IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 2, 2020, accepted September 24, 2020, date of publication October 7, 2020, date of current version October 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3029319

MobRec — Mobile Platform for Decentralized

Recommender Systems

FELIX BEIERLE ", (Member, IEEE), AND SIMONE EGGER

Service-Centric Networking, Telekom Innovation Laboratories, Technische Universitit Berlin, 10587 Berlin, Germany

Corresponding author: Felix Beierle (beierle @tu-berlin.de)

‘We acknowledge support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.

ABSTRACT Recommender systems recommend new movies, music, restaurants, etc. Typically, service
providers organize such systems in a centralized way, holding all the data. Biases in the recommender
systems are not transparent to the user and lock-in effects might make it inconvenient for the user to switch
providers. In this paper, we present the concept, design, and implementation of MobRec, a mobile platform
that decentralizes the data collection, data storage, and recommendation process. MobRec’s architecture
does not need any backend and solely consists of the users’ smartphones, which already contain the users’
preferences and ratings. Being in proximity in public places or public transportation, data is exchanged in a
device-to-device manner, building local databases that can recommend new items. One of biggest challenges
of such a system is the implementation of unobtrusive device-to-device data exchange on off-the-shelf
Android devices and iPhones. MobRec facilitates such data exchange, building on Google Nearby Messages
with Bluetooth Low Energy. We achieve the successful exchange of data within 3 to 4 minutes, making it
suitable for the described scenario. We demonstrate the feasibility of decentralized recommender systems
and provide blueprints for the development of seamless multi-platform device-to-device communication.

INDEX TERMS Device-to-device communication, mobile ad hoc networks, mobile applications, pervasive

computing, recommender systems, social networking services, ubiquitous computing.

I. INTRODUCTION

Recommender systems are ubiquitously available. They rec-
ommend items from different domains, for example, media to
consume (e.g., Spotify, Netflix) or points of interests (POIs)
to visit (e.g., Yelp, Google Maps). However, existing recom-
mender systems have several drawbacks. Existing providers
typically operate in a centralized manner: the service provider
holds all the data and recommends items based on algorithms
that are not visible to the user. This can introduce certain
limitations and biases. Limitations often are that only items
will be recommended that are available with the service
provider, e.g., Netflix will only recommend items available in
their catalog. Possible biases could be that the recommender
algorithms favor items that create more profit for the service
provider. Typically, the mentioned service providers are inter-
ested in retaining their user base and create lock-in effects.
For example, movies bought on iTunes cannot be transferred

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to another service provider, effectively locking the user and
his/her collection in.

The infrastructure that could be a solution for the lim-
itations of centralized recommender systems is already in
the palms of its users. The smartphone can store lots of
information about its user and his/her interests, e.g., regard-
ing preferred restaurants, music, or movies. Equipped with
capabilities for device-to-device communication, users can
exchange data with each other. When considering recom-
mender systems based on content-based filtering or collabo-
rative filtering, data about similar items and similar users are
needed. Data about the properties of items can be retrieved
through public APIs (e.g., Google Places, Spotify, The Movie
DB (TMDB)). Finding similar users might be simple with
smartphones: spending time at the same location might imply
similarity — at least to a certain degree. Additionally, from our
previous research, other methods of determining similarity
between users based on smartphone data are available [1],
[2]. Thus, exchanging data between smartphones in proximity
in a device-to-device fashion allows to create local databases

185311

https://orcid.org/0000-0003-2702-9893
https://orcid.org/0000-0002-7454-7135
https://orcid.org/0000-0003-1869-2757

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

that allow to filter for similar users. This data can be used
for on-device recommender systems that are not limited to a
single external service provider.

Combining and expanding approaches from device-to-
device computing (e.g., [3], [4]) and decentralized recom-
mender systems (e.g., [5]-[7]), in this paper, we propose
a modular architecture for recommender systems for virtu-
ally any domain, building on the existing infrastructure of
smartphones. Our architecture consists of collaborative data
collection paired with data exchange via device-to-device
communication and local recommender systems running on
each device, supported by third-party service providers where
appropriate. There are some challenges to overcome when
developing such a platform. Some data is already readily
available on smartphones, for example the most frequently
visited locations. Other user preferences/ratings that cannot
be assessed automatically might have to be entered manu-
ally or retrieved from external service providers, e.g., music
listened to, or favorite movies. Some short-distance wireless
technologies, like NFC, Bluetooth, or WiFi Direct, are avail-
able on most modern smartphones, and software libraries
exist for device-to-device communication. However, from
an application layer perspective, utilizing such libraries for
seamless data exchange between smartphones remains a chal-
lenge for multiplatform apps.

In this paper, we propose an mobile platform for decentral-
ized recommender systems. We refer to the platform as well
as our prototypical implementation as MobRec.

The main contributions of this paper are:

« An extensive overview of existing device-to-device con-
nection approaches, including the benefits and draw-
backs associated with them.

o Developing an approach for collecting data and
exchanging data in a device-to-device fashion for multi-
platform apps (Android and iOS).

« Proposing a general modular architecture for a service-
provider-independent, backend-less mobile platform for
recommender systems.

o A prototypical implementation of a minimum viable
product (MVP) showcasing the feasibility of our com-
plete MobRec architecture. !

« An extensive evaluation of the device-to-device connec-
tion module.

We sketched the general idea of MobRec in our work-in-
progress paper [8]. This paper builds on the results of [8]
and extends it with the details regarding device-to-device
communication, and the implementation and evaluation
of MobRec.

The remainder of this paper is structured as follows.
In Section II, we describe the requirements of MobRec.
In Section III, we give an overview of related research
areas. Section IV gives a detailed overview about the
state-of-the-art in device-to-device communications research

IThe code is publicly available at https://github.com/TU-Berlin-
SNET/MobRec.

185312

and technology. A prototypical implementation of a mini-
mum viable product showcases the feasibility of our com-
plete architecture. Details about the design and implemen-
tation of MobRec are given in Section V and Section VI
In Section VII, we evaluate MobRec, focusing on device-to-
device capabilities, before concluding in Section VIII.

Il. REQUIREMENTS

The general concept is that smartphone users exchange data
relevant for recommender systems when they pass each other.
Such a system especially works in urban areas. Today, already
more than half of the world’s population lives in urban areas
and the trend is that this percentage is increasing.” There are
several things to consider when designing MobRec. In the fol-
lowing, we describe the technical (functional) requirements
of our systems.

In order for MobRec to work, it should be deployable
on off-the-shelf smartphones. Android (74.3%) and i0S
(24.76%) have a combined market share of almost 100%
of the global mobile operating system market.> The first
requirement (R1) is to build a multiplatform app for both
Android and iOS.

At the core of MobRec is the idea of an app running in the
background, exchanging data with other users. We derive the
next two requirements based on this. First, the exchange of
data when two smartphones are in proximity must not require
explicit user interaction in order to establish a connection
(R2). If that were the case, background data exchange would
no longer be possible and would require too much user effort.
The next aspect is related but can be defined distinctly: the
transfer of data has to be done in the background (R3). That
is, the system has to be capable of transferring data from and
to nearby devices while our app is running in the background.
R2 and R3 can be described as the broadcasting of data,
i.e., having a 1 : n relationship between sender and receiver
without explicit connection establishment. R2 describes the
broadcasting requirement from a user-interaction perspective,
whereas R3 describes it from a technical perspective.

Considering that MobRec is a mobile platform for recom-
mender systems, the domain of items that should be possible
to be recommended is not restricted. As Section IV will show,
most device-to-device approaches that support broadcasting
of messages only allow for very small payloads. Supporting
a variety of different domains, in order for it to be feasible to
recommend items from each supported domain, each device
potentially needs to broadcast larger amounts of data (R4).
As we will design a workaround for R4 in Section V-B, we
do not quantify the exact size requirements here.

To summarize, the four requirements for our system are:

multi-platform
R1 (Android and iOS)

2https /lwww.un.org/development/desa/en/news/population/2018-
revision-of-world-urbanization-prospects.html, accessed 2020-07-20

3https://gs.statcounter.com/os—market—share/mobile/worldwide,
accessed 2020-02-28

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

R2 no explicit connection establishment (from a user per-
spective)

R3 transferring data while running in the background

R4 transferring larger amounts of data

Especially the aspect of utilizing a background service
that uses a wireless interface to broadcast and scan for mes-
sages, makes battery drain a concern that comes to mind.
We focus on R1-R4 in this work. Once we designed and
implemented an app with technologies that support these
requirements, we propose optimizations for battery consump-
tion in Section VII-D.

Ill. RELATED WORK

In this section, we review related work from multiple related
fields: decentralized recommender systems, ubiquitous social
networking, and mobile sensing.

The terms distributed and decentralized are often used
interchangeably. We want to make a distinction though.
Centralization refers to the governance of a system. In a
centralized system, one service provider holds control over
the whole system, and stores and processes all the data.
Distributed, on the other hand, refers to computation and
data storage. For example, Facebook is a centralized Social
Networking Service provider that can utilize computing and
data storage in a distributed fashion. Email is an example
for a decentralized service: server providers interact via stan-
dardized interfaces and the user can choose his/her service
provider or host his/her own email server.

Among the most frequent concerns with centralized ser-
vices is the potential misuse of data and loss of user privacy.
A single service provider holds all the data and can use it
beyond the level to which users intended to share it with
the service provider [9]-[11]. A second concern are lock-in
effects. Centralized service providers like iTunes or Spotify
typically strive to retain their users and make it difficult to
switch to other providers. Transferal of bought movies or
created playlists is not easily possible — or not at all.

Decentralized recommender systems typically use peer-to-
peer network overlays [5], [6], [12]. Gossip protocols are
often used to find similar peers to connect to. Communi-
ties of peers with similar interests exchange item ratings
among each other. In contrast to such peer-to-peer scenarios,
the ad hoc broadcasting approach in MobRec only establishes
short-term connections between devices to exchange data.
Especially [5] and [7] follow similar approaches compared to
our proposed system. In [5], decentrally stored data from the
web is used for a recommender system running on the user’s
personal computer. Since that paper’s publication (2005), the
development of mobile devices enable mobile and ubiquitous
scenarios depicted in this paper. In [7], the authors propose
that smartphones exchange data in a device-to-device fashion
and calculate their own recommendations via collaborative
filtering. The focus of that paper is on the recommender
algorithm that is evaluated with a music data set. For device-
to-device communication, WiFi Direct is proposed.

VOLUME 8, 2020

Other related fields are those of ubiquitous recommender
systems and context-aware recommender systems (CARS).
They consider items in proximity or consider the user’s cur-
rent context while recommending items, respectively [13].
In contrast to these approaches, our proposed system is uni-
versal in the sense that any type of item can be recommended,
independent of the item’s physical proximity or the user’s
context.

In a broader sense, our proposed system is related to the
field of ubiquitous social networking, sometimes referred
to as proximity-based (mobile) social networking. Overall,
a variety of scenarios is addressed in this field. The most
common one is the incentivization of social interaction, i.e.,
the recommendation of physically proximate users. On a
technical level, this is often achieved by device-to-device
transfer of data, meaning two devices, typically smartphones,
connect wirelessly in an ad hoc manner without going
through infrastructure like routers or hotspots.

In SMILE, the authors utilize real-life encounters to
exchange randomly created symmetric keys in a device-to-
device manner [14]. Only users who actually met can then
read encrypted messages stored on a server. E-Smalltalker
aims at incentivizing real-life smalltalk by exchanging inter-
ests profiles between users in proximity [15]. In our own pre-
vious work, we proposed using all available smartphone data
and automatically comparing it in order to determine simi-
larity in terms of interest and personality [1], [16]. In [17],
Yang and Hwang proposed a mobile recommender system
for point-of-interest (POI) recommendations that utilizes data
exchanged in a device-to-device manner. Talk2Me, presented
in [18], is a prototype that combines augmented reality with
social networking. Basic profile information is sent to nearby
devices via device-to-device communication. Along with the
profile, a so-called face-signature is sent, allowing the receiv-
ing device to use this signature to recognize the sending user
when scanning faces with the camera in smartphones or smart
glasses.

One of the core ideas of our proposed system is that a lot of
the data indicating the user’s taste is readily available on the
smartphone. The concept behind this is called mobile sensing,
measuring data with the smartphone’s sensors and storing the
measurement. In previous work, we presented an Android
app for smarphone data tracking [19] and analyzed the dif-
ferent data categories that are available [20]. Additionally,
there are frameworks avaialble for mobile sensing for both
Android and iOS, for example, Sensus [21], LiveLabs [22], or
AWARE [23].

IV. STATE-OF-THE-ART IN DEVICE-TO-DEVICE
COMMUNICATION

In this section, we give an extensive overview of related work
in the field of device-to-device communications, structured
by technology used. This includes Bluetooth, WiFi, and dif-
ferent frameworks. The technical details given in this section
might help researchers and developers in choosing appropri-
ate device-to-device technologies for other use cases with

185313

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

different requirements as well. In the summary, we give
details which technologies fit our requirements given
in Section II.

Note that we focus on the technologies from an application
layer perspective. There is a lot more related work regarding
the lower layers of the OSI model. Additionally, there is
lot more related work focusing on IoT (Internet of Things)
scenarios with sensors instead of smartphones.

A. BLUETOOTH

In several related works published until 2011, data is
exchanged using Classic Bluetooth and a direct device-to-
device connection [24]-[27]. In SpiderWeb, each mobile
device functions as server or client [26]. While being in the
server role, the device publishes a service that clients can
search for and connect to. On current devices and mobile OSs,
Classic Bluetooth is still available. However, Apple restricts
connections to other iOS devices, which makes device-to-
device communication via Classic Bluetooth impossible for
multi-platform applications (R1). The second requirement
that Classic Bluetooth cannot fulfill, is R2. For Classic Blue-
tooth data transfer, an explicit connection has to be estab-
lished, which typically requires user interaction.

There are several papers that propose solutions that
avoid having to establish explicit connections between
devices [28]-[32]. E-Shadow uses WiFi and Bluetooth with-
out establishing explicit connections [28]. This is done by
utilizing the WiFi SSID, the Bluetooth device name, and
the Bluetooth Service Discovery Protocol (SDP) to broad-
cast data. The three different technologies are used to cover
different physical ranges. The numbers given in [28] are as
follows. For WiFi SSID, they indicate a range of 50 m and
a size of 32 bytes. For Bluetooth device names, they state
a range of 20 m and a size of 2,000 bytes. For Bluetooth
SDP, they state a range of 10 m and a size of 1,000 bytes.
Other related papers also suggest exploiting the Bluetooth
device name [30] or Bluetooth SDP [14], [29], [33]. While
the proposed Bluetooth-related solutions — device name and
SDP — circumvent having to establish a connection, they have
the drawback of being related to Classic Bluetooth. Thus,
they do not benefit from the energy efficiency introduced
with Bluetooth Low Energy (BLE). Furthermore, Apple’s
restrictions regarding the connection of Bluetooth devices in
iOS within the MFi (Made for iPhone/iPod/iPad) program*
could make it impossible to utilize these approaches.

In 2010, BLE was introduced in Version 4.0 of the Blue-
tooth Core Specification.> Many of the features of Classic
Bluetooth are inherited while a low latency and very low
energy consumption is achieved [34]. Most current smart-
phones support this standard.

Two different modes are available in BLE: undirected
advertising/scanning (AD/SC) mode and central/peripheral

4https://developer.apple.com/programs/mfi/, accessed 2020-07-20
5https://www.bluetooth.com/specifications/archived—specifications/,
accessed 2020-07-20

185314

connection (C/P) mode [34]. In AD/SC mode, small payloads
can be broadcast without the need of an established connec-
tion. C/P mode allows larger payloads but there has to be
an explicit connection between devices. To be more specific:
devices in peripheral mode can advertise their presence while
central nodes can connect to those nodes [34]. BLE is often
used in IoT scenarios with sensors. Having multiple sensors
in peripheral mode allows a central node to periodically
connect to the sensors. Peripheral nodes cannot communicate
with other peripheral nodes.

The authors of [34] present a framework called BlueNet
for IoT scenarios that allows the switching of roles in BLE.
Sikora et al. use AD/SC mode for data exchange between two
smartphones [35]. They report about a range of about 40 m
and a size of 37 bytes. The authors report that, at least for
Android, the device switches automatically between adver-
tising and scanning mode, and the software developer can
influence the delay between switches but not define it in an
exact manner.

B. WiFi

WiFi, IEEE 802.11 standard, has two modes: infrastructure
and ad hoc mode. Infrastructure mode is the common mode
of devices connecting to access points, whereas ad hoc mode
allows for communication between devices directly.

The infrastructure mode is specifically not device-to-
device communication. However, by creating a WiFi access
point and letting other devices join the created network, effec-
tively, device-to-device communication can be implemented
in this mode. With ShAir, a middleware with this approach is
presented in [36]. Furthermore, popular file sharing applica-
tions use this approach, for example the app Xender.® Accord-
ing to the FAQs on the app’s website, file sharing is done by
being in the same WiFi network or by creating access points
on the smartphone. SHAREit’ works the same way. The dis-
advantage of this approach is that running in the background
is not possible without disrupting the user’s experience: while
a software based on this approach is active, the user probably
is not able to be connected to his/her usual WiFi network. This
violates R3 (transferring data in the background).

Some papers suggest using the WiFi SSID for broadcasting
small amounts of data [28], [32]. However, iOS does not
allow changing the WiFi SSID programmatically. Further-
more, if the SSID is bound to an opened access point on
the device, this typically means that the device cannot be
connected to another WiFi network, which again violates R3.

The main issue with WiFi ad hoc stems from the fact that
it never was widely deployed in the market [37]. In [38],
the authors use the WiFi ad hoc mode on an Android device.
This mode is not available by default, an extension had to be
compiled into the Linux kernel. There is still a lack of support
of WiFi ad hoc since the publication of that paper (2016),
which shows that only a very limited set of Android devices

f’https://www.xendencom/, accessed 2020-07-20
7https://Www.ushareit.comf, accessed 2020-07-20

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

would be able to run such an application. Furthermore, WiFi
ad hoc mode is not supported on iOS [32].

The WiFi Alliance developed another WiFi mode for
device-to-device communication, WiFi Direct, which is sup-
ported on Android devices with version 4.0 and higher [39].8
There are several related papers dealing with WiFi Direct for
device-to-device communication [18], [37], [40]-[43]. While
the Talk2Me prototype was developed utilizing WiFi Direct,
Shu et al. describe how it is not mature enough and wasn’t
used for the evaluation [18]. Instead they used UDP over WiFi
with devices connected to the same access point. In WiFi
Direct, every connection needs to be confirmed manually,
workarounds might be possible though. By default, however,
this violates R2 (no explicit connection establishment). Fur-
thermore, i0S does not support WiFi direct, violating R1
(multi-platform app). Apple instead offers its own device-to-
device framework that is only available for iOS devices.

WiFi Aware, sometimes called NAN (Neighbor Aware-
ness Networking) is another approach by the WiFi Alliance
for device-to-device communication. Android implements its
functionality with version 8. The developer websites indicate
that its functionality is dependent on the actual WiFi hardware
and firmware.” Although some websites report that WiFi
Aware is based on Apple’s AWDL (Apple Wireless Direct
Link) technology, Apple does not seem to support WiFi
Aware. According to the website of the WiFi Alliance, there
are currently less than 50 smartphones specifically certified
for WiFi Aware.!? Thus, we regard this technology as not
widespread enough to be considered for our purposes.

WLAN-Opp was developed based on IEEE 802.11 and
tethering between smartphones [44]. It is supposed to serve
as an alternative for WiFi ad hoc and WiFi Direct given their
shortcomings and limited availability. The implementation of
WLAN-Opp is for Android only and not maintained.'!

C. FRAMEWORKS

The open source community, as well as some companies have
developed frameworks aiming at providing abstractions for
device-to-device communication. Google and Apple as the
major mobile OS providers also provide their own solutions.
In this section, we will give an overview and highlight key
characteristics.

AllJoyn is a software framework that allows devices to
communicate with other devices in proximity.'? There are a
few project building on top of AllJoyn [45]-[47]. As the latest
release is from 2017, we assume the project is not actively
maintained anymore.

8WiFi Direct has initially been called WiFi Peer-to-Peer.

9https://developer. android.com/guide/topics/connectivity/wifi-aware,
accessed 2020-07-20

1ohttps JIwww.wi-fi.org/product-finder-results?sort_by=certified&
sort_order=desc&certifications=56, accessed 2020-07-20

!]https://github‘com/saschat/W LAN-Opp, accessed 2020-07-20

12https ://github.com/alljoyn/core-alljoyn/releases,
accessed 2020-07-20

VOLUME 8, 2020

Thali is an open source project with the goal of enabling
device-to-device computing. The code is not actively
maintained'? and only exists as a Cordova'* plugin. The
developers specifically highlight the issue of connecting
Android and iOS in a device-to-device manner, stating they
only found a workaround.! It consists of using BLE for
finding other devices and then manually joining a WiFi access
point opened on another device. This procedure violates R2 as
manual user interaction is required.

Some companies offer frameworks for device-to-device
communication. Ueoaa AG’s p2pkit'® is a multi-platform
framework for seamless device-to-device computing. How-
ever, the code does not seem actively maintained.!” Open-
Garden’s FireChat app'® for offline messaging via message
exchange in a device-to-device manner gained some atten-
tion during times of government censorship and unavailabil-
ity of Internet connections.'® OpenGarden’s Meshkit SDK
though, mentioned, for example, in [48], cannot be found
online and is not part of the company’s GitHub repository.’
Bridgefy?! follows the same goal of offline device-to-device
communication. Their free plan allows for 30 monthly offline
users.?? Broadcasting, i.e., the connectionless sending of
messages to devices in proximity, only works in the mesh
mode of the framework and the maximum message size then
is 2048 bytes.>

There were and are some products and apps available with
device-to-device functionalities. Hand-held gaming devices
from Nintendo and Sony were offering data exchange with
nearby players in proximity.* This is a feature specific to
each gaming system and does not work across devices from
Nintendo and Sony.

Both Apple and Google provide frameworks that enable
developers to build apps that are able to communicate with
nearby devices. Apple’s framework is called MultipeerCon-
nectivity>> and uses different technologies like WiFi and
Bluetooth for communication and is only supported by
iOS devices. Google’s Nearby framework?® uses technolo-
gies such as Bluetooth, WiFi, and audio and consists of

13https:// github.com/thaliproject/Thali_CordovaPlugin, accessed 2020-
07-20

14 A framework for multi-platform mobile application development, see
https://cordova.apache.org/ (accessed 2020-07-20).

15http://thaliproject.org/Android—and—iOS—interop/, accessed 2020-07-20

6http://p2pkit.io/, accessed 2020-07-20

”https://github.com/U epaa-AG, accessed 2020-07-20

18https://www.opengarden.com/firechatj, accessed 2020-07-20

l9https://en.Wikipedia.org/wiki/FireChat, accessed 2020-07-20

20https://github.com/opengarden, accessed 2020-07-20

2https://www.bridgefy.me/, accessed 2020-07-20

22https://www.bridgefy.me/pricing.html, accessed 2020-07-20

3 https://github.com/bridgefy/bridgefy-ios-
developer/blob/master/README.md, accessed 2020-07-20

24https://www.nintendo.com/?)ds/bui1t—in—softw.alre/streetpass/how—it—
works and http://us.playstation.com/psvita/apps/psvita-app-near.html, both
accessed 2020-04-10

25 https://developer.apple.com/documentation/multipeerconnectivity,
accessed 2020-07-20

26https://developers. google.com/nearby/, accessed 2020-07-20

185315

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

two different APIs: Nearby Connections and Nearby Mes-
sages. Nearby Connections allows direct communication
with other devices in proximity without the need for an
Internet connection. It is only available for Android. Nearby
Messages requires an Internet connection and only allows
the exchange of small payloads but it is available for both
Android and 10S. Google describes that they utilize “a com-
bination of Bluetooth, Bluetooth Low Energy, Wi-Fi and
near-ultrasonic audio”.?’ Using these technologies, tokens
are exchanged between devices. After receiving a common
token, Google’s servers distribute the payload to the receiving
device. Although the messages are relayed through Google’s
servers, the documentation emphasizes that ‘“Nearby Mes-
sages is unauthenticated and does not require a Google
Account”.”® The maximum payload size is 100 kibibyte,
i.e., 102400 bytes.

D. SUMMARY
Table 1 gives an overview of the device-to-device
communication approaches that we disregard for our pro-
posed system.’

Because of Apple’s mentioned restrictions regarding certi-
fications for Bluetooth devices, the three approaches related
to Classic Bluetooth are not readily available on iOS: Classic
Bluetooth, Bluetooth Device Name, Bluetooth SDP. WiFi ad
hoc, WiFi Direct, WiFi Opp, WiFi Aware, and Google Nearby
Connections are not available on/for iOS devices. Apple Peer
Connectivity is not available on Android devices.

Regarding R2, exchanging data without manual user inter-
action, we observed that iOS only allows the connection to
new WiFi access points after manual user interaction. This
leads us to disregard WiFi infrastructure mode and Thali
which uses this workaround for device-to-device commu-
nication. Changing the WiFi SSID is not programmatically
possible on i0S, which violates R2 as well. BLE C/P needs
the explicit connection between devices, so it violates R2 as
well.

We note that p2pkit violates R3, the transfer of data in the
background. It does not enable the exchange of data between
two iOS devices that are not actively used.’® The OpenGarden
Meshkit is not to be found and thus we exclude it. Both
AllJoyn’s and p2pkit’s code does not seem to be maintained,
the latest releases of both are three years old at the time of
writing.

Implementing mutliple device-to-device approaches in one
app would likely result in interferences at the wireless
interfaces or excessive battery drain. Both Apple Multipeer
Connectivity and Google Nearby utilize BLE, for example.

z https://developers.google.com/nearby/messages/overview, accessed
2020-07-20
2Shttps ://developers.google.com/nearby/messages/overview, accessed

2020-07-20

29Additionally, we disregard the solutions by Nintendo and Sony because
they are proprietary solutions for their respective gaming devices and are not
available for smartphones.

30http://p2pkit.io/developer/support/faq/, accessed 2020-07-20

185316

TABLE 1. Excluded approaches for device-to-device communication.

Reason Technology Comment
R1 Classic Bluetooth no iOS support
RI Bluetooth Device noiOS support
Name
RI Bluetooth Service noiOSsupport
Discovery Protocol
(SDP)
RI WiFiadhoc noiOS support
Rl WiFi Direct noiOS support
Rl WiFi Aware noiOS support
RI Wik Opp noiOS support
RI Google ~ Nearby noiOSsupport
Connections
Rl Apple Multipeer no Android support
Connectivity
R2 WiFi infrastructure no automatic connection on
i0S devices
R2 Wik SSID not programmatically
changeable on i0S
R2 Thai no automatic connection on
i0S devices
R2 BLEC/P requires explicit connection
establishment
R3 p2pkit no background data exchange

support for iOS to iOS; and
code not maintained

other OpenGarden
Meshkit

other AllJoyn code not maintained

Using both technologies and trying to combine their capa-
bilities this way would likely not work well because the
BLE interface could most likely just be used by one of the
frameworks at each time.

This leaves three options that fulfill R1, R2, and R3: BLE
SC/AD, Bridgefy, and Google Nearby Messages. In the next
section, we will design our application based on the results of
this section.

V. DESIGN OF MobRec

In Fig. 1, we illustrate the proposed general modular archi-
tecture of MobRec. The three main components of the sys-
tem are Data Collection, Data Exchange, and Recommender
System. Data Collection is responsible for getting data about
the user. Data Exchange is responsible for getting data from
other users. The Recommender System utilizes all available
data for recommending items to the user. The mobile OS
provides components for sensors (for example for tracking
the user’s location for inferring his/her favorite POIs) and
wireless interfaces (for exchanging data).

External service providers might be needed (or be use-
ful) in order to retrieve metadata about items, utilize exist-
ing systems, or offload data or computational tasks. Fig. 1
shows dashed lines for optional connections to third party
service providers. Data Collection might use this to retrieve
data about the user or to enrich already available data,
e.g., find out the genre of the songs the user listened to.

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

Mobile Component)
Application \

i Data Collection

I Recommender System i Data Exchange

Mobile 0S| s

N

I
SV &
ISensor APls] IWireIess Interfaces |

IApp Data |

%

7
/

iThird-Party Service Providers I Other Devices

FIGURE 1. Architecture components of MobRec.

The Recommender System can optionally be relayed to an
external service provider.

The system should be developed in a modular way in
order to be able to exchange components easily. Consider
the multitude of device-to-device approaches. Technological
advances or the development of new frameworks could offer
shorter connection times, and higher bandwidths, or larger
transmission ranges. We then might want to exchange the
Data Exchange module. Similarly, advances in recommender
systems and machine learning might offer better recommen-
dations, creating the need to replace the module or offload
certain tasks to components available from external service
providers.

Privacy and Security. The example domains used
throughout this paper are music, movies, and POIs. Some
people advertise their music taste publicly through t-shirts,
posters, or stickers. Movie taste and preferences for POIs are
public in the sense that people see each other at the cinema
or at the POL. In contrast to religion or politics, for example,
music, movies, and places to visit are rather topics for small
talk conversations and are associated with much less sensitive
information. Thus, overall, we expect most of the potential
user base of a system like MobRec to be ok with sharing their
preferences of music, movies, and POIs. Deeper discussions
about privacy, and about mechanisms to give more control to
the user about which data is shared, is left for future work.

Regarding security, the most critical part will be the device-
to-device interface. By focusing on the application layer
and building on existing solution modules for the device-to-
device interfaces, we should not be introducing new security
risks on top of those present in the used solutions. In this
paper, we focus on the architecture and prototypical imple-
mentation of MobRec, a deeper security analysis is left for
future work.

A. DATA COLLECTION
We identify three different possibilities to retrieve user
data:

VOLUME 8, 2020

1) AUTOMATIC DATA TRACKING
Via mobile sensing, already, information about the user’s
interests and preferences is available. Most music player apps
allow for tracking the played back songs (cf., e.g., [49]).
Additionally, papers like [50] show further links between
behavior and implicit ratings. In [50], links are shown
between geolocation histories and implicit place ratings.
Thus, we assume to be able to use automatically tracked data
for either finding similar users or for finding implicit ratings.
The data that can be tracked automatically on Android and
iOS might differ. In order to create a multiplatform system
and ensure that the same data points are available on all
systems, additional ways of retrieving the user’s ratings are
necessary. Fig. 2 shows the sequence diagram of automatic
context data tracking (mobile sensing).

y Smartphone
AIuI:e .

loo
| collect data

FIGURE 2. Data Collection: Automatic data tracking (mobile sensing).

2) QUERYING THIRD PARTY SERVICE PROVIDERS

In order to minimize necessary user effort, the second method
we suggest is retrieving data from existing service providers.
For example, Spotify’s API enables application develop-
ers to fetch recently played tracks.’! Similarly, both Apple
Music®? and Deezer®® also allow developers to get most
recently played tracks. According to Statista, these three
music streaming service providers make up 57% of the
worldwide music streaming market, with Spotify and Apple
Music being the two biggest service providers.’* Regularly
retrieving recently played back music yields a complete
music listening history indicating implicit user ratings. Fig. 3
shows the sequence diagram for the collection of data from a
third-party service provider.

3) MANUAL USER INPUT

For data that is neither automatically trackable nor avail-
able via third parties, the user should be able to enter it
manually. By defining an ontology for categories and terms
that can be exchanged between users, compatibility between
the data from different collection methods can be ensured.

31 https://developer.spotify.com/documentation/web-
api/reference/player/get-recently-played/, accessed 2020-07-20

32https://developer.apple.comldocumentation/applemusicapi,
2020-07-20

33https://developers.deezer.com/api, accessed 2020-07-20

34https://www.statista.com/statistics/653926/music—streaming—service—
subscriber-share/, accessed 2020-07-20

accessed

185317

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

X

AIi<|:e

| Smartphone I I Service Provider

I

I I

authorize Service Provider ! !
> 1

1

I

I

! loop / I[in predefined ftequency]
I

I 1
' , request data
I

I

I

I

I

FIGURE 3. Data Collection: Querying third-party service providers.

Pre-defined categories can be movies, music, or restaurants,
where recommender system are often used, but any other
category would be possible as well. Service providers like
The Movie DB (TMDB),*> for example, can be used to
help employ globally valid identifiers for each item, in this
case, for each movie. Fig. 4 shows the sequence diagram for
manual data collection. Catalog Service Provider denotes a
service provider that offers structured information about a
specific category, like the mentioned The Movie DB.

X

Alice

| Smartphone |‘ | Catalog Service Provider

I I
! get items to show to user !

I return items !
<<

show items !
€
1 1
! rate items _!
I%l

FIGURE 4. Data Collection: Manual user input.

B. DATA EXCHANGE (DEVICE-TO-DEVICE Communication)
The three remaining approaches for device-to-device com-
munication from our overview in Section IV are BLE SC/AD,
Bridgefy, and Google Nearby Messages. All of them seem
to fulfill R1, R2, and R3. None of them, however, fulfills
R4, transferring larger payloads. In this section, we present
our workaround utilizing cloud storage providers. We then
investigate the three remaining technologies to decide which
one to choose for the implementation.

1) SIZE-LIMITATION WORKAROUND WITH CLOUD STORAGE
PROVIDERS

Building on the existing device-to-device approaches, we
present a workaround to facilitate the broadcasting of large
payloads while fulfilling R1 (multiplatform app), R2 (no
explicit connection establishment), and R3 (data transfer in

35https://www.themoviedb.org/, accessed 2020-07-20

185318

the background). Fig. 5 visualizes our workaround. First,
Alice authorizes the system to access her account at some
Cloud Storage Provider (CSP) like Dropbox, Google Drive,
etc. Alternatively, she could use her own cloud storage.
In some predefined frequency, Alice’s data is then uploaded
to the CSP and shared via a public URL. This URL is
then broadcast via one of the above-mentioned approaches.
As only the URL is shared, which can be further shortened via
a URL shortener service, the available small payloads should
suffice. Another user, Bob in Fig. 5, receives the broadcast
with the URL and can download Alice’s publicly shared data.
Optimizations like waiting for a WiFi connection can easily
be implemented. Note that the only required user interaction
by Alice or Bob is the authorization of the CSP, which only
has to be done once.

2) BLUETOOTH LOW ENERGY (BLE)

When using BLE AD/SC mode, custom data can be sent in
different fields that are part of the advertisement data. In that
advertisement data, we could broadcast the URL pointing
to Alice’s data at her CSP. In order to broadcast, the device
needs to be in peripheral mode, which both Android and i0S
support, fulfilling R1. Both scanning and advertising do not
require manual user interaction, fulfilling R2. Android allows
for both scanning and advertising while the app is in the
foreground or background, fulfilling R3. Apple also allows
Bluetooth-related tasks to be done while running in the back-
ground. However, the scanning intervals are longer which
might lead to two passing users missing each other if they
do not stay in proximity for long enough. We conducted tests
on real devices that showed that iPhones advertising while
our app was running in the background could not be discov-
ered by any other device (tested with Android smartphones,
iPhones, and MacOS laptop). Because of this limitation, upon
closer inspection, we do not consider R3 fulfilled.

3) GOOGLE NEARBY MESSAGES

R1 and R2 are fulfilled for Google Nearby Messages. Look-
ing deeper into R3, exchanging data while the app is in
the background, for Android, the documentation describes
that scanning should only be done while in the foreground.
However, in the background it is still possible to scan for
beacon messages.>® In order to do that, the Nearby Messages
Client needs to specify a strategy that only uses BLE. ForiOS,
both background advertising and scanning are supported.
Again, a strategy only using BLE has to be defined for this.
It seems like Google worked around the issues regarding i0S
and background advertising we reported about in the previous
paragraph. We did not find an exact description how Google
implemented this. Google’s documentation states that back-
ground subscriptions are more energy-efficient but provide
lower reliability and higher latencies. The remainder of this

36https://clevelopers. google.com/nearby/messages/android/get-beacon-
messages, accessed 2020-07-20

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

Smartphone A

Cloud Storage Provider

Smartphone B

AIilce

I
I authorize
1

1 Cloud Storage Provider

I
I
I
|
1
L]

1

1

1

|

I

loop J [in predefined frequenlcy] i
! upload data >: |
CQURL 5 i

1

1} L L

loo [in predefined frequercy] :
, broadcast URL X):

loop) [in predefined frequency an'd when

download conditions are met, e.g.,
WiFi available]
1

"2
<

request data

FIGURE 5. Design of the data exchange via a third-party cloud storage provider.

paper will show that Google Nearby Messages is still a viable
solution despite its limitations.

4) BRIDGEFY

Comparing Bridgefy to Google Nearby Messages, we see two
major drawbacks for Bridgefy. First, the maximum payload
size is 2048 bytes whereas the payloads in Nearby Messages
can be 50 times that size. The bigger payloads in Nearby
Messages will allow us to send more data before downloading
data from the Cloud Storage Provider. Second, the framework
is a commercial product and the free version restricts the
number of offline users. Thus, while Bridgefy in principal
might be a viable solution, we opt to go with Google Nearby
Messages for our prototype.

5) SUMMARY

The data transfer with Google Nearby Messages is, because
of the described relay over Google’s servers, strictly speaking
not direct device-to-device transfer between two devices.
We still chose it for our prototypical implementation because
of the described benefits of being free of cost and support-
ing a larger payload. In our view, the ubiquity of Internet
connections allows for using a service that requires Internet
connection. Because of the modular design, we could replace
the Data Exchange module with one utilizing Bridgefy, then
having direct device-to-device communication.

C. RECOMMENDING NEW ITEMS
This paper focuses on an architecture that facilitates decen-
tralized recommender systems. In the prototype, we will relay

VOLUME 8, 2020

the recommendation task to external service providers. In this
section, we sketch the challenges recommender algorithms in
MobRec will face, and pose potential solutions.

When employing a local recommender system on the
smartphone, additional data is needed. For content-based
filtering, the properties of items have to be known. Third-
party service providers can help with retrieving such needed
metadata about items. For user-based collaborative filtering,
information about the similarity of users is utilized. Whereas
services like Spotify or Netflix have very large databases with
millions of users, the local databases in MobRec will be much
smaller and thus there is a lower likelihood of finding similar
users.

We see two possible solutions for this problem. First,
we could let each user disseminate more than just his/her
own item preferences/ratings and let him/her also send data
from previous encounters [S1] — this would also address the
cold start problem new users will face. Another approach is
to calculate the similarity of users in a different way, inde-
pendent of the users’ ratings. In psychology, the propinquity
effect is the well-studied effect that physical proximity is
a good predictor of forming interpersonal bonds [52], [53].
Having a unique identifier for each user and counting the
number of times and/or the duration of being in proximity
would then likely predict a higher bond. Additional meth-
ods are available for determining similarity in proximity-
based applications. In [1], we developed and evaluated a
method for estimating similarity based on users’ context data
using probabilistic data structures. In [2], we developed a
privacy-preserving method for determining the similarity of
two users based on their text messaging data. Both of those

185319

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

methods can be implemented in our proposed architecture
to find similar users, without having the need to have users
that rated the same items. Future work will have to show to
what extent the propinquity effect or the mentioned similarity
metrics yield valuable similarity indications for user-based
collaborative filtering. Future work could also investigate
the feasibility of approaches like federated learning, effec-
tively exchanging trained models or updates to models for
recommendations [54].

Following this idea of having separate similarity data and
ratings, in the following sections, we distinguish between two
data types:

o simdata
o ratingsdata

The basis is the assumption that an estimated similarity, for
example based on smartphone data, will yield an indication of
similar ratings of items. Thus, not only when we find similar
users via ratingsdata, but also when finding similar users
via simdata, can we recommend new items to the user. Note
that we do not evaluate this assumption because that would
likely require the deployment of the whole system and data
collection with lots of users including feedback on the given
recommendations. Instead, our implementation uses existing
third party service providers for recommendations based on
similar people (determined by simdata) that the user has met.

In order to keep the information fresh, MobRec can simply
(re-)download data from users met in the past. The process
is then that (at least some) data from each user is automat-
ically tracked, either by mobile sensing or from external
service providers, and updated on the user’s cloud storage
provider. After Bob has met Alice, he knows her URL and
can just download her latest data. In our prototypical imple-
mentation, where recommendations are relayed to external
service providers, up-to-date data is available, for example,
TMDB is updated constantly, and the latest movies can be
recommended.

Another field which has gained less attention in indus-
try and academia, is that of group recommender systems
(e.g., [55]). With its ad hoc nature and immediate prefer-
ence data exchange, MobRec is ideally suited to be used for
pervasive group recommendation scenarios. Exchanging data
between several users in a group setting, a local recommender
system can calculate recommendations based on the given
data, considering the preferences of each user. When utilizing
an external service provider for a recommendation, most
likely, before contacting it, the preferences of each group
member have to be combined into one group profile as most
providers will only recommend items for a single user.

VI. IMPLEMENTATION OF MobRec

In this section, we describe the implementation of MobRec.
The idea is to have a minimum viable product (MVP) that
shows all core functionalities. In the following, we present
the core modules of our architecture and describe what frame-
works and third party service providers we utilized.

185320

A. MULTIPLATFORM DEVELOPMENT

In order to be able to reach almost 100% of all smartphone
users, an app for Android and iOS has to be developed (R1).
For the implementation of our MVP, we opted for Ionic,?’
which is an SDK (Software Development Kit) built on top
of Cordova, a framework for multiplatform development.
Using such multiplatform frameworks is an alternative to
developing two distinct apps, allowing to have one code base
for both apps. Multiplatform frameworks take a few different
approaches in how they work. Often, the differences between
the approaches lie in the programming language used and in
how the Ul is rendered. The latter often either is part of a web
component that is displayed within a browser inside the app,
or is rendered with native components. This typically results
in a trade-off between performance (native is better) and and
ease/speed of development (webapp is faster). Looking at
statistics about the most used frameworks among developers
from 2019, for multiplatform development, we observe
that of the surveyed developers, 10.5% reported using React
Native, for Cordova it is 7.1%, for Xamarin 6.5%, and for
Flutter 3.4%.

B. DATA COLLECTION

In this section, we give details about the implementation
of the data collection in MobRec, structured by the three
methods given in Section V-A.

1) AUTOMATIC DATA TRACKING
Cordova plugins for accessing the user’s location, also while
the app is running in the background, are readily available.*”
When tracking the user’s location, frequent visits at points of
interest or restaurants can indicate preference, and ratings can
be inferred. When implementing location tracking, the trade-
off is typically between accuracy, frequency, and battery
drain. For the users, no interaction is required besides the
system confirmation that our app can access his/her location.
In our implemented MVP, we use the location traces of
a user as simdata. Each location point is first transformed
into a Geohash,*” a short string representation of a lati-
tude/longitude pair. Then, each of the user’s locations are
entered into a 1-hash Counting Bloom Filter and compared
via CBF-Dice, a metric we developed in [1].

2) QUERYING THIRD-PARTY SERVICE PROVIDERS

Some third party service providers allow the user — or an
application on behalf of the user — to export the items con-
sumed with that provider. This is an easy way to track the
user’s taste. Listening to music is one of the most com-

37https://ionicfrarnework.com/, accessed 2020-07-20

38https://www.statista.com/statistics/79384O/W0r1dwide—developer—
survey-most-used-frameworks/, accessed 2020-07-20

39https://www.npmjs.com/package/ @mauron85/cordova-plugin-
background-geolocation, accessed 2020-07-20

40https://webAarchive.0rg/web/20080305223755/http://blog.labix.org/
#post-85 and http://geohash.org/, both accessed 2020-07-20

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

mon activities with smartphones.*! Spotify has by far the
most subscribers in the market of music streaming services
(36% market share*?). Given the user’s permission, we access
the user’s 50 most recently played tracks using OAuth
2.0.%3 Retrieving these recently played tracks regularly yields
implicit ratings by the user — based on the assumption that the
more a user listened to a track, the more he/she likes it. From
the user’s side, authorizing our app to access Spotify is the
only action he/she must take.

3) MANUAL USER INPUT

Globally, 37% of internet users use Netflix.** Watching
movies and TV shows is a common pastime and recommend-
ing new items in these fields is a common task for recom-
mender systems. At the time of writing, Netflix does not
offer a publicly available API, though their website offers the
functionality of downloading a viewing activity list. However,
if our system wants to recommend movies, only tracking
those movies available on Netflix will limit the available
range of movies: as of 2018, Netflix only offered 4010 movies
(in the US).* With around 650 films released each year
in the US alone,* this is not a high number. We use the
publicly available The Movie DB*’ (TMDB) API to create
a visual interface for the user to rate movies. The Movie
DB contains 562,522 movies.*® When designing the visual
interface and functionality, we followed the approach of the
MovieLens project as described in [56]. This includes search-
ing, rating movies, adding them to a watchlist, and feedback
on recommendations (rate, add to watchlist, not interested).
Additionally to movies, TV shows are also available via the
TMDB API, and thus available for the users of our prototype
to rate.

4) SUMMARY

Fig. 6 shows all three approaches for collecting and process-
ing data. Note that only the manual user input needs user
interaction. Getting data from third party service provider
Spotify only requires a one-time authorization (not shown
in the figure). Automatic data tracking is done in the back-
ground and uses native libraries of Android and iOS. Once the
collected data changed, we can automatically update Alice’s
ratingsdata and simdata, denoted in the figure as belonging
to Alice with the suffix _a.

41 https://www.pewresearch.org/internet/2015/04/01/us-smartphone-use-
in-2015/, accessed 2020-07-20

42https://WWW.statista.com/statistics/653926/music—streaming—service—
subscriber-share/, accessed 2020-07-20

43 https://developer.spotify.com/documentation/web-api/reference-
beta/#endpoint-get-recently-played, accessed 2020-07-20

44https://WWW.statista.com/statistics/758369/netﬂix—video—usage—region/,
accessed 2020-07-20

45 https://www.businessinsider.de/netflix-movie-catalog-size-has-gone-
down-since-2010-2018-2, accessed 2020-07-20

46According to http://data.uis.unesco.org/
47https://www.themoviedb.org/, accessed 2020-07-20
48https://WWW.themoviedb.org/faq/general, accessed 2020-07-07.

VOLUME 8, 2020

C. DATA EXCHANGE (DEVICE-TO-DEVICE Communication)
As described in Section V, the data exchange with nearby
users is designed to utilize the Google Nearby Messages API.
As the library only supports small payloads of 100 kibibyte,
the workaround with uploading the user’s ratingsdata and
simdata to a CSP and sharing the public URL of that file, was
used. In the following, we present details about the utilization
of the Google Nearby Messages API and the sequence of the
data exchange.

The Google Nearby Messages API for Android is avail-
able in Java and Kotlin and iOS developers can use Swift
or Objective-C. In order to integrate the library into an
Ionic application, a plugin is required to invoke calls to the
native libraries from the JavaScript code. We only found one
Cordova plugin that supports the Google Nearby Messages
APL* However, the implementation is only available for
Android. Furthermore, the Android implementation is not
configured to work in the background. We developed a cus-
tom plugin that solves those issues. Both on Android as well
as on i0S, the publishing strategies are set to work in the
background, utilizing BLE.

Based on using the described workaround for device-to-
device size limitations (cf. Section V-B), additionally to rat-
ingsdata and simdata, we define the following data types:

e dataset. This contains the ratingsdata and optionally
additional information like a nickname or profile pic-
ture, etc. Note that it does not contain simdata.

 cspurl. This is the URL pointing to the publicly available
dataset available at a Cloud Storage Provider (CSP).

Fig. 7 shows the initialization of the device-to-device com-
munication utilizing the workaround with a CSP. Alice autho-
rizes access to her account with the CSP. In the MobRec MVP,
we use Google Drive. The platform-independent JavaScript
code then handles the authorization for Google Drive via
OAuth 2.0 and uploads Alice’s dataset dataset_a. Note that
if some data types are not present, for example because Alice
did not rate any items yet, parts or the whole set might be
empty. The CSP returns cspurl_a.

Fig. 8 shows the sequences for updating data at the CSP,
broadcasting and scanning via the BLE interface, and receiv-
ing broadcast messages. Whenever ratingsdata_a, the nick-
name, profile picture, etc., changes, dataset_a is updated.
cspurl_a stays the same and does not need to be updated.
In our implementation, simdata_a is small enough to be
sent with the payload broadcast via Google Nearby Mes-
sages. We trigger the broadcasting of messages from the
JavaScript code. The publishing itself, i.e., broadcasting mes-
sages via Google Nearby Messages via BLE, is done with
our native code plugin. The broadcast message consists of the
cspurl_a and simdata_a. Similarly, subscribing, i.e., listening
for broadcast messages from other app instances in BLE
range, is also triggered via JavaSciprt code and executed via
our native code module.

49https://github.com/hahahannes/cordova—plugin—google—nearby,
accessed 2020-07-20

185321

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

Smartphone

JavaScript Code Native Code

BLE Interface

Cloud Storage Providers " |Third Party Service Providers II

AIi<|:e

update data

manual input) !
I

' request viewing items
>

get items

| | I
rate items ! ! !

1

1

1

1

1

L > 1 I
>

>
>
| 1
1 1
| 1

third party service provider /

| get ratings (or played back items)

Y

| |
automatic data tracking / :
I

: get data '
—_— 3
[

loo [collected data changged]
: update ratingsdata_a
I

1
: update simdata_a

FIGURE 6. Data collection in MobRec.

Smartphone
Al JavaScript Code Native Code BLE Interface Cloud Storage Providers “ Third Party Service Providers “
ice
1
1
initialization)
I .
, authorize

' Cloud Storage Provider

>

upload dataset_a

Y

I
|
I
1
1
1
1
L 1
| 1
| authorization !
| 1
I 1
| 1
| 1
| 1
1 L

cspurl_a

Y

FIGURE 7. Initialization of the device-to-device communication.

Once a message, i.e., broadcast, is received, its content
is handed to the platform-independent JavaScript code and
processed there. First, the received simdata_b is compared
to the phone’s user’s simdata_a. If the similarity comparison
meets a predefined threshold, dataset_b is downloaded via
cspurl_b. This means that we avoid downloading data from
other users if the pre-defined similarity threshold is not met,
cf. bottom of Fig. 8.

D. RECOMMENDATIONS
Instead of implementing our own recommender systems, for
the MVP, we used external third party service providers.

185322

For music recommendations, we utilize Spotify. Their API
can return music recommendations based on up to five
so-called seed tracks entered.>® For movie recommendations,
we utilize the TMDB API. Given a movie or TV show, other
items are recommended.>! Based on these APIs, we recom-
mend new items to Alice based on Alice’s own preferences
and based on the preferences of similar people that Alice met.

50https://clew:loper.spotify.comldocumentation/web—
api/reference/browse/get-recommendations/, accessed 2020-07-20

51 https://developers.themoviedb.org/3/movies/get-movie-
recommendations and https://developers.themoviedb.org/3/tv/get-tv-
recommendations, both accessed 2020-07-20

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

Smartphone
1

‘ JavaScript Code
Alice -

BLE Interface l | Cloud Storage Providers |.| | Third Party Service Providers |.|

Native Code
loop)I [data changed]

Y

trigger publish

>
>

I
1
:
update dataset a .
|l
I
i
1

loop)

: broadcast(cspurl_a,simdata_a)

>
>

trigger subscribe

>
>

loo|

! listen to broadcasts

Y

message received /

message(cspurl_b,simdata_b)

<
<

message(cspurl_b,simdata_b)

<
<

1
1
I
I
:
| similarity estimation(simdata_a,simdata_b)
1

alt | [similarity meets threshold]

_download(cspurl_b)

Y

)
[similarity below threshold]

FIGURE 8. Device-to-device communication.

E. MINIMUM VIABLE PRODUCT

Fig. 9, 10, and 11 show screenshots of our MVP. Fig. 9 shows
music recommendations based on the user’s own listening
history, and Fig. 10 shows music recommendations based on
similar users met in proximity. Fig. 11 shows how movie
recommendations are displayed. Each row indicates to the
user why the recommendations are being displayed, some
based on own preferences, some based on users previously
met.

VII. EVALUATION

In this section, we will evaluate our system, focusing on
data exchange via device-to-device communication. Based
on the concept of users exchanging data with other users,
we analyze different scenarios in order to develop a con-
cept of how to conduct the evaluation. During the design
of MobRec, we already accounted for requirements R1-R4.
There is no user interaction necessary for data exchange (R2),
and we worked around limitations on payload size (R4).
In this section, we investigate how well the data exchange
works in the background (R3) and if there are any differences
observable for Android and i0S (R1).

Imagining the average users, most time is probably spent
at home or at work. In those cases, the distance to other
users will be very short and the time spent in proximity
is rather long, be it during a meeting or while sleeping.
Furthermore, chargers will likely be ubiquitously available.

VOLUME 8, 2020

1
L 1
I 1
1 1
1 1
| |
L |
1 |
| |
| |
| |
| |
1 1
1 1
1 1
| 1
1 |
| |
| |
| |
| |
| |
| |
1 1
1 1
1 1
L 1
1 |
| |
| |
| |
| |
| |
| |
1 1
1 1
1 1
| |
1 |
L |
| |
| |
| |
| |
L |
| 1
I 1
1 1
' '

€« MuUsIC

® Q =

Recommendations based on your favorite

FIGURE 9. Music recommendations based on the user’s favorite tracks.

Physical distance, the time it takes to discover nearby devices
and exchange data, and battery consumption thus are not
critical in this scenario. At busy workplaces, there could
be interferences if there are a multitude of devices present
though. We assume that Internet connectivity, required in
order for Google Nearby Messages to work, is available in

185323

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

< MUSIC

v o =

Recommendations based on nearby found
tracks

i~

FIGURE 10. Music recommendations based on people met.

< MOVIES

Because nearl

i

FIGURE 11. Movie and TV show recommendations based on user’s
favorites and based on people met.

almost all home and work scenarios. In order for our concept
to work properly, users need to meet new people to exchange
data with though. Home and work location will thus not be
the crucial situations where users exchange data.

Another scenario is to spend time together at some public
or private place. This could be some event like a restau-
rant visit, a music show, or any other leisure time activity.
Here, the time window might be shorter than at home or
at work, but is probably still at least around one hour. The
distance between users probably ranges from a few to around
50 meters. Depending on the location, Internet connectivity
might not be as good as in the previous scenario.

185324

The third scenario is just passing other users, for example
when commuting via public transport. The time window of
being in proximity might be rather short, e.g., waiting for the
metro for a few minutes. We assume the distance to be short,
from a few to around 20 meters. Internet connectivity might
be bad or at worst non-existent.

We also made tests regarding the physical distance between
devices. As our system uses Google Nearby Messages with
BLE, we assumed the distances between devices to be
unproblematic. We confirmed this with tests in both indoor
and outdoor situations. Details about the distance tests are
omitted here.

This leaves the following aspects to consider, which we
cover in the following sections:

o Multiple devices. We will check whether it is feasible
to exchange data with multiple devices and whether the
presence of multiple other devices has negative effects
on the data exchange.

« Discovery time. The time needed for successful discov-
ery of present devices in proximity and data transfer.
The transfer here just refers to receiving the braodcast
data, simdata and cspurl, as downloading the dataset
from the CSP is not time-critical and can be done
later.

o Internet connectivity. We will analyze to what
extent bad Internet connectivity influences the data
exchange.

In Section VII-D, we will summarize the evaluation and
propose optimizations for battery consumption.

A. MULTIPLE DEVICES

In our test setup, we used two iOS devices (both of them
iPhone 6, 10S 12.2; in the following, we distinguish the two
devices with (a) and (b)) and two Android devices (Xiaomi
Mi A2 with Android 9 and LG K8 with Android 7). All
devices were placed next to each other, and started broad-
casting and scanning at the same time. We recorded the
timestamps for the start of broadcasting and for receiving
the messages from the other devices. The test was conducted
in a busy restaurant. This way, we simultaneously tested the
feasibility of sending/receiving data from multiple devices
at the same time and potential interferences by other nearby
devices. We repeated the test five times. The results of the
tests are shown in Table 2. The time given in the table is
the time between start of broadcasting/scanning until receiv-
ing all three messages from the other devices. Additionally,
we show the average time. The LG K8 was the slowest to
receive all messages in all test runs. However, the maximum
was only 6.2 seconds. Overall, this test indicates that even
with multiple devices and in busy places, all messages are
received reliably in a matter of seconds. While the whole
system might not scale indefinitely, we regard this test as
evidence that the data exchange between multiple devices
works well.

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

TABLE 2. Time in seconds until devices received messages from all other
devices. Tests conducted in busy restaurant.

Run LG K8 Xiaomi Mi A2 iPhone 6 (a) iPhone 6 (b)

1 3.00s 140s 1.94 s 0.06 s
26208 2.00s 1.00s 1.00 s
3 4308 260s 1.40s 1.34s
45008 1.50s 1.03s 0.09s
5 230s 2.10s 210s 1.10s
Avg. 430s 1.92s 1.49s 0.72s

B. DISCOVERY TIME

One crucial factor for the evaluation of our system is the time
it takes for devices to send and receive broadcast messages,
i.e., finding nearby devices and receiving the Google Nearby
Messages payload. In order to evaluate this, we consider three
binary variables:

o The devices can already be in proximity or move into
proximity.

o The app start can be now (started at the beginning of
the experiment) or in the past (i.e., the app is already
running for some time).

e The device to be found is already known or not;
i.e., a broadcast message from that device was already
received in the past or not.

Table 3 gives an overview of all possible combinations
C1 to C5. Three binary variables yield eight overall pos-
sible combinations. Three combinations are not possible:
Two devices moving into proximity cannot be combined with
app start now. The app already has to be running when
moving into proximity. This leaves out two cases (with device
known yes and no). Additionally, when two devices are in
proximity and the app start is in the past, then it is not possible
that the devices do not know each other already.

TABLE 3. Experiments conducted regarding devices finding each other.
Shows the five possible combinations C1 through 5.

Proximity App start Device Results
known
Cl inp. now no Table 2 line 1
C2 imp. now yes Table 2 lines 2-5
C3 inp. past yes Tabled
C4 movingintop. past yes sameas C3
C5 'movingintop. past | no Table5

The results for C1 and C2 are already given in Table 2. All
devices find each other in a matter of seconds, regardless if
the devices have received messages from each other before
or not. In these experiments, the app’s start was at each test
run’s start. The test from Section VII-A indicates that if the
app’s start is now, discovery time is at most a few seconds.

With C3, we test the time between messages received from
the same device. Here, the app’s start lies in the past and
broadcasting and scanning runs continuously in the back-
ground. For this test, we used one Android device (Xiaomi
Mi A2, Android 9) and one iOS device (iPhone 6, i0S 12.2).

VOLUME 8, 2020

We assume that our test results are still generalizable, as the
implementation only differs between different platforms, not
different devices of the same platform. We let both devices
broadcast and scan for test periods of five hours and recorded
when messages were received. Table 4 shows the average
time between received messages for four test runs, as well as
the average time between messages. On Android, the other
device was found at least once per hour, whereas on iOS,
the time between messages was around 10 minutes. Thus,
if two devices already exchanged messages before, subse-
quent messages are received in a lower frequency.

TABLE 4. Average time between messages in minutes (C3).

Android iOS
Avg.oftestrun 1 47.13 min 8.00 min
Avg. oftestrun2 29.92min 8.19 min
Avg. oftestrun3 57.77min 11.19 min
Avg.of testrun4 4923 min 9.20 min
Average 46.01 min 9.14 min

C1, C2, and C3 consider scenarios where the devices are
in proximity. In the following, we consider scenarios where
two devices move into proximity. In this case, the app start
always lies in the past. We distinguish between devices that
already exchanged messages before (C4) and those that did
not (C5).

In C4, the devices already exchanged messages before.
We let the devices move into proximity of each other and
recorded the time until messages where received. Repeating
the test five times, we got roughly the same results as for C3.
This indicates that when the app start lies in the past and the
devices already exchanged messages before, it does not make
a difference if the devices are already in proximity or move
into proximity during runtime.

We note the significant difference between first message
(app start now, C1/C2) and subsequent messages (app start
past and device known yes, C3/C4) — few seconds vs. sev-
eral minutes (i0S) / up to one hour (Android). A possible
reason for this could be that if two devices already have
exchanged messages before, the token for the message was
already exchanged and is not sent again until it is renewed.
When re-starting broadcasting/scanning, the token might be
renewed and thus, messages are received immediately on both
sides after starting the scanning. The exact internal mecha-
nisms of Google Nearby Messages are not public and we are
not sure when exactly tokens are renewed. We assume that
Android and iOS work differently, either regarding the token
or regarding the BLE interface or implementation provided
by the OS. This would explain the different results for the
different platforms. A possible workaround for long time
intervals between messages from the same devices could be
to re-start broadcasting/scanning in a pre-defined frequency
or depending on some other factors like location changes.

The last case to evaluate is C5. It is the same as C4,
only that the devices have not exchanged messages before.

185325

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

We performed the test five times. The results for C5 are shown
in Table 5.°2 For both Android and iOS, all messages were
received in a time of less than or equal to 10 minutes. On aver-
age, messages were received after approximately three to four
minutes after devices were in proximity. This is a longer time
compared to the results when the broadcasting/scanning was
just started and messages were received after a few seconds
(C1/C2). 1t is also significantly less compared to C3/C4. The
results from C5 show that when broadcasting/scanning is
already running in the background, messages are received
after a longer time even though no messages have been
exchanged before.

TABLE 5. Time in minutes until message is received after moving into
proximity (C5).

Test run Android iOS

1 4 min 4 min
""""" 2 10min 7 min
""""" 3 2min 2min
""""" 4 " 1min 1min
""""" 5 2min 2min
Average 3.8min 3.2 min

A possible reason for this could be that when re-starting
broadcasting/scanning, tokens are exchanged immediately
for the first time and then, only in a specific interval
of around 1-10 minutes. Battery optimizations by the OS
could lead to the inconsistent times for each test run.
A possible workaround for this could also be re-starting
broadcasting/scanning.

C. INTERNET CONNECTIVITY

Our system utilizes Google Nearby Messages, which requires
an Internet connection in order to facilitate the actual message
exchange between devices. In this section, we evaluate to
what extent this message exchange is influenced in situations
where connectivity might be bad, e.g., inside of some under-
ground metro stations.

In order to consistently and reproducibly simulate bad
Internet connectivity, we used the iPhone’s built-in ‘“Net-
work Link Conditioner.”” It can simulate different network
conditions including ‘““very bad network,” which we used
in this experiment. It constraints the speed to 1000 kilobyte
per second and simulates a packet loss of 10%.

We let one device broadcast messages and then let the
iPhone scan for messages while being constraint to “very bad
network™ conditions. We logged the time it took to receive
a message. The experiment was repeated 10 times. As a
means of comparison, we repeated the same experiment with
LTE connectivity.

Android does not have a similar built-in feature to simu-
late network conditions. In order to perform the experiment

52Note that we do not give seconds-accuracy here in order to account for
the small inaccuracies introduced by not measuring the time it took to move
into proximity.

185326

under the same conditions as with the iPhone, we set up a
WiFi hotspot on an iPhone, given the “very bad network”
constraint and let the Android device (Xiaomi Mi A2) connect
to it. Here, again, we conducted 10 test runs with both “very
bad network™ and LTE.

The results of the test are shown in Table 6. Note
that with respect to the three binary variables introduced
in Section VII-B, this is an experiment with combina-
tions C1/C2. For bad network conditions, the time until
a message is received is significantly higher. But still all
messages in the test run were received with a maximum
discovery time of 9:41 minutes. On average, each message
was received almost instantly via LTE (confirming the results
from Table 2). The average delivery time for bad connectivity
was 1-2 minutes.

TABLE 6. Time in minutes until message is received with different
network conditions.

Android iOS
bad conn. LTE

bad conn. LTE

D. EVALUATION SUMMARY AND BATTERY DRAIN
OPTIMIZATIONS
We summarize the key results of our evaluation as follows:
o Messages from multiple devices in busy scenarios are
sent and received without issues within seconds.
o (Re-)starting the broadcast/scan mechanism makes the
device receive message in a matter of seconds.
« New devices in proximity can be discovered in 3—4 min-
utes.
« Discovery of devices met before is slow — on average
9 minutes (i0S) and 46 minutes (Android).
« Bad Internet connectivity will introduce an overall neg-
ligible delay in discovery time of around 2 minutes.
Looking back at the scenarios we described for exchang-
ing data between devices, most of them are realizable. The
discovery time of new devices of 3—4 minutes might lead to
some missed opportunities of data exchange in quickly mov-
ing scenarios like waiting at the metro station. The longest
time window was between messages from the same device.
In those cases, the user would receive the same data anyway,
which would not help to improve the performance of the rec-
ommender systems. Even if we assume new data is present,
there is a simple workaround: the data that is transferred is the

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

IEEE Access

cspurl, which does not change when the dataset is updated.
We can just check if the dataset changed and re-download
from the users previously met. This way, each user would
have only to be met once. On the other hand, this reduces the
recognition of meeting the same user multiple times — which
could indicate similarity. Also, changes in simdata would be
missed.

Regarding battery drain, permanently running broad-
cast/scan in the background accounts for roughly 5%
(Android) to 10% (iOS) of battery consumption per hour.
Such a battery drain is not acceptable for real-world deploy-
ment. However, significant improvements for both average
discovery time and battery drain could be easy: re-starting
the broadcast/scan mechanism depending on specific times
and locations will improve both aspects at once. Consider
the following naive optimization. We assume that the time of
each smartphone is running in sync, as they usually use online
servers to sync their time. Then, we can let our app turn on
broadcasting/scanning at the exact same time on every phone
for two minutes. Our evaluation shows that two minutes
is enough to reliably find most devices in proximity, even
during bad network connectivity. We could let the app broad-
cast/scan for two minutes every 15 minutes, as long as there
has been a location change. We assume that on average at
least during 16 hours of the day, there won’t be location
changes (sleep and work). This leaves eight hours, each of
which has four 15-minute intervals. Multiplied by two min-
utes of broadcast/scanning, this yields 64 minutes of running
in the background instead of 24 hours. This would reduce the
battery drain to less than 5% of its original value, and likely
still produce a lot of the data exchanges that would happen
during permanent broadcasting/scanning. While we have not
tested this, the implementation of this optimization should be
possible with Tonic’s background mode.>® If that fails and
native code is necessary, in Android, the Alarm Manager>*
can fire events at exact times. In i0S, a workaround might be
necessary, for example by utilizing media playback to keep
the app from being suspended.

VIil. CONCLUSION

Current recommender systems often exhibit lock-in effects.
Recommendations might be biased according to the interests
of the providing platform and are often bound to the items
available through the platform. We proposed a decentralized
mobile architecture for recommender systems, MobRec, that
leverages the preferences/ratings from users that are, or have
been, in proximity. The introduced system runs on the users’
smartphones and utilizes existing external third-party service

53https://ionicframework.com/docs/native/background-rn()de, accessed
2020-07-20
54https://developer.android.com/guide/background#alarmmanager,
accessed 2020-07-20
55https://developer.apple.com/documentation/avfoundati0r1/media_
assets_playback_and_editing/creating_a_basic_video_player_ios_and
_tvos/enabling_background_audio, accessed 2020-07-20

VOLUME 8, 2020

providers. It is built on the general concept that similar people
like similar things.

MobRec consists of three main modules, data collection,
data exchange, and recommender system. We highlighted
that while short-range wireless transmission technologies are
implemented on all modern smartphones, exchanging larger
amounts of data in the background without user interaction on
a system available for off-the-shelf Android and iOS devices
remains a challenging task. We proposed a solution based on
Google Nearby Messages that let’s users broadcast a URL
of their data on a cloud storage provider. The evaluation of
our MobRec prototype shows that the discovery time — the
time needed to find other devices and exchange data — is
just a few seconds when the broadcasting/scanning mecha-
nism was just started. Overall, new devices in proximity are
discovered within 3—4 minutes on average. Devices previ-
ously met are discovered again at a much slower rate, from
around 10 minutes (iOS) to around 46 minutes (Andrdoid)
on average. Because Google Nearby Messages requires an
Internet connection, we also evaluated the influence of bad
Internet connectivity and found that it introduces a delay of
about 1-2 minutes on average. Battery drain remains an issue
with constant broadcasting/scanning. We proposed the simple
optimizations of only broadcasting/scanning for messages in
fixed time intervals. While our MobRec prototype relays the
recommendation to external service providers, we pointed out
the challenges and potential solutions for local recommender
algorithms, including finding similar users.

Future work includes the deployment of the system
with real users. Regarding the recommender system, future
work includes the implementation of a mobile recommender
engine operating on locally available data. A simulation with
a real data set, for example collected from our previous
research [57], [58], could help evaluate the quality of the
recommendations that such a system can provide. Future
work also consists of adapting MobRec for group scenarios:
in an ad hoc manner, a group of users can use some device-to-
device communication feature that exchanges data between
the users in order to provide some service based on the
shared data, for example group recommendations. In that
case, R2 and R3, the broadcasting of data in the background
without any user interaction, would not be applicable, making
it possible to utilize a broader range of the device-to-device
technologies.

ACKNOWLEDGMENT
We are grateful for the support provided by Tobias Eichinger,
Axel Kiipper, Robert Staake, Jan Pokorski, and Yong Wu.

REFERENCES

[1] F. Beierle, “Do you like what I like? Similarity estimation in proximity-
based mobile social networks,” in Proc. 17th IEEE Int. Conf. Trust, Secur.
Privacy Comput. Communications/ 12th IEEE Int. Conf. Big Data Sci. Eng.
(TrustCom/BigDataSE), Aug. 2018, pp. 1040-1047.

[2] T. Eichinger, F. Beierle, S. U. Khan, and R. Middelanis, “Affinity: A
system for latent user similarity comparison on texting data,” in Proc. IEEE
Int. Conf. Commun. (ICC), May 2019, pp. 1-7.

185327

IEEE Access

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Ahmed, Y. Li, M. Waqas, M. Sheraz, D. Jin, and Z. Han, “A survey
on socially aware Device-to-Device communications,” IEEE Commun.
Surveys Tuts., vol. 20, no. 3, pp. 2169-2197, 3rd Quart., 2018.

'W. Zhang, H. Flores, and P. Hui, ‘““Towards collaborative multi-device com-
puting,” in Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops
(PerCom Workshops), Mar. 2018, pp. 22-27.

C.-N. Ziegler, “Semantic Web recommender systems,” in Current Trends
in Database Technology—-EDBT Workshops (Lecture Notes in Computer
Science), W. Lindner, M. Mesiti, C. Tiirker, Y. Tzitzikas, and A. 1. Vakali,
Eds. Berlin, Germany: Springer, 2005, pp. 78-89.

R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci, “A peer-to-peer
recommender system for self-emerging user communities based on gossip
overlays,” J. Comput. Syst. Sci., vol. 79, no. 2, pp. 291-308, Mar. 2013.
L. Nunes Barbosa, J. Gemmell, M. Horvath, and T. Heimfarth, ‘“Dis-
tributed user-based collaborative filtering on an opportunistic network,”
in Proc. IEEE 32nd Int. Conf. Adv. Inf. Netw. Appl. (AINA), May 2018,
pp. 266-273.

F. Beierle and T. Eichinger, “Collaborating with users in proximity for
decentralized mobile recommender systems,” in Proc. IEEE SmartWorld,
Ubiquitous Intell. Comput., Adv. Trusted Comput., Scalable Comput.
Commun., Cloud Big Data Comput., Internet People Smart City Innov.
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Aug. 2019,
pp. 1192-1197.

M. Falch, A. Henten, R. Tadayoni, and I. Windekilde, ‘“Business models
in social networking,” in Proc. CMI Int. Conf. Social Netw. Communities,
2009, pp. 1-23.

A.Datta, S. Buchegger, L.-H. Vu, T. Strufe, and K. Rzadca, “Decentralized
online social networks,” in Handbook of Social Network Technologies and
Applications. Boston, MA, USA: Springer, 2010, pp. 349-378.

A. Bleicher, “The anti-facebook,” IEEE Spectr., vol. 48, no. 6, pp. 54-82,
Jun. 2011.

G. Ruffo and R. Schifanella, “A peer-to-peer recommender system based
on spontaneous affinities,” ACM Trans. Internet Technol., vol. 9, no. 1,
pp. 1-34, Feb. 2009.

C. Mettouris and G. A. Papadopoulos, “Ubiquitous recommender sys-
tems,” Computing, vol. 96, no. 3, pp. 223-257, Mar. 2014.

J. Manweiler, R. Scudellari, and L. P. Cox, “SMILE: Encounter-based trust
for mobile social services,” in Proc. 16th ACM Conf. Comput. Commun.
Secur., 2009, pp. 246-255.

A. C. Champion, Z. Yang, B. Zhang, J. Dai, D. Xuan, and D. Li,
“E-SmallTalker: A distributed mobile system for social networking in
physical proximity,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 8,
pp. 1535-1545, Aug. 2013.

F. Beierle, K. Grunert, S. Gondor, and V. Schluter, “Towards
psychometrics-based friend recommendations in social networking
services,” in Proc. IEEE Int. Conf. Al Mobile Services (AIMS), Jun. 2017,
pp. 105-108.

W.-S. Yang and S.-Y. Hwang, “iTravel: A recommender system in mobile
peer-to-peer environment,” J. Syst. Softw., vol. 86, no. 1, pp. 12-20,
Jan. 2013.

J. Shu, S. Kosta, R. Zheng, and P. Hui, “Talk2Me: A framework for Device-
to-Device augmented reality social network,” in Proc. IEEE Int. Conf.
Pervas. Comput. Commun. (PerCom), Mar. 2018, pp. 1-10.

F. Beierle, V. T. Tran, M. Allemand, P. Neff, W. Schlee, T. Probst, R. Pryss,
and J. Zimmermann, “TYDR-Track your daily routine. Android App for
tracking smartphone sensor and usage data,” in Proc. IEEE/ACM 5th Int.
Conf. Mobile Softw. Eng. Syst. (MOBILESoft), May/Jun. 2018, pp. 72-75.
F. Beierle, V. T. Tran, M. Allemand, P. Neff, W. Schlee, T. Probst,
R. Pryss, and J. Zimmermann, “Context data categories and privacy
model for mobile data collection apps,” Procedia Comput. Sci., vol. 134,
pp. 18-25,2018.

H. Xiong, Y. Huang, L. E. Barnes, and M. S. Gerber, “Sensus: A cross-
platform, general-purpose system for mobile crowdsensing in human-
subject studies,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous
Comput. (UbiComp), Sep. 2016, pp. 415-426.

K. Jayarajah, R. K. Balan, M. Radhakrishnan, A. Misra, and Y. Lee,
“Livelabs: Building in-situ mobile sensing & behavioural experimentation
testbeds,” in Proc. 14th Annu. Int. Conf. Mobile Syst., Appl., Services,
2016, pp. 1-15.

D. Ferreira, V. Kostakos, and A. K. Dey, “AWARE: Mobile context instru-
mentation framework,” Frontiers ICT, vol. 2, p. 6, Apr. 2015.

A.-K. Pietildginen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot, “Mobi-
Clique: Middleware for mobile social networking,” in Proc. 2nd ACM
Workshop Online Social Netw., 2009, pp. 49-54.

185328

(25]
[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

(41]

[42]

[43]

(44]

[45]

(46]

(47]

N. Eagle and A. Pentland, “Social serendipity: Mobilizing social soft-
ware,” IEEE Pervas. Comput., vol. 4, no. 2, pp. 28-34, Apr. 2005.

A. Sapuppo, “Spiderweb: A social mobile network,” in Proc. Eur. Wireless
Conf. (EW), Apr. 2010, pp. 475-481.

Z. Yu, Y. Liang, B. Xu, Y. Yang, and B. Guo, “Towards a smart campus
with mobile social networking,” in Proc. Int. Conf. Internet Things 4th Int.
Conf. Cyber, Phys. Social Comput., Oct. 2011, pp. 162-169.

J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan, “E-Shadow: Lubricating
social interaction using mobile phones,” in Proc. 31st Int. Conf. Distrib.
Comput. Syst., Jun. 2011, pp. 909-918.

Z. Yang, B. Zhang, J. Dai, A. C. Champion, D. Xuan, and D. Li, “E-
SmallTalker: A distributed mobile system for social networking in physical
proximity,” in Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst., Jun. 2010,
pp. 468—477.

N. Davies, A. Friday, P. Newman, S. Rutlidge, and O. Storz, “Using
Bluetooth device names to support interaction in smart environments,”
in Proc. 7th Int. Conf. Mobile Syst., Appl., Services (Mobisys), 2009,
pp. 151-164.

Y. Shafranovich, “Bluetooth data exchange between Android phones
without pairing,” 2015, arXiv:1507.00650. [Online]. Available:
http://arxiv.org/abs/1507.00650

O. Turkes, H. Scholten, and P. J. M. Havinga, “Opportunistic beacon
networks: Information dissemination via wireless network identifiers,”
in Proc. IEEE Int. Conf. Pervas. Comput. Commun. Workshops (PerCom
Workshops), Mar. 2016, pp. 1-6.

J. Teng, B. Zhang, X. Li, X. Bai, and D. Xuan, “E-shadow: Lubricating
social interaction using mobile phones,” IEEE Trans. Comput., vol. 63,
no. 6, pp. 1422-1433, Jun. 2014.

J. Yang, C. Poellabauer, P. Mitra, J. Rao, and C. Neubecker, ‘“‘BlueNet:
BLE-based ad-hoc communications without predefined roles,” in Proc.
1EEE SmartWorld, Ubiquitous Intell. Comput., Adv. Trusted Comput., Scal-
able Comput. Commun., Cloud Big Data Comput., Internet People Smart
City Innov. (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
Aug. 2017, pp. 1-8.

A. Sikora, M. Krzyszton, and M. Marks, “Application of Bluetooth low
energy protocol for communication in mobile networks,” in Proc. Int.
Conf. Mil. Commun. Inf. Syst. (ICMCIS), May 2018, pp. 1-6.

D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman, “ShAir: Exten-
sible middleware for mobile peer-to-peer resource sharing,” in Proc. 9th
Joint Meeting Found. Softw. Eng. (ESEC/FSE), 2013, pp. 687-690.

D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, ‘“Device-to-device
communications with Wi-Fi direct: Overview and experimentation,” IEEE
Wireless Commun., vol. 20, no. 3, pp. 96—104, Jun. 2013.

Z. Lu, G. Cao, and T. La Porta, “Networking smartphones for disaster
recovery,” in Proc. IEEE Int. Conf. Pervas. Comput. Commun. (PerCom),
Mar. 2016, pp. 1-9.

T. Oide, T. Abe, and T. Suganuma, “‘Infrastructure-less communication
platform for Off-The-Shelf Android smartphones,” Sensors, vol. 18, no. 3,
p- 776, Mar. 2018.

Y. Wang, A. V. Vasilakos, Q. Jin, and J. Ma, ““Survey on mobile social net-
working in proximity (MSNP): Approaches, challenges and architecture,”
Wireless Netw., vol. 20, no. 6, pp. 1295-1311, Aug. 2014.

Z. Mao, J. Ma, Y. Jiang, and B. Yao, “Performance evaluation of WiFi
direct for data dissemination in mobile social networks,” in Proc. IEEE
Symp. Comput. Commun. (ISCC), Jul. 2017, pp. 1213-1218.

N. Aneja and S. Gambhir, “Profile-based ad hoc social networking using
‘Wi-Fi direct on the top of Android,” Mobile Inf. Syst., vol. 2018, Oct. 2018,
Art. no. 9469536.

K. Kwan and B. Greaves, “FileLinker: Simple Peer-to-Peer file sharing
using Wi-Fi direct and NFC,” in Proc. IST-Africa Week Conf. (IST-Africa),
May 2019, pp. 1-9.

S. Trifunovic, M. Kurant, K. A. Hummel, and F. Legendre, “WLAN-opp:
Ad-hoc-less opportunistic networking on smartphones,” Ad Hoc Netw.,
vol. 25, pp. 346-358, Feb. 2015.

Y. Wang, L. Wei, Q. Jin, and J. Ma, “Alljoyn based direct proximity service
development: Overview and prototype,” in Proc. IEEE 17th Int. Conf.
Comput. Sci. Eng., Dec. 2014, pp. 634-641.

H. Lokhandwala, S. M. Kala, and B. R. Tamma, “Min-O-mee: A proximity
based network application leveraging the AllJoyn framework,” in Proc. Int.
Conf. Comput. Netw. Commun. (CoCoNet), Dec. 2015, pp. 613-619.

S. M. Kala, V. Sathya, S. S. Magdum, T. V. K. Buyakar, H. Lokhand-
wala, and B. R. Tamma, “Designing infrastructure-less disaster networks
by leveraging the AllJoyn framework,” in Proc. 20th Int. Conf. Distrib.
Comput. Netw., Jan. 2019, pp. 417-420.

VOLUME 8, 2020

F. Beierle, S. Egger: MobRec—Mobile Platform for Decentralized Recommender Systems IEEEACC@SS

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva, “Towards a
middleware for mobile edge-cloud applications,” in Proc. 2nd Workshop
Middleware Edge Clouds Cloudlets (MECC), 2017.

F. Beierle, K. Grunert, S. Gondor, and A. Kupper, ““Privacy-aware social
music playlist generation,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 5650-5656.

J. Froehlich, M. Y. Chen, 1. E. Smith, and F. Potter, ““Voting with your
feet: An investigative study of the relationship between place visit behavior
and preference,” in UbiComp 2006: Ubiquitous Computing (Lecture Notes
in Computer Science), P. Dourish and A. Friday, Eds. Berlin, Germany:
Springer, 2006, pp. 333-350.

T. Eichinger, F. Beierle, R. Papke, L. Rebscher, H. C. Tran, and
M. Trzeciak, “On gossip-based information dissemination in pervasive
recommender systems,” in Proc. 13th ACM Conf. Recommender Syst.,
Sep. 2019, pp. 442-446.

D. M. Marvin, “Occupational propinquity as a factor in marriage
selection,” Quart. Publications Amer. Stat. Assoc., vol. 16, no. 123,
pp. 131-150, Sep. 1918.

L. Festinger, S. Schachter, and K. Back, “The spatial ecology of group
formation,” in Social Pressure in Informal Groups. New York, NY, USA:
Harper, 1950, pp. 141-161.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. 20th Int. Conf. Artif. Intell. Statist. (Proceedings of
Machine Learning Research), vol. 54, A. Singh and J. Zhu, Eds. PMLR,
2017, pp. 1273-1282.

A. Crossen, J. Budzik, and K. J. Hammond, “Flytrap: intelligent group
music recommendation,” in Proc. 7th Int. Conf. Intell. User Interfaces,
2002, pp. 184-185.

B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl,
“Movielens unplugged: Experiences with a recommender system on four
mobile devices,” in People and Computers XVII-Designing for Society,
E. O’Neill, P. Palanque, and P. Johnson, Eds. London, U.K.: Springer,
2004, pp. 263-279.

F. Beierle, V. T. Tran, M. Allemand, P. Neff, W. Schlee, T. Probst,
J. Zimmermann, and R. Pryss, “What data are smartphone users willing to
share with researchers?”” J. Ambient Intell. Humanized Comput., vol. 11,
no. 6, pp. 2277-2289, Jun. 2020.

VOLUME 8, 2020

[58] F. Beierle, T. Probst, M. Allemand, J. Zimmermann, R. Pryss, P. Neff,
W. Schlee, S. Stieger, and S. Budimir, “Frequency and duration of daily
smartphone usage in relation to personality traits,” Digit. Psychol., vol. 1,
no. 1, pp. 20-28, Jun. 2020.

FELIX BEIERLE (Member, IEEE) received the
M.A. degree in media studies and American stud-
ies from the University of Marburg in 2009,
the M.Sc. degree in computer science from the
University of Hagen in 2014, and the Ph.D. degree
in computer science from Technische Universitét
Berlin in 2020.

During his studies, he worked as a Software
Engineer with Capgemini. He is currently a Post-
doctoral Researcher with the Service-Centric Net-
working group, Technische Universitit Berlin, and the Telekom Innovation
Laboratories, Berlin, Germany. His research interests include ubiquitous
computing, social networking, recommender systems, and mHealth.

SIMONE EGGER received the B.Sc. degree in
computer science and media from the Technis-
che Hochschule Niirnberg in 2015 and the M.Sc.
degree in computer science from Technische Uni-
versitét Berlin, Berlin, Germany, in 2020.

During her studies, she worked as a Mobile
App Developer in an agency for cross-platform
app development. She is currently with the
Service-centric Networking, Telekom Innova-
tion Laboratories, Technische Universitit Berlin,
Berlin, and an IT Consultant with Netlight Consulting, where she is involved
in different client projects to deliver solutions, where IT is business critical.

185329

