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Abstract

Complex patterns of neural activity appear during up-states in the neocortex and sharp

waves in the hippocampus, including sequences that resemble those during prior behavioral

experience. The mechanisms underlying this replay are not well understood. How can small

synaptic footprints engraved by experience control large-scale network activity during mem-

ory retrieval and consolidation? We hypothesize that sparse and weak synaptic connectivity

between Hebbian assemblies are boosted by pre-existing recurrent connectivity within

them. To investigate this idea, we connect sequences of assemblies in randomly connected

spiking neuronal networks with a balance of excitation and inhibition. Simulations and ana-

lytical calculations show that recurrent connections within assemblies allow for a fast amplifi-

cation of signals that indeed reduces the required number of inter-assembly connections.

Replay can be evoked by small sensory-like cues or emerge spontaneously by activity fluc-

tuations. Global—potentially neuromodulatory—alterations of neuronal excitability can

switch between network states that favor retrieval and consolidation.

Author summary

Synaptic plasticity is the basis for learning and memory, and many experiments indicate

that memories are imprinted in synaptic connections. However, basic mechanisms of how

such memories are retrieved and consolidated remain unclear. In particular, how can

one-shot learning of a sequence of events achieve a sufficiently strong synaptic footprint

to retrieve or replay this sequence? Using both numerical simulations of spiking neural

networks and an analytic approach, we provide a biologically plausible model for under-

standing how minute synaptic changes in a recurrent network can nevertheless be

retrieved by small cues or even manifest themselves as activity patterns that emerge spon-

taneously. We show how the retrieval of exceedingly small changes in the connections

across assemblies is robustly facilitated by recurrent connectivity within assemblies. This

interaction between recurrent amplification within an assembly and the feed-forward

propagation of activity across the network establishes a basis for the retrieval of memories.
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Introduction

The idea of sequential activation of mental concepts and neural populations has deep roots in

the history of the cognitive sciences [1–3] as well as its share of criticism [4]. In one of the

most influential works in neuroscience, Donald Hebb extended this concept by suggesting that

neurons that fire simultaneously should be connected to each other, thus forming a cell assem-

bly that represents an abstract mental concept [5]. He also suggested that such assemblies

could be connected amongst each other, forming a network of associations in which one men-

tal concept can ignite associated concepts by activating the corresponding assemblies. Hebb

referred to the resulting sequential activation as well as the underlying circuitry as “phase

sequence”. We will refer to such connectivity patterns as “assembly sequences”.

The notion of Hebbian assemblies has triggered a huge number of experimental studies

(reviewed in [6]), but relatively few experiments have been dedicated to the idea of assembly

sequences [7, 8]. Many theoretical studies focused on feedforward networks, also known as

synfire chains [9–12]. Synfire chains are characterized by a convergent-divergent feedforward

connectivity between groups of neurons, where pulse packets of synchronous firing can propa-

gate through the network. Few works were also dedicated on synfire chains embedded in

recurrent networks [13–15], however, without explicitly considering recurrent connectivity

within groups.

In this study, we combine the concept of feedforward synfire chains with the notion of

recurrently connected Hebbian assemblies to form an assembly sequence. Using numerical

simulations of spiking neural networks, we form assemblies consisting of recurrently con-

nected excitatory and inhibitory neurons. The networks are tuned to operate in a balanced

regime where large fluctuations of the mean excitatory and inhibitory input currents cancel

each other. In this case, distinct assemblies that are sparsely connected in a feedforward fash-

ion can reliably propagate transient activity. This replay can be triggered by external cues for

sparse connectivities, but also can be evoked by background activity fluctuations for larger

connectivities. Modulating the population excitability can shift the network state between

cued-replay and spontaneous-replay regimes. Such spontaneous events may be the basis of the

reverberating activity observed in the neocortex [16–18] or in the hippocampus [19–21].

Finally, we show that assembly sequences can also be replayed in a reversed direction (i.e.,

reverse replay) as observed during replay of behavior sequences [22, 23].

Results

To test Hebb’s hypothesis on activity propagation within a recurrent network, we use a net-

work model of excitatory and inhibitory conductance-based integrate-and-fire neurons. The

network has a sparse random background connectivity prand = 0.01 [24]. We form a neural

assembly (Fig 1A) by picking M excitatory (M = 500 if not stated otherwise) and M/4 inhibi-

tory neurons and connecting them randomly with probability prc, resulting in a mutually cou-

pled excitatory and inhibitory population. The new connections are created independently

and in addition to the background connections. To embed an assembly sequence in the net-

work, we first form 10 non-overlapping assemblies. The assemblies are then connected in a

feedforward manner where an excitatory neuron from one group projects to an excitatory neu-

ron in the subsequent group with probability pff (Fig 1B). Thus, by varying the feedforward

and the recurrent connectivities, we can set the network structure anywhere in the spectrum

between the limiting cases of synfire chains (pff > 0, prc = 0) and uncoupled Hebbian assem-

blies (pff = 0, prc > 0), as depicted in Fig 1C.

To ensure that the spontaneous activity of the network is close to an in-vivo condition, we

use Hebbian plasticity of inhibitory connections [25], which has been shown to generate a
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balance of excitatory and inhibitory currents in individual neurons (Fig 2A). As a conse-

quence, spikes are caused by current fluctuations (Fig 2B), and the network settles into a state

of asynchronous irregular (AI) firing (Fig 2C).

To simulate a one-shot sequence learning paradigm, we initially embed assemblies that

have recurrent connectivity prc only and are not connected via feedforward connections (Fig 2,

left-hand side). A stimulation of the first assembly does not evoke a replay. Then, in a sham

learning event, new feedforward connections are created between subsequent assemblies fol-

lowed by a short phase (* 5 seconds) with inhibitory plasticity turned on in order to properly

balance the network. If we then stimulate the first group in the embedded assembly sequence

(Fig 2C, right-hand side), the network responds with a wave of activity that traverses the whole

sequence, as hypothesised by Hebb [5]. We refer to such a propagation of activity wave as

replay. As excitatory and inhibitory neurons are part of the assemblies, they both have elevated

firing rates during group activation. Despite the high population transient firing rates (* 100

spikes/sec for excitatory, and * 60 spikes/sec for inhibitory neurons when using a Gaussian

smoothing window with width σ = 2 ms) single neurons are firing at most one spike during

assembly activation. Because excitatory neurons in an assembly transiently increase their pop-

ulation firing rate from 5 to 100 spikes/sec, a replay can be inferred from the large change in

activity, which resembles replay in hippocampal CA networks [19]. On the other hand, inter-

neurons have higher background firing rates of * 20 spikes/sec and smaller maximum firing

rates of * 60 spikes/sec during replay. As a result, interneurons have a much lower ratio of

peak to background activity than excitatory neurons in our model, in line with the reported

lower selectivity of interneurons [26].

We chose the particular wiring scheme of discrete assemblies partly due to the resemblance

of the discrete windows of activity defined by the fast oscillations during hippocampal replay:

ripples during sharp-wave ripples (SWRs) and gamma cycles during theta sequences. Addi-

tionally, our approach facilitates the model description and gives a leverage for an analytical

treatment. Accordingly, in Fig 2A–2C, we modeled discrete assemblies of size M = 500, which

have a distinct recurrent connectivity prc = 0.1 within each assembly, and a feedforward con-

nectivity pff = 0.04 between two assemblies in the sequence. However, in biological networks,

assemblies could potentially overlap, making a clear-cut distinction between feedforward and

recurrent connectivities difficult. To study assembly sequences in a more continuously wired

sequence, we use an extreme case where no assemblies are defined at all. All neurons are

Fig 1. Network connectivity. A: Schematic of an assembly i consisting of an excitatory (Ei) and an inhibitory (Ii) population. Red and blue lines indicate

excitatory and inhibitory connections, respectively. The symbols w and −kw denote total synaptic couplings between populations. B: Sketch of network

connectivity. The inhomogeneous network is randomly connected with connection probability prand. A feedforward structure consisting of 10 assemblies

(only i − 1 and i shown) is embedded into the network. Each assembly is formed by recurrently connecting its neurons with probability prc. Subsequent

assemblies are connected with feedforward probability pff between their excitatory neurons. C: Embedded structure as a function of connectivities.

doi:10.1371/journal.pcbi.1005359.g001
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arranged in a linear sequence, and every neuron is connected to its M = 500 neighbouring

excitatory cells (M/2 preceding and M/2 succeeding) with probability prc. Recurrent connec-

tions to and from inhibitory neurons are embedded analogously in a continuous manner. To

imitate the connectivity pattern from the discrete model, every excitatory neuron is connected

to the M following neurons without overlapping with the recurrent connections (i.e., the range

from 1

2
M to 3

2
M) with probability pff. After stimulating the first M neurons with a transient

input, the whole sequence is replayed (Fig 2D). Compared to the discrete assembly sequence

(Fig 2C) where the same connection probabilities were used, the replay is continuous and qual-

itatively similar. In what follows, however, we return to the discrete assemblies because this

description facilitates a connection of simulations with an analytical treatment.

Sparse feedforward connectivity is sufficient for replay

Whether an assembly sequence is replayed is largely determined by the connectivities within

and between assemblies. Therefore, we first study how the quality of replay depends on the

recurrent (prc) and the feedforward (pff) connectivities. The network dynamics can be roughly

Fig 2. Example of 1 second network activity. The first 250 ms depict the dynamics of a network with random and recurrent connections

only (prc = 0.1). The same network after embedding feedforward connectivity (pff = 0.04) is shown in the last 750 ms. A: Input currents

experienced by an example neuron. The excitatory and inhibitory inputs are denoted by the red and blue traces, respectively. The sum of all

currents (synaptic, injected, and leak currents) is shown in black. B: Membrane potential of the same neuron. Red dots denote the time of

firing. C: Raster plot of spike times of 500 neurons (50 neurons per group are shown). The red dots correspond to the firing of the example

neuron in A and B. The stimulation times of the first assembly are denoted with upward arrows. D: Raster plot of a continuous sequence. Each

neuron is connected to its M neighbours (in the range � 1

2
M; 1

2
M

� �
) with probability prc (left-hand side); and afterwards (right-hand side), a

feedforward connectivity pff to the following M neurons (in the range 1

2
M; 3

2
M

� �
) is introduced.

doi:10.1371/journal.pcbi.1005359.g002
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assigned to regimes where the connectivity is too weak, strong enough, or too strong for a suc-

cessful replay. We use a quality measure of replay, which determines whether activity propa-

gates through the sequence without evoking a “pathological” burst of activity (Fig 3). In such

“pathological” cases the spatiotemporal structure of replay is often preserved while the back-

ground activity deviates from the AI state, or the whole network is involved in the events. To

disregard such events, the quality measure punishes replays that (1) evoke bursting of neurons

within assemblies during activation or (2) activate the whole network (for details see Materials

and Methods).

Naturally, for a random network (pff = 0, prc = 0, Fig 3a) the replay fails because the random

connections are not sufficient to drive the succeeding groups. In the case of uncoupled Heb-

bian assemblies (e.g., pff = 0, prc = 0.30), groups of neurons get activated spontaneously (Fig

3c), which is reminiscent to the previously reported cluster activation [27] but on a faster time

scale. Already for sparse connectivity (e.g., pff = prc = 0.06) the assembly-sequence replay is suc-

cessful (Fig 3b). In the case of denser recurrence (prc� 0.10), a pulse packet propagates for

even lower feedforward connectivity (pff� 0.03). The feedforward connectivity that is required

for a successful propagation decreases with increasing recurrent connectivity because assem-

blies of excitatory and inhibitory neurons can increase small fluctuations of the input through

“balanced amplification” [28, 29] as summarized in Materials and methods, section “Balancing

the Network”.

For high feedforward (pff ≲ 0.10) but low recurrent (prc ≲ 0.10) connectivity, the replay has

low quality. In this case, excitatory neurons receive small recurrent inhibitory input compared

Fig 3. Evoked replay. Assembly-sequence activation as a function of the feedforward pff and the recurrent prc connectivities. The color code denotes the

quality of replay, that is, the number of subsequent groups firing without bursting (see Materials and Methods). The black curve corresponds to the critical

connectivity required for a replay where the slope c of the transfer function (See Materials and Methods and Eq 1) is matched manually to fit the simulation

results for connectivities prc = 0.08 and pff = 0.04. The slope c is also estimated analytically (dashed white line). The raster plots (a-f) illustrate the dynamic

regimes observed for different connectivity values; neurons above the gray line belong to the background neurons.

doi:10.1371/journal.pcbi.1005359.g003
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to the large feedforward excitation, because the recurrent connection probability is lower than

the feedforward one. Due to the lack of sufficiently strong inhibitory feedback within the

assembly (compared to the strong feedforward excitation), the propagating activity either

leads to run-away excitation (Fig 3e), also called synfire explosion [30, 31], or to epileptiform

bursting (Fig 3d). When both recurrent and feedforward connectivities are high, the inhibition

is able to keep the propagating activity transient (Fig 3f). However, because of the strong input

each neuron is firing multiple times within a small time window. The fact that neurons in each

group (except the first) are firing multiple times during a replay alters the spatio-temporal

structure of the sequence. While activity propagates from one group to another, neurons do

not necessary spike in order due to the many emitted spikes. Another reason to assign low

quality to such replays is the fact that the network dynamics is deviating from the AI back-

ground state because neurons that are part of the sequence tend to fire almost exclusively dur-

ing replays but not outside replays.

To get an analytical understanding of the network, we use a linear approximation of the

network dynamics to derive conditions under which replay is successful. The key determinant

for replay is an amplification factor kðpff ; prcÞ ¼
riþ1

ri
, which measures how large is the rate ri+1

in group i+1 in relation to the rate in the previous group i.
In the case where the amplification factor is smaller than one (ri+1 < ri), the activity propa-

gating through the assembly sequence will decrease at each step and eventually vanish, while

for amplification larger than one (ri+1 > ri) one would expect propagating activity that

increases at each step in the sequence. An amplification factor κ(pff, prc) = 1 represents the crit-

ical value of connectivity for which the replay is marginally stable, and the magnitude of activa-

tions is similar across groups. In the Materials and Methods we show that a linear model can

approximate the amplification factor by

k ¼ cMpff g
Eð1þ cMprc g

EÞ ð1Þ

where c = 0.25 nS-1 is a constant that fits the model to the data (see Materials and Methods).

We can interpret κ as an “effective feedforward connectivity” because the recurrent connectiv-

ity (prc) effectively scales up the feedforward connectivity pff. We can match the analytical

results for critical connectivities to the numerical simulation, and show a qualitative fit

between the approaches (black line in Fig 3).

We note that the number of excitatory synapses that is needed for an association, M2(prc +

pff), weakly depends on the position on the line κ = 1. By solving argmin prc;pff2k¼1M2ðprc þ pffÞ

we find that the minimum number of new connections required for a replay is obtained for

prc = 0 because lines for which prc + pff = const have slope of −1 in Fig 3, and the slope of the

line defined by κ = 1 is more negative. For example, when prc = 0.0, we need 40 new synapses;

for prc = 0.05, we need 50 new synapses; and for prc = 0.2, 111 synapses are required for a new

association. However, as feedforward connections might be created/facilitated on demand in

one-shot learning, it is advantageous to keep their number low at the cost of higher recurrent

connectivity, which has more time to develop prior to the learning. We extend this arguments

further in the Discussion.

In summary, the recurrent connections within an assembly play a crucial role in integrating

and amplifying the input to the assembly. This facilitation of replay is predominantly due to

the excitatory-to-excitatory (E-E) recurrent connections, and not due to the excitatory-to-

inhibitory (E-I) connections, a connectivity also known as “shadow pools” [31]. We tested that

embedding shadow pools and omitting the E-E connectivity within assemblies has no benefi-

cial effect on the quality of replay.

Memory replay in balanced recurrent networks
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Recurrent connections are important for pattern completion

Neural systems have to deal with obscure or incomplete sensory cues. A widely adopted solu-

tion is pattern completion, that is, reconstruction of patterns from partial input. We examine

how the network activity evolves in time for a partial or asynchronous activation of the first

assembly.

To determine the capability of our network to complete patterns, we quantify the replay

when only a fraction of the first group is stimulated by external input. If 60% of the neurons in

the first group (strong cue) are synchronously activated (Fig 4A, left panel), the quality of

replay is virtually the same as in the case of full stimulation (100% activated) in Fig 3. However,

when only 20% of the neurons (weak cue) are simultaneously activated (Fig 4A, middle panel),

we see a deterioration of replay mostly for low recurrent connectivities. The effect of the recur-

rent connections is illustrated in the right-most panel in Fig 4A where quality of replay is

shown as a function of prc while the feedforward connectivity was kept constant (pff = 0.05).

Small input cues lead to a weak activation of the corresponding assembly. In the case of

stronger connectivity (e.g., prc) this weak activity can build up and result in a replay as shown

in the example from Fig 4B. The top and bottom rows of raster plots correspond to two assem-

bly sequences with different recurrent connectivities, as highlighted by the rectangles in Fig

4A, while left and right columns show the activity during strong and weak cues, respectively.

In the case of pff = 0.05 and prc = 0.10 (Fig 4B, top-right), the weak cue triggers a wide pulse

packet with large temporal jitter in the first groups, which gradually shapes into a synchronous

pulse packet as it propagates through the network. On the other hand, for a smaller recurrent

connectivity (prc = 0.06), the 20% partial activation triggers a rather weak response that does

not result in replay (Fig 4B, bottom-right).

The quality of replay depends not only on the number of neurons that are activated but also

on the temporal dispersion of the pulse packet. Here, we adopt a quantification method that

represents the activity evolution in a state-space portrait [10]. Fig 4C shows the time course of

the fraction α of cells that participate in the pulse packet and the temporal dispersion σ of the

packet as the pulse propagates through the network. The state-space representation of two

assembly sequences with equal feedforward (pff = 0.05) but different recurrent connectivity are

shown in Fig 4C (top: prc = 0.10, bottom: prc = 0.06). For each assembly sequence we repeatedly

stimulated the first group with varying cue size α and time dispersion σ, depicted by the black

dots. Depending on the strength and dispersion of the initial stimulation, the dynamics of a

network can enter one of two attractor points. For high α and low σ the pulse packet propa-

gates, entering the so-called synfire attractor (white background). On the other hand, for low α
and high σ the pulse packet dies out resulting in low asynchronous firing (gray background).

The black-arrow traces in Fig 4C are example trajectories that describe the propagating pulse

packets from Fig 4B in the (α − σ) space.

To summarize, increasing both the recurrent and feedforward connectivity facilitates the

replay triggered by weak and dispersed inputs. Recurrent connectivity is particularly impor-

tant for pattern completion.

Spontaneous replay

An interesting feature of assembly sequences is the potential emergence of spontaneous activa-

tions, that is, a replay when no specific input is given to the network. Random fluctuations in

the network can be amplified by the feedforward structure and give rise to a spontaneous wave

of propagation.

We find that spontaneous and evoked replay share various features such as sequential

group activation on the background of AI network activity (Fig 5A, rasters a and b). As in the

Memory replay in balanced recurrent networks
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case of evoked replay, for exceedingly large connectivities the network dynamics can be domi-

nated by epileptiform bursting activity (Fig 5A, rasters c and d).

To assess spontaneous replay, we quantify the number of replay events per time taking into

account their quality, i.e., huge bursts of propagating activity are disregarded as replay. The

rate of spontaneous activation increases as a function of both the feedforward (pff) and the

recurrent (prc) connectivity (Fig 5A). For large connectivities (pff, prc > 0.20) the quality of the

Fig 4. Pattern completion. A: Quality of replay after partial activation of the first group for cue size 60% (left panel) and 20% (middle) as a function of

feedforward and recurrent connectivity. The right-most panel shows the quality replay after a cue activation (20% and 60%) as a function of the recurrent

connectivity (prc) while the feedforward connectivity is constant (pff = 0.05). B: Examples of network activity during 60% (left) and 20% (right) cue

activation. The top and bottom raster plots correspond to assembly sequences with higher (prc = 0.10, top) and lower (prc = 0.06, bottom) recurrent

connectivity, highlighted in A with white and black rectangles, respectively. C: State-space portraits representing the pulse-packet propagation. The

activity in each group is quantified by the fraction of firing excitatory neurons (α) and the standard deviation of their spike times (σ). The initial stimulations

are denoted with small black dots while the colored dots denote the response of the first group to the stimulations; red dot if the whole sequence is

activated, and blue otherwise. Stimulations in the region with white background result in replays, while stimulating in the gray region results in no replay.

The black arrows illustrate the evolution of pulse packets during the replays in B. Top: prc = 0.10; bottom: prc = 0.06.

doi:10.1371/journal.pcbi.1005359.g004
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spontaneous events is again poor and mostly dominated by strong bursts (Fig 5A, raster c).

The dynamics of networks with large feedforward and low recurrent connections is dominated

by long-lasting bursts of activity consisting of multiple sequence replays within each burst (Fig

5A, raster d). The maximum rate of activations does not exceed 4 events per second because

the inhibitory synaptic plasticity adjusts the inhibition such that the excitatory firing rate is

close to 5 spikes/sec.

Fig 5. Spontaneous network activity. A: The rate of spontaneous sequence activation is measured in the unperturbed network. The black curve is the

analytical result for the lower bound of successful propagation from Fig 3. Examples of spontaneous replays for different connectivities are shown in the

raster plots a-d. Synchrony (B), coefficient of variation (C), and firing rate (D) are averaged over the neurons in the last group of the sequence. E:

Spontaneous events modulated by an external input. For low enough connectivities no spontaneous events occur (left). A small additional constant current

input to the whole excitatory population (Ie = 1 pA) generates spontaneous replays (right). F: A densely connected network shows replays (left). Once the

inhibitory population receives an additional constant current input (Ii = 3 pA), the firing rate decreases and no spontaneous events occur (right).

doi:10.1371/journal.pcbi.1005359.g005
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The starting position of spontaneous replays largely depends on the network connectivity.

Sequences with low prc are seldom initiated in the first group(s), while for high prc spontaneous

replays occur predominantly at the beginning of the embedded sequence. Spontaneous replays

for sequences with low prc arise from noise fluctuations that are amplified mainly by the under-

lying feedforward connections. Fluctuations propagate through a few groups until they result

in a full-blown replay. On the other hand, to explain the preference of starting position at the

beginning of the sequence for high prc, we refer to the case of disconnected Hebbian assemblies

(Fig 3A, panel c) that get activated by the noise fluctuations. In case of weak feedforward con-

nectivity (e.g., pff < 0.02), these fluctuations do not always activate the following assemblies

due to insufficient feedforward drive. On the other hand, for pff > 0.03 even a weak activation

of an assembly will lead to a replay of the rest of the sequence. If replays were to start at random

locations in the sequence, neurons in the later section of the sequence would participate in

more replays than those earlier in the sequence, increasing the firing rate in these neurons.

The inhibitory plasticity, which homeostatically regulates the rate, will hence increase the

amount of inhibition in these later assemblies, with the effect of reducing the background

activity. Because this in turn suppresses the fluctuations that trigger replays, spontaneous

replays are less likely to be initiated in later assemblies.

To better characterize spontaneous dynamics, we refer to more extensive measures of the

network dynamics. First, to account for deviations from the AI network state, we measure the

synchrony of firing among neurons within the assemblies. To this end, we calculate the average

pairwise correlation coefficient of spike trains of neurons within the same group. A low syn-

chrony (value *0) means that neurons are uncorrelated, while a high synchrony (value *1)

reveals that neurons fire preferentially together and seldom (or not at all) outside of an assem-

bly activation. Because the synchrony builds up while activity propagates from one group to

the next, a synchronization is most pronounced in the latter groups of the sequence. Therefore,

we use correlations within the last group of the sequence as a measure of network synchrony

(Fig 5B). The average synchrony is low (*0) for low connectivities (pff, prc < 0.10) and

increases as a function of both pff and prc. In the case of high prc, neurons participating in one

assembly excite each other, and hence tend to fire together. On the other hand, for high pff,

neurons within an assembly receive very similar input from the preceding group, so they fire

together. This attachment of single neurons to group activity has two major consequences:

first, it alters the AI state of the network, and second, it alters the stochastic behavior of the

neurons, leading to more deterministic firing and bursting.

The network exhibits frequent epileptiform bursting in the case of high feedforward and

low recurrent connectivities (raster plot examples in Fig 3, panel d, and Fig 5A, panel d). To

assess this tendency of neurons to fire in bursts, we calculate the coefficient of variation (CV)

for individual neurons’ spike trains. The average CV of neurons in the last group of the

sequence exhibits Poisson-like irregular firing (CV value * 1) for a large range of parameters

(Fig 5C). However, for high pff (� 0.10) and low prc (� 0.10), the CV value exceeds 1, in line

with irregular and bursting firing. In this parameter region, small fluctuations of activity in the

first groups of the sequence are strongly amplified by the underlying feedforward connectivity,

leading to ever increasing activity in the following groups (Fig 5A, panel d). Because of the var-

iable shapes and sizes of these bursts, they are not always classified as spontaneous activations

in Fig 5A. Highly bursty firing (CV > 3) and high synchrony (* 1) suggest that the network

cannot be properly balanced.

To test whether the inhibitory plasticity can balance the network activity when assembly

sequences are embedded, we measure the average firing rate in the last group of the sequence

(Fig 5D). The firing rate deviates from the target rate of 5 spikes/sec mostly for high feedfor-

ward connectivity (pff ≳ 0.15). This inability of inhibition to keep the firing rate at the target
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value can be explained by the frequent replays that shape a stronger inhibitory input during

the balancing of the network. Once the inhibition gets too strong, neurons can fire only when

they receive excessive amount of excitation. Thus, in the case of high clustering, e.g., strong

assembly connectivity, the inhibitory plasticity prevents the neurons from reaching high firing

rates, but is unable to sustain an AI state of the network.

Control of spontaneous and cued replay by external input

Further, we investigate how spontaneous and cued replay are related. The black line in Fig 5A

refers to the analytical approximation for connectivities that enable evoked replay. Compared

to the connectivity region of successfully evoked replays in Fig 3, the region for spontaneous

replays in Fig 5 is slightly shifted to the top and to the right. Therefore, in only a narrow area

of the parameter space, sequences can be replayed by external input but do not get spontane-

ously activated. This finding suggests that to embed a sequence with high signal-to-noise ratio

of propagation, the connectivities should be chosen appropriately, in line with previous reports

[32]. In what follows we show that the size of this region can be controlled by external input to

the network.

We demonstrate how a small amount of global input current to all excitatory or all inhibi-

tory neurons can modulate the network and shift it between AI and spontaneous-replay

regimes (Fig 5E and 5F). In the first example, the connectivities are relatively low (pff = prc =

0.06) such that replay can be evoked (Fig 3) but no spontaneous activations are present (Fig 5A

and 5E, left). After injecting a small additional current of only 1 pA into the whole excitatory

population, the network becomes more excitable, i.e., the firing rate rises from 5 to 12 spikes/

sec and spontaneous replays do arise (Fig 5E, right).

On the other hand, in a network with high connectivities (pff = prc = 0.12), replay can be

reliably evoked (Figs 3 and 4A) and also occurs spontaneously (Fig 5A). An additional input

current of 3 pA to the inhibitory population decreases the firing rate of the excitatory popula-

tion from 5 to 0.33 spikes/sec and shifts the network from a regime showing frequent sponta-

neous replays to a no-replay, AI regime (Fig 5F, left and right, respectively). Nevertheless,

replays can still be evoked as in Fig 3. Hence, the spontaneous-replay regime and the average

firing rate in the AI state can be controlled by global or unspecific external current.

In summary, the balanced AI network state and successfully evoked replay of assembly

sequences can coexist for a range of connectivities. For higher connectivities, the underlying

network structure amplifies random fluctuations, leading to spontaneous propagations of

activity between assemblies. A dynamical control of the rate of spontaneous events is possible

through external input, which modulates the network activity and excitability. In the brain,

such a switching between regimes could be achieved via neuromodulators, in particular via the

cholinergic or adrenergic systems [33, 34].

Smaller assemblies require higher connectivity

So far, we have shown basic properties of sequences at fixed assembly size M = 500. To deter-

mine the role of this group size in replay, we vary M and the connectivity while keeping the

size of the network fixed. As we have already explored how recurrent and feedforward connec-

tions determine replay individually, we now consider the case where they are equal, i.e., pff =

prc = p.

Assembly sequences can be successfully replayed after stimulation for various assembly sizes

(Fig 6A). Smaller assemblies require denser connectivity (e.g., p = 0.25 for M = 100), while

larger assemblies allow sparser connectivity (e.g., p = 0.05 for M = 500). Moreover, assemblies

as small as 20 neurons are sufficient to organize a sequence given the condition of all-to-all
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connectivity within and between assemblies. The analytically derived critical value of effective

connectivity κ = 1 is in agreement with the numerical simulations (black line in Fig 6A).

To further characterize the network dynamics for varying group size, we measure the rate

of spontaneous activations of assembly sequences in undisturbed networks driven solely by

constant input. As indicated in Fig 6B, spontaneous replays occur for a limited set of parame-

ters resembling a banana-shaped region in the (M, p) plane. The parameter region for sponta-

neous replays partly overlaps with that of evoked replay. Again, there is a narrow range of

parameters to the right of the black line in Fig 6B for which sequences can be evoked by exter-

nal input while not being replayed spontaneously. As shown above, the size of this region can

be controlled by external input to the whole network (Fig 5E and 5F).

To further assess the spontaneous dynamics, we measure the firing synchrony of neurons

within the last group. The synchrony grows as function of both connectivity and group size

Fig 6. Assembly-sequence activation for various group sizes and connectivities. A: Simulation results for the quality of replay. B: Rate of

spontaneous replay. C: Synchrony. D: Coefficient of variation E: Firing rate. ρ0 = 5 spikes/sec is the target firing rate. In C, D, and E quantities are

averaged over the neurons in the last group of the sequence. The black line is an analytical estimate for the evoked replay as in Figs 3 and 5.

doi:10.1371/journal.pcbi.1005359.g006
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(Fig 6C). The fact that the synchrony approaches the value one for higher connectivity and

group size indicates that the network dynamics gets dominated by spontaneous reactivations.

The simulation results reveal that neurons always fire rather irregular with coefficient of varia-

tion (CV) between 0.7 and 1.4 (Fig 6D). Because the recurrent and the feedforward connectivi-

ties are equal (pff = prc = p), the inhibition is always strong enough and does not allow

epileptiform bursting activity. This behavior is reflected in a rather low maximal value of the

(CV<1.4) compared to the results from Fig 5, where the CV could exceed values of 4 for low

prc. The measured firing rates in the last assembly are at the target firing rate of ρ0 = 5 spikes/

sec for parameter values around and below the critical value κ = 1 (Fig 6E). However, for

increasing connectivity p and increasing group size M, the firing rate deviates from the target,

indicating that the inhibitory plasticity cannot keep the network fully balanced.

To conclude, the assembly size M plays an important role in the network activity. The criti-

cal values of connectivity and group size for successful propagation are inversely proportional.

Thus, the analytics predicts that larger assemblies of several thousands neurons require only a

fraction of a percent connectivity in order to propagate synchronous activity. However, for

this to happen, the group size M must be much smaller than the network size NE. Here NE was

fixed to 20,000 neurons for easier comparison of scenarios, but results are also valid for larger

networks (see Materials and Methods). The good agreement between the mean-field theory

and the numerical results suggests that the crucial parameter for assembly-sequence replay is

the total input one neuron is receiving, e.g., the number of input synapses.

Stronger synapses are equivalent to more connections

Up to this point, all excitatory synaptic connections in our model had constant and equal

strengths. By encoding an assembly sequence we implicitly altered the structural connectivity

by creating new synaptic connections. This case of structural plasticity can also occur when

silent synapses are turned into functionally active connections upon learning [35, 36]. How-

ever, learning new associations might also be possible through a change of synaptic strength of

individual connections [37, 38]. If a sequence is to be learned through synaptic plasticity, then

instead of increasing the connectivity between groups of neurons, the synaptic conductances

could be increased as well. To test whether these two types of plasticity are equivalent in our

approach, we embed assembly sequences with various feedforward connectivities pff and vari-

ous feedforward conductances gEff , while keeping the recurrent connectivity (prc = 0.06) and

recurrent conductances (gE = 0.1 nS) constant.

Numerical results show that feedforward connectivity and feedforward conductance have

identical roles in the replay of a sequence. That is, the sparser the connections, the stronger

synapses are required for the propagation of activity. The analytical estimate (Fig 7A, black

line corresponds to k � pff gEff ¼ const:) predicts that the product of pff and gEff is the essential

parameter for replay.

That this analytical prediction is fulfilled in the numerical simulations becomes clearer

when we show the replay quality as a function of the feedforward connectivity and the total

feedforward input pff gEff=g
E a neuron is receiving (Fig 7B). It is irrelevant whether the number

of connections are changed or their strength, what matters is their product. This rule breaks

only for sparse connectivities (pff < 0.01), i.e. when the mean number of feedforward connec-

tions between two groups is low (< 5). Therefore, the number of relevant connections cannot

be reduced to very low numbers.

Consistent with earlier findings, the quality of replay is high above a certain strength of the

total feedforward conductance (≳ 0.05 in Fig 5B) and for pff� 0.01. However, for sufficiently

large feedforward input (pff gEff=g
E > 0:12), the replay of sequences is severely impaired as the
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Fig 7. Feedforward conductance versus feedforward connectivity. A: Quality of replay as a function of connectivity and synaptic strength. B:

The replay as a function of connectivity and total feedforward conductance input shows that the propagation is independent of connectivity as long

as the total feed-forward input is kept constant. C: Spontaneous network dynamics described by the rate of spontaneous replay, synchrony, CV,

and firing rate.

doi:10.1371/journal.pcbi.1005359.g007
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network is in a state of highly synchronous bursting activity (Fig 7B), which is similar to the

results shown in Figs 5 and 6.

We also examined sequences that are formed by increasing existing background connec-

tions between the assemblies by a factor pff/prand, rather than by adding additional connec-

tions. Replays are possible also in this condition and they are indistinguishable from networks

with increased feedforward connectivities.

The rule that the total input pff gEff determines the network behavior also holds for spontane-

ous activity. Spontaneous replay rate, CV, synchrony, and firing rate all vary as a function of

the total input (Fig 7C), and only weakly as a function of the connectivity or the conductance

alone. Similar to the previous results in Figs 5 and 6, for 0:05 � pff gEff=g
E < 0:10 it is possible

to evoke a replay while preserving the AI state of the network. Increasing the total input

beyond this value drives the network into a state of spontaneous replay with increased

synchrony.

Forward and reverse replay in assembly sequences with symmetric

connections

The assembly-sequence model discussed until now contains asymmetric connections, i.e., neu-

rons from one group project extensively within the same and the subsequent group but not to

the previous group. We showed that such feedforward assembly sequences are capable of prop-

agating activity, which we call replay. Thus, the proposed model may give an insight on the

replay of behavioral sequences that have been observed in the hippocampus [19]. However,

further experiments revealed that sequences are also replayed in the inverse temporal order

than during behavior, so-called reverse replay [22, 23]. The direction of this replay also

depended on the context, i.e., when the animal was at the beginning of the path, forward

replays prevailed; while after traversing the path, more reverse replays were detected (but see

[39]). This suggests that the replay activity might be cued by the sensory input experienced at

the current location of the animal.

As the feedforward structure adopted in the network model is largely asymmetric, the

assembly sequence is incapable of reverse replay in its current form. To be able to activate a

sequence in both directions, we modify the network and add symmetric connectivity between

assemblies [40, 41]. The symmetric STDP window that has been reported recently in the hip-

pocampal CA3 area in vivo [42] would allow for strong bidirectional connections. In such a

model, an assembly of neurons does not project only to the subsequent assembly but also to

the preceding, and both projections are random with probability pff (Fig 8A). While this con-

nectivity pattern decreases the group clustering and makes the sequence more continuous, it

does not lead to full merge of the assemblies because the inhibition remains local for each

group.

Interpreting this network as a model for hippocampal activity during spatial navigation of a

virtual rat on a linear track (Fig 8B, top), we test the idea that external input can switch the net-

work between a spontaneous-replay state during rest and a non-replay, spatial-representation

state during locomotion. During immobility at the beginning of the track, a context-dependent

input cue is mimicked by a constant current Ie = 2 pA injected into the excitatory neurons of

the first assembly (Fig 8B, red bar from 0 to 500 ms). The elevated firing rate of the first assem-

bly results in a spontaneous forward replay, similar to the experimental findings during resting

states at the beginning of a linear track [22, 23].

After the initial 500 ms resting period, an external global current of −10 pA is injected into

the whole excitatory population to decrease network excitability and to mimic a state in which

the rat explores the environment. In addition, to model place-specific sensory input that is
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locked to theta oscillations, we apply a strong and brief conductance input (as in Fig 2) every

100 ms to the assembly that represents the current location. In this situation, the assemblies

fire at their corresponding locations only. There is, however, a weak activation of the neighbor-

ing assemblies that does not result in a replay. An extension of the model including lateral

inhibition and short-term plasticity would possibly enable theta sequences that span in one

direction only [43]. Such an extension is, however, beyond the scope of the current

manuscript.

At the end of the track, we retract the global external current to return to the virtual resting

state for the last 500 ms of the simulation, and the network switches back to higher mean firing

rates. A context-dependent sensory cue to the last group (Ie = 2 pA current injected continu-

ously) then leads to a spontaneous reverse replay, similar to experimental findings at the end

of a linear track [22, 23].

In the absence of a context-dependent current injection during virtual resting state, sponta-

neous replays start at around the middle of the sequence (as in Fig 5) and propagate in forward

or reverse direction. As noise fluctuations are gradually amplified while propagating between

assemblies, it is rare to find a spontaneous event that is simultaneously replayed in both direc-

tions. In our simulations (Fig 8), we assumed that the starting position of replay is cued by the

sensory input from the current location. However, it has been shown that replays during theta

sequences are rather segmented and represent the environment in discrete “chunks” [44].

These segments are not uniformly distributed but tend to cover the space between physical

landmarks, noteworthy positions in the environment. The finding of Gupta et al. [44] suggests

that there might be other mechanisms controlling the starting position of replay other than the

sensory input. Currently, it is an open question whether SWR replays represent the environ-

ment also in a segmented manner from a landmark to a landmark.

In summary, we show that given symmetric connectivity between assemblies, transient

activity can propagate in both directions. Large negative external currents injected into all

excitatory neurons can decrease network excitability and thus block the replay of sequences.

Fig 8. Symmetric assembly sequence. A: Schematic of an assembly sequence with symmetric connections between groups. B: Virtual rat position on

a linear track (top) and the corresponding neuronal activity (bottom) as a function of time for 2 seconds. The rat rests at position “b” for half a second, then

moves from “b” to “e” with constant speed for one second, where it rests for another 500 ms. While the rat is immobile at both ends of the track, a positive

current input Ie = 2 pA is applied to the excitatory population of the first and last assembly as shown by the red background in the raster plot. Spontaneous

replays start from the cued assemblies. During exploration, however, the network activity is decreased by a current Ie = −10 pA injected to the whole

excitatory population, denoted with a blue horizontal bar. Strong sensory input during traversal activates the location-specific assemblies but does not

result in any replay. The timing and location of the stimulations is denoted with red vertical bars in the raster plot. Recurrent and feedforward

connectivities are prc = 0.15 and pff = 0.03, respectively.

doi:10.1371/journal.pcbi.1005359.g008
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On the other hand, spontaneous replay can be cued by a small increase in the firing rate of a

particular assembly. Interestingly, once a replay is initiated, it does not change direction, in

spite of the symmetric connectivity. An active assembly receives feedback inhibition from its

inhibitory subpopulation, which prevents immediate further activations and hence a reversal

of the direction of propagation.

Discussion

We revived Hebb’s idea on assembly sequences (or “phase sequences”) where activity in a

recurrent neural network propagates through assemblies [5], a dynamics that could underlie

the recall and consolidation of memories. An important question in this context is how learn-

ing of a series of events can achieve a strong enough synaptic footprint to replay this sequence

later. Using both numerical simulations of recurrent spiking neural networks and an analytical

approach, we provided a biologically plausible model for understanding how minute synaptic

changes can nevertheless be uncovered by small cues or even manifest themselves as activity

patterns that emerge spontaneously. We showed how the impact of small changes in the con-

nections between assemblies is boosted by recurrent connectivity within assemblies. This

interaction between recurrent amplification within an assembly and the feedforward propaga-

tion of activity establishes a possible basis for the retrieval of memories. Our theory thus pro-

vides a unifying framework that combines the fields of Hebbian assemblies and assembly

sequences [5], synfire chains [9, 10], and fast amplification in balanced recurrent networks

that are in an asynchronous-irregular state [25, 28].

Main conclusions from our work are that the effective coupling between assemblies is a

function of both feedforward and recurrent connectivities, and that the network can express

three main types of behavior: 1. When the coupling is weak enough, assembly sequences are

virtually indistinguishable from the background random connections, and no replays take

place. 2. For sufficiently strong coupling, a transient input to some assembly propagates

through the sequence, resulting in a replay. 3. For even stronger coupling, noise fluctuations

get amplified by the underlying structure, resulting in spontaneous replays. Each of these three

regimes has a certain advantage in performing a particular task. Weak coupling is appropriate

for imprinting new sequences if the network dynamics is driven by external inputs rather than

controlled by the intrinsically generated activity. Intermediate coupling is suitable for recollec-

tion of saved memories; sequences remain concealed and are replayed only by specific input

cues; otherwise, the network is in the asynchronous-irregular, spontaneous state. For strong

coupling, spontaneous replays might be useful for offline recollection of stored sequences

when there are no external input cues. Importantly, the network behaviour and the rate of

spontaneous events depends not only on the coupling but can be controlled by modulating the

network excitability through external input. Neuromodulator systems, for example the cholin-

ergic and the adrenergic systems [33, 34] might therefore mediate the retrieval process.

Related models

Assembly sequences are tightly related to synfire chains, which were proposed [9] as a model

for the propagation of synchronous activity between groups of neurons. Diesmann et al. [10]

showed for the first time that synfire chains in a noisy network of spiking neurons can indeed

support a temporal code. It has been shown, however, that the embedding of synfire chains in

recurrent networks is fragile [13, 30], because on the one hand, synfire chains require a mini-

mal connectivity to allow propagation, while on the other hand, a dense connectivity between

groups of neurons can generate unstable network dynamics. Therefore, Aviel et al. [31] intro-

duced “shadow pools” of inhibitory neurons that stabilize the network dynamics for high

Memory replay in balanced recurrent networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005359 January 30, 2017 17 / 36



connectivity. The network fragility can also be mitigated by reducing the required feedforward

connectivity: inputs from the previous assembly are boosted by recurrent connections within

the assembly. This approach was followed by Kumar et al. [14], who examined synfire chains

embedded in random networks with local connectivity, thus, implicitly adopting some recur-

rent connectivity within assemblies as proposed by the assembly-sequence hypothesis; never-

theless, their assemblies were fully connected in a feedforward manner. Recently, it was shown

that replay of synfire chains can be facilitated by adding feedback connections to preceding

groups [45]. However, this Hebbian amplification significantly increased the duration of the

spike volleys and thus decreased the speed of replay. Our model circumvents this slowing effect

by combining the recurrent excitation with local feedback inhibition, effectively replacing

Hebbian amplification by a transient “balanced amplification” [28].

Other analytical studies have used the Fokker-Planck approach to describe the propagation

of pulse packets in synfire chains [46, 47]. In particular, Monasson and Rosay [48] have used

diffusion analysis to explore the interplay between different environments encoded in the net-

work and their effects on the activity propagation during replay. To store sequences, further

classes of models were proposed, e.g., “winner-takes-all” [49–51] and “communication

through resonance” [52]. However, the activity propagation in these models has an order of

magnitude slower time scales than the synfire chain or the assembly sequence, and thus, are

not suitable for rapid transient replays.

The spontaneous replay in our network bears some resemblance with the population bursts

that occur in a model with supralinear amplification of precisely synchronised inputs [53, 54].

Adding such nonlinearities to the conductances in our model might decrease even further the

connectivity required for the assembly-sequence replay. Another model class, which relies on

lognormal conductance distributions, has been proposed as a burst generator for sharp-wave

ripples (SWRs) [55]. The model accounts for spontaneously generated stereotypical activity

that propagates through neurons that are connected with strong synapses.

Other computational models have focused more on different aspects of the SWR events.

Taxidis et al. [56], for example, have proposed a hippocampal model where a CA3 network

rhythmically generates bursts of activity, which propagate to a predominantly inhibitory CA1

network that generates fast ripple oscillations. The ripple generation by inhibitory networks is

studied in a greater detail in Malerba et al. [57]. Azizi et al. [58] have explored the properties of

a network that stores the topology of several environments and have shown that spike-fre-

quency adaptation is an important mechanism for the movement of the activity bump within

and between environments. In another modeling study, Romani and Tsodyks [43] proposed

that short-term synaptic depression is a potential mechanism for explaining the hippocampal

activity both during mobility (theta-driven activity) and during immobility (fast replays).

Another class of models that aims to explain the origin of SWR events relies on the electrical

coupling between axons of pyramidal cells in the CA3/CA1 regions [59–61]. In a numerical

model [62] it has been shown that the axonal plexus could explain the occurrence of SWs, the

fast ripple oscillation, and moreover, account for the forward and reverse replay of sequences.

Nevertheless, anatomical data to show the existence of such connections is still scarce [63].

Relation between recurrent and feedforward connectivity

What is the most efficient set of connectivities in terms of numbers of synapses used? To create

an assembly of M neurons and to connect it to another assembly of the same size, we need

M2(prc + pff) excitatory-to-excitatory synapses. The constraint κ = 1 (Eq 7) then leads to a min-

imum total number of synapses at prc = 0. This result is somewhat surprising because it sug-

gests that our proposed recurrent amplification provides a disadvantage.
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However, another constraint might be even more important: to imprint an association in

one-shot learning, as for example required for episodic memories, it might be an advantage to

change as few synapses as possible so that one can retrieve the memory later via a replay.

Therefore, pff should be low, in particular lower than the recurrent connectivity that is bound

by the morphological connectivity that includes also weak or silent synapses. Minimizing pff

under the constraint κ = 1 implies, however, maximizing prc. Such large connectivities might

require longer time to develop. A large prc is compatible with one-shot learning only if assem-

blies (that are defined by increased prc among a group of neurons) can be set up prior to the

(feedforward) association of assemblies. Thus, episodic memories could benefit from strong

preexisting assemblies. For setting up such assemblies, long time periods might be available to

create new synapses and to morphologically grow synapses. Thus, we predict that for any epi-

sodic memory to be stored in one-shot learning in hippocampal networks such as CA3, a suffi-

ciently strong representation of the events to be associated does exist prior to successful one-

shot learning. In this case, pff (i.e., connectivity in addition to prand) can be almost arbitrarily

low. A natural lower limit is that the number of synapses per neuron Mpff is much larger than

1, say 10 as a rough estimate (in Fig 3 we have Mpff * 30 for a rather low value of prc = pff, and

10 for prc = 0.30; even 5 or more very strong synapses are sufficient in Fig 7). This can be inter-

preted in two ways: (1) Every neuron should activate several neurons in the subsequent assem-

bly, and (2) every neuron in an assembly to be activated should receive several synapses from

neurons in the previous assembly.

For example in the modeled network, for pff = 0.02 and Mpff > 10 we obtain M> 500,

which is in agreement with an estimated optimal size of assemblies in the hippocampus [64].

The total number of feedforward synapses required for imprinting an association is then M2

pff > 5,000, which is a relatively small number compared to the total number of background

synapses ðNEÞ
2prand ¼ 4 � 106 for NE = 20,000 and prand = 0.01. Scaling up the network accord-

ingly (see Materials and Methods) to the size of a rodent CA3 network, i.e., NE = 240,000 (a

typical number for the rat hippocampus, e.g., [65, 66]), the number of new associative synapses

is M2 pff > 17,000, while the total connections are more than 0.5 � 109.

To conclude, abundant recurrent connections within assemblies can decrease the feedfor-

ward connectivity required for a replay to almost arbitrary low values. Moreover, the ratio of

memory synapses to background synapses decreases as the network is scaled to bigger size.

Mechanisms for assembly-sequence formation

For sequence replay, increasing the number of connections between groups has the same

effect as scaling up the individual connection strengths. We conclude that structural and

synaptic plasticity could play an equivalent role in the formation of assembly sequences. In

the current study we have not considered plasticity mechanisms that could be mediating the

formation of assembly sequences. Previous attempts of implementing a spike-timing-depen-

dent plasticity (STDP) rule with an asymmetric temporal window [67–69] in recurrent net-

works led to structural instabilities [70–72]. However, it has been shown that under certain

conditions the asymmetric STDP rule could encode sequences of connections [54], and

moreover, maintain strong bidirectional synapses [73]. More sophisticated learning rules

better matched the experimentally observed plasticity protocols [74–76], and these rules

combined with various homeostatic mechanisms could form Hebbian assemblies that

remained stable over long time periods [40, 41, 77]. Moreover, it has been shown that the

triplet-based STDP rules [74, 75] lead to strong bidirectional connections [40, 41], a network

motif that has been reported in multiple brain regions [24, 78–81]. Recent experimental

work on the plasticity of the CA3-to-CA3 pyramidal cell synapses has revealed a symmetric
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STDP temporal curve [42]. Such a plasticity rule can be responsible for the encoding of sta-

ble assembly representations in the hippocampus.

Several plasticity rules have been successfully applied in learning sequences [7, 54, 73, 82–

85]. However, these studies focused purely on sequence replay and did not take into account

its interaction with a balanced, asynchronous irregular background state.

Relations to hippocampal replay of behavioral sequences

The present model may explain the fast replay of sequences associated with the sharp-wave rip-

ple (SWR) events, which originate in the CA3 region of the hippocampus predominantly dur-

ing rest and sleep [86]. SWRs are characterized by a massive neuronal depolarization reflected

in the local field potential [87]. Moreover, during SWRs, pyramidal cells in the CA areas fire in

sequences that reflect their firing during prior awake experience [19]. Cells can fire in the same

or in the reverse sequential order, which we refer to as forward and reverse replay, respectively

[22, 23]. Our model, however, can not account for the slower replays that occur at near behav-

iour time scales during REM sleep [88].

According to the two-stage model of memory trace formation [86], the hippocampus is

encoding new episodic memories during active wakefulness (stage one). Later, these memories

are gradually consolidated into neocortex through SWR-associated replays (stage two). It has

been proposed that acetylcholine (ACh) modulates the flow of information between the hippo-

campus and the neocortex and thereby mediates switches between these memory-formation

stages [89]. During active wakefulness, the concentration of ACh in hippocampus is high, lead-

ing to partial suppression of excitatory glutamatergic transmission [33] and promoting synap-

tic plasticity [90]. In this state, a single experience seems to be sufficient to encode

representations of the immediate future in an environment [91]. On the other hand, the level

of ACh decreases significantly during slow-wave sleep [92], releasing the synaptic suppression

and resulting in strong excitatory feedback synapses, which suggests that this boost of recur-

rent and feedback connections leads to the occurrence of SWRs. In line with this hypothesis,

the present model shows that increasing the synaptic strengths shifts the assembly-sequence

dynamics from a no-replay regime to a spontaneous-replay regime. Also, we demonstrated

that this regime supports both forward and reverse replay if assemblies are projecting symmet-

rically to each other and if recurrent connectivity exceeds severalfold the feedforward

coupling.

Dragoi and Tonegawa [20, 93] showed that sequences can be replayed during SWRs also

prior to the first exposure of the environment in which these sequences are represented. This

finding challenges the standard framework according to which sequences are imprinted dur-

ing exploration of the environment, i.e., the two-stage memory model [86]. An alternative

model was presented by Sen Cheng [94] proposing that the recurrent CA3 synaptic weights

are relatively constant during learning, and no plasticity in CA3 is required during the forma-

tion of new memories. According to the CRISP model [94], the storage of sequences is an

intrinsic property of the CA3 network, and these sequences are formed offline prior to utiliza-

tion due to the maturation of newly generated granule cells in the dentate gyrus. The model

presented in this manuscript concerns the storage of sequences in a recurrent network and is

not in contradiction with the idea of preexisting sequences.

Our model deploys a single uniform inhibitory population which is, likely, an oversimplifi-

cation of cortical and subcortical networks that are rich in expressing various interneuron

types [95, 96]. However, the roles of the different inhibitory neurons during various brain

states, and in particular, during SWRs are not well known. Strong candidates for interneurons

that might be balancing the run-away excitation during SWR replay are the basket cells due to
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their fast dynamics and strong synapses. Moreover, they are one of the most active inhibitory

neurons during SWRs. OLM cells with their slower input on the distal dendrites are good can-

didates for priming which assemblies/sequence might be replayed prior to the event.

In summary, a prediction of our assembly-sequence model is that prior to being able to

store and recall a memory trace that connects events, strong enough representations of events

in recurrently connected assemblies are necessary because recalling a minute memory trace

requires amplification within assemblies. Another prediction of this model is based on the fact

that the network is in an asynchronous-irregular state during the time intervals between

replays. Hence, by increasing the activity of the excitatory neurons or by disinhibiting the net-

work, e.g., by decreasing the activity of the interneuron population specialized in keeping the

balance, one could increase the rate of spontaneous replays. Such disinhibition might explain

the counter-intuitive observation that SWRs can be evoked by the activation of interneurons

[97, 98]. Our model thus links a diverse set of experimental results on the cellular, behavioral,

and systems level of neuroscience on memory retrieval and consolidation [99].

Materials and methods

The network simulations as well as the data analyses were performed in Python (www.python.

org). The neural network was implemented in Brian [100]. For managing the simulation envi-

ronment and data processing, we used standard Python libraries such as NumPy, SciPy, Mat-

plotlib, and SymPy.

Neuron model

Neurons are described by a conductance-based leaky integrate-and-fire model, where the sub-

threshold membrane potential Vi(t) of cell i obeys

C
dVi

dt
¼ GleakðV rest � ViÞ þ GE

i ðV
E � ViÞ þ GI

iðV
I � ViÞ þ Iext: ð2Þ

The cells’ resting potential is Vrest = −60 mV, its capacitance is C = 200 pF, and the leak con-

ductance is Gleak = 10 nS, resulting in a membrane time constant of 20 ms in the absence of

synaptic stimulation. The variables GE
i and GI

i are the total synaptic conductances describing

the time-dependent synaptic inputs to neuron i. The excitatory and inhibitory reversal poten-

tials are VE = 0 mV and VI = −80 mV, respectively. Iext = Iconst + Ix is an externally applied cur-

rent. To evoke activity in the network, a constant external current Iconst = 200 pA is injected

into each neuron, which evokes a regular, intrinsically oscillating activity in the neuron, if con-

sidered in isolation. However, embedding such neurons in random recurrent networks can

lead to irregular activity, as outlined below in the following two subsections. Only if explicitly

stated (e.g., Figs 5 and 8), small additional current inputs Ix are applied to excitatory or inhibi-

tory neurons, which we denote as Ie and Ii, respectively. As the membrane potential Vi reaches

the threshold Vth = −50 mV, neuron i emits an action potential, and the membrane potential

Vi is reset to the resting potential Vrest for a refractory period τrp = 2 ms.

The dynamics of the conductances GE
i and GI

i of a postsynaptic cell i are determined by the

spiking of the excitatory and inhibitory presynaptic neurons. Each time a presynaptic cell j
fires, the synaptic input conductance of the postsynaptic cell i is increased by gEij for excitatory

synapses and by gIij for inhibitory synapses. The input conductances decay exponentially with

time constants τE = 5 ms and τI = 10 ms. The dynamics of the total excitatory conductance is
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described by

dGE
i ðtÞ

dt
¼
� GE

i ðtÞ
tE

þ
X

j;f

gEij dðt � tðf Þj Þ: ð3Þ

Here the sum runs over the presynaptic projections j and over the sequence of spikes f from

each projection. The time of the fth spike from neuron j is denoted by tðf Þj , and δ is the Dirac

delta function. The inhibitory conductance GI
i is described analogously.

Amplitudes of recurrent excitatory conductances and excitatory conductances on inhibi-

tory neurons are denoted with gEij and gIEij , respectively. If not stated otherwise, all excitatory

conductance amplitudes are fixed and equal (gEij ¼ gIEij ¼ gE ¼ 0:1 nS), which results in EPSPs

with an amplitude of� 0.1 mV at resting potential. The recurrent inhibitory synapses are also

constant (gIij ¼ 0:4 nS) while the inhibitory-to-excitatory conductances gEIij are variable (see

below). Irrespectively of the synaptic type, the delay between a presynaptic spike and a post-

synaptic response onset is always 2 ms.

Network model

The modeled network consists of NE = 20,000 excitatory and NI = 5,000 inhibitory neurons.

Our results do not critically depend on the network size (see Section ‘Scaling the network size’

below). Initially, all neurons are randomly connected with a sparse probability prand = 0.01.

A cell assembly is defined as a group of recurrently connected excitatory and inhibitory

neurons (Fig 1A). The assembly is formed by picking M excitatory and M/4 inhibitory neurons

from the network; every pair of pre- and post-synaptic neurons within the assembly is ran-

domly connected with probability prc. The new connections are created independently and in

addition to the already existing ones. Thus, if by chance two neurons have a connection due to

the background connectivity and are connected due to the participation in an assembly, then

the synaptic weight between them is simply doubled. Unless stated otherwise, assemblies are

hence formed by additional connections rather than stronger synapses.

In the random network, we embed 10 non-overlapping assemblies with size M = 500 if not

stated otherwise. The groups of excitatory neurons are connected in a feedforward fashion,

and a neuron from one group projects to a neuron of the subsequent group with probability pff

(Fig 1B). Such a feedforward connectivity is reminiscent of a synfire chain. However, classical

synfire chains do not have recurrent connections (prc = 0, pff > 0), while here, neurons within

a group are recurrently connected even beyond the random background connectivity (prc > 0,

pff > 0). We will refer to such a sequence as an “assembly sequence”. By varying the connectiv-

ity parameters prc and pff, the network structure can be manipulated to obtain different net-

work types (Fig 1C). In the limiting case where feedforward connections are absent (prc > 0,

pff = 0) the network contains only largely disconnected Hebbian assemblies. In contrast, in the

absence of recurrent connections (prc = 0, pff > 0), the model is reduced to a synfire chain

embedded in a recurrent network. Structures with both recurrent and feedforward connec-

tions correspond to Hebbian assembly sequences.

To keep the network structure as simple as possible and to be able to focus on mechanisms

underlying replay, we use non-overlapping assemblies and we do not embed more than 10

groups. Nevertheless, additional simulations with overlapping assemblies and longer

sequences indicate that our approach is in line with previous results on memory capacity [15,

64, 101]. Advancing the theory of memory capacity is, however, beyond the scope of this

manuscript.
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Balancing the network

A naive implementation of the heterogeneous network as described above leads, in general, to

dynamics characterized by large population bursts of activity. To overcome this epileptiform

activity and ensure that neurons fire asynchronously and irregularly (AI network state), the

network should operate in a balanced regime. In the balanced state, large excitatory currents

are compensated by large inhibitory currents, as shown in vivo [102, 103] and in vitro [104]. In

this regime, fluctuations of the input lead to highly irregular firing [105, 106], a pattern

observed in the cortex [9, 107] as well as in the hippocampus during non-REM sleep [108,

109].

Several mechanisms were proposed to balance numerically simulated neural networks. One

method involves structurally modifying the network connectivity to ensure that neurons

receive balanced excitatory and inhibitory inputs [110, 111]. It was shown that a short-term

plasticity rule [112] in a fully connected network can also adjust the irregularity of neuronal

firing [113].

Here, we balance the network using the inhibitory-plasticity rule [25]. All inhibitory-to-

excitatory synapses are subject to a spike-timing-dependent plasticity (STDP) rule where near-

coincident pre- and postsynaptic firing potentates the inhibitory synapse while presynaptic

spikes alone cause depression. A similar STDP rule with a symmetric temporal window was

recently reported in the layer 5 of the auditory cortex [114].

To implement the plasticity rule in a synapse, we first assign a synaptic trace variable xi to

every neuron i such that xi is incremented with each spike of the neuron and decays with a

time constant τSTDP = 20 ms:

xi ! xi þ 1; if neuron i fires;

tSTDP
dxi
dt
¼ � xi; otherwise:

The synaptic conductance gEIij ðtÞ from inhibitory neuron j to excitatory neuron i is initialized

with value gI
0
¼ 0:4 nS and is updated at the times of pre/post-synaptic events:

gEIij ¼ gEIij þ Zðxi � aÞ; forapresynapticspikeinneuron j;

gEIij ¼ gEIij þ Zxj; forapostsynapticspikeinneuron i

where 0< η� 1 is the learning-rate parameter, and the bias α = 2ρ0τSTDP is determined by

the desired firing rate ρ0 of the excitatory postsynaptic neurons. In all simulations, ρ0 has been

set to 5 spikes/sec, which is at the upper bound of the wide range of rates that were reported in

the literature: e.g., 1–3 spikes/sec in [87]; 3–6 spikes/sec in [115]; 1–76 spikes/sec in [116];

0.43–3.60 spikes/sec in [117]; 1–11 spikes/sec in [118].

Existence of background connections and an implementation of the described inhibitory

STDP rule drives typically the network into a balanced AI state. The excitatory and the inhibi-

tory input currents balance each other and keep the membrane potential just below threshold

while random fluctuations drive the firing (Fig 2A and 2B). The specific conditions to be met

for a successful balance are discussed in the Results section. Similar effects could be achieved

also in the absence of random background connections when input with appropriate noise

fluctuations is applied to the neurons. We find this scenario, however, less realistic as neurons

would be largely disconnected.

In the AI network regime, any perturbation to the input of an assembly will lead to a tran-

sient perturbation in the firing rate of the neurons within it. In the case of strong recurrent

connections within the assembly, a small excitatory perturbation will lead to a stronger firing
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of both the excitatory as well as the inhibitory neurons. This amplification of input fluctuations

into larger activity fluctuations is, unlike the Hebbian amplification, fast and does not show

slowing of the activation dynamics for large connectivities. This phenomenon of transient pat-

tern completion is known as balanced amplification [28], where it is essential that each assem-

bly has excitatory and inhibitory neurons and strong recurrent connectivity. Another

advantage of the inhibitory subpopulations is the rapid negative feedback that can lead to

enhanced memory capacity of the network [119].

Simulations and data analysis

Each network simulation consists of 3 main phases:

1. Balancing the network. Initially, the population activity is characterized by massive pop-

ulation bursts with varying sizes (avalanches). During a first phase, the network (random net-

work with embedded phase sequence) is balanced for 50 seconds with decreasing learning rate

(0.005� η� 0.00001) for the plasticity on the inhibitory-to-excitatory synapses. During this

learning, the inhibitory plasticity shapes the activity, finally leading to AI firing of the excit-

atory population. Individual excitatory neurons then fire roughly with the target firing rate of

5 spikes/sec, while inhibitory neurons have higher firing rates of around 20 spikes/sec, which

is close to rates reported in the hippocampus [87, 117]. After 50 seconds simulation time, the

network is typically balanced.

2. Reliability and quality of replay. In a second phase, the plasticity is switched off to be

able to probe an unchanging network with external cue stimulations. All neurons from the

first group/assembly are simultaneously stimulated by an external input so that all neurons fire

once. The stimulation is mimicked by adding an excitatory conductance in Eq 3 (gmax = 3 nS)

that is sufficient to evoke a spike in each neuron. For large enough connectivities (prc and pff),

the generated pulse packet of activity propagates through the sequence of assemblies, resulting

in a replay. For too small connectivities, the activity does not propagate. For excessively high

connectivities, the transient response of one group results in a burst in the next group and

even larger responses in the subsequent groups, finally leading to epileptiform population

bursts of activity (Fig 3).

To quantify the propagation from group to group and to account for abnormal activity, we

introduce a quality measure of replay. The activity of a group is measured by calculating the

population firing rate of the underlying neurons smoothed with a Gaussian window of 2 ms

width. We extract peaks of the smoothed firing rate that exceed a threshold of 30 spikes/sec. A

group is considered to be activated at the time at which its population firing rate hits its maxi-

mum and is above the threshold rate. Activity propagation from one group to the next is con-

sidered to be successful if one group activates the next one within a delay between 2 and 20 ms.

A typical delay is about 5 ms, but in the case of extremely small pff and large prc the time of

propagation can take * 15 ms. Additional rules are imposed to account for exceeding activity

and punish replays that lead to run-away firing. First, if the activity of an assembly exceeds a

threshold of 180 spikes/sec (value is chosen manually for best discrimination), the group is

considered as bursting, and thus, the replay is considered as failed. Second, if the assembly

activity displays 2 super-threshold peaks that succeed each other within 30 ms, the replay is

unsuccessful. Third, a “dummy group” (of size M) from the background neurons is used as a

proxy for detecting activations of the whole network. In case that the dummy group is acti-

vated during an otherwise successful replay, the replay is failed. Thus, for each stimulation the

“quality of replay” has a value of 1 for successful and a value of 0 for unsuccessful replays. The

quality of replay for each set of parameters (Fig 3) is an average from multiple (≳ 5) stimula-

tions of 5 different realizations of each network.
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Additionally, we test the ability of the assembly sequence to complete a pattern by stimulat-

ing only a fraction of the neurons in the first group (Fig 4). Analogously to the full stimulation,

the quality of replay is measured.

3. Spontaneous activity. In the last phase of the simulations, no specific input is applied to

the assemblies. As during the first phase of the simulation, the network is driven solely by the

constant-current input Iconst = 200 pA applied to each neuron, and plasticity is switched off.

During this state, we quantify spontaneous replay (Fig 5). Whenever the last assembly is

activated and if this activation has propagated through at least three previous assemblies, we

consider this event as a spontaneous replay. Here, we apply the quality measure of replay,

where bursty replays are disregarded. Additionally, we quantify the dynamic state of the net-

work by the firing rate, the irregularity of firing, and the synchrony of a few selected groups

from the sequence. The irregularity is measured as the average coefficient of variation of inter-

spike intervals of the neurons within a group. As a measure of synchrony between 2 neurons,

we use the cross-correlation coefficient of their spike trains binned in 5-ms windows. The

group synchrony is the average synchrony between all pairs of neurons in a group.

Estimating response times of neurons and the network

How quickly do the neurons that receive a synchronous pulse packet react during a replay?

Following the arguments of Diesmann et al. [10], the response time is not determined by the

membrane time constant of the neuron, but rather by the time it takes the neurons to reach

threshold in response to the pulse packet. An analytical calculation can hence be obtained by

considering the membrane potential dynamics in Eq 2. Let us assume that a neuron is at some

initial voltage V0. How fast does the neuron reach the threshold voltage when an external excit-

atory conductance Ginj is applied to the membrane? We can express the membrane potential

V(t) explicitly:

V ¼ ðV0 � V�Þ exp � t
t� þ V�

where the “driving” voltage is

V� ¼
GleakV rest þ GEVE þ GIVI þ Iext þ GinjVE

Gleak þ GE þ GI þ Ginj

and the time constant is

t� ¼
Gleak

Gleak þ GE þ GI þ Ginj
tm :

Here, τm = C/Gleak = 20 ms is the leak time constant from Eq 2. The time that is needed for a

neuron with initial membrane potential V0 to reach the voltage threshold Vth is:

tAP ¼ t� log
V0 � V�

V th � V�

� �

:

Substituting with parameter values corresponding to the simulations (GE = 0.6 nS, GI = 5 nS,

Gleak = 10 nS, Ginj = 3 nS, V0 = −51 mV), we obtain tAP = 1.4 ms. Here, for Ginj we use a typical

value of the peak excitatory conductance during a replay.

We also measured the activation time of the assemblies during pulse propagation in the

simulated balanced network. A stimulation with step conductance Ginj applied to a group of

random neurons leads to a fast increase in firing rates (20%-to-80% rise time is 1 ms).
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In summary, in agreement with the literature [105, 106, 120], the response time of the mod-

eled network is indeed fast, i.e., faster than the membrane time constant τm = 20 ms and the

inter-spike interval (ISI * 12 ms when Ginj is injected).

Estimating conditions for successful replay

An analytical description of conditions for successful replay is not easy to obtain. The most

appropriate ansatz would be a generalization of the pulse-packet description of Goedeke &

Diesmann [121], which is unfortunately not trivial and beyond the scope of this paper. Instead,

we choose a phenomenological approach and portray the network dynamics during replay by

a linear dynamical system, which could be thought of as a linearization of a more accurate

model. This ansatz allows to estimate a lower bound for the connectivities required for a suc-

cessful replay.

The dynamics of an assembly i (Fig 1A and 1B) in the AI state is approximated by two dif-

ferential equations:

t
drEi
dt

¼ � rEi þ wrc rEi � kwrc rIi þ x
E
i ðtÞ

t
drIi
dt

¼ � rIi þ wrc rEi � kwrc rIi

ð4Þ

where rEi and rIi are the deviations of the population firing rates of the excitatory (E) and inhibi-

tory (I) populations from the spontaneous firing rates rE
0

and rI
0
, respectively. The parameter

wrc and the term −kwrc represent the respective strengths of the excitatory and the inhibitory

recurrent projections. The constant k describes the relative strength of the recurrent inhibition

vs. excitation; for a balanced network, we assume that inhibition balances or dominates excita-

tion, e.g., k� 1. The weight wrc is proportional to the average number Mprc of recurrent synap-

ses a neuron receives, and proportional to the synaptic strength gE. The function x
E
i describes

the external input to the assembly from the rest of the network. In this mean-field analysis, we

neglect the influence of the noise on the network dynamics. Activities rEi and rIi are assumed to

approach the steady state 0 with a time constant τ. Based on the discussion in the previous sub-

section, we assume this time constant to be much faster than the membrane time constant.

The excitatory assemblies are sequentially connected, and we denote the strength of the

feedforward projections as wff. The feedforward drive can be represented as an external input

to an assembly:

x
E
i ¼ wff r

E
i� 1
; for i > 1:

Taking into account the feedforward input to population i from the preceding excitatory popu-

lation i − 1, Eq 4 can be rewritten as

t
dri
dt
¼

� 1þ wrc � kwrc

wrc � 1 � kwrc

 !

ri þ
wff rEi� 1

0

 !

; for i > 1 ð5Þ

where ri ¼
rEi
rIi

 !

is the 2-dimensional vector of firing rates in group i.

Assuming that the time duration of a pulse packet in group i − 1 is much longer than the

population time constant τ in group i, we consider the solution of the stationary state

(t
dri
dt ¼ 0) as an adequate approximation. By setting the left-hand side of Eq 5 to zero, we can
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express the firing rate rEi as a function of rEi� 1
:

rEi ¼
1þ kwrc

1þ ðk � 1Þwrc

� �

wff r
E
i� 1
¼ k rEi� 1

; ð6Þ

where κ is the “effective feedforward connectivity”.

Interestingly, the recurrent connections effectively scale up the efficiency of the feedforward

connections and facilitate the propagation of activity. Assuming that (k − 1)wrc� 1, that is,

either small recurrent connectivity wrc or an approximately balanced state k� 1, we can linear-

ize in wrc:

k � wffð1þ wrcÞ : ð7Þ

For small κ, i.e. κ� 1, even large changes of the firing rate in group i − 1 do not alter the rate

in group i. For κ< 1, the pulse packet will steadily decrease while propagating from one group

to another as rEi < rEi� 1
. On the other hand, if κ = 1, the propagation of a pulse packet is

expected to be marginally stable. In the case of κ> 1, any fluctuation of firing rate in one

assembly will lead to a larger fluctuation in the following assembly.

To connect the analytical calculations to the numerical simulations, we again note that a

total connection strength is proportional to the number of inputs a neuron is receiving (e.g.,

the product of group size M and connection probability) and proportional to the synaptic

strength:

wrc ¼ cMprc g
E and wff ¼ cMpff g

E
ff ; ð8Þ

where M is the group size, and prc and pff are the recurrent and feedforward connectivities,

respectively. gE is the conductance of an excitatory recurrent synapse within a group, and gEff is

the conductance of feedforward synapses between groups. Unless stated otherwise, we assume

gEff ¼ gE. The parameter c is related to the slope of the neurons’ input-output transfer function,

but given the phenomenological nature of the theoretical treatment, an accurate ab initio cal-

culation of c is non-trivial. Instead, we use it as a fitting parameter. Using the critical value

κ(prc = 0.08, pff = 0.04) = 1 extracted from the simulation results (Fig 3), we find c = 0.25 nS−1.

This value of c is used in all further analytical estimations for the effective connectivity κ.

In summary, the lower bound for the connectivities for a successful replay can be described

as

prc ¼
1

cMgE
1

cMpffgEff
� 1

� �

;

which is represented as a black line in Figs 3 and 5. For Figs 6 and 7, the black line is calculated

analogously using the same constant c = 0.25 nS−1.

Calculating the slope c

In the previous section, the constant c was manually fitted to a value of 0.25 nS−1 to match ana-

lytical and numerical results. Here we express c analytically by utilizing a non-linear neuronal

model and by using the parameter values from the simulations.

The resting firing rate ρ of a neuronal population that is in an asynchronous irregular (AI)

regime can be expressed as a function of the mean μ and the standard deviation σ of the mem-

brane potential distribution [47, 122–124]:

m ¼
X

k

Jkrk
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s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
J2
k rk

q

; ð9Þ

where the sums over k run over the different synaptic contributions, ρk is the corresponding

presynaptic firing rate, and Jk and J2
k are the integrals over time of the PSP and the square of

the PSP from input k, respectively. Here PSPs are estimated for the conductance-based inte-

grate-and-fire neuron from Eq 2 for voltage values near the firing threshold Vth,

Jk ¼
Z

t
PSPðtÞdt ¼ tsynðV syn � V thÞ

gsyn
k

Gleak

J2

k ¼

Z

t
PSP2ðtÞdt ¼

tsyngsyn
k ðV syn � V thÞð Þ

2

2ðtþ tsynÞ Gleakð Þ
2

;

where τ is the membrane time constant, τsyn is the synaptic time constant, Vsyn is the synaptic

reversal potential, and gsyn
k is the synaptic conductance of connection k. Connections can be

either excitatory or inhibitory.

Here we consider a network with random connections only, and look at a subpopulation of

size M, where M� NE. For a more convenient analytical treatment, the recurrent connections

within the group are neglected. This assumption does not affect the estimation of the transfer

function slope, as c is independent on the type of inputs. The firing rate-fluctuations of the

neuronal group are calculated as in Eq 6:

r ¼ cMgErext: ð10Þ

The membrane potential of an excitatory neuron from this subpopulation has several con-

tributions: NE prand excitatory inputs with firing rate ρ0 and efficacy JE; inhibitory inputs due to

the background connectivity: NIprandJEIrI
0
; injected constant current: Iext/Gleak; and input from

an external group: MextJEextrext. In summary, we find:

m ¼ NEprandJ
Er0 þ NIprandJ

EIrI
0
þMextJ

E
extrext þ

Iext

Gleak
:

The standard deviation of the membrane potential is then, accordingly:

s2 ¼ NEprandJ
E2

r0 þ NIprandJ
EI2 rI

0
þMextJ

E2

extrext:

In the case of uncorrelated inputs, the following approximation can be used for the firing rate

estimation [47, 122–124]:

r ¼ trp þ t
ffiffiffi
p
p
Z Vth � m

s

Vrest � m
s

eu2

1þ erfðuÞð Þdu

0

@

1

A

� 1

; ð11Þ

where τrp is the refractory period, and Vth and Vrest are membrane threshold and reset poten-

tial, respectively (see also section “Neural Model”).

To find the constant c used in the linear model, we estimate the firing rate ρ from Eq 11 and

substitute in Eq 10, assuming a linear relation between firing-rate fluctuations:

rðrextÞ � r0 ¼ cMextg
Eðrext � 0Þ ; ð12Þ
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and find:

c ¼
rðrextÞ � r0

cMextgErext
: ð13Þ

Before calculating the constant c according to the method presented above, a preliminary

step needs to be taken. As we set the firing rate of the excitatory population in the network to a

fixed value ρ0 = 5 spikes/sec, there are two variables remaining unknown: the firing rate of the

inhibitory population rI
0

and the inhibitory-to-excitatory synaptic conductance gEIrand that

changes due to synaptic plasticity. Therefore, we first solve a system of 2 equations for the fir-

ing rates of the excitatory and the inhibitory populations expressed as in Eq 11. Once the

unknowns rI
0

and gEIrand are calculated, we can estimate ρ(ρext) and c according to the method

presented above. We note that the analytically calculated values of gEIrand and rI
0

match the mea-

sured values in the simulations.

The value we get after applying the above mentioned method for estimation of c is

0.13 nS−1. The fit corresponding to the estimate of c is shown in Fig 3 with a white dashed line.

It is worth noting that a slightly more involved calculation relying on the estimate c ¼ 1

Mg
@r

@rext

gives a similar result, concretely c = 0.11 nS−1.

Although the analytically calculated value c is a factor of 2 smaller than the manual fit

c = 0.25 nS−1, it is in the same order of magnitude and not too far from describing the results

for critical connectivity from the simulations.

The method applied above finds the slope of the transfer function for stationary firing rates.

However, the spiking network replay is a fast and brief event, where a transient input in one

assembly evokes a transient change in the output firing rate. The value discrepancy suggests

that the transfer function of transients is even steeper than at the resting AI state.

Scaling the network size

So far we have been dealing with networks of fixed size NE = 20,000 neurons. How does the

network size affect the embedding of assembly sequences? Is it possible to change the network

size but keep the assembly size fixed?

Scaling the network size while keeping the connectivity prand constant leads to a change in

the number of inputs that a neuron receives, and therefore, affects the membrane potential dis-

tributions. To compare replays in networks with different sizes NE but identical M, we need to

assure that the signal-to-noise ratio is kept constant, and the easiest way is to keep both the sig-

nal and the noise constant, which requires to change connectivities prc and pff and

conductances.

While scaling the network from the default network size NE = 20,000 to a size ~NE ¼ gNE,

we see that the noise σ scales as� g
ffiffiffiffiffiffiffiffi
gNE
p

(Eq 9). To keep the input current fluctuations con-

stant as we change ~NE, all synaptic conductances are rescaled with a factor of 1=
ffiffiffi
g
p

: ~g ¼ g= ffiffiffi
g
p

[105]. However, such a synaptic scaling leads to a change in the coupling between assemblies

of fixed size M, which is proportional to the conductance. Therefore, the connectivities prc and

pff are scaled with
ffiffiffi
g
p

to compensate the conductance decrease, leading to a constant coupling

(cM~prc~gE ¼ cMprcgE and cM~pff ~gE ¼ cMpffgE), and hence, a constant signal-to-noise ratio.

What is the impact of such a scaling on the network capacity to store sequences? The num-

ber of connections needed to store a sequence is changed by a factor
ffiffiffi
g
p

as we change prc and

pff. However, the number of background connections to each neuron is scaled with γ, resulting

in sparser memory representations in larger networks. More precisely, for a neuron participat-

ing in the sequence, the ratio of excitatory memory connections to the total number of
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excitatory connections is

u ¼
ðprc þ pffÞ

ffiffiffi
g
p M

ðprc þ pffÞ
ffiffiffi
g
p M þ prandgNE

:

Therefore, the proportion of connections needed for an association is scaled as 1=
ffiffiffi
g
p

for

~NE � M. To give a few numbers, u is equal to 0.23 for ~NE ¼ 20; 000, and u = 0.09 for

~NE ¼ 180; 000. Other parameter values are: M = 500, prc = pff = 0.06, prand = 0.01.

The chosen scaling rule is applicable for networks of simpler units such as binary neurons

or current-based integrate-and-fire neurons [106, 123]. This scaling is not valid in a strict

mathematical framework for very large networks ( ~NE !1) consisting of conductance-based

integrate-and-fire neurons (see [110] for a detailed discussion). Simulations results, however,

reveal that replays are possible in network sizes up to 2 � 105 neurons.
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