | ∣ gi(x) = b̃
) 1

x𝑑i
𝜌gi(x)(b̃).

The x𝑑i cancels and by Lemma 6.2, we have with AB = 1√
2𝜋

,

E
(|g′

i(x)x
𝑑i | ∣ hi(x) = b

)
𝜌hi(x)(b) ≤ 1√

2𝜋

ki∑
j=1

𝛽′ij(x).

Note that the right hand-side does not depend on b. Multiplying with 𝜌Hi(x)(a − b), integrating over b
(which does not change anything) and summing over i, yields the first contribution in the theorem’s

upper bound.

It remains to bound the right-hand contribution in (6.12), for fixed x ∈ R and nonzero a ∈ R. For

this, note that fij(x) is a centered Gaussian random variable having the variance 𝛼ij(x) (recall (6.2) and

(6.3)). So we may write fij(x) = 𝛼ij(x)
1

2 vij with independent standard Gaussian random variables vij.

Hence, if we abbreviate ui ∶= vi1 · · · viki and put pi(x) ∶= (𝛼i1(x) ⋅… ⋅ 𝛼iki (x))
− 1

2 , then

gi(x) = fi1(x) ⋅… ⋅ fiki(x) = 𝛼i1(x)
1

2 ⋅… ⋅ 𝛼iki (x)
1

2 vi1 ⋅… ⋅ viki = pi(x)−1ui.

By its definition, the random variable ui has the distribution 𝜛ki (cf. Section 2.2). It is a convenient

distribution (cf. Definition 4.2). We also note that qi(x) =
p1(x)
pi(x)

by (6.11). With these notations, we can

write

F(x) =
m∑

i=1

gi(x)x𝑑i =
m∑

i=1

ui

pi(x)
x𝑑i = 1

p1(x)

m∑
i=1

uiqi(x)x𝑑i = 1

p1(x)
R(x).

Hence 𝜌F(x)(a) = p1(x)𝜌R(x)(𝜁), where 𝜁 ∶= p1(x)a. We analyze now the right-hand contribution in

(6.12):

E

(|| m∑
i=2

ui

pi(x)
𝑑ix𝑑i−1|| ∣ F(x) = a

)
𝜌F(x)(a) = E

(|| m∑
i=2

uiqi(x)𝑑ix𝑑i−1|| ∣ F(x) = a

)
𝜌R(x)(𝜁).

Using

R′(x) =
m∑

i=1

uiq′
i(x)x

𝑑i +
m∑

i=1

uiqi(x)𝑑ix𝑑i−1,

we can bound

|||
m∑

i=2

uiqi(x)𝑑ix𝑑i−1||| ≤
m∑

i=1

|||uiq′
i(x)x

𝑑i ||| + |R′(x)|.
Therefore,

E

(|| m∑
i=2

uiqi(x)𝑑ix𝑑i−1|| ∣ R(x) = 𝜁

)
𝜌R(x)(𝜁) ≤

m∑
i=1

E (||uiq′
i(x)x

𝑑i || ∣ R(x) = 𝜁
)
𝜌R(x)(𝜁)

+E
(|R′(x)| ∣ R(x) = 𝜁

)
𝜌R(x)(𝜁).
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Note that the right-hand contribution equals E
(|R′(x)| ∣ R(x) = a

)
𝜌R(x)(a) as desired. In order to

bound the left-hand sum, we can apply Proposition 4.4 since the densities of the ui are convenient, and

we thus obtain |qi(x)x𝑑i | ⋅ E (|ui| ∣ R(x) = 𝜁) 𝜌R(x)(𝜁) ≤ 1.

This yields

|q′
i(x)x

𝑑i | ⋅ E (||ui|| ∣ R(x) = 𝜁
)
𝜌R(x)(𝜁) ≤ |q′

i(x)|
qi(x)

.

Summarizing, we have shown that

E

(|| m∑
i=2

gi(x)𝑑ix𝑑i−1|| ∣ F(x) = a

)
𝜌F(x)(a) ≤

m∑
i=1

|q′
i(x)|

qi(x)
+ E

(|R′(x)| ∣ R(x) = 𝜁
)
𝜌R(x)(𝜁),

which completes the proof.

We can finally provide the proof of the main result.

Proof of Theorem 1.1. The right-hand term in the statement of Proposition 6.4 can be bounded with

Proposition 5.5. Indeed, due to Lemma 2.5 we know that 𝜛k1
(a) ≤ e |a| 1

2k1
−1

for all a. Applying

Proposition 5.5 with the parameters B = 1, C = e, and 𝛿 = (2k1)−1 yields

E
(|R′(x)| ∣ R(x) = a

)
𝜌R(x)(a) ≤ e(2k1 + 1)

m∑
i=2

|w′
i(x)|

max{|wi(x)|, |wi(x)|1− 1

2k1 }
.

Applying Proposition 6.4 implies for x ∈ R and a ∈ R∗, recalling that wi(x) ∶= qi(x)x𝑑i ,

E
(|F′(x)| ∣ F(x) = a

)
𝜌F(x)(a) ≤ 1√

2𝜋

m∑
i=1

ki∑
j=1

𝛽′ij(x) +
m∑

i=1

|||||
q′

i(x)
qi(x)

|||||
+ e(2k1 + 1)

m∑
i=2

|w′
i(x)|

max{|wi(x)|, |wi(x)|1− 1

2k1 }
=∶ g(x). (6.13)

∫
1

0

|w′
i(x)|

max{wi(x),wi(x)
1− 1

2k1 }
𝑑x ≤ 2LV(qi) + kit + 2k1.

The function g(x) on the right-hand side of (6.13) is integrable:

∫
1

0

g(x) 𝑑x ≤ 1√
2𝜋

m∑
i=1

ki∑
j=1

(t − 1) +
m∑

i=1

LV(qi) + e(2k1 + 1)
m∑

i=2

(2LV(qi) + kit + 2k1) < ∞.

By Proposition 5.8 we can bound LV(qi) ≤ 1

2
2ki ln t. Moreover, Theorem 3.2 can be applied (see

Lemma 6.1) and states that E (#{x ∈ [0, 1] ∶ F(x) = 0}) ≤ ∫ 1

0
g(x) 𝑑x. Hence,

E (#{x ∈ [0, 1] ∶ F(x) = 0}) ≤ 1√
2𝜋

(k1 + · · · + km)(t − 1) + (k1 + · · · + km) ln t

+ e(2k1 + 1) ((k2 + · · · + km)(2 ln t + t) + (m − 1)2k1)
= (k2mt), (6.14)

where k denotes the maximum of the ki.
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The number of zeros of F in [1,∞) equals the number of zeros x ∈ (0, 1] of F(x−1). Moreover,

F(x−1) has the same structure as F except that the supports Sij are replaced by −Sij. Since we can

shift the degrees without changing the number of positive zeros, we conclude that E (#{x ∈ [1,∞) ∶
F(x) = 0}) is also bounded by (6.14). Therefore, E (#{x ∈ R ∶ F(x) = 0}) is upper bounded by four

times (6.14).
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