Explicitly correlated treatment of H 2 NSi and H 2 SiN radicals: Electronic structure calculations and rovibrational spectra

D. Lauvergnat, M. L. Senent, L. Jutier, and M. Hochlaf

Citation: J. Chem. Phys. 135, 074301 (2011); doi: 10.1063/1.3624563
View online: http://dx.doi.org/10.1063/1.3624563
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v135/i7
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Explicitly correlated treatment of $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ radicals: Electronic structure calculations and rovibrational spectra

D. Lauvergnat, ${ }^{1, a)}$ M. L. Senent, ${ }^{2}$ L. Jutier, ${ }^{3}$ and M. Hochlaf ${ }^{3, b}$)
${ }^{1}$ CNRS, Laboratoire de Chimie Physique, Bât. 349, UMR 8000, Orsay, F-91405; Université Paris-Sud, Orsay, F-91405, France
${ }^{2}$ Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid 28006, Spain
${ }^{3}$ Laboratoire de Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, 77454 Marne-la-Vallée, France

(Received 6 April 2011; accepted 7 July 2011; published online 15 August 2011)

Abstract

Various $a b$ initio methods are used to compute the six dimensional potential energy surfaces (6D-PESs) of the ground states of the $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ radicals. They include standard coupled cluster ($\operatorname{RCCSD}(\mathrm{T})$) techniques and the newly developed explicitly correlated $\mathrm{RCCSD}(\mathrm{T})$-F12 methods. For $\mathrm{H}_{2} \mathrm{NSi}$, the explicitly correlated techniques are viewed to provide data as accurate as the standard coupled cluster techniques, whereas small differences are noticed for $\mathrm{H}_{2} \mathrm{SiN}$. These PESs are found to be very flat along the out-of-plane and some in-plane bending coordinates. Then, the analytic representations of these PESs are used to solve the nuclear motions by standard perturbation theory and variational calculations. For both isomers, a set of accurate spectroscopic parameters and the vibrational spectrum up to $4000 \mathrm{~cm}^{-1}$ are predicted. In particular, the analysis of our results shows the occurrence of anharmonic resonances for $\mathrm{H}_{2} \mathrm{SiN}$ even at low energies. © 2011 American Institute of Physics. [doi:10.1063/1.3624563]

I. INTRODUCTION

The general interest on silicon-nitrogen compounds resides on their rich and complex chemistry, their importance on several media, and their wide applications. Indeed, silicon atom and ions play crucial roles in the chemistry of the low earth atmosphere (e.g., ionosphere), in interstellar media, and in plasma physics. ${ }^{1-9}$ Moreover, the gas-phase ion-molecule reactions of silicon ion Si^{+}with ammonia and small amines, or reactions of ammonia on Si surfaces or Si clusters, ${ }^{10,11}$ are possible pathways toward a wide variety of $\mathrm{Si}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}$ compounds. From the point of view of applications, silicon nitride containing materials, which present specific thermal and elasticity properties, are popular insulating layer in silicon-based electronics and silicon nitride cantilevers. ${ }^{12-15}$ They are also the sensing parts of atomic force microscopes. Finally, Chen et al. ${ }^{16}$ showed that $\mathrm{Si}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}$ compounds may act as an effective reagent to convert the reactive and toxic NO into a benign gas N_{2} in several NO-producing combustion systems.

The present theoretical contribution treats fully the rovibrational spectroscopy of the $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ radicals. Recently, some of us characterized the stable isomers of $\mathrm{H}_{2} \mathrm{NSi}$ by means of the state-of-the-art mono and multiconfigurational $a b$ initio approaches and extended basis sets. ${ }^{17}$ Our calculations confirmed the existence of three stable isomers (see Figure 1): $\mathrm{H}_{2} \mathrm{NSi}$ (denoted as I), trans-HSiNH (II), and $\mathrm{H}_{2} \mathrm{SiN}$ (III).

[^0]$\mathrm{H}_{2} \mathrm{NSi}$ represents the most stable form, followed by the trans form and the $\mathrm{H}_{2} \mathrm{SiN}$ isomer lying at 0.68 eV and 1.88 eV , respectively. We also showed that the energy barriers for intramolecular isomerisation and the lowest dissociation energies (deprotonation channels) are higher than 1 eV . Hence, each isomer can be treated separately for its spectroscopy.

Experimentally, $\mathrm{H}_{2} \mathrm{NSi}$ species and related ions were identified in the mass spectrometric investigations of Goldberg et al., ${ }^{18}$ using the flowing afterglow selected ion flow tube technique, ${ }^{19}$ and after reactive collisions between N and $\mathrm{SiH}_{4},{ }^{20,21}$ and between silicon cation, Si^{+}, and ammonia and small amines. ${ }^{22}$ These identifications were supported by density functional theory and ab initio calculations. ${ }^{18,20,21,23-27}$

In the present study, we map the six-dimensional potential energy surfaces (6D-PESs) of the formaldehyde-like isomers (i.e., $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$) in their electronic ground state using the standard coupled cluster approach (RCCSD(T)/aug-cc-pV5Z) and using the newly implemented explicitly correlated $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a} / \mathrm{b}$ techniques. This work does not treat the trans-HSiNH form because of the multiconfigurational nature of its wavefunction in contrast to the monoconfigurational nature of two others. ${ }^{17}$ Then, our 6D-PESs are incorporated into perturbative and variational treatments to solve the nuclear motion problem. We derived, hence, accurate spectroscopic terms and the full rovibrational spectra of these radicals. Our calculations reveal the presence of some strong anharmonic resonances between the vibrational levels even at low energies, thus makes difficult their assignments by vibrational quantum numbers. We will also discuss the applicability and the validity of the available theoretical approaches for the accurate treatment of the rovibrational

FIG. 1. Scheme of the three isomers of $\mathrm{H}_{2} \mathrm{SiN}$.
spectroscopy of such molecular systems. Especially, we will check the possibility of (R)CCSD(T)-F12a/b methods in taking into account anharmonic effects through the accurate description of the floppiness of the PESs along some internal coordinates such as the in-plane and out-of-plane angles and when they are strongly coupled together.

II. GENERATION OF THE 6D-POTENTIAL ENERGY SURFACES

A. Electronic structure calculations

All electronic calculations were done using the MOLPRO program suite ${ }^{28}$ in the C_{1} point group. We performed electronic computations using the coupled cluster approach with perturbative treatment of triple excitations $(\operatorname{RCCSD}(\mathrm{T}))^{29,30}$ and the newly developed and implemented $\operatorname{RCCSD}(\mathrm{T})$-F12 technique (using both F12a and F12b approximations) ${ }^{31,32}$ as detailed in Ref. 33. For the description of silicon, nitrogen, and hydrogen atoms, we employed the aug-cc-pV5Z basis set by Dunning and co-workers ${ }^{34,35}$ for the standard coupled cluster calculations. For the RCCSD(T)-F12 computations, the cc-pVTZ-F12 explicitly correlated basis set by Peterson and co-workers ${ }^{33}$ in connection with the corresponding auxiliary basis sets and density fitting functions, ${ }^{36-38}$ are used. For a single point calculation, a strong reduction on the cost of computations, both CPU time and disk used, are observed (one to two orders of magnitude) when using RCCSD(T)-F12 instead of $\operatorname{RCCSD}(\mathrm{T})$. This result, which shows the applicability of F12 methods for large systems, was explicitly discussed previously. ${ }^{39-41}$ Apart from systematic shifts in total energies over the grid when using $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a}$ or $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$, both approximations lead to very close data. In the following, we will discuss without distinguishing the $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a}$ or $\mathrm{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b}$ results except when explicitly stated.

Recently, Lee and co-workers ${ }^{42}$ performed benchmark calculations on several molecular systems where corecorrelation, scalar relativity, higher order electron correlation, and one-particle basis set extrapolation effects were included. For $\mathrm{HN}_{2}{ }^{+}$cation, these authors found a good agreement with the previously computed data of Brites and Hochlaf who have not considered such effects. Such agreement is surely not fortuitous since the F12 methods are proved to describe effi-
ciently electron correlation. For both isomers, we performed geometry optimizations and harmonic frequencies calculations using standard $\operatorname{RCCSD}(\mathrm{T})$ method with and/or without core-valence correlation and/or with relativistic corrections to attest on the quality of the present methodology. We used the following basis sets: aug-cc-pVTZ, aug-cc-pCVTZ (within the core zero and within the frozen core approximations for core-valence correlation), aug-cc-pVXZ-DK ($\mathrm{X}=\mathrm{T}, \mathrm{Q}$), and aug-cc-pV(T+d)Z. These corresponding results are detailed in the supplementary material. ${ }^{43}$ All these results show that core-correlation corrections are for the $\mathrm{Si}-\mathrm{N}$ distances about 0.02 bohr and about 0.01 bohr for the $\mathrm{Si}-\mathrm{H}$ bond length. Scalar relativistic corrections are actually negligible, while additional tight d-functions shorten the $\mathrm{Si}-\mathrm{N}$ distances by about 0.01 bohr. The differences on the equilibrium in-plane angles amount to less than 1°. The harmonic wavenumbers computed at different levels vary by less small than $10 \mathrm{~cm}^{-1}$. This joins the general remarks of Werner and co-workers relative to these methods. Presently, the 6D-PESs of $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ will be generated using similar approach as described in Ref. 39.

B. Analytical representation of the 6D-PESs

The 6D-PESs were generated in internal coordinates (see Figure 2). Independent variables correspond to the $\mathrm{R}_{1,2}\left(\mathrm{R}_{\mathrm{HX}}\right)$, $\mathbf{R}_{3}\left(\mathbf{R}_{X Y}\right)$ elongations, the $\theta_{1,2}(H X Y)$ in-plane angles and the θ out-of-plane angle, where X and Y stand for N or Si. Energies were calculated for different nuclear positions in the vicinity of the respective equilibrium geometry of the radicals. For $\mathrm{H}_{2} \mathrm{NSi}$, we considered geometries in the ranges 1.5 $\leq \mathrm{R}_{1,2} \leq 2.5,2.7 \leq \mathrm{R}_{3} \leq 3.9,70^{\circ} \leq \theta_{1,2} \leq 180^{\circ}$, and -90° $\leq \theta \leq 90^{\circ}$ (in bohr and degrees), resulting in more than 1100 independent geometries. For $\mathrm{H}_{2} \mathrm{SiN}$, we considered less geometries (418) ranging as follows $2.4 \leq \mathrm{R}_{1,2} \leq 3.2,2.7 \leq \mathrm{R}_{3}$ $\leq 3.5,75^{\circ} \leq \theta_{1,2} \leq 180^{\circ}$, and $-30^{\circ} \leq \theta \leq 30^{\circ}$ (in bohr and degrees).

The constructed PESs cover energies up to $\sim 10000 \mathrm{~cm}^{-1}$ above the minimum. Subsequently, the calculated energies were fitted to the following expansion, where all points are equally weighted,

$$
\begin{equation*}
\mathrm{V}\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \theta_{1}, \theta_{2}, \theta\right)=\sum_{\mathrm{ijklmn}} \mathrm{c}_{\mathrm{ijklmn}} \mathrm{Q}_{1}^{\mathrm{i}} \mathrm{Q}_{2}^{\mathrm{j}} \mathrm{Q}_{3}^{\mathrm{k}} \mathrm{Q}_{4}^{\mathrm{l}} \mathrm{Q}_{5}^{\mathrm{m}} \mathrm{Q}_{6}^{\mathrm{n}}, \tag{1}
\end{equation*}
$$

θ : out-of-plane angle
FIG. 2. Definition of the internal coordinates of $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN} . \mathrm{X}$ and Y correspond to N and Si for $\mathrm{H}_{2} \mathrm{NSi}$ and to Si and N for $\mathrm{H}_{2} \mathrm{SiN}$, respectively.
with the three stretching coordinates, $\mathrm{Q}_{\mathrm{u}}=\mathrm{R}_{\mathrm{u}}-\mathrm{R}_{\mathrm{u}}$ ref, for $\mathbf{u}=1-3$, the two bending coordinates, $\mathbf{Q}_{\mathbf{u}}=\theta_{\mathrm{u}-3}-\theta_{\mathrm{u}-3}$ ref $^{\text {re }}$, for $\mathrm{u}=4,5\left(0^{\circ} \leq \theta_{\mathrm{u}-3} \leq 180^{\circ}\right)$, and the out-of-plane angle, Q_{6} $=\theta-\theta^{\text {ref }}$. The index "ref" denotes the reference geometry used during the fit (cf. infra). For $\mathrm{H}_{2} \mathrm{SiN}$, the exponents in the expansion were restricted to $\mathrm{i}+\mathrm{j}+\mathrm{k}+\mathrm{l}+\mathrm{m}+\mathrm{n} \leq 4$. For $\mathrm{H}_{2} \mathrm{NSi}$, the exponents in the expansion were restricted to $\mathrm{i}+\mathrm{j}$ $+\mathrm{k}+\mathrm{l}+\mathrm{m}+\mathrm{n} \leq 6$. In both cases, the molecular symmetry $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ was taken into account and only the dominant crossing terms are considered without deteriorating the quality of the fit. We optimized a total of 100 and $148 \mathrm{c}_{\mathrm{ijklm}}$ coefficients for $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$, respectively, using a least squares procedure for that purposes. The root mean square of the fits was $\sim 5 \mathrm{~cm}^{-1}$. The final values of the coefficients are available in Ref. 43.

C. Nuclear motion problem

The analytical representations of the 6D-PESs were incorporated into perturbative and variational treatments of the nuclear problem. In the perturbative approach, the 6DPES was derived as a quartic force field in internal coordinates, which was subsequently transformed by L-tensor algebra into a quartic force field in dimensionless normal
coordinates. ${ }^{44}$ This procedure enables the evaluation of the spectroscopic constants up to the fourth order, using the formula developed in Refs. 45 and 46. In the variational approach, the exact calculations were performed with the fortran code ElVibRot ${ }^{47}$ coupled with Tnum. ${ }^{48,49}$ ElVibRot allows quantum dynamics calculations (time-dependent ${ }^{50,51}$ or timeindependent ${ }^{50,52,53}$) for polyatomic molecular system without built-in limitation. Tnum is used for evaluating the kinetic energy operator (KEO) numerically and exactly for a given value of the curvilinear coordinates, \boldsymbol{q}. The implementation of a numerical approach to the KEO has been known for many years. It was probably used for the first time in 1982 by Laane et al. ${ }^{54,55}$ Moreover, several other groups resort to similar approaches. ${ }^{56-60}$ Our numerical implementation in Tnum is given in more details in Ref. 48.

The deformation part of the kinetic energy operator reads

$$
\begin{align*}
\boldsymbol{T}_{\mathrm{def}}(\boldsymbol{q}, \partial \boldsymbol{q}) & =\sum_{\mathrm{i} \leq \mathrm{j}} f_{2}^{\mathrm{ij}}(\boldsymbol{q}) \frac{\partial^{2}}{\partial q_{\mathrm{i}} \partial q_{\mathrm{j}}}+\sum_{\mathrm{i}} f_{1}^{\mathrm{i}}(\boldsymbol{q}) \frac{\partial}{\partial q_{\mathrm{i}}}+V_{e}(\boldsymbol{q}), \\
d \tau & =\rho(\boldsymbol{q}) d q_{1} \cdots d q_{\mathrm{n}} \tag{2}
\end{align*}
$$

where $f_{2}^{\mathrm{ij}}(\boldsymbol{q}), f_{1}^{\mathrm{i}}(\boldsymbol{q})$, and $V_{e}(\boldsymbol{q})$ are functions of the internal coordinates. $\rho(\boldsymbol{q})$ is a weight function which enables to adapt the volume element, $\mathrm{d} \tau$, to the vibrational basis functions. The use of the numerical approach enables to perform easily coordinate transformations such as a linear combination of the primitive internal coordinates to get symmetrized coordinates, \boldsymbol{q}.

In the present study, the six primitive internal coordinates ($\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \theta_{1}, \theta_{2}$, and θ) used to calculate the 6D-PES (see Figure 2) are symmetrized $\mathrm{R}_{ \pm}=1 / 2\left(\mathrm{R}_{1} \pm \mathrm{R}_{2}\right)$ and $\theta_{ \pm}=1 / 2$ $\left(\theta_{1} \pm \theta_{2}\right)$ leading to the following curvilinear coordinates, \boldsymbol{q}, used in dynamics: $\left(\mathrm{R}_{+}, \mathrm{R}_{-}, \mathrm{R}_{3}, \theta_{+}, \theta_{-}\right.$, and θ).

FIG. 3. Difference energy ($\Delta \mathrm{E}=\mathrm{E}_{\mathrm{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12}-\mathrm{E}_{\mathrm{RCCSD}(\mathrm{T}) / \text { aug } \mathrm{cc}-\mathrm{pV5Z}}$, in cm^{-1}) between the total energies computed at $\mathrm{RCCSD}(\mathrm{T})$-F12b/cc-pVTZ-F12 and RCCSD(T)/aug cc-pV5Z levels of theory for $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$. These energies are computed for several grid points around the equilibrium geometry where the distances are varied a maximum of ± 0.2 bohr and the angles of $\pm 10^{\circ}$. The inset is for similar calculations on the NSi diatomic. $\mathrm{R}_{\mathrm{NSi}}$ (in bohr) corresponds to R_{3} for the tetratomics and to the internuclear distance for the diatomic.

FIG. 4. Two-dimensional cuts through the RCCSD(T)-F12a/cc-pVTZ-F12 6D-PES for $\mathrm{H}_{2} \mathrm{NSi}$ corresponding to the eight possible permutations of the internal coordinates. The other internal coordinated are set at their equilibrium values (see text). Contours are shown in steps of $500 \mathrm{~cm}^{-1}$.

For each degree-of-freedom, a 1D-harmonic oscillators (HO) basis set is used. These basis functions are contracted to form two 3D-basis sets. The first one and the second one are associated to the three distances and the three angles, respectively. This contraction enables to obtain a compact de-
scription of the eigenstates. For each 3D-basis set, about one hundred basis-functions are used. The integration procedure is performed using a direct product of Gauss-Hermite quadrature grids and the diagonalization is performed using a BlockDavidson scheme without storing the full Hamiltonian matrix.

FIG. 5. Two-dimensional cuts through the RCCSD(T)-F12a/cc-pVTZ-F12 6D-PES for $\mathrm{H}_{2} \mathrm{SiN}$ corresponding to the eight possible permutations of the internal coordinates. The other internal coordinates are set at their equilibrium values (see text). Contours are shown in steps of $500 \mathrm{~cm}^{-1}$ except the θ_{1} / θ cut for which the step is $250 \mathrm{~cm}^{-1}$.

This scheme has been described in detail by Ribeiro et al. ${ }^{61}$ and also by others. ${ }^{62,63}$

Our procedure enables to get the vibrational eigenstates of $\mathrm{H}_{2} \mathrm{SiN}$ and $\mathrm{H}_{2} \mathrm{NSi}(J=0)$ up to $4000 \mathrm{~cm}^{-1}$. The en-
ergy levels of fundamental transitions are converged within $0.1 \mathrm{~cm}^{-1}$. For some overtones or combination modes, the convergence is higher up to $2 \mathrm{~cm}^{-1}$. Such levels are denoted as "not fully converged" in the following tables. The accuracy

FIG. 6. Contour plots of the 2D cuts of the RCCSD(T)-F12a/cc-pVTZ-F12 6D-PES of $\mathrm{H}_{2} \mathrm{NSi}$ along the symmetric $\left(\theta_{+}=1 / 2\left(\theta_{1}+\theta_{2}\right)\right)$ and antisymmetric bending ($\left.\theta_{-}=1 / 2\left(\theta_{1}-\theta_{2}\right)\right)$ coordinates (left), and the symmetric bending coordinate $\left(\theta_{+}=1 / 2\left(\theta_{1}+\theta_{2}\right)\right)$, and the out-of-plane angle (θ) (right). The step between the contours is $500 \mathrm{~cm}^{-1}$.
of the variational energy levels is linked to the potential energy surface precision. It is expected to be around $20 \mathrm{~cm}^{-1}$ according to similar works. ${ }^{64}$

III. RESULTS AND DISCUSSION

In the literature, $\mathrm{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12$ gives total energies close to those calculated using $\operatorname{RCCSD}(\mathrm{T}) / \mathrm{aug}$ cc-pV5Z and with a small constant shift. For $\mathrm{H}_{2} \mathrm{NSi}$, $\mathrm{H}_{2} \mathrm{SiN}$, and the NSi diatomic, Figure 3 displays the evolution of the difference energies ($\Delta \mathrm{E}$), which corresponds to $\mathrm{E}_{\text {RCCSD(T)-F12b/cc-pVTZ-F12 }}-\mathrm{E}_{\text {RCCSD(T) /aug cc-pV5Z }}$.

This figure shows that for $\mathrm{H}_{2} \mathrm{NSi}$ and SiN molecular systems, $\Delta \mathrm{E}$ is close to zero and within the expected error bars for the $\mathrm{R}_{\text {NSI }}$ distances close to equilibrium $\left(\mathrm{R}_{\mathrm{NSI}}\right.$ for NSi di-
atomic and R_{3} for the tetratomics). In contrast, for all the energies of $\mathrm{H}_{2} \mathrm{SiN}$, a systematic shift of $\sim 60 \mathrm{~cm}^{-1}$ is found together with an additional systematic shift to lower energies of $\mathrm{E}_{\text {RCCSD(T)-F12b/cc-pVTZ-F12 }}$ with respect to $\mathrm{E}_{\text {RCCSD(T) /aug cc-pV5Z }}$ for $\Delta \mathrm{R}_{\mathrm{NSi}}<0$. Such differences seem to be reduced for $\Delta \mathrm{R}_{\mathrm{NSi}}>0$. The inset in Figure 3 shows a similar tendency for the SiN diatomic. These effects remain small and the general shape of the 6D-PESs is similar, especially, for the RCCSD(T)-F12a/cc-pVTZ-F12 and RCCSD(T)-F12b/cc-pVTZ-F12 ones. For more clarity of the manuscript, we will discuss only the RCCSD(T)-F12a/cc-pVTZ-F12 6DPESs (Figures 4 and 5). Therefore, this effect will not affect strongly the rovibrational energies computed for $\mathrm{H}_{2} \mathrm{NSi}$ at all levels of theory whereas we expect some differences for $\mathrm{H}_{2} \mathrm{SiN}$ (cf. infra).

TABLE I. Harmonic wavenumbers (ω_{i}), rotational constants ($\mathrm{A}_{\mathrm{e}}, \mathrm{B}_{\mathrm{e}}, \mathrm{C}_{\mathrm{e}}$), first order centrifugal distortion constants ($\mathrm{D}_{\mathrm{J}}, \mathrm{D}_{\mathrm{JK}}, \mathrm{D}_{\mathrm{K}}$), A-reduction distortion constants ($\Delta_{\mathrm{J}}, \Delta_{\mathrm{JK}}, \Delta_{\mathrm{K}}, \delta_{\mathrm{J}}, \delta_{\mathrm{K}}$), and vibration-rotation constants $\left(\alpha_{\mathrm{i}}\right)$ of $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ computed with RCCSD(T)-F12a/cc-pVTZ-F12. All values are in cm^{-1}.

Spectroscopic parameters	$\mathrm{H}_{2} \mathrm{NSi}$	$\mathrm{H}_{2} \mathrm{SiN}$	Spectroscopic parameters	$\mathrm{H}_{2} \mathrm{NSi}$	$\mathrm{H}_{2} \mathrm{SiN}$
ω_{1}	3533.1	2263.5	$\alpha_{1}{ }^{\mathrm{A}}$	0.2073	0.0736
ω_{2}	1584.3	1035.0	$\alpha_{2}{ }^{\mathrm{A}}$	-0.2924	-0.0173
ω_{3}	870.0	923.1	$\alpha_{3}{ }^{\mathrm{A}}$	0.0068	-0.0699
ω_{4}	571.9	542.6	$\alpha_{4}{ }^{\mathrm{A}}$	1.0549	-1.0134
ω_{5}	3625.7	2295.0	$\alpha_{5}{ }^{\mathrm{A}}$	0.1168	0.05277
ω_{6}	734.9	508.8	$\alpha_{6}{ }^{\mathrm{A}}$	-1.3573	0.9655
$\mathrm{~A}_{\mathrm{e}}$	12.0009	5.3759	$\alpha_{1}{ }^{\mathrm{B}}$	0.00032	0.00051
$\mathrm{~B}_{\mathrm{e}}$	0.5140	0.5871	$\alpha_{2}{ }^{\mathrm{B}}$	0.00016	0.00362
C_{e}	0.4929	0.5293	$\alpha_{3}{ }^{\mathrm{B}}$	0.00359	-0.00067
D_{J}	0.6546×10^{-6}	0.6677×10^{-6}	$\alpha_{4}{ }^{\mathrm{B}}$	0.00382	0.00407
D_{JK}	0.2861×10^{-4}	0.3303×10^{-4}	$\alpha_{5}{ }^{\mathrm{B}}$	0.00059	0.00071
D_{K}	0.1213×10^{-2}	0.2501×10^{-3}	$\alpha_{6}{ }^{\mathrm{B}}$	-0.00152	-0.00341
Δ_{J}	0.6557×10^{-6}	0.6760×10^{-6}	$\alpha_{1}{ }^{\mathrm{C}}$	0.00063	0.00111
Δ_{JK}	0.2860×10^{-4}	0.3298×10^{-4}	$\alpha_{2}{ }^{\mathrm{C}}$	0.00129	0.00362
Δ_{K}	0.1213×10^{-2}	0.2502×10^{-3}	$\alpha_{3}{ }^{\mathrm{C}}$	0.00303	0.00144
δ_{J}	0.2819×10^{-7}	0.7486×10^{-7}	$\alpha_{4}{ }^{\mathrm{C}}$	0.00153	0.00008
δ_{K}	0.1708×10^{-4}	0.1948×10^{-4}	$\alpha_{5}{ }^{\mathrm{C}}$	0.00062	0.00092
		$\alpha_{6}{ }^{\mathrm{C}}$	0.00067	0.00044	

A. Description of the 6D-PESs

Figures 4 and 5 depict the 2D cuts through our 6D PESs of the $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ radicals along two of the internal coordinates, the remaining internal coordinates being set to their equilibrium values (see below). For each isomer, the cuts display a unique minimum, corresponding to the radical equilibrium geometry of interest here.

For both molecules, our cuts present similar shapes as those known for formaldehyde type molecules, ${ }^{65,66}$ where a strong coupling is observable for the θ_{1} / θ_{2} cuts. For the other cuts, Figures 4 and 5 reveal that the stretches and the in-plane angles are slightly coupled. These couplings are confirmed by the decomposition of the normal modes into the internal coordinates.

Let us concentrate now on the 2D contour plots through the out-of-plane angle (θ) and the in-plane angle $\left(\theta_{1}\right)$ of Figures 4 and 5. These plots show that our 6D-PESs are flat along the out-of-plane angle, especially for the $\mathrm{H}_{2} \mathrm{NSi}$ isomer where the contour at $500 \mathrm{~cm}^{-1}$ extends till $\theta \sim 30^{\circ}$. Such behavior constrained us to add some specific $\mathrm{c}_{\mathrm{ijklmn}}$ coefficient cross terms during the fitting procedure of the $a b$ initio energies for more flexibility of corresponding analytic representations. This specific behavior results on couplings between the modes involving θ_{1} / θ_{2} and θ. For illustration, Figure 6 displays the 2D contour plots of the 6D- PES of $\mathrm{H}_{2} \mathrm{NSi}$ along the out-of-plane, the symmetric bending, and antisymmetric bending coordinates. We notice the flatness of this 6D-PES along the corresponding symmetrized coordinates. In addition, one can clearly see that the potential energy valleys are not parallel to the y-axis signature of the occurrence of additional couplings between these modes. This is not fully accounted for in perturbation theory since the harmonic approximation is not appropriate to provide accurately the spectrum for such vibrational modes. As noticed in Ref. 17, only a full 6D variational approach on a full 6D-PES similar to the one performed here, should be used to get the vibrational spectrum of these molecular species. This was already observed for other molecular systems, such as $\mathrm{N}_{2} \mathrm{CO}^{+}, \mathrm{N}_{4}{ }^{+}, \mathrm{N}_{2} \mathrm{HAr}^{+}$, and HNNH^{+}. ${ }^{62,67-69}$

B. Spectroscopic parameters

For $\mathrm{H}_{2} \mathrm{NSi}$ (isomer I), our equilibrium geometry is: R_{NH} $=1.009 \AA, \mathrm{R}_{\mathrm{SiN}}=1.707 \AA$ and the in-plane HNSi angle $=124.25^{\circ}$. For $\mathrm{H}_{2} \mathrm{SiN}$ (isomer III), we compute: $\mathrm{R}_{\mathrm{SiH}}$ $=1.475 \AA, \mathrm{R}_{\mathrm{SiN}}=1.646 \AA$, and $\mathrm{HSiN}=122.25^{\circ}$. These equilibrium geometries are deduced from our $\operatorname{RCCSD}(\mathrm{T})$ -F12a/cc-pVTZ-F12 6D-PESs. They coincide with those obtained at the $\operatorname{RCCSD}(\mathrm{T}) / a u g$ cc-pV5Z and $\operatorname{RCCSD}(\mathrm{T})$ -F12b/cc-pVTZ-F12 levels of theory. When we compare to the parameters given in Ref. 17, one can find that the present equilibrium geometries are close to those computed for isomer I using RCCSD(T)/cc-pVQZ and RCCSD(T)/aug cc-pVQZ, whereas, for isomer III, the stretchings are shorter by $\sim 0.15-$ $0.12 \AA$ and the angles are smaller by $\sim 5^{\circ}$. The present treatment should be viewed as more accurate since it takes into account larger electron correlation amount. Therefore, we recommend the equilibrium geometries quoted here.

Both molecules are asymmetric type rotor (near prolate symmetric top; κ close to -1). Table I lists their equilibrium rotational constants $\left(A_{e}, B_{e}\right.$, and $\left.C_{e}\right)$, their first order centrifugal distortion ($\mathrm{D}_{\mathrm{J}}, \mathrm{D}_{\mathrm{JK}}, \mathrm{D}_{\mathrm{K}}$) terms, the quartic centrifugaldistortion constants within the case of Watson's A-reduction $\left(\Delta_{\mathrm{J}}, \Delta_{\mathrm{JK}}, \Delta_{\mathrm{K}}, \delta_{\mathrm{J}}, \delta_{\mathrm{K}}\right)$, and the vibration-rotation constants $\left(\alpha_{\mathrm{i}}\right)$. These values are obtained from the quartic force field in dimensionless coordinates. ${ }^{45,46,64}$ These quantities represent predictions and should be accurate enough to be helpful for the attribution of the rotationally resolved experimental spectra of these radicals whenever measured.

C. Variationally determined vibrational spectra of $\mathrm{H}_{2} \mathrm{NSi}$ and of $\mathrm{H}_{2} \mathrm{SiN}$

As for formaldehyde, $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ radicals have six vibrational modes: symmetric HX stretch, XY stretch, and symmetric HXY in-plane bending, $v_{1-3}\left(\mathrm{a}_{1}\right)$, one out-ofplane, $v_{4}\left(\mathrm{~b}_{1}\right)$ and antisymmetric HX stretch and antisymmetric HXY in-plane bending, $v_{5,6}\left(\mathrm{~b}_{2}\right)$. Tables II and III list their variationally computed anharmonic wavenumbers $\left(v_{\mathrm{i}}\right)$.

For $\mathrm{H}_{2} \mathrm{NSi}$, we give only the data derived from the $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a} / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12$ potential since the $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{~b} / \mathrm{cc}-\mathrm{pVTZ}-\mathrm{F} 12$ and the standard RCCSD(T)/aug cc-pV5Z 6D PESs lead to similar results (see Figure 3). For this radical, the RCCSD(T)-F12a/cc-pVTZF12 variationally determined fundamentals have been found to be: $\left(\right.$ in $\left.\mathrm{cm}^{-1}\right): v_{1}(\mathrm{NH}$ symmetric stretch $)=3368.3, \nu_{2}$ $($ symmetric bending $)=1558.9, \nu_{3}(\mathrm{SiN}$ stretching $)=857.5$, ν_{4} (out-of-plane) $=560.8, \nu_{5}$ (antisymmetric NH stretching $)=3441.3$ and $\nu_{6}($ antisymmetric bending $)=725.3$,

TABLE II. Variational vibrational energies (in cm^{-1}) of $\mathrm{H}_{2} \mathrm{NSi}$ and their tentative assignment. These data are derived from the RCCSD(T)-F12a/ cc-pVTZ-F12 6D-PES. The fundamentals are given in bold characters. The number of digits corresponds to the numerical convergence precision on the energy.

$\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right)$	Energy/cm ${ }^{-1}$
$(0,0,0,0,0,0)$	0.0^{a}
$\mathbf{(0 , 0 , 0 , 1 , 0 , 0})$	$\mathbf{5 6 0 . 8}$
$\mathbf{(0 , 0 , 0 , 0 , 0 , 1)}$	$\mathbf{7 2 5 . 3}$
$\mathbf{(0 , 0 , 1 , 0 , 0 , 0})$	$\mathbf{8 5 7 . 5}$
$(0,0,0,2,0,0)$	1112.2^{b}
$(0,0,0,1,0,1)$	1295.9
$(0,0,1,1,0,0)$	1410.3
$(0,0,0,0,0,2)$	1440.9
$\mathbf{(0 , 1 , 0 , 0 , 0 , 0})$	$\mathbf{1 5 5 8 . 9}$
$(0,0,1,0,0,1)$	1582.7
$(0,0,2,0,0,0)$	1707.1
$(0,1,0,1,0,0)$	2146.5^{b}
$(0,1,0,0,0,1)$	2288.1
$(0,1,1,0,0,0)$	2413.0
$(0,2,0,0,0,0)$	3101.7^{b}
$(\mathbf{1 , 0 , 0 , 0 , 0 , 0})$	$\mathbf{3 3 6 8 . 3}$
$(\mathbf{0 , 0 , 0 , 0 , 1 , 0})$	$\mathbf{3 4 4 1 . 3}$
$(1,0,0,1,0,0)$	3917.2
$(0,0,0,1,1,0)$	3981.7

[^1]

FIG. 7. The 2D-reduced density along the antisymmetric bending $\left(\theta_{-}=1 / 2\left(\theta_{1}-\theta_{2}\right)\right)$ coordinate and the SiN stretch (R_{3}) of the 11th and the 12th resonantstates of $\mathrm{H}_{2} \mathrm{SiN}$ at 1502 and $1514 \mathrm{~cm}^{-1}$, above the zero point vibrational energy with the $\mathrm{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a} / \mathrm{cc}-\mathrm{pVTZ}$-F12 potential. The zero-order states involved in these resonances are the $(0,0,1,0,0,1)$ and $(0,0,0,0,0,3)$. See text for more details.
respectively (cf. Table II). Table III also gives the tentatively assigned spectrum for the main set of the vibrational levels up to $\sim 4000 \mathrm{~cm}^{-1}$ above the zero point vibrational energy. For that purpose we examinated the decomposition of the

TABLE III. Variational vibrational energies (in cm^{-1}) of $\mathrm{H}_{2} \mathrm{SiN}$ and their tentative assignment. These data are derived from our $\operatorname{RCCSD}(\mathrm{T})$ /aug-ccpV5Z, RCCSD(T)-F12a/cc-pVTZ-F12, and RCCSD(T)-F12b/cc-pVTZ-F12 $6 \mathrm{D}-\mathrm{PESs}$. We give the fundamentals in bold characters. The number of digits corresponds to the numerical convergence precision on the energy.
$\left.\begin{array}{cccc}\hline \hline & \begin{array}{c}\text { RCCSD(T)/aug- } \\ \text { cc-pV5Z }\end{array} & \begin{array}{c}\left.\text { (} \mathbf{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right)\end{array} & \begin{array}{c}\text { RCCSD(T)-F12a/ } \\ \text { cc-pVTZ-F12 }\end{array}\end{array} \begin{array}{c}\text { RCCSD(T)- } \\ \text { Fc-pVTZ/ } \\ \text { cc-p12 }\end{array}\right]$

[^2]rovibrational wavefunctions on the harmonic oscillator basis set.

For $\mathrm{H}_{2} \mathrm{SiN}$, we list in Table III the spectra obtained using the three ab initio methods for comparison. Close examination of Table III reveals that some fundamentals present $3-13 \mathrm{~cm}^{-1}$ differences depending on the 6D potential used in the nuclear motion treatment. This is most likely related to the total energies evolutions computed over the grid for this isomer, especially along the SiN intramolecular distance (cf. Figure 3). For the $\mathrm{H}_{2} \mathrm{SiN}$ molecule, the RCCSD(T)-F12a/cc-pVTZ-F12 variationally determined fundamentals are: $\nu_{1}($ symmetric SiH stretching $)=2194.0, \nu_{2}(\mathrm{SiN}$ stretching $)$ $=1010.0, \nu_{3}=899.6, \nu_{4}=531.3, \nu_{5}=2210.2$, and ν_{6} $=501.3$ (all values are in cm^{-1}). Moreover, the analysis of the vibrational wavefunctions reveals the occurrence of some resonances when using the $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a} / \mathrm{b}$ potentials. Indeed, the transitions ν_{3} and $2 \nu_{6}$ are almost degenerated for the $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12 \mathrm{a} / \mathrm{b}$ potentials. Therefore, resonances may appear for polyads (such $2 \nu_{3}+\nu_{6}=\mathrm{p}$) with the zero-order states $\left(0,0, \nu_{3}, 0,0, v_{6}\right)$. For $p=2$, the resonance is weak (5th and 6th states). However, for $\mathrm{p}=3$, a strong resonance occurs between the zero-order states $(0,0,1,0,0,1)$ and ($0,0,0,0,0,3$) (both of them are of b_{2} symmetry) to give the 11th and the 12 th states at $1502 \mathrm{~cm}^{-1}$ and $1514 \mathrm{~cm}^{-1}$, respectively. This resonance is clearly visible in Figure 7 in which the 2D-reduced density of both eigenstates is plotted as a function of the symmetrized coordinates θ_{-}and R_{3}, associated with the antisymmetric bend and SiN stretching mode, respectively. Such accidental resonances are very sensitive on the quality of the 6D-PES and they were not located using the RCCSD(T)/aug cc-pV5Z potential.

IV. CONCLUSION

For the $\mathrm{H}_{2} \mathrm{NSi}$ and $\mathrm{H}_{2} \mathrm{SiN}$ isomers, we computed the 6D-PESs of their electronic ground state using standard $\operatorname{RCCSD}(\mathrm{T})$ coupled cluster and the newly developed RCCSD (T)-F12 methods. After variational treatments of the nuclear motions using these PESs, the vibrational spectra of these radicals are deduced up to $\sim 4000 \mathrm{~cm}^{-1}$ above the zero point vibrational energy. The $\operatorname{RCCSD}(\mathrm{T})-\mathrm{F} 12(\mathrm{a} / \mathrm{b}) / \mathrm{cc}-$
pVTZ-F12 approaches lead a priori to equivalent results (within the spectroscopic accuracy) as those obtained using the standard coupled cluster approaches and a larger basis set (at least of aug-cc-pV5Z quality) with strong reductions of CPU time and of disk occupancy for a single point electronic calculation. As already pointed out in previous benchmarking studies, ${ }^{39-42,70,71}$ these explicitly correlated methods represent a compromise for good description of the PESs and computation cost. It is, therefore, recommended for full dimensional PES generation of polyatomic molecular systems. Nevertheless, the slight differences observed in the case of $\mathrm{H}_{2} \mathrm{SiN}$ suggest that special cares need a priori to be taken when considering molecules bearing heavy atoms such as Si .

ACKNOWLEDGMENTS

L.J. thanks the Centre National de la Recherche Scientifique (CNRS, France) for financial support. M.L.S. acknowledges the MICINN (SPAIN) for the Grant No. AYA200800446.
${ }^{1}$ D. W. Hughes, in Cosmic Dust, edited by J. A. M. McDonnell (Wiley, New York 1978), p. 123.
${ }^{2}$ J. M. C. Plane, Chem. Rev. 103, 4963 (2003).
${ }^{3}$ C. Koeberl and E. H. Hagen, Geochim. Cosmochim. Acta 53, 937 (1989).
${ }^{4}$ T. Vondrak, J. M. C. Plane, S. Broadley, and D. Janches, Atmos. Chem. Phys. Discuss. 8, 14557 (2008).
${ }^{5}$ J. C. Gómez Martín, M. A. Blitz, and J. M. C. Plane, Phys. Chem. Chem. Phys. 11, 671 (2009).
${ }^{6}$ E. E. Ferguson, D. W. Fahey, F. C. Fehsenfeld, and D. L. Albritton, Planet. Space Sci. 29, 307 (1981).
${ }^{7}$ B. E. Turner, Astrophys. J. 388, L35 (1992).
${ }^{8}$ M. J. Kushner, J. Appl. Phys. 71, 4173 (1992).
${ }^{9}$ T. Ito, I. Kato, T. Nozaki, T. Nakamura, and H. Ishikawa, Appl. Phys. Lett. 38, 370 (1981).
${ }^{10}$ F. Bozso and P. Avouris, Phys. Rev. Lett. 57, 1185 (1986).
${ }^{11}$ R. Urmi and F. F. J. Martin, J. Chem. Phys. 93, 5709 (1990).
${ }^{12}$ G. A. Brown, W. C. Robinette, Jr., and H. G. Carlson, J. Electrochem. Soc. 115, 948 (1968).
${ }^{13}$ G. T. Burns and G. Chandra, J. Am. Ceram. Soc. 72, 333 (1989).
${ }^{14}$ F. L. Riley, J. Am. Ceram. Soc. 83, 245 (2000).
${ }^{15}$ W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, Nano Lett. 10, 3572 (2010).
${ }^{16}$ H. L. Chen, C. W. Wu, and J. J. Ho, J. Phys. Chem. A 110, 8893 (2006).
${ }^{17}$ M. Hochlaf, G. Chambaud, and M. L. Senent, Mol. Phys. 108, 1277 (2010).
${ }^{18}$ N. Goldberg, J. Hrusak, M. Iraqi, and H. Schwarz, J. Phys. Chem. 97, 10687 (1993).
${ }^{19}$ R. Damrauer, M. Krempp, and R. A. J. O'Hair, J. Am. Chem. Soc. 115, 1998 (1993)
${ }^{20}$ W.-K. Chen, I-Ch. Lu, Ch. Chaudhuri, W.-J. Huang, and S.-H. Lee, J. Phys. Chem. A 112, 8479 (2008).
${ }^{21}$ I.-C. Lu, W.-K. Chen, C. Chaudhuri, W.-J. Huang, J. J. Lin, and S.-H. Lee, J. Chem. Phys. 129, 174304 (2008).
${ }^{22}$ S. Wlodek and D. K. Bohme, J. Am. Chem. Soc. 110, 2396 (1988).
${ }^{23}$ S. J. Branko, J. Mol. Struct.: THEOCHEM 455, 77 (1998).
${ }^{24}$ O. Parisel, M. Hanus, and Y. Ellinger, Chem. Phys. 212, 331 (1996).
${ }^{25}$ O. Parisel, M. Hanus, and Y. Ellinger, J. Phys. Chem. 100, 2926 (1996).
${ }^{26}$ O. Parisel, M. Hanus, and Y. Ellinger, J. Chem. Phys. 104, 1979 (1996).
${ }^{27}$ O. Parisel, M. Hanus, and Y. Ellinger, J. Phys. Chem. A 101, 299 (1999) and references therein.
${ }^{28}$ H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz et al.; MOLPRO, a package of ab initio programs, version 2010.1, see http://www.molpro.net.
${ }^{29}$ P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); 112, 3106 (2000) (Erratum).
${ }^{30}$ K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
${ }^{31}$ H. J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102 (2007).
${ }^{32}$ T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
${ }^{33}$ K. A. Peterson, T. B. Adler, and H-J. Werner, J. Chem. Phys. 128, 084102 (2008).
${ }^{34}$ T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
${ }^{35}$ D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993).
${ }^{36}$ F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
${ }^{37}$ C. Hättig, Phys. Chem. Chem. Phys. 7, 59 (2005).
${ }^{38}$ W. Klopper, Mol. Phys. 99, 481 (2001).
${ }^{39}$ V. Brites and M. Hochlaf, J. Phys. Chem. A 113, 11107 (2009), and references therein.
${ }^{40}$ F. Lique, J. Klos, and M. Hochlaf, Phys. Chem. Chem. Phys. 12, 15672 (2010).
${ }^{41}$ G. Rauhut, G. Knizia, and H.-J. Werner, J. Chem. Phys. 130, 054105 (2009).
${ }^{42}$ X. Huang, E. F. Valeev, and T. J. Lee, J. Chem. Phys. 133, 244108 (2010).
${ }^{43}$ See supplementary material at http://dx.doi.org/10.1063/1.3624563 for the expansions of the PESs and the equilibrium geometries and the harmonic frequencies of $\mathrm{H}_{2} \mathrm{SiN}$ and $\mathrm{H}_{2} \mathrm{NSi}$ at different $a b$ initio levels.
${ }^{44}$ M. Hochlaf, Trends Chem. Phys. 12, 1 (2005).
${ }^{45}$ D. Papousek and M. R. Aliev, in Molecular Vibrational-Rotational Spectra (Elsevier, New York, 1982).
${ }^{46}$ I. M. Mills, in Molecular Spectroscopy: Modern Research, edited by K. N. Rao and C. W. Mathews (Academic, New York, 1972).
${ }^{47}$ D. Lauvergnat, ElVibRot: quantum dynamics code. http://www.lcp.u-psud.fr/Pageperso/lauvergnat/perso/.
${ }^{48}$ D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002).
${ }^{49}$ D. Lauvergnat, Tnum: Numerical kinetic energy operator code. http://www.lcp.u-psud.fr/Pageperso/lauvergnat/perso/.
${ }^{50}$ L. Bomble, D. Lauvergnat, F. Remacle, and M. Desouter-Lecomte, J. Chem. Phys. 128, 064110 (2008).
${ }^{51}$ D. Lauvergnat, S. Blasco, X. Chapuisat, and A. Nauts, J. Chem. Phys. 126, 204103 (2007).
${ }_{52}^{52}$ D. Lauvergnat and A. Nauts, Chem. Phys. 305, 105, (2004).
${ }^{53}$ S. Blasco and D. Lauvergnat, Chem. Phys. Lett. 373, 344 (2003).
${ }^{54}$ J. Laane, M. A. Harthcock, P. M. Killough, L. E. Bauman, and J. M. Cooke, J. Mol. Spectrosc. 91, 286 (1982).
${ }^{55}$ M. A. Harthcock and J. Laane, J. Mol. Spectrosc. 91, 300 (1982).
${ }^{56}$ M. L. Senent and Y. G. Smeyers, J. Chem. Phys. 105, 2789 (1996).
${ }^{57}$ C. Muñoz-Caro and A. Niño, QCPE Bull. 13, 4 (1993).
${ }^{58}$ M. L. Senent, Chem. Phys. Lett. 296, 299 (1998).
${ }^{59}$ D. J. Rush and K. B. Wiberg, J. Phys. Chem. A 101, 3143 (1997).
${ }^{60}$ E. Mátyus, G. Czakó, and A. G. Császár, J. Chem. Phys. 130, 134112 (2009).
${ }^{61}$ F. Ribeiro, C. Iung, and C. Leforestier, J. Chem. Phys. 123, 054106 (2005).
${ }^{62}$ D. Lauvergnat and M. Hochlaf, J. Chem. Phys. 130, 224312 (2009).
${ }^{63}$ Y. Scribano, D. Lauvergnat, and D. M. Benoit, J. Chem. Phys. 133, 094103 (2010).
${ }^{64}$ F. Richter, M. Hochlaf, P. Rosmus, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 120, 1306 (2004).
${ }^{65}$ J. M. L. Martin, T. J. Lee, and P. R. Taylor, J. Mol. Spectrosc. 160, 105 (1993).
${ }^{66}$ N. Lakin, M. Hochlaf, G. Chambaud, and P. Rosmus, J. Chem. Phys. 115, 3664 (2001).
${ }^{67}$ M. Hochlaf, C. Léonard, E. E. Ferguson, P. Rosmus, E. A. Reinsch, S. Carter, and N. C. Handy, J. Chem. Phys. 111, 4948 (1999).
${ }^{68}$ C. Léonard, P. Rosmus, S. Carter, and N. C. Handy, J. Phys. Chem. A 103, 1846 (1999).
${ }^{69}$ V. Brites, O. Dopfer, and M. Hochlaf, J. Phys. Chem. A 112, 11283 (2008).
${ }^{70}$ N. Inostroza and M. L. Senent, J. Chem. Phys. 133, 184107 (2010).
${ }^{71}$ M. L. Senent and R. Dominguez-Gomez, Chem. Phys. Lett. 501, 25 (2010).

[^0]: ${ }^{\text {a) }}$ Electronic mail: david.lauvergnat@1cp.u-psud.fr.
 ${ }^{\text {b) }}$ Author to whom correspondence should be addressed. Electronic mail: hochlaf@univ-mlv.fr. Telephone: +331609573 19. Fax: +3316095 7320.

[^1]: ${ }^{\text {a }}$ Zero point vibrational energy $(\mathrm{ZPE})=5377.37 \mathrm{~cm}^{-1}$.
 ${ }^{\mathrm{b}}$ Not fully converged. See text.

[^2]: ${ }^{\text {a }}$ Zero point vibrational energy $(\mathrm{ZPE})=3608.04 \mathrm{~cm}^{-1}$.
 ${ }^{\text {b }}$ Zero point vibrational energy $=3739.95 \mathrm{~cm}^{-1}$.
 ${ }^{\text {c }}$ Zero point vibrational energy $=3740.77 \mathrm{~cm}^{-1}$.
 ${ }^{\mathrm{d}}$ Resonant-states from the zero-order states, $(0,0,0,0,0,3)$ and $(0,0,1,0,0,1)$.
 ${ }^{\mathrm{e}}$ Not fully converged. See text.

