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Abstract: Operators in complex environments are often supported by 

alarm systems that indicate when to shift attention to certain tasks. As 

alarms are not perfectly reliable, operators have to select appropriate 

strategies of attention allocation to compensate for unreliability and to 

maintain overall performance. This study explores how humans adapt to 

differing alarm reliabilities. Within a multi-task simulation consisting of a 

monitoring task and two other concurrent tasks, participants were assigned 

to one of five groups. In the manual control group none of the tasks was 

supported by an alarm system, whereas the four experimental groups were 

supported in the monitoring task by a miss-prone alarm system differing in 

reliability, i.e. 68.75%, 75%, 87.5%, 93.75%. Compared to the manual 

control group, all experimental groups benefited from the support by 

alarms, with best performance for the highest reliability condition. 

However, for the lowest reliability group the benefit was associated with 

an increased attentional effort, a more demanding attention allocation 

strategy, and a declined relative performance in a concurrent task. Results 

are discussed in the context of recent automation research. 
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1. Introduction 

1.1 Alarm systems 

Alarm systems represent a very basic form of automation, typically implemented to 

gather and analyse information on a certain task in order to inform a human operator 

about critical states or events, and to support the operator’s attention allocation and 

decision-making. According to Parasuraman et al. (2000), this kind of automation 

represents the first two stages of their framework model, i.e. automation of information 

acquisition and information analysis. Information acquisition is automated when an 

alarm system monitors a single parameter and alerts the operator when critical 

thresholds are exceeded. If the alarm system is more complex, i.e. if it integrates 

different variables to detect a possible hazard, it involves both, automation of 

information acquisition and analysis (Pritchett, 2001). The common characteristic of 

these two types of information automation is that only cognitive functions related to the 

sensory perception and evaluation of environmental information are delegated to the 

automation whereas processes of decision-making and response selection as well as 

response execution are still left to the human (stages 3 and 4, Parasuraman et al., 2000). 

Binary alarm systems are a stereotypical realisation of this widespread 

technology. The objective of these alarm systems is to support complex supervisory 

control tasks of operators. Typically, they are implemented in domains like aviation or 

the process industry where the monitoring of underlying system states and process 

information constitutes just one of several tasks that have to be performed by operators 

at the same time. The support provided by alarm systems is mainly enabled by the 
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attention-grabbing properties of alarms which relieve operators from continuous 

monitoring of a given process while still staying in the loop as alerts inform them when 

to shift attention to a critical system state (Pritchett, 2001). 

Benefits of this type of automation can be described in terms of more efficient 

task management and prioritisation, as well as reduced operator workload. This in turn 

leads to a better performance in the task and improved performance in concurrent tasks 

as operators gain more spare capacities, which can be re-allocated (e.g. Bustamante et 

al., 2004; Meyer and Bitan, 2002). 

However, the proposed benefit of this kind of automation can be off-set when 

alarm systems do not function properly. The reason for such alarm failures can be found 

in imperfect sensors and algorithms as well as in a noisy and uncertain world that 

cannot be interpreted distinctively by the alarm system. Generally, the performance of 

alarm systems can be described in the framework of signal detection theory (Green and 

Swets, 1966; Swets, 1964). Following this framework, there are two different errors that 

can occur and have to be differentiated dependent on the response criterion of the 

system. First, an alarm system can be miss-prone, i.e., the alarm system can fail to alert 

the operator by missing critical events. Second, an alarm system can be false-alarm 

prone. This is the case if it alerts an operator too often as not every alert corresponds to 

a critical event (Green and Swets, 1966; Swets, 1964). Given these possible failures, 

operators’ responses to alarms always imply a decision under uncertainty. This decision 

reflects their assessment of how much they can rely on the alarm function. 

1.2 Reliance vs. compliance 

According to Meyer (2001, 2004), the explicit distinction between the two kinds of 

unreliability in human-alarm interaction is important because of their exclusive 
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behavioural consequences on the human part. False alarms may lead to delayed 

responses towards an alarm as operators know from experience that many of the alarms 

provided by the system do not correspond to actual malfunction (Getty et al., 1995). In 

extreme cases, i.e. in cases of high frequencies of false alarms, operators even refuse to 

respond to an alarm at all (Breznitz, 1984). Misses on the other hand affect operators’ 

monitoring strategies in non-alarm periods. The more critical events are missed by the 

alarm system, the more operators must shift attention to the alarm-supported task and 

the raw data to compensate for this unreliability. 

Meyer (2001, 2004) therefore characterises operators’ behaviour as dependent 

on the alarm systems’ state, i.e. if an alarm is present or not. In this context, compliance 

refers to operators’ response to an alert that indicates a malfunction of the system and is 

mainly affected by the number of false-alarms emitted by a system. In contrast, reliance 

describes operators’ tendency to rely on the alarm system when it indicates that the 

monitored process runs properly and the operators accordingly do not have to take 

evasive action. This latter behavioural tendency represents the major focus of the 

present paper and shall be addressed in some more detail in the following. 

1.3 Operators’ adaptation to imperfect alarm systems 

According to Lee and See (2004), one of the most important perceivable characteristics 

for the calibration of reliance on automation (like alarm systems) is the system’s 

reliability. With respect to miss-prone alarm systems, reliability can be described as the 

percentage of critical events that are correctly indicated by the alarm system. The higher 

the alarm system’s reliability in this respect, the more operators can rely on the alarm 

and the less they are required to monitor the underlying data by themselves. In contrast, 

when reliability is low and the occurrence of misses cannot be excluded, operators have 
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to monitor relevant process data more frequently in order to compensate for the alarm 

system’s imperfection and to keep overall monitoring performance high.  

Calibration of reliance and compliance therefore can be considered as the result 

of an adaptive process which develops over time in interaction with an automated 

system, dependent on the user’s experience with the automation’s reliability (Lee and 

See, 2004; Parasuraman and Manzey, 2010).  

How and to what extent operators adjust their own monitoring behaviour in case 

of the availability of (imperfect) alarm systems or other decision support has been 

addressed in several studies (e.g. Parasuraman et al., 1993; Wickens and Dixon, 2007). 

However, the results are mixed and provide a somewhat inconsistent pattern of effects. 

For example, Bailey and Scerbo (2007) examined operators’ adaptation to a highly 

reliable support system. In three sessions, each lasting approximately 100 minutes, 

participants had to work on a manually controlled flight task while monitoring several 

simulated aircraft displays for failures. The monitoring tasks were supported by an 

alarm system that automatically indicated and resolved critical system states. Results 

indicated that participants’ monitoring of the supported task decreased as a function of 

increasing system reliability, which was set to 87%, 98% and 99.7%, respectively. 

Participants who were supported by a highly reliable but still not perfect alarm system 

did detect fewer automation misses and showed increased response latencies to critical 

events when not alerted by the system, compared to participants who worked with an 

alarm system with lower reliability. Time-on-task had no effect on these results, i.e. 

even participants with more system experience and supported by a highly reliable alarm 

system could not appropriately adapt to automation’s imperfection. These findings 

supported earlier results by Molloy and Parasuraman (1996) who also reported degraded 

monitoring performance in terms of less miss detection when participants interacted 
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with a highly reliable alarm system. However, they are in contrast to a number of other 

studies which suggest that operators indeed are very well capable of adapting their own 

monitoring behaviour to changing reliability levels, suggesting nearly optimum 

calibration of their reliance on automation reliability (e.g. Parasuraman et al., 1993; 

Sharma, 1999; Singh et al., 2005; Singh et al., 1997; Wiegmann et al., 2001). 

In most of these studies however, the evaluation of monitoring performance was 

solely based on operator’s performance (Bailey and Scerbo, 2007; Parasuraman et al., 

1993; Wiegmann et al., 2001). This does not seem to be appropriate as the concept of an 

automated assistance or alarm system is to support the operator and to resume parts of 

the task; i.e. the task is performed jointly. As a consequence it is considered important 

to always respect the joint human-automation performance while evaluating overall 

performance benefits or costs associated with this sort of automated support. 

In accordance with this approach, Wickens and Dixon (2007) conducted a 

meta-analysis consisting of 22 studies with varying reliabilities. In contrast to most 

interpretations of the aforementioned research, they found a positive linear relation 

between automation’s reliability and the joint human-automation performance. That is, 

even though operators may have tended to miss more critical events when working with 

alarm systems of high reliability compared to systems with lower reliability, the overall 

number of jointly detected critical events was still higher with highly reliable systems 

than with lower ones. However, below an alarm system’s reliability of 70%, 

accompanied by a 95% confidence interval, which brackets 65% and 75%, this 

compensation was associated with disproportional effort, and joint performance even 

got worse than working with no automation at all. Thus, compensation for unreliability 

seems to be possible to a certain level only. 
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This finding is supported by several other studies like, for example, a series of 

studies conducted by Dixon et al. (e. g. Dixon et al., 2004; Dixon et al., 2007; Dixon 

and Wickens, 2006).  

In these studies, Dixon et al. (e. g. Dixon et al., 2004; Dixon et al., 2007; Dixon 

and Wickens, 2006) compared different levels of reliability of an alarm system 

supporting monitoring performance in a multi-task environment. They also found 

certain cost effects on concurrent task performance for alarm system reliabilities at least 

below 70%. When imperfect alarm reliability was realised by an increased number of 

misses, operators re-allocated their attention to the alarm-supported task to such extent 

that a high performance level in the alarm-supported task was maintained. However, 

concurrent task performance even dropped below the performance of a manual control 

group without automation support. This drop of performance was explained by a sort of 

overcompensation effect. The low reliability of the alarm system led to such a decrease 

in reliance on alarms that participants started to shift more attention than necessary to 

the alarm-supported task in order to compensate for the imperfection of their system.  

Finally, the assumption that operator’s adaptation to imperfect alarm systems 

might not be perfect - particularly for low reliability systems - is also supported by a 

study conducted by Wickens et al. (2005). In contrast to the aforementioned studies, 

Wickens et al. (2005) did not just evaluate possible costs of imperfect reliability on the 

performance level but also used eye-tracking data to directly evaluate the impact of 

different reliabilities on visual attention allocation. This additional evaluation level, i.e. 

eye-tracking data for attention allocation, complies with Moray’s and Inagaki’s (2000) 

assertion to evaluate operators’ performance not only by fault detection but first and 

foremost by an analysis of their attention allocation strategies. Participants were 

required to work on a multi-task scenario based on demands of unmanned air vehicle 
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(UAV) control and several UAV-mission-related tasks that had to be performed 

concurrently. One of these latter tasks was supported by a binary auditory alarm system 

that was either perfectly reliable, 60% reliable in terms of misses (miss-prone) or 60% 

reliable in terms of false alarms (false-alarm prone). Additionally, these groups were 

compared to a baseline condition in which no automation support for any task was 

available. Most interesting to the current study was the result that working with the 

miss-prone automation removed visual attention from the concurrent tasks to the 

alarm-supported task. In the attempt to maintain adequate performance, participants 

drew even more attention to the alarm-supported task than in the baseline condition 

without automation support. Yet, even with this strategy, performance in the 

alarm-supported task dropped below the baseline condition level. 

Summarizing the scope of this research it can be assumed that human operators 

adapt their behaviour to the characteristics of the automation they are working with. 

However, there is evidence that this adaptation might not always be appropriate. Studies 

focussing on human monitoring performance alone suggest that particularly highly 

reliable alarm systems might lead to miscalibrations of behaviour in terms of an 

inappropriate withdrawal of attention from the alarm-supported tasks, and an elevated 

risk of missing critical events. Studies focussing on joint human-system performance 

specifically point to issues related to low reliable systems (i.e. reliability < .70) which 

might reduce reliance levels to an extent that it becomes even more detrimental for 

concurrent task performance than working without any automation support.  

However, there are two common drawbacks of most of the studies conducted 

thus far. The first one concerns the relatively extreme levels of automation reliability 

that were usually compared in those studies, and thus failed to describe the 

characteristics of adaptation across a whole range of reliability levels. Second, most 
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studies that explicitly varied reliability only concentrated on the state manifestation of 

reliability effects on human performance, hence excluding the adaptation process itself 

(some exceptions are Parasuraman et al.,1993 or Bailey and Scerbo, 2007). Although, 

researchers in the early 90s already argued that system experience has substantial 

impact on how operators interact with and monitor automation (e.g. Lee and Moray, 

1992; Muir, 1987, 1994), only few studies have picked up this claim and focused on 

reliance development since then. What is known to date is that the adaptation to 

automation’s characteristics seems to proceed fast, and that already single automation 

failures can have a detrimental impact on users’ trust and behaviour (e.g. Bahner, 

Hüper, Manzey, 2008; Lee and See, 2004; Parasuraman and Manzey, 2010; Manzey, 

Reichenbach, Onnasch, 2012). Beyond that, only little is known about how these effects 

develop dependent on different reliability levels, to what extent they are reflected in 

changes of monitoring strategies, and what the performance consequences are in 

multi-task environments. 

Based on these findings, the goal of the current study was to gain further insight 

into possible adaptation strategies to alarm systems with respect to different levels of 

alarm reliability. In contrast to numerous other studies that have concentrated on false 

alarm-prone automation (e.g. Bliss and Dunn, 2000; Bliss et al., 1995; Lees and Lee, 

2007; Wickens et al., 2009), the focus of our study was on miss-prone alarm systems. 

Even though this kind of error seems to occur less often because designers tend to set 

sensor thresholds at a very low level (engineering fail safe approach; Swets, 1992), the 

consequences of missing critical events in safety-related domains are usually more 

severe than consequences of false alarms. For this reason, it was of special interest if 

and how operators would compensate for this kind of diagnostic failure. 
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The task used for the experiment was a multi-task simulation, including three 

different subtasks. One of these tasks involved a system monitoring task where 

participants had to monitor different engine gauges for possible failures with or without 

support of a binary visual alarm system of different reliability. To evaluate participants’ 

monitoring effectiveness, we considered the joint human-automation performance as 

well as participants’ performance in concurrent tasks. In addition, eye-tracking analyses 

were performed in order to directly assess the impact of alarm system’s reliability on 

participants’ attention allocation. By separate analyses of eye-tracking data for periods 

where alarms were emitted vs. non-alarm periods it was further possible to distinguish 

between effects of alarm reliability on the level of participant’s reliance and 

compliance. 

 

For the impact of alarm reliability on performance we hypothesised:  

(1) There is an automation benefit in the alarm-supported task in terms of a 

superior joint performance of human and alarm system compared to no automation 

support at all.  

(2) Automation benefits in terms of a superior joint performance of human and 

alarm system compared to no automation support at all are positively related to the 

alarm system’s reliability (Wickens and Dixon, 2007).  

(3) Concurrent task performance benefits from highly reliable automation 

support compared to the manual control condition. However, these benefits decrease 

with decreasing alarm reliability over time because participants start to reallocate 

attention to the alarm-supported task to compensate for automation’s imperfection.  

In extreme cases, i.e. interacting with an automation with a reliability below the 

critical cut-off of 70%, this adaptation of attentional reallocation should even lead to 
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cost effects in terms of a degraded performance compared to working with no 

automation support at all (Dixon et al., 2007; Dixon and Wickens; 2006; Rovira et al., 

2007; Wickens and Dixon, 2007; Wickens et al., 2005).  

 

For participants’ visual attention allocation, operationalised by eye-tracking 

measures, we expected:  

(4) Participants supported by an alarm system of sufficient reliability invest less 

attentional resources in system monitoring compared to working with no automation 

support.  

(5) Participants adapt their own monitoring of engine gauges to the alarm 

systems’ reliability over time.  

Participants working together with relatively reliable automation support should 

decrease their own monitoring with growing system experience whereas participants 

supported by an unreliable automation should increase monitoring of the underlying 

data (engine gauges).  

(6) In interaction with alarm reliability below 70% participants’ attention 

allocation is not distinguishable from attention allocation when working manually on 

this task as compensation for unreliability becomes inefficient (Wickens et al., 2005).  

(7) Because we operationalised reliability only by misses of the alarm system, 

differences in participants’ attention allocation primarily emerge during non-alarm 

periods, reflecting effects on participants’ reliance.  

No or only little differences were expected for visual attention effects in direct 

response to alarms, which would reflect the level of compliance and which was 

expected to be high for systems that did not commit false alarms. 
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2. Method 

2.1 Participants 

The number of participants was defined based on a power analysis (GPower 3.1, for 

details see e.g. Buchner et al., 1997). A total of 65 students from the faculty of 

mechanical engineering and transport systems (18 female, 47 male) ranging in age from 

19 to 32 (M = 23.6, SD = 2.3) participated in partial fulfilment of course requirements. 

None of the participants had prior experience with the flight simulation task used in the 

study. Participation was voluntary (other alternatives for fulfilment of course 

requirements were available) and could be cancelled anytime. 

2.2 Task and apparatus 

As experimental task the most recent version of the Multi-Attribute Task Battery 

(MATB; Miller, 2010) was used. It was directly based on the original version developed 

by Comstock and Arnegard (1992) which was used in previous research (e.g. 

Parasuraman et al., 1993). All main functionalities including the interface corresponded 

to the original version. Only the programming environment has been changed (MatLab 

instead of QBasic) which made it easier to implement experimental modifications.  

The MATB is a multi-task flight simulation consisting of a two dimensional 

compensatory tracking, engine-system monitoring, fuel resource management, 

communications, and scheduling. In the present study, only the compensatory tracking, 

the resource management, and the system monitoring were implemented and had to be 

performed concurrently. The user interface of the MATB used in the present study is 

shown in Figure 1. 
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Figure 1. MATB as used in the current study with the compensatory tracking in the upper middle 

position, the resource management beneath and the system monitoring in the upper left display 

corner. 

 

In the two-dimensional compensatory tracking task participants are required to 

keep a randomly moving cursor in the centre target position by applying appropriate 

control inputs via joystick. In the resource management task participants must 

compensate for fuel depletion by pumping fuel from four supply tanks into two main 

tanks.  

The system monitoring task was most important for the current research. It 

consists of four vertical engine gauges with moving pointers that participants must 

monitor for abnormal values that occur randomly. As long as all engines function 

properly, the pointers fluctuate by chance within a fixed range around the centre value 

of the gauges. However, in case of a malfunction the pointer of the gauge for the 

affected engine suddenly shifts upwards or downwards by two gauge units and starts to 
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fluctuate around this new position. These deviations must be detected by participants 

and reset by a corresponding key press. If a malfunction is not detected within 10 

seconds the gauge resets automatically and the event is logged as an event missed by the 

participant. 

Dependent on the task configuration, this system monitoring task has to be 

performed manually or with support of a binary master alarm system. In the latter case, 

a visual red alert appears above the gauges whenever the alarm system detects a 

parameter deviating from its nominal value. Nevertheless, the identification of the 

affected gauge and the corresponding reset of the parameter still have to be performed 

manually by participant. According to the stages and levels framework of automation 

proposed by Parasuraman et al. (2000), this type of alarm system can be classified as a 

stage 1 automation (information acquisition).  

The MATB was presented in front of the participant on a 20 inch monitor that 

was equipped with a remote eye-tracking system (RED system, SensoryMotoric 

Instruments, Germany). This latter system enabled to sample gaze movements during 

task performance with a sampling rate of 120 Hz. Based on these data, gaze fixations in 

different areas of interest (AOI, see definition below) were automatically recorded.  

2.3 Design 

The study used a two factorial design. The first factor (Group) was defined as a 

between-subject factor and consisted of four experimental groups and one manual 

control group. The four experimental groups differed with respect to the reliability of 

the alarm system participants worked with in the monitoring task. The alarm reliabilities 

were set to 68.75%, 75%, 87.5%, and 93.75% by varying the number of critical signals 

that were missed by the alarm system. The two lowest reliability levels (68.75% and 



15 

 

75%) were chosen in reference to the result of the meta-analysis of Wickens and Dixon 

(2007) which suggests that a reliability level around .70 represents an important cut-off 

value which needs to be exceeded before automation support might become beneficial 

for joint human-system performance compared to conditions without automation 

support. The two highest reliability levels were realised to compare the results to 

findings from previous studies and to include reliability levels quite close to realistic 

scenarios (Bagheri and Jamieson, 2004; Parasuraman et al., 1993). In the manual 

control group there was no automation support at all, i.e. participants had to detect all 

malfunctions reflected by parameter deviations in one of the four gauges without the 

support of an alarm system.  

The second factor (Block) was defined as a within-subject factor and was 

included to gain further insight on how participants’ adapt their attention and 

performance over time in response to the alarm system’s reliability they were working 

with. Every participant had to perform the three concurrent tasks of the MATB for three 

10-minute blocks. A total of 16 critical events occurred in the monitoring task during 

each block which had to be detected by the alarm system or the participant, 

respectively. The resulting 5 (Group) x 3 (Block) design is shown in Figure 2. 

 

 

Figure 2. 5 (Group) x 3 (Block) study design. 
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A somewhat more complex design was used for supplementary analyses of 

effects of reliability on visual attention allocation in phases where alarms were present 

vs. phases where alarms were not present. The beginning of alarm phases could be 

identified by the visual red alert that appeared to inform participants about an abnormal 

system state. The end of these phases was defined by participants’ appropriate reaction 

to the alarm or, if participants did not react, the maximum time the failure was present, 

i.e. 10 seconds. These supplementary analyses involved the four alarm-supported 

groups as between-subjects factor, the block factor (within-subject) and a third factor 

representing alarm vs. non-alarm periods (within-subject). The resulting 4 (Group) x 3 

(Block) x 2 (Alarm State) design allowed a test of the hypothesis that differences in 

reliability of the alarm system would affect attention reallocation during non-alarm 

periods only, reflecting effects on reliance on the automation but not compliance 

(Hypothesis 7).  

2.4 Dependent measures 

To investigate the impact of the experimental factors on the perceived alarm reliability 

(manipulation check) as well as on performance and visual attention allocation, three 

different categories of dependent measures were sampled and analysed. 

A visual-analogue scale assessed the perceived reliability. Participants provided 

ratings to the question “How reliable was the system you worked with on a scale 

ranging from 0% to 100%.  

Performance measures were defined for all three tasks of the MATB participants 

had to perform concurrently and collected for each 10 minute block separately. For the 

system monitoring task, percentage of detected system failures was defined as the 
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percentage of all engine failures detected correctly by the human operator (control 

condition) or the human and alarm system together (joint performance in the alarm 

conditions).  

For the tracking task as well as the resource management task the root mean 

squared errors (RMSE; Parasuraman et al., 1993; Prinzel et al., 2001; Singh et al., 

1997) were calculated. The RMSE for the tracking task was calculated as a measure of 

mean deviation from the central target position, based on deviation data sampled at an 

interval of 5 seconds. The RMSE for the resource management task was calculated in 

relation to an optimal tank level, which had to be maintained in both main tanks. Fuel 

levels were sampled and RMS errors computed for each 5-second period. 

Visual attention allocation was measured by means of eye-tracking. Specifically, 

the relative fixation time for different pre-defined areas of interest (AOI) was assessed. 

For this purpose, three different AOIs (specified by pixel areas) were defined before the 

experiment started. These AOIs corresponded to the three different tasks participants 

had to perform: compensatory tracking, resource management, and system monitoring 

(see Figure 1). Fixations were defined by a minimum duration of 80 ms and a maximum 

dispersion in this time of 100 pixel. Relative fixation time was defined as the time 

participants fixated an AOI relative to the overall fixation time, i.e. sum of times any 

one of the AOIs was fixated.  

2.5 Procedure 

Following a demographic questionnaire, an instruction on the MATB, and an initial 

calibration of the eye-tracking system, participants were familiarised with performing 

the three different tasks in a 10 minute practice block. They were instructed that all 

three tasks would be of equal importance, and that they should work on all tasks 
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concurrently with equal priority. Afterwards, they were randomly assigned to one of the 

five groups. Participants in the four experimental groups were introduced to the function 

of the alarm system. Specifically, they were told that the alarm system would not be 

perfectly reliable and that therefore, they may not fully rely on it. However, no concrete 

reliability information was provided. Then, the experiment started consisting of three 10 

minute blocks. Prior to each block the eye tracker was re-calibrated. The perceived 

reliability of the alarm system was assessed in the experimental groups after the second 

block. The experiment ended with the debriefing of participants. 

3. Results 

In the following, the results are presented separately for subjective measures, 

performance, and eye-tracking data. The description of results focusses on effects of 

reliability (factor Group) and / or possible interactions with time-on-task (factor Block) 

indicating adaptive processes. 

3.1 Perceived reliability 

A univariate between-subjects ANOVA contrasting the four experimental conditions 

with automation support of different reliability revealed that mean ratings of perceived 

reliability differed between these experimental groups in a meaningful manner (M68.75% 

= 66.77%, M75% = 72.38%, M87.5% = 80.08%, M93.75% = 87.08%), F(3, 51) = 6.11, p < 

.002.  

Further t-tests were performed in order to analyse whether perceived ratings 

differed from the actual reliability. Because no differences were expected, α was 

adapted to a 20% level for these analyses (null-hypothesis testing). Results showed that 

participants in the two highest reliability conditions systematically underestimated the 
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actual reliability (87.5%: t(12) = -3.29, p < .007; 93.75%: t(12) = -3.09, p < .01). No 

differences between actual and perceived reliability were found for the 68.75% and 75% 

reliability condition (68.75%: t(12) = -.48, p = .63; 75%: t(12) = -.52, p = .61). This 

finding is in line with previous research (Wiczorek and Manzey, 2010; Wiegmann et al., 

2001; Wiegmann and Cristina, 2000) indicating a systematic bias of under- and 

overestimation, respectively, for extreme levels of reliability. Nevertheless, the overall 

pattern of results confirms that our manipulation had worked successfully as the 

perceived reliabilities were systematically related to the actual ones and significantly 

differed between the experimental conditions.  

3.2 Performance measures 

3.2.1 Monitoring task 

Performance measures were analysed in two steps according to the different hypotheses. 

The first step addressed the testing of our hypothesis which postulated an alarm-support 

benefit in the monitoring task compared to no alarm-support at all (Hypothesis 1).  

For this purpose, the percentage of detected system failures was analysed with a 

5 (Group) x 3 (Block) ANOVA. The corresponding data, i.e. detection rates for all 

experimental groups and the manual control group across blocks, are shown in Figure 3. 

As expected, there was a clear alarm-support advantage reflected in a higher percentage 

of detected system failures by human and automation together in all alarm-supported 

groups, compared to the manual control group (F(4, 60) = 10.36, p < .001, η2 = .40). 

Averaged across blocks, participants of the control group only detected 73.23% of all 

failures. In contrast, participants in the experimental group with the least reliable alarm 

system already detected 90.70% of all failures, and this number increased systematically 

with increasing reliability of alarms (M75% = 92.46, M87.5% = 93.26, M93.75% = 95.83). 
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This difference between automation-supported groups and the manual control group 

was statistically supported by post hoc analyses using Scheffe' tests. Analyses revealed 

that the manual control group detected significantly less system malfunctions compared 

to any of the alarm-supported groups (pmanual-68.75%< .003; pmanual-75%< .001; pmanual-87.5%< 

.001; pmanual-93.75%< .001). No differences occurred between the alarm-supported groups 

(all p > .05). Additionally, an interaction of reliability with participants’ time-on-task 

was found, Group x Block interaction effect, F(8, 120) = 2.37, p < .03, η2 = .13. 

Whereas all conditions showed an improved performance across blocks, the extent of 

this performance increase was different for the five groups. The largest increase in 

detected system failures over time was observed for the manual control group. In this 

condition, no alarm system support was available. Still, participants had to adapt to the 

underlying system characteristics and get familiar with the error rate in the monitoring 

task to perform adequately. As becomes evident from Figure 3, this form of adaptation 

was comparable to a similar, albeit weaker trend of participants’ behaviour in the group 

working with the least reliable alarm system. Compared to the other conditions with 

alarm support, this group showed the worst performance at the beginning, but 

participants adapted their behaviour to the characteristics of the alarm system over time 

and were able to compensate effectively for its unreliability. However, this latter 

difference between the alarm-supported groups did not become significant in an 

additional 4(Group) x 3(Block) ANOVA, comparing the alarm-supported groups only. 

For this analysis neither the expected effect of Group (F = 1.69), nor a Group x Block 

interaction effect (F = 1.16) emerged (contradicting Hypothesis 2). 
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Figure 3. Effect of alarm reliability on detected system failures - human + alarm system. 

3.2.2 Concurrent tasks 

Following the same statistical approach as for the monitoring task, performance in the 

concurrent tasks was analysed in two steps. We expected that compared to higher 

reliability levels, working with the least reliable alarm system would negatively affect 

concurrent task performance because participants would rely to a lesser extent on the 

proper functioning of the alarm support (Hypothesis 3). More specifically, it was 

expected that concurrent task performance of the 68.75% reliability group would not be 

better than performance in the manual control group, i.e. a condition with no automation 

support at all. 

For concurrent tracking task performance the 5 (Group) x 3 (Block) ANOVA 

revealed a significant Group x Block interaction, F(8, 120) = 3.59, p < .002, η2 = .19. 

Essentially the same pattern of effects was also observed when comparing the 

alarm-supported groups only by a 4 (Group) x 3 (Block) ANOVA, with a significant 

interaction effect of Group x Block, F(6, 96) = 4.98, p < .001, η2 = .23.  

As can be seen in Figure 4, contrary to our expectations, participants in the 

68.75% reliability group started at a very high performance level reflected in a smaller 

mean tracking error than in all other groups (Mmanual = 131.78, M68.75% = 117.58, M75% = 
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136.05, M87.5% = 144.57, M93.75% = 137.76). However, whereas participants of the other 

groups showed a considerable performance improvement over time, mean performance 

of participants in the 68.75% reliability condition declined across the three blocks. This 

eventually led to comparable performance levels for all groups in block #3 (Mmanual = 

124.62, M68.75% = 126.94, M75% = 126.78, M87.5% = 127.58, M93.75% = 129.55). This 

finding provides some indirect support for our hypothesis. In contrast to all other 

alarm-supported groups, participants working with the lowest reliable alarm system 

were only able to protect their performance in the monitoring task across time at the 

expense of compensatory decrements in concurrent task performance.  

 

 

Figure 4. Effect of alarm reliability on performance in the concurrent tracking task (higher 

values represent greater deviations). 

 

For the resource management task neither a main effect of Group nor a Group x 

Block interaction emerged (all F<1.0). Only a Block effect became significant 

independent of whether all groups were considered in a 5(Group) x 3(Block) ANOVA, 

F(1.2, 75.69) = 5.02, p < .03, η2 = .07, or the analysis was only conducted for the four 

experimental groups with alarm support, F(1.5, 73.47) = 4.31, p < .03, η2 = .08. With 
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increasing time-on-task all groups achieved better results reflected in a decreased mean 

RMSE. 

3.3 Visual attention allocation 

3.3.1 Overall monitoring effects for the different AOIs 

Figure 5 illustrates the results for the mean relative fixation times on the three different 

AOIs, i.e. monitoring task (left panel), tracking task (middle panel) and resource 

management task (right panel).  

For the monitoring task, participants in the two highest groups (93.75% & 

87.5%) showed relatively short but stable mean fixation times across blocks. This effect 

was expected because these participants could rely to a high degree on the alarm 

system. Stable mean fixation times across blocks also were found for the 75% reliability 

group, albeit on a somewhat higher level. In clear contrast to these three groups, a 

considerable increase of mean fixation time through blocks was found for both, the 

manual control group as well as the group working with the lowest reliable alarm 

system (Figure 5, left panel). Analysed by a 5 (Group) x 3 (Block) ANOVA these 

findings were statistically supported by a significant Group x Block interaction, F(7.14, 

107.13) = 2.46, p < .03, η2 = .14.  
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Figure 5. Effect of alarm reliability on the relative fixation time; AOI from left to right: monitoring, 

tracking and resource management. 

 

Results for the monitoring task were mirrored in the relative fixation times for 

the tracking task (Figure 5, middle panel). Directly inverse to the findings for the 

monitoring task, the 93.75% and the 87.5% reliability groups had the longest fixation 

times on tracking which only marginally changed over time. For the other groups, a 

considerable decrease of fixation times across blocks was found which was most 

substantial for the 68.75% reliability condition and indicated a successive re-allocation 

of visual attention away from the tracking task over time. The 5(Group) x 3 (Block) 

ANOVA revealed a significant main effect of Group (F(4, 60) = 2.64, p < .05, η2 = .15), 

moderated by a Group x Block interaction effect, F(6.75, 101.29) = 3.62, p < .003, η2 = 

.19.  

Finally, mean relative times of fixation for the resource management task did 

not show a clear pattern of effects. The 5 (Group) x 3 (Block) ANOVA did not reveal a 

main effect of Group (F= 1.55), however, the Group x Block interaction became 

significant, F(7.16, 107.39) = 2.14, p < .05, η2 = .12. As becomes evident from Figure 5 

(right panel), relative fixation times showed a slight increase across blocks for the two 
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conditions with the lowest reliable alarm systems, and a reverse trend for the other three 

groups.   

In summary, the pattern of effects for relative fixation times on the three 

different tasks is in accordance with our hypothesis that alarm reliabilities affected the 

allocation of visual attention. Specifically, the results point to a successive re-allocation 

of attention over time, away from the tracking task to the monitoring task. Re-allocation 

emerged in a very similar way in both, the control condition without automation support 

and the condition with support of the lowest reliable alarm system.   

3.3.2 Specific effects for alarm and non-alarm periods 

As our alarm systems were miss-prone it was expected that they would primarily affect 

the reliance of participants in the alarm systems’ function but not their compliance. 

Accordingly, it was expected that possible effects of alarm reliability on visual attention 

allocation would only emerge during periods when no alarm was present (non-alarm 

periods). During these non-alarm periods participants should allocate more attention to 

the monitoring task, the less they relied on the proper functioning of the alarm system. 

I.e., if participants expected that the alarm system could miss critical system states they 

should reallocate their attention from the other two concurrent tasks to the 

alarm-supported monitoring task. In contrast, no differences were expected for visual 

attention allocation in direct response to alarms which never represented false alarms. 

For the analysis of this presumed effect only the alarm-supported groups were 

considered, as a differentiation of these periods was not possible for the manual control 

group who worked without alarm system. 
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Figure 6 shows mean relative fixation times for all groups across blocks, 

separated for the three tasks (from left to right), and periods with and without alarm 

(upper vs. lower panel).  

Results for the monitoring task revealed that the pattern of effect found in the 

overall analysis reported above, i.e. an increase in relative fixation time across blocks 

only in the control group and the group working with the lowest reliable alarm system, 

was exclusively related to non-alarm periods (Figure 6, upper left panel). In contrast, a 

decrease of mean fixation times across blocks emerged in all groups during alarm 

periods (Figure 6, lower left panel). In the analysis of these data by a 4(Group) x 

3(Block) x 2(Alarm State) ANOVA this was reflected in a significant main effect of 

Alarm State, F(1, 48) = 52.44, p < .001, η2 = .52 , which was moderated by a significant 

Alarm State x Block interaction, F(1.74, 83.81) = 27.86, p < .001, η2 = .36. 

Furthermore, the significant main effect of Alarm State indicated that mean relative 

fixation times for the monitoring task were higher during alarm vs. non-alarm periods, 

i.e. higher when an alarm prompted the participants to visually analyse which of the 

four gauges indicated a failure.  
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Figure 6. Effect of alarm reliability and alarm state (upper panels non-alarm periods, lower panels 

alarm periods) on the relative fixation time; AOI from left to right: monitoring, tracking and 

resource management. 

 

The results for the tracking task, separated for alarm and non-alarm periods, are 

illustrated in the middle panel of Figure 6. Again the effects for non-alarm periods 

equalled the effects reported above for the overall analysis. In these periods the 

participants of the two groups with highest alarm reliability had the longest mean 

fixation times and showed a constant monitoring pattern. In contrast, a continuous 

decrease of relative fixation times was found for participants in the two lower reliability 

conditions (see upper panel). This separation of groups became also evident in alarm 

periods, although in a slightly different pattern (see lower panel). All groups spent 

comparable time looking at the tracking task in block #1. However, with on-going 

adaptation to the reliability of the alarm system, the 93.75% and the 87.5% groups spent 
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more time on this task even when a failure in the monitoring task was present. The two 

groups working with the less reliable alarm systems slightly decreased their monitoring 

time on tracking in alarm periods. The statistical equivalents to these findings are 

presented in Table 1. 

 

Table 1. Results of the three-factorial ANOVA for the AOI Tracking Task. 

 

 

Results for the resource management task again revealed that the pattern of 

effects found in the overall analysis, i.e. an increase in fixation time across blocks for 

the two lowest reliability conditions, and a reverse effect for the other two conditions, 

was exclusively related to non-alarm periods, F(4.70, 75.28) = 2.77, p < .03, η2 = .14 

(Figure 6, upper right panel). Moreover, when an alarm was present, the resource 

management was less fixated than in non-alarm periods, F(1, 48) = 4.39, p < .05, η2 = 

.08; Malarm= 0.205, Mno alarm= 0.222. This separation was enforced with ongoing 

time-on-task, F(2, 96) = 6.48, p < .003, η2 = .11 (Figure 6, right panel). 

In summary, results from the monitoring AOI supported the assumption that the 

attention re-allocation, related to different reliability levels, was only observable in 

non-alarm periods (hypothesis 7). However, for the tracking task the alarm system’s 

reliability not only affected attention allocation in non-alarm periods but also in alarm 
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periods. Eye-tracking data from the AOI resource management revealed a difference 

between participants’ attention allocation in non-alarm and alarm periods but no 

interaction of Alarm State and Group. Therefore, results did not fully support 

Hypothesis 7. 

4. Discussion 

The main objective of this study was to investigate to what extent human operators 

adapted their visual attention allocation and multi-task performance to different 

reliability levels of miss-prone alarm systems.  

First hypotheses (1-3) were stated with regard to effects of different alarm 

reliabilities on performance in both, the alarm-supported task as well as other 

concurrent tasks. Based on previous studies we specifically assumed that participants’ 

performance as well as attentional demands would benefit from an automation support 

that is fairly reliable, i.e. at least 70% (e.g. Dixon et al., 2007; Rovira et al., 2007; 

Wickens et al., 2005). Below this reliability, automation support is not expected to be 

helpful as there is some evidence that a reliability of approximately 70% (accompanied 

by a 95% confidence interval) represents a critical boundary below which manual 

compensation strategies would not be effective any more (e.g. Wickens and Dixon, 

2007). In this case, we supposed at least performance in concurrent tasks to suffer 

because participants would start to re-allocate attention to the automation-supported 

task and monitor the underlying data by themselves to compensate for unreliability. The 

results of the present study support most of these assumptions. 

Considering the results for the performance data first, we found a clear 

automation benefit in the alarm-supported task in terms of joint human-automation 

performance compared to working with no automation support at all supporting 
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Hypothesis 1. This was true for all groups that worked with alarm system support. 

Whereas the manual control group only detected around 70% of engine malfunctions, 

detection rates increased with alarm-support even in the lowest reliability condition up 

to 90%. This effect seemed to be an overall automation benefit as differences between 

the alarm-supported groups did not become significant (contradicting Hypothesis 2). 

Therefore, the automation benefit was only attributable to the difference between 

alarm-supported groups on the one hand and the manual control group on the other. 

This result revealed that all participants in the alarm-supported groups adapted to 

differing reliability levels in a very effective way. This (non-)finding indicated that 

participants’ adaptation was even more successful than we would have assumed based 

on findings by Wickens and Dixon (2007) which showed that higher reliability levels 

still led to significantly improved performance compared to lower reliability levels in 

the automation-supported task. One reason for these deviant findings might be due to 

the operational definition of reliability in our study. Whereas Wickens and Dixon 

(2007) included studies to the meta-analysis that operationalised (un-)reliability by 

misses and/or false alarms, we defined reliability by misses only. According to Meyer 

(2001, 2004) false alarms mainly impact participants’ compliance with the automation. 

As a consequence, false alarms lead to a degraded performance in the 

automation-supported task as participants start to ignore alarms (Meyer, 2001, 2004). 

This could explain why Wickens and Dixon (2007) found performance decrements in 

the automation-supported task when reliability was low. Misses, on the other hand, 

affect participants’ reliance on the alarm system. Because of the frequently missed 

critical states participants start to monitor the underlying data to compensate for the 

alarm system’s unreliability. This adaptation should not and in fact did not affect 

performance in the alarm-supported task. However, following Meyer (2001, 2004), 
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concurrent task performance should be negatively affected by this change of attentional 

focus to the aided task. Therefore, participants’ adaptation of monitoring strategies to 

compensate for the unreliability of the alarm systems was expected to lead to 

differences in concurrent task performance between the different groups.  

This was addressed by our third hypothesis. According to previous studies (e.g. 

Dixon et al., 2007; Dixon and Wickens; 2006; Rovira et al., 2007; Wickens and Dixon, 

2007; Wickens et al., 2005) we expected that, compared to higher reliability levels, 

lower alarm reliabilities should result in significant performance decrements in the 

concurrent tasks because participants’ reliance on the alarms would decline and induce 

a re-allocation of attention. Following Wickens and Dixon (2007), we especially 

assumed that working with an alarm system with a reliability of less than 70% might be 

even more detrimental to performance than working with no automation support at all. 

This assumption was at least indirectly supported by our findings.  

Although concurrent tracking task performance in the 68.75% group was better 

than the one of all other groups in the first block, participants in this group were the 

only ones who could not protect their performance over time but showed a considerable 

decline across blocks. As we only told participants that the alarm system would not be 

perfectly reliable, but gave no precise information, the first block was especially 

important to participants to gain experience with the system and to start to adapt their 

behaviour to the alarm system’s (un)proper functioning. It seems that participants 

working with the least reliable alarm system initially spent more time on the concurrent 

tracking task than on the alarm-supported monitoring task, which resulted in superior 

results compared to the other conditions. However, with increasing experience they 

started to realise the limitation of their alarm system and changed their behaviour 

accordingly by re-allocating their attention away from the tracking task. The other aided 
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groups also started to adapt to the alarm system’s characteristics. Because these alarm 

systems were more reliable, adaptation proceeded the other way, i.e. in favour of the 

concurrent tracking task, as these groups recognised that they could rely more on their 

automation support. These diverging adaptation characteristics of the lowest 

alarm-supported group and conditions with a more reliable alarm-support eventually led 

to comparable performance levels in the last block. 

However, our far-reaching hypothesis that working with the least reliable alarm 

system would impair concurrent task performance even more than working without 

automation support was not supported by the data. This might be related to the fact that, 

contrary to our expectations, the provision of alarm support did not lead to obvious 

benefits in concurrent task performance in any of the alarm-supported groups. That is, 

even in the groups with highly reliable alarm systems, the participants were not able to 

make use of this support in terms of improved concurrent task performance.  

One reason for this finding could be the overall high task load involved in 

performing the MATB. In contrast to, for example, Dixon et al. (2007) or Rovira et al. 

(2007) who have reported automation benefits for concurrent task performance, 

participants had to work on three instead of two concurrent tasks. Additionally, the 

MATB compensatory tracking has high visual attentional demands as it needs 

continuous control inputs since even short interruptions of control lead to great 

deviations from the centre target position. Given this, it might not be too surprising that 

even a reliable alarm support for the monitoring task has not led to better concurrent 

task performance in our study because participants already performed at their 

maximum; the tasks were not sensitive to changes in attention allocation. Yet, this is a 

post-hoc explanation and cannot be fully proved by the present data.  
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The most direct insights in the nature of adaptation to alarm systems of different 

reliability are provided by the effect of alarm reliabilities on participants’ attention 

allocation strategies reflected in the eye-tracking data. These data were collected in 

order to directly capture possible effects of the experimental conditions on allocation of 

visual attention which might help understanding effects on performance. Indeed the 

analyses of eye-tracking data suggest that the effects of alarm support first and foremost 

become evident in their effects on attention allocation (supporting Hypothesis 4).  

As expected, participants in the groups with the highest reliable alarms allocated 

least attention to the monitoring task, followed by the two groups with the less reliable 

alarm systems and the manual control group (supporting Hypothesis 5).  

A comparison of the eye-tracking pattern between the alarm-supported groups 

and the manual control group further revealed, that the participants of the 68.75% group 

allocated as much visual attention to the supported task as the manual control group, i.e. 

behaved as if no automation support were available (supporting Hypothesis 6). It 

reveals that participants working with the least reliable alarm system were able to 

compensate for the imperfection of their alarm system on a performance level but only 

at the expense of a highly demanding attention allocation strategy and a reallocation of 

attention away from the concurrent tasks which eventually led to the relative 

performance decline for the tracking. These results are in line with previous findings by 

Wickens et al. (2005) who also showed that miss-prone automation led to a reallocation 

of visual attention away from other tasks to the raw data in order to compensate for 

unreliability. Furthermore, our findings provide some more support for the assumption 

of a critical reliability cut-off around 70% below which automation support cannot be 

considered as helpful anymore (Wickens and Dixon, 2007). Albeit we could not entirely 

confirm a detrimental effect of reliability below 70% on the performance level, the costs 
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for compensation became directly evident when considering the distribution of visual 

attention. Although the least reliable alarm system still detected 68.75% of all system 

malfunctions it obviously was not considered to be of much help and did not reduce 

participants’ attentional demands of this task compared to performing it with no 

automation support at all. 

Our last hypothesis (Hypothesis 7) was based on Meyer’s assumption (2001, 

2004), that misses of an alarm system mainly affect participants’ attention allocation in 

non-alarm periods and have no effect on their visual attention in alarm periods. 

Regarding the non-alarm periods, this assumption was completely confirmed. The 

effects found in the overall analysis exactly mirrored participants’ attention allocation in 

non-alarm periods, i.e. the overall effects were mainly due to these periods. This was 

true for attention allocation on all three concurrent tasks. We could confirm that 

working with the least reliable aid in terms of misses led to a reallocation of attention 

away from the tracking and resource management to the alarm-supported monitoring 

task in the attempt to compensate for unreliability and to maintain performance on this 

task. In contrast, groups working with more reliable alarm systems maintained the 

initial level of attention to the supported task and overall focused more on the resource 

management and tracking. 

In alarm periods attention allocation to the supported monitoring task did not 

seem to be much affected by reliability of the alarm systems. All groups slightly 

reduced their attention to this task over time but no impact of different reliability levels 

became evident. This was in line with our assumption, which assumed that only reliance 

on automation would be affected by a miss-prone alarm system and not compliance 

(Meyer, 2004). 
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In conclusion, the current study provides further insights in the adaptation 

strategies of humans in relation to automation’s reliability, one of the most important 

perceivable characteristics of automation (Lee and See, 2004). The additional value 

compared to previous studies originates from the level of detail in design and analysis 

as most of the previous studies only compared two very extreme reliability levels (e.g. 

Dixon et al., 2007, 2006; Rovira et al., 2007). Furthermore, the analysis of eye-tracking 

data provided more detailed insights into the impact of alarm systems on attention 

allocation as compared to the consideration of just performance measures in previous 

studies. 

With regard to practical implications, results are certainly not applicable to high 

risk work domains like aviation where only alarm systems are used that are optimized in 

reliability with respect to avoidance of misses and, thus, if ever typically are false-alarm 

prone. But in other domains like quality control inspection in the manufacturing 

industry comparable reliability levels even in terms of miss-prone alerting systems, can 

be found. In this case the finding of a critical reliability cut-off should be taken into 

account when considering the implementation of such systems. Even though 

consequences might not be apparent in the beginning, the cognitive effort of operators 

needed to compensate for the imperfect reliability of such systems could lead to severe 

problems in the long term, like complete performance breakdowns in the 

automation-supported task or an overall performance decrease when operators are 

responsible for multiple concurrent tasks. 

5. Limitations 

Regarding possible limitations of the current study, two aspects should be 

discussed which might limit the generalisation of results. First, given the fact that 
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participants in the current study only had to work for 30 minutes on the tasks, the results 

could possibly underestimate some of the observed effects. Especially, the 

compensation strategies for the alarm’s unreliability in order to maintain a high 

monitoring performance may be difficult to maintain over prolonged periods of time. 

Ultimately, in terms of cognitive exhaustion, this overexertion might even lead to a 

complete performance breakdown (Hockey, 1997). Therefore, more research, especially 

longitudinal studies addressing long-term effects of imperfect alarm-support on 

operators’ behavioural adaptation, is needed.  

A second possible limitation concerns the lack of feedback when participants 

failed to detect a critical event they were not alerted for by the alarm system. In the 

present study, critical events were reset automatically if a malfunction remained 

undiscovered for 10 seconds; no consequences became apparent in this case. However, 

feedback is critically important for operators to get a clear picture of the level of 

reliability of a system and to adapt their behaviour accordingly. In a lot of systems, 

when feedback is not provided or evident, the operator does not know that s/he has 

failed to detect an alarm system’s failure. In real life, misses committed by alarm 

systems often are linked to severe consequences, albeit these might be delayed 

somewhat in time (e.g. an overheating of an engine that only after some time leads to a 

breakdown or engine fire). Nonetheless, in the current study participants still adapted to 

the alarm systems’ reliabilities even without feedback as became evident in the 

increasing performance in the monitoring task. 
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