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Summary   

Plectin is a large and versatile cytoskeletal linker and member of the plakin protein family. 

Plakins share a conserved region called the plakin domain located near their N-terminus. 

We have determined the crystal structure of an N-terminal fragment of the plakin domain 

of plectin to 2.05Å resolution. This region is adjacent to the actin binding domain and is 

required for efficient binding to the integrin α6β4 in hemidesmosomes. The structure is 

formed by two spectrin repeats connected by an α -helix that spans these two repeats. 

While the first repeat is very similar to other known structures, the second repeat is 

structurally different with a hydrophobic core, narrower than that in canonical spectrin 

repeats. Sequence analysis of the plakin domain revealed the presence of up to nine 

consecutive spectrin repeats organized in an array of tandem modules, and a Src-homology 

3 domain inserted in the central spectrin repeat. The structure of the plakin domain is 

reminiscent of the modular organization of members of the spectrin family. The 

architecture of the plakin domain suggests that it forms an elongated and flexible structure, 

and provides a novel molecular explanation for the contribution of plectin and other 

plakins to the elasticity and stability of tissues subjected to mechanical stress, such as the 

skin and striated muscle. 

  

 

 

Keywords: cytoskeleton; hemidesmosome; epithelium; X-ray crystallography 

 

Abbreviations used: ABD, actin binding domain; FnIII, fibronectin type III; BPAG1, 

bullous pemphigoid antigen 1; MACF, microtubule actin crosslinking factor; rmsd, root 

mean square deviation; SH3, Src-homology 3; SR, spectrin repeat.  
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Introduction   

Plectin is a large (~500 kDa) and widely expressed cytoskeletal linker1 that belongs to the 

plakin protein family2. As with other plakins, plectin interconnects filament networks and 

tethers the cytoskeleton to membrane associated structures involved in cell adhesion. In 

epithelial tissues, plectin is mostly localized at the basal cell membrane3 where it is a 

component of hemidesmosomes4, which are specialized structures that mediate anchorage 

of epithelia to the underlying basement membrane by linking the extracellular matrix to the 

intermediate filament system5. In hemidesmosomes, plectin provides a direct link between 

the integrin α6β4 (a laminin receptor) and the cytokeratin network6.  

Plectin has a multidomain structure that is well suited for its crosslinking functions. It 

comprises N- and C-terminal domains that contain multiple protein-protein interaction 

sites, separated by an elongated central rod domain that is predicted to mediate self 

association via coiled-coil interactions. The N-terminal region contains an actin binding 

domain (ABD), which is composed of two calponin homology domains, similar to those 

present in proteins of the spectrin family. In hemidesmosomes, the ABD of plectin binds to 

the first pair of fibronectin type III (FnIII) domains of the integrin β4 cytoplasmic domain7. 

Adjacent to the ABD there is a region of about 1000 residues (the plakin domain) that is 

conserved among the members of the plakin family. The N-terminal region of the plakin 

domain of plectin binds to regions of integrin β4 downstream of the second FnIII domain8. 

The plakin domain also harbors a binding site for the hemidesmosomal transmembrane 

protein BP180 (also known as type XVII collagen)9. The C-terminal region of plectin 

contains six plakin repeat domains and harbors binding sites for intermediate filaments10; 

11.  
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Mutations in the plectin gene result in epidermolysis bullosa simplex (frequently 

associated with muscular dystrophy), which is a severe skin blistering disorder 

characterized by fragility at the level of hemidesmosomes12. Inactivation of the plectin 

gene in mice produces a skin blistering which is postnatally lethal13. The alterations caused 

by defects in the plectin gene in humans and mice illustrate the critical role of plectin in 

maintaining the stability of tissues exposed to strong mechanical stress such as the skin and 

muscle. 

The plakin domain is predicted to have a modular structure made up of α-helices arranged 

in anti-parallel bundles14. Thus, the plakin domain is likely to be flexible, its properties 

being determined by the structure of each module and by the structure of the linkers that 

connect these modules. Indeed, electron microscopy of purified plectin molecules suggests 

that the protein is flexible because the central region adopts many different conformations. 

This flexibility may facilitate a dynamic response of the protein to mechanical stress. The 

recent crystal structure of a protease resistant fragment of the plakin domain of BPAG1e 

was an important breakthrough in our understanding of the structural properties of the 

plakin domain. It has revealed the presence of a tandem pair of spectrin repeats, while a 

second pair of spectrin repeats and a Src-homology 3 (SH3) domain have been identified 

by sequence comparison15. Nevertheless, several essential questions remain unanswered. 

Plectin and other plakins that contain an ABD, such as MACF and the BPAG1 isoforms a, 

b, and n, have an N-terminal extension of the plakin domain that is contiguous to the ABD 

and is not present in other plakins. In plectin, this region acts in a synergistic manner with 

the ABD in binding to β4, and is required for the correct localization of plectin in 

hemidesmosomes. However, the structure of it is not known. Furthermore, in the current 

structural model of the plakin domain, some regions have not been assigned to specific 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 

domains. It is uncertain if the plakin domain contains additional modules and if the linkers 

that connect adjacent modules are disordered and flexible or ordered and inflexible.  

Here, we present the crystal structure of the N-terminal fragment of the plakin domain of 

plectin adjacent to the ABD. This structure is formed by a tandem pair of spectrin repeats 

connected by a α-helical linker. Moreover, we have identified nine spectrin repeats in the 

plakin domain of plectin and provide a model of the structure of the plakin domain that 

accounts for the complete length of this domain. Our results have clear implications for the 

basis of the elastic properties of the plakin domain and its contribution to tissue integrity. 

 

Results and discussion 

Overall structure  

We have crystallized the N-terminal region of the plakin domain of human plectin, i.e. 

residues 300-530 (numbering corresponds to the plectin 1C isoform). In order to improve 

the crystal quality the two Cys residues, 420 and 435, located in this fragment were 

replaced by Ala. The mutant protein showed a reduced nucleation rate resulting in larger 

and better diffracting crystals than the wild type protein. Crystals of the wild type and 

mutant proteins were isomorphic. The crystal structure was determined using multiple 

wavelength anomalous diffraction (MAD) methods from a selenomethionine derivative of 

the C420A/C435A double mutant (Table 1). The structure of the mutant protein was 

refined against data from a native crystal to 2.05 Å resolution to a final Rwork of 21.0% 

and an Rfree of 26.1%. The asymmetric unit contains one molecule and the final model 

includes residues 303-331 and 333-520, 52 solvent molecules, and one molecule of 1,2-

propanediol, for which ordered electron density was observed. The model has excellent 

geometry with main chain torsion angles of all non glycine residues lying in the core 

regions of the Ramachandran plot as defined in MOLEMAN216. The wild type structure 
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was refined against data to 2.3 Å resolution to a final Rwork of 21.6% and an Rfree of 

26.9%; and it contains the same residues as the mutant structure, but only 16 solvent 

molecules. The wild type and mutant structures are almost identical with the exception of 

the mutated residues. The root mean square deviation (rmsd) for all Cα atoms between 

both structures is 0.21 Å, which is similar to the value of the Cruickshank diffraction 

precision index17 for these structures (0.21 Å and 0.16 Å for the wild type and mutant 

proteins respectively). Thus, we refer to the higher resolution structure of the mutant 

protein unless otherwise indicated. 

The structure is formed by two coiled coils, each of them built up of three α -helices 

arranged in a left handed supercoil or helical bundle with up-down-up topology. The 

molecule has an elongated structure with a length of approximately 117 Å and a width of 

about 27 Å (Figure 1). The first bundle extends from Glu303 to Glu419 and contains 

helices A, B, and C, while the second bundle expands from Cys420 to Lys520 and contains 

helices A’, B’, and C’. The sequences of all helices show the heptad pattern characteristic 

of left-handed coiled coils, where positions a and d are preferentially occupied by apolar 

residues that mediate the inter-helical packing and form a hydrophobic core18. Within the 

group of three-helix left-handed coiled coils the plectin bundles most resemble the spectrin 

repeat fold (see below). Therefore we refer to the bundles in our structure as the first (SR1) 

and second (SR2) spectrin repeats of plectin.  

Despite sharing an overall common fold, noticeable differences between SR1 and SR2 are 

observed as expected from the low sequence conservation (9 identical residues). The 

position of helices A and C in SR1 mostly match helices A’ and C’ in SR2 despite 

differences in length, but there are significant deviations between helices B and B’ (Figure 

2a). Pro357 causes a discontinuity or kink in helix B, commonly present in other spectrin 

repeats, but not observed in helix B’. As a result B’ runs as a single straight helix that 
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packs against helices A’ and C’ closer than helix B does against helices A and C. The 

different packing of the helices in SR1 and SR2 is favored by the nature of the 

hydrophobic residues mediating the coiled-coil interaction. The core of SR1 contains bulky 

aromatic residues such as Trp321, Phe329, Phe348, Phe351, and Trp397 and it is wider 

than the hydrophobic core of SR2, that in the equivalent positions accommodates residues 

Gln438, Leu446, Ala462, Val465, and Leu508 with smaller side chains (Figure 3). 

Helix A’ is about two turns longer at its C-terminus than helix A, while the helix B’ is 

about two and a half turns shorter at its N-terminus than helix B. As a consequence loops 

AB and A’B’ run in almost opposite directions along the long axis of the molecule. There 

are additional differences between the BC and B’C’ loops. Helix B has a second kink at 

Leu373 that makes the last helical turn, not present in helix B’, capping one end of the 

helical bundle. Pro385 to Tyr388 in the BC loop form a type II β-turn that creates a bulge 

on the side of the repeat necessary to accommodate the additional residues not present in 

the second repeat. 

 

Comparison with other spectrin repeats  

We used the DALI server19 to search the Protein Data Bank for structural homologues of 

the plectin repeats. The structure found to be most similar to the SR1 of plectin is the third 

spectrin repeat of the α -actinin rod20 (PDB code 1QUU) with a Z score of 14.0, rmsd of 

2.0 Å for 114 Cα atoms, and a sequence identity of 18%. Furthermore, spectrin repeat 17 

from brain α-spectrin21 (PDB code 1CUN), repeat 9 of erythroid β-spectrin22 (PDB code 

1S35), repeat 1 of erythroid α-spectrin23 (PDB code 1OWA) and repeat 1 of BPAG115 

(PDB code 2IAK), gave similar DALI Z scores which are significantly higher than those of 

other helical bundles.  
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The DALI search suggested that the SR1 of plectin is structurally closer to canonical 

repeats from proteins of the spectrin family, such as α -actinin, than to the repeats of the 

plakin domain of BPAG1. In order to better understand the structural similarities between 

the plectin SR1 and other spectrin repeats, pairwise structural superpositions were done 

using a common set of 80 Cα  equivalent positions distributed over the three α-helices of 

the domain. The structures of the repeats 1 and 3 of α-actinin24 (PDB entry 1HCI) and 

repeats 15 and 17 of α-spectrin21; 25 (PDB codes 1U5P and 1CUN) had the lowest rmsd 

(1.27 Å, 0.94 Å, 1.08 Å, and 0.93 Å respectively) with respect to the plectin SR1 (figures 

2b, 3). In contrast the first and second repeats of BPAG1 had a rmsd of 1.49 Å and 1.55 Å 

with respect to the SR1 of plectin. The main differences between the SR1 of plectin and 

the spectrin repeats of BPAG1 are located at the N-terminal half of helix B and at the BC 

loop. Helix B is interrupted by a kink that occurs at the same position in the SR1 of plectin 

(see above) and in canonical repeats, such as the SR3 of α-actinin. The SR1 of BPAG1 

also presents a discontinuity in helix B, but it is placed one turn towards the C-terminus of 

the helix with respect to plectin´s SR1, causing a difference in the position of the backbone 

of the N-terminal half of helix B. This kink is not present in the helix B of the SR2 of 

BPAG1. The other major structural difference is the BC loop. The poor sequence 

conservation of this loop between spectrin repeats is the basis of the high conformational 

variability. 

The similarity of the SR1 of plectin with SRs of α-actinin is also at the sequence level. The 

SR1 and SR3 of α-actinin have the highest sequence identity (20% and 18% respectively) 

with the SR1 of plectin, which is significantly higher than the sequence identity of the SR1 

(11%) and SR2 (5%) of the BPAG1 structure. Thus, the first SR of plectin presents more 

similarities with repeats of the spectrin family than with repeats of the plakin domain of 

plakins, both at the level of its primary and tertiary structure. 
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The DALI search with the SR2 of plectin revealed similarity with repeat 17 of brain α-

spectrin21 (PDB entry 1CUN, Z score of 10.8, and rmsd of 2.2 Å for 99 Cα  atoms), repeat 

2 of α -actinin20 (PDB entry 1QUU), repeat 1 of α -spectrin23 (PDB code 1OWA), and 

repeat 2 of BPAG115 (PDB code 2IAK). Based on pairwise superpositions using a common 

set of 66 Cα atoms, the SR17 of α-spectrin (rmsd 1.49 Å) is most similar to the SR2 of 

plectin (Figure 2c). The rmsd between the SR2 of plectin and the first and second repeats 

of BPAG1 are 1.69 Å and 1.98 Å. In contrast, the rmsd between the first and the second 

repeat of plectin is 2.36 Å. The main differences between SR2 and other spectrin repeats 

occur in helix B, which in plectin is packed closer to helices A and C than in other repeats 

(see above). Overall the SR2 of plectin lacks some of the structural features specific of 

canonical spectrin repeats and as a consequence it also resembles other 3-helix bundles 

such as those of Db-STAT and syntaxins. 

The sequences of the spectrin repeats of the BPAG1 structure are 50% identical with the 

equivalent sequence of plectin, suggesting that in plectin this region, which is not present 

in the structure under study, adopts a similar structure as in BPAG1. Thus, the structural 

differences between the spectrin repeats of the two plakins mainly reflect the structural 

diversity within the plakin domain, rather than differences between members of the plakin 

family. In summary, the first and second repeats of plectin are structurally more similar to 

the spectrin repeats of other proteins than to each other and to the BPAG1 repeats, 

suggesting that in plectin these repeats have not arisen from a late duplication event. 

 

Domain-domain organization 

Helices C from SR1 and A’ from SR2 are fused in a continuous inter-repeat helix 18-turns 

long that contains the linker region. The helical structure of the linker is a common feature 

observed in the structures of tandem pairs of spectrin repeats of α -actinin20; 24, α-spectrin21, 
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β-spectrin22; 25 and BPAG1e 26. The linker region is characterized by a discontinuity in the 

heptad pattern; in plectin Leu418 occupies the position d  of the last heptad repeat of helix 

C while Leu421 is assigned to the d position of an incomplete heptad that initiates helix 

A’. 

The first repeat can be approximately superposed onto the second by a 61 Å translation and 

a rotation of about 111º along the long axis of the molecule. The translation that relates 

both repeats is about the length of each single repeat (~64 Å and ~57 Å). Therefore helices 

A and B of SR1 do not overlap helices B’ and C’ of SR2 along the longitudinal axis of the 

molecule. Thus, the repeats are arranged in an extended conformation. The rotation that 

relates both repeats brings the AB loop in the vicinity of the B’C’. Overall the A and B 

helices of SR1 and the B’ and C’ helices of SR2 form a left-handed pseudo-super-helix 

around the long axis of the molecule.  

In order to compare the relative orientation of tandem pairs of spectrin repeats in plectin 

with those of BPAG1 and spectrins, we have superimposed the N-terminal repeat of each 

pair with the SR1 of plectin. Spectrin repeats of the α -actinin rod24 have an extended 

arrangement similar to the plectin SR1-2 structure (Figure 4a). Nevertheless, the relative 

rotation of adjacent repeats along the longitudinal axis in plectin is different from that 

described in α -actinin. The BPAG1 structure15 reveals differences with plectin both in the 

relative rotation of the two repeats along the longitudinal axis and in the distance between 

the repeats along the same axis (Figure 4b). The two repeats of BPAG1 partially overlap 

along the long axis of the molecule in such a way that helix B of SR1 lies on the opposite 

side of the inter-domain linker from helices B and C of SR2. Thus, the BPAG1 structure is 

more tightly compressed along the longitudinal axis of the molecule than the plectin 

structure. In summary, the relative orientation of the first and second repeats of plectin is 
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different from the orientation of any other tandem spectrin repeats, and further illustrates 

the conformational variability of tandem pairs of spectrin repeats. 

 

The plakin domain contains an array of tandem spectrin repeats. 

Based on data from sequence analysis the plakin domain is proposed to contain up to six 

regions termed NN, Z, Y, X, W, and V, each of which build up of α-helices arranged in 

bundles14. The SR2 of plectin approximately corresponds to the NN region, and the two 

repeats of the BPAG1 structure roughly correspond to the Z and Y regions. Therefore, it is 

reasonable to assume that the other predicted helical bundles also adopt the spectrin repeat 

fold. In order to test this hypothesis we have performed a thorough search for spectrin 

repeats in the plakin domain of plectin by using profile hidden Markov model methods27 

(Figure 5a). Our analysis revealed the presence of eight spectrin repeats in the plakin 

domain of plectin, and successfully identified the two spectrin repeats present in the crystal 

structure despite not having included any structural information in our search. Repeats are 

arranged contiguously in the sequence, with exception of a region of about 85 residues 

immediately downstream the fifth repeat. A prediction of the secondary structure of this 

initially unaccounted for region, residues 919-1003, indicates the presence of three α-

helices connected by short loops (Figure 5b). These three predicted α-helices exhibit the 

heptad pattern characteristic of left-handed coiled coil, suggesting that this region adopts a 

spectrin repeat-like fold, with α-helices shorter than in canonical repeats; hence, we named 

this region SR6. The linkers between spectrin repeats of the plakin domain of plectin are 

predicted to be very short; thus helices C and A of adjacent repeats are likely to form a 

contiguous helix as observed in the crystal structure. The only exception is the linker 

between SR2 and SR3, which is ~20 residues long and suggests a more flexible inter-

repeat organization. 
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The SR5 contains an insertion of about 80 residues in the BC loop that corresponds to a 

predicted SH3 domain in BPAG1 and other plakins15. Testing this inserted sequence of 

plectin against the Protein Data Bank using profile-profile alignment and fold recognition 

algorithms (FFAS28) confirmed a strong similarity to SH3 domains (FFAS scores between 

-29.6 and -37.4), which was further supported by a profile search using hidden markov 

models (data not shown). The SH3 domain of plectin showed the highest degree of 

sequence identity, 26%, with the SH3 domain of α-spectrin. Furthermore the localization 

of the SH3 domain of plectin within the fifth spectrin repeat is equivalent to the insertion 

of the SH3 domain of α-spectrin in the BC loop of its ninth spectrin repeat29. The 

resemblance in sequence and structural environment of the SH3 domains of α-spectrin 

with plectin extends the structural similarity to the level of the calponin homology type 

actin binding domain30 and between the spectrin repeats, and reinforces the idea of a 

common ancestral origin of plakins and spectrins. The fact that a Pro-rich sequence, 

823PRHPAHPMR831, is present upstream of the SH3 of plectin (Figure 5c); which 

contains a potential class II SH3 ligand is of interest. The sequential arrangement of a Pro-

rich sequence and a SH3 domain is highly reminiscent of the structure of the Tec family of 

intracellular tyrosine kinases. Intra- and intermolecular interactions between Pro-rich 

sequences and the adjacent SH3 domain regulate the ability of these proteins to engage 

with their respective targets31; 32. Thus, it is seems likely that the Pro-rich region and SH3 

domain of plectin have a regulatory function. 

We further investigated the presence of spectrin repeats in the plakin domain of other 

proteins. Using a profile hidden markov model search we identified in envoplakin, 

periplakin, BPAG1, and MACF1 six spectrin repeats corresponding to the SR3, SR4, SR5, 

SR7, SR8, and SR9 in plectin (Figure 5a). Equivalent spectrin repeats with the exception 

of SR7 were identified in desmoplakin. Comparison of the sequence of the SR6 of plectin 
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with that of other plakins revealed the presence of highly similar regions downstream SR5 

in desmoplakin, BPAG1 and MACF1, that are identical for 32% and 38% to those of 

plectin; thus these plakins also contain the SR6. In contrast envoplakin and periplakin lack 

this SR6 region. Our profile-based search also revealed the presence of a repeat equivalent 

to SR1 in non epithelial isoforms of BPAG1 (such as BPAG1a, BPAG1b, and BPAG1n, 

that share a common N-terminal region that includes the ABD and plakin domain33) and 

MACF1. Given that the SR1 of plectin is structurally most similar to canonical repeats of 

spectrins, and that in plakins it always appears in combination with an ABD of the spectrin 

type, it is likely that the ABD-SR1 pair was simultaneously incorporated into certain 

plakins from an ancestral spectrin34. The region of about 100 residues located immediately 

downstream of SR1 in BPAG1a/b/n and MACF1 are identical for respectively 29% and 

34% to the SR2 of plectin; this is a significant level of similarity and thus a SR1-SR2 

tandem is predicted both in BPAG1a/b/n and MACF1. The SR2 of BPAG1a/b/n and 

MACF1 was not detected in our profile-base search most probably because SR2 is a 

structurally divergent repeat, as we have observed in our crystal structure. The epithelial 

isoform BPAG1e lacks the SR1 region, but it does contain the SR2. The main difference 

between the BPAG1 isoforms and plectin resides in the separation between the SR2 and 

SR3, in plectin the linker region is ~20 residues long, whereas in BPAG1 isoforms it is 

~120 residues long and its C-terminus adopts a loop-like structure26. 

The plakin domain of BPAG1e contains an N-terminal pair of spectrin repeats as shown by 

x-ray crystallography, and a second pair of repeats and a SH3 domain have been predicted 

from sequence analysis26. Our sequence analysis precisely identifies both the N-terminal 

pair of spectrin repeats of the BPAG1e structure, equivalent to plectin’s SR3 and SR4, and 

the predicted second pair of repeats, SR8 and SR9. In addition we have identified in 

BPAG1e another four spectrin repeats (SR2 and SR5-SR7) not detected previously. Our 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

14 

findings extend the previous model of the molecular organization of the plakin domain of 

BPAG126, revealing a continuous tandem array architecture. 

In summary, the plakin domain contains a conserved region built up of seven spectrin 

repeats organized in a tandem array with an SH3 domain inserted between helices B and C 

of one of the central repeats (Figure 6a,b). In addition certain plakins contain an N-terminal 

extension consisting of an additional pair of tandem repeats (SR1-SR2) separated from the 

SR3 by a region of variable length. The structure of the plakin domain is highly 

reminiscent of the modular architecture of members of the spectrin family.  

 

Modular organization and mechanical properties of the plakin domain. 

Based on the dimensions of the structure of the first pair of spectrin repeats and the 

predicted presence of nine tandem spectrin repeats in plectin, the plakin domain is 

estimated to have an elongated rod-like shape with an overall length of about 45 nm, and a 

thickness of about 2.7 nm. Electron microscopy images of plectin either purified35 or as 

part of cell cytoskeletons36 reveal a dumb bell shape with a central region ~200 nm in 

length and 2 to 3 nm thick. The estimated elongated shape of the plakin domain is 

consistent with its localization within the central rope-like structure, predicted to also 

include the rod domain. 

The SR1-SR2 tandem of plectin and other plakins is located adjacent to an ABD, 

suggesting that they may act as a functional unit. For example, both the ABD and the N-

terminal region of the plakin domain of plectin containing the SR1-SR2 tandem harbor 

binding sites for the cytoplasmic domain of integrin β4. Therefore, the orientation relative 

to each other of the ABD and the SR1-SR2 is likely to be a determinant for their conjunct 

function. The SR1 of plectin is separated from the preceding ABD by a short linker, 

residues 290-303, likely to provide flexibility to the way these domains are relatively 
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oriented to each other, while limiting the distance at which they are separated from each 

other. This relative arrangement of the ABD and spectrin repeats arrays is common in 

members of the spectrin family such as α-actinin, β-spectrin, utrophin and dystrophin37 

(Figure 6c).  

The composition of the plakin domain as an array of tandem spectrin repeats has profound 

implications for its function as it dictates flexibility, and extensibility of the domain. The 

elastic properties of tandem spectrin repeats are considered to be essential for the function 

of the proteins that contain such arrays. For example spectrin, whose α  and β subunits are 

paradigms of arrays of tandem repeats, essentially contributes to the stability and elasticity 

of the membrane associated cytoskeleton (e.g., in erythrocytes), a role that relies on the 

inherent flexibility of the arrays of spectrin repeats. At the molecular level two models of 

flexibility of tandem arrays of spectrin repeats have been proposed21: a bending model and 

a conformational rearrangement model. 

In the bending model the inter-repeat linkers are involved acting as hinges that allow 

restricted variations in the way the position of the adjacent repeats are oriented to each 

other with limited structural changes within each repeat. In order to evaluate the possible 

flexibility within the first pair of spectrin repeats of plectin, we have predicted protein 

motions (Figure 7). The main motion involves simultaneous rotation of each spectrin 

repeat in opposite directions along the long axis of the molecule. Two additional 

significant motions were predicted, corresponding to two orthogonal “bending” motions of 

the molecule at the level of the linker region. The expected helical nature of the linkers 

between other tandem spectrin repeats within the plakin domain suggests that comparable 

inter-repeat “torsion” and “bending” motions may occur between other spectrin repeats of 

plectin and other plakins. 
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The conformational rearrangement model of flexibility implies changes in the distances at 

which spectrin repeats are separated from each other along the long axis of the molecule or 

“sliding” of repeats, a movement shown to involve loop-helix transitions at the BC loops21. 

In our crystal structure the first and second spectrin repeats of plectin are in an extended 

conformation along the long axis of the molecule. Although no experimental data is 

available to date, it is conceivable for example that the first repeat may slide towards the 

second; such a movement would not require helix-loop transitions because straightening of 

the helix B near the BC loop and sliding along helix C would relocate loop BC at the end 

of the bundle. Interestingly the BPAG1 structure (equivalent to plectin´s SR3-SR4) reveals 

a shorter arrangement of the repeats along the same axis26, and illustrates variability in the 

degree of extension between adjacent spectrin repeats within the plakin domain.  

Differences in the number of tandem spectrin repeats and the nature of the linkers of the 

plakin domain among plakins are likely to determine their specific mechanical properties. 

For example the two plakins present in the hemidesmosomes, plectin and BPAG1e, have 

nine and eight repeats respectively; therefore their plakin domains may contribute to the 

mechanical strength of hemidesmosomes both via specific interaction with other 

components and by providing specific elastic properties. 

  

Concluding remarks. 

In summary, the crystal structure of the first tandem pair of spectrin repeats of plectin 

described in this study reveals both the unique structural details of each repeat and the 

organization of the two-repeat module. The structural differences between the spectrin 

repeats of plectin and BPAG1, which correspond to non-equivalent regions, illustrate 

variability within the plakin domain. An exhaustive analysis of the plakin domain 

sequences revealed a modular architecture characterized by a continuous array of tandem 
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spectrin repeats with an inserted SH3 domain. This structure is very similar to the modular 

organization of members of the spectrin family, and has profound implications for the role 

of plakin domains in vivo . Plakins interconnect cytoskeletal networks, anchor them to cell 

adhesion complexes, and contribute to the integrity of tissues subjected to mechanical 

stress. Tandem arrays of spectrin repeats are flexible structures. Thus, our present model 

provides a first interpretation at the molecular level of the way the plakin domain 

contributes directly to the mechanical stability of cells not only by linking cytoskeletal 

elements but also by providing flexible and deformable connections.  

 

Materials and methods  

Protein expression and purification 

The cDNA sequence coding for residues 300-530 of human plectin (UniprotKB accession 

number Q15149-2) was cloned into the pET15b vector (Novagen). The double mutant 

C420A, C435A was created by site-directed mutagenesis using the QuikChange method 

(Stratagene, La Jolla CA). Proteins were expressed in Escherichia coli strain BL21(DE3) 

and were purified by Ni-chelating affinity chromatography as described30. Proteins were 

expressed fussed to an N-terminal His-tag that was cleaved in all samples by thrombin 

digestion, and was removed by a second affinity chromatography. The selenomethionine 

substituted protein was expressed in the non-auxotrophic strain BL21(DE3) as described 38 

and purified as for the unlabelled proteins.  

 

Crystallization and structure determination 

Crystals of the wild type protein were grown at room temperature using vapor diffusion 

methods by mixing a protein solution at 7 mg/ml in 10 mM Tris-HCl (pH 7.5), 50 mM 

NaCl, 5 mM DTT with an equal volume of mother liquor consisting of 0.1 M citrate-
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phosphate (pH 4.6), 10% (v/v) 1,2-propanediol, 5% (w/v) polyethylene glycol 3000, 4% 

(v/v) glycerol. Crystals of the C420A/C435A mutant were obtained as above but using as 

mother liquor of 0.1 M citrate-phosphate (pH 4.6), 24% (v/v) 1,2-propanediol, 6% (w/v) 

polyethylene glycol 3000, 3% (v/v) glycerol. Crystals of the selenomethionine substituted 

C420A/C435A protein were grown the same way but using as mother liquor 0.1 M citrate-

phosphate (pH 4.6), 14% (v/v) 1,2-propanediol, 5% (w/v) polyethylene glycol 3000, 3% 

(v/v) glycerol. Prior to data collection, all crystals were transferred into a cryoprotectant 

solution consisting of 0.1 M citrate-phosphate (pH 4.6), 25% (v/v) 1,2-propanediol, 6% 

(w/v) polyethylene glycol 3000, 10% (v/v) glycerol. All data were collected at 100 K in the 

beamline BM14 at the ESRF (Grenoble, France). Data were indexed with XDS and 

reduced with XSCALE39.  

All crystals belong to space group P21212 and they contain one molecule in the asymmetric 

unit corresponding to a solvent content of 46% (Table 1). Multiple wavelength anomalous 

diffraction (MAD) data from selenomethionine substituted C420A/C435A crystals were 

used to find the positions of seven Se atoms corresponding to six Met residues (one of 

them in two conformations); phases were calculated and extended to 2.5 Å resolution with 

ShelxC/D/E40; 41 using the HKL2MAP42 graphical user interface. After phase improvement 

with DM43 a readily interpretable map was obtained that allowed automatic building of 149 

residues using the helix recognition module in ARP/WARP44. The structure was refined 

against C420A/C435A native data to 2.05 Å resolution using REFMAC545. Manual model 

building using COOT46 was alternated with restrained refinement, which at later stages 

included refinement of four TLS groups optimally identified by the TLS Motion 

Determination (TLSMD) server47. Solvent molecules were built in peaks over 3.5 σ of fobs-

fcalc maps when reasonable H-bonding pattern was observed. Electron density near Glu431 
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was interpreted as a molecule of 1,2-propanediol. The wild type structure was refined 

against data to 2.3 Å resolution in a similar way as for the mutant protein. 

 

Structure comparison and analysis  

Superposition of the structures was initially done using DALI Lite48. Based on the pre-

aligned structures a set of 80 Cα atoms in the first repeat of plectin was identified by visual 

inspection and was used to superpose other domains onto the SR1 using the LSQKAB49 

program of the CCP4 suite50. Superpositions onto the SR2 of plectin were done the same 

way, but using a set of 66 Cα atoms. 

Prediction of protein motions in tandem pairs of spectrin repeats was done using the 

Dynamite server51. The server generated an ensemble of feasible protein conformations by 

using a non-Newtonian method as implemented in CONCOORD52, which were analyzed 

with GROMACS53 to obtain the principal components of predicted protein motions. 

 

Profile -based sequence analysis and secondary structure prediction 

In order to identify spectrin repeats in the plakin domain of plectin and other plakins we 

applied two different methods to analyze the repeat repertoire of the proteins. Both 

methods are based on profile searching, which allows detecting remote homologies beyond 

the reach of alternative sequence comparison methods such as PSI-BLAST. In the first 

one, that relies exclusively on sequences, a multiple alignment of 300 spectrin repeats was 

extracted from SMART54 and PFAM55 databases. Sequences were curated for redundancy 

and profiles were built using HMMER27. These profiles were used to search customized 

databases containing spectrin repeats, orthologs and paralogs of the protein of interest. In 

the second method, the FFAS server28 was used to create a profile from a sequence of 

interest that was subsequently compared to profiles derived from the PDB.  
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Prediction of secondary structure was done using the PredictProtein server56 and relative 

correspondence with the real structures was used to establish the boundaries of the repeats. 

 

Protein Data Bank accession numbers  

The atomic coordinates and structure factors of the wild type and mutant structures have 

been deposited in the RCSB Protein Data Bank under ID codes 2ODU and 2ODV. 
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Table 1. Summary of crystallographic analysis 

Data Collection      
Protein Plectin (300-530) C420A, C435A  Plectin (300-530) 
Space group P21212    P21212 
Cell dimensions a = 154.6 Å    

b = 26.5 Å    
c = 58.1 Å 

      a = 154.2 Å    
b = 26.3 Å    
c = 58.2 Å    

  Se-Met MAD   
Data set Native Peak Remote  Native 
Wavelength (Å) 0.9785 0.9785 0.9185  0.9785 
Resolution (Å) 2.05 (2.15-2.05)a 2.7 (2.8-2.7)a 2.5 (2.6-2.5)a  2.3 (2.38-2.3)a 

Unique reflections 15444 12658b 15939b  11244 
Redundancy 14.1 (14.2)a 7.8 (7.8)a 3.9 (3.8)a  8.1 (8.4)a 

Completeness (%) 97.7 (99.6)a 100 (100)a 99.9 (100)a  99.9 (100)a 

Rmeas c (%) 5.6 (56.3)a 8.3 (47.4)a 7.1 (50.8)a  7.0 (54.8)a 

<I/σI> 31.7 (6.0)a 19.5 (5.1)a 16.6 (3.4)a  22.4 (4.9)a 

Figure of merit after DM   0.72 (0.59)a   
Refinement statistics 
 Plectin (300-530) C420A,C435A   Plectin (300-530) 
Resolution range (Å) 39 - 2.05  47 - 2.3 
Unique reflections, work/free 14679 / 764  10704 / 533 
R work (%) 21.0  21.6 
R free d (%) 25.6  26.9 
Number of residues 217  217 
Number of solvent molecules 52  16 
Average B value (Å2) 
     Wilson plot 
     Protein 
     Solvent 
     1,2-propanediol 

 
34.6 
47.2 e 
48.1 
50.2 

  
37.8 
47.6e 
43.8 
n/a 

rmsd bond lengths (Å) 0.017  0.015 
rmsd angles (º)  1.545  1.564 
Ramachandran plot f 
     Core regions 
     Outliers 

 
203 
0 

  
203 
0 

a Numbers in parenthesis correspond to the outer resolution shell. 

b Keeping Bijvoet pairs separate. 

c Rmeas  is the multiplicity independent R factor as described by Diederichs and Karplus58. 

d Calculated using 5% of reflections that were not included in the refinement. 

e Isotropic equivalent B value. 
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f As defined in the program MOLEMAN216. 

 
 
 
FIGURE LEGENDS   

 

Figure 1. Crystal structure of the first tandem pair of spectrin repeats of plectin. (a) 

Ribbon representation of the structure with the equivalent α-helices in each domain shown 

in the same color. (b) Stereo Cα trace in the same orientation as in (a). The sequence is 

numbered every 10 residues and the trace is colored as in (a). Molecular figures were 

produced using PyMOL57. 

 

Figure 2. Structural comparison of the spectrin repeats of plectin, BPAG1 and 

spectrins. (a) Cα  trace superposition of the first (SR1, blue) and second (SR2, orange) 

spectrin repeats of plectin. The structures were superposed by aligning the Cα atoms of 66 

residues in the three α-helices (rmsd 2.36 Å). The helices are labeled in capitals and the 

structure of the SR1 is marked every 10 residues. (b) Superposition of the SR1 of plectin 

with the third repeat of α-actinin (left), and the first (middle) and second (right) repeats of 

BPAG1. The structures were superposed using a common set of 80 equivalent Cα atoms. 

The position of the kink in helix B is marked a solid arrow in plectin and α-actinin, and by 

an empty arrow in the SR1 of BPAG1. (c) Superposition of the SR2 of plectin with the 

repeat 17 of α-spectrin (left), the first (middle) and second (right) repeats of BPAG1. The 

structures were superimposed using the same set of equivalent Cα  atoms as in (a). 

 

Figure 3. Comparison of the core of the spectrin repeats of plectin, BPAG1 and α -

actinin. Detailed views of the hydrophobic cores of the SR1 (a) and SR2 (b) of plectin, the 
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SR3 of α-actinin (c) and the N-terminal repeat of BPAG1 (d). The side chains of 

equivalent residues that contribute to the interactions between helices are shown. The SR1 

of plectin contains bulky hydrophobic residues in the hydrophobic core, similar to the SR3 

of α-actinin. In contrast, the hydrophobic core of the SR2 of plectin does not contain 

aromatic residues. For example the highly conserved Trp in helix A is replaced by Gln438, 

and the near by position in helix C is occupied by Leu508. The smaller size of the side 

chains in the core allows helix B to pack closely to helices A and C. The SR1 of BPAG1 

has mixed features of the two plectin repeats. BPAG1 contains the aromatic triad 

W288/F325/Y358 but lacks aromatic residues in the N-terminal half of helix B. All panes 

are shown in the same orientation as in figure 2. The Cα  trace is colored as in figure 1a. 

Numbering of residues in the BPAG1 structure corresponds to the Uniprot entry Q8WXK8 

in accordance with figure 5.  

 

Figure 4. Comparison of the relative orientations of adjacent spectrin repeats in 

plectin, α -actinin, and BPAG1. (a) Orthogonal views of the SR1-SR2 pair of α -actinin 

(blue, PDB entry 1HCI) superimposed onto the plectin structure (red). The superposition 

was done using only the N-terminal repeat of each protein in the calculations. Both 

structures have an extended arrangement along the long axis of the molecules, but the C-

terminal repeat of each pair present a different degree of rotation along the same axis. In 

the apical view (right side of each panel) only the helices of the C-terminal domains of 

each pair are shown. (b) Comparison of the BPAG1 structure (green, PDB entry 2IAK) 

with the plectin one. Superposition was done as in (a) and equivalent points of view are 

shown. The lateral view reveals the short longitudinal inter-domain translation in BPAG1. 
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Figure 5. Identification of additional modules in the sequence of the plakin domain.  

Sequences from the plakin domain of plakins were analyzed. For clarity purposes, only the 

sequences of human plectin (Accession number Q15149-2), and two other prototypical 

members of the plakin family BPAG1e (Q8WXK8) and desmoplakin (P15924) are shown. 

(a) Multiple sequence alignment of the spectrin repeats that constitute the plakin domain. 

Repeats were identified by doing a exhaustive profile search using hidden markov models 

(HMMER27), with a 300 spectrin repeat profile from the SMART54 database. The 

corresponding e-value for each repeat is indicated at the right of the sequences. Repeats 

within each sequence were numbered using plectin as a reference. Colored boxes localize 

the structurally determined α -helices in ple ctin’s SR1 and SR2; in the remaining repeats 

the colored boxes indicates predicted α-helices. The coloring is by secondary structure 

element as in figure 1a. The heptad pattern observed in the α-helices of the crystal 

structure is indicated above the alignment. (b) Identification of SR6. Multiple sequence 

alignment of the region downstream SR5 not identified during the afore-mentioned search. 

This region includes three predicted α-helices equivalent to helices A, B, and C, of 

canonical spectrin repeats, that show a heptad pattern as indicated above. The helices are 

indicated by boxes with coloring as above. (c) Sequence alignment of the SH3 domain 

inserted in the BC loop of SR5 in plakins with the SH3 domains of α-spectrin (P07751) 

and the Bruton’s tyrosine kinase (BTK, Q06187). The consensus localization of the 

secondary structure elements observed in the structures of the SH3 domains of α-spectrin 

(PDB code 1SHG) and BTK (PDB code 1AWW) are indicated under the alignment. The 

Pro-rich region (PRR) involved in the Tec family SH3 self regulation is underlined in the 

BTK sequence. The plakin’s PRR upstream the SH3 domain is marked on top, with Pro 

residues highlighted in red boxes.  
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Figure 6. Module organization of the plakin domain. (a) Schematic representation of the 

domain organization of full-length plectin. The C-terminal region contains five type B and 

one type C plakin repeat domains. (b) Detail module organization of the N-terminal region 

of plectin and other representative plakins including BPAG1a/b/n, BPAG1e, desmoplakin 

and periplakin. Spectrin repeats (SR) are numbered according to plectin. The repeats of 

plectin and BPAG1 whose crystal structure is known are shown in dark gray. The ABD is 

formed by two calponin homology (CH) domains. The position of the six α-helical rich 

regions (NN, Z, Y, X,W, and V) described in the plakin domain14 are indicated above the 

plectin structure. (c) The domain organization of the erythrocyte isoforms of α - and β-

spectrin is shown to illustrate the similarities with the plakin domain architecture, 

noticeably the array organization of tandem SRs, the localization of the ABD preceding the 

SR1 of β-spectrin, and the insertion of an SH3 domain within the ninth SR of α-spectrin. 

  

Figure 7. Prediction of protein motions in the plectin tandem of spectrin repeats. 

Schematic representation of the three main suggested relative domain motions, with 

eigenvector indices of 14.7 (I), 12.1 (II), and 10.0 (III); the next higher motion had an 

index of 2.5 and was consider not significant. The arrows indicate the suggested rotations, 

and the approximate rotation axes are shown as dotted lines (I and II) and a spot (III).  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

33 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

34 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

35 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

36 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

37 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

38 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 

 




