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Abstract 

Receptor models are useful to understand the chemical and physical characteristics of 

air pollutants by identifying their sources and by estimating contributions of each source 

to receptor concentrations. In this work, three receptor models based on principal 

component analysis with absolute principal component scores (PCA-APCS), Unmix 

and Positive Matrix Factorization (PMF) were applied to study for the first time the 

apportionment of the airborne particulate matter less or equal than 10 m (PM10) in 

Zaragoza, Spain, during one year sampling campaign (2003-2004). The PM10 samples 

were characterized regarding their concentrations in inorganic components: trace 

elements and ions and also organic components: polycyclic aromatic hydrocarbons 

(PAH) not only in the solid phase but also in the gas phase.  

A comparison of the three receptor models was carried out in order to do a more robust 

characterization of the PM10. The three models predicted that the major sources of 

PM10 in Zaragoza were related to natural sources (60%, 75% and 47% respectively for 

PCA-APCS, Unmix and PMF) although anthropogenic sources also contributed to 

PM10 (28%, 25% and 39%). With regard to the anthropogenic sources, while PCA and 

PMF allowed high discrimination in the sources identification associated with different 

combustion sources such as traffic and industry, fossil fuel, biomass and fuel oil 

combustion, heavy traffic and evaporative emissions, the Unmix model only allowed 
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the identification of industry and traffic emissions, evaporative emissions and heavy 

duty vehicles. The three models provided good correlations between the experimental 

and modelled PM10 concentrations with major precision and the closest agreement 

between the PMF and PCA models. 
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1. Introduction  

Air pollution constitutes a widespread problem affecting millions exposed to high levels 

of air pollution that exceed one or more ambient limit values. One of these air pollutants 

is the particulate matter (PM), which is composed of a broad class of chemically and 

physically diverse substances. PM can be very variable in size, chemical composition, 

formation mechanism and origin. In addition, its concentration, which is variable across 

space and time, is also a function of sources, atmospheric reactions and meteorological 

conditions. Health effects associated with PM are linked to respiratory, cardiovascular 

health problems and premature mortality.  

Receptor modelling is the application of multivariate statistical methods addressed to 

the identification and quantitative apportionment of air pollutants to their sources 

(Hopke et al., 2006). During the last years, these models have been accepted for 

developing effective and efficient air quality management plans. Different models 

including principal component analysis/absolute principal component scores (PCA-

APCS) (Song et al., 2006a; García et al., 2006), edge analysis (Unmix (Song et al., 

2006a; Olson and Norris, 2008), chemical mass balance (CMB) (Chow and Watson 

2002; Cooper et al. 1984) and positive matrix factorization (PMF) (Paatero, 1997; 

Paatero, 1999; Gildemeister et al., 2007) have been applied to identify and to establish 

the sources contribution to observed ambient concentrations. While most of the studies 

have been focused to study the apportionment of the PM as a function of the inorganic 



components (Hopke, 2003; Song et al., 2006a,b), only few references have been found 

with regard to the organic component of the PM, in particular PAH (Ke et al., 2008). In 

addition, there are not a lot of references based on the application of several receptor 

models for the apportionment of particulate matter in Spain (Viana et al., 2008). 

In this paper, the Zaragoza PM10 has been chemically characterized not only from the 

inorganic point of view (trace elements and ions) but also from the organic point of 

view (PAH). Once characterized, three different models, PCA/APCS, Unmix and PMF, 

have been applied in order to identify and quantify the PM10 sources in Zaragoza. 

Special attention was paid to the models comparison in order to determine which 

models were more adequate for the apportionment. 

Briefly, PCA is a tool for analyzing structure in multivariate data sets. It starts with a 

large number of correlated variables and seeks to identify a smaller number of 

independent factors that can be used to explain the variance in the data. The derived 

variables are linear combinations of original variables and sources are estimated 

quantitatively and at daily scale by using the APCS method described by Thurston and 

Spengler (1985), which uses the obtained scores for each specie and day.  

Unmix is one of the receptor models that the United States Environmental Protection 

Agency´s Office of Research and Development (ORD) has developed. UNMIX uses the 

singular value decomposition (SVD) method to estimate the source number by reducing 

the dimensionality of data (Henry, 2003).  

PMF is a factor analytic technique that uses non negativity constraints and allows non-

orthogonal factors (Paatero, 1997). This model was developed by Paatero (Paatero and 

Tapper, 1993) and implemented by the EPA. The structure of PMF permits maximum 

use of available data and better treatment of missing and below detection limit values. 



Uncertainty also plays an important role in this model because it reflects the quality and 

reliability of each data point.  

2. Materials and methods 

2.1. Study area and sampling description  

The study was performed in the city of Zaragoza, located in the North-East of Spain, by 

using a Graseby Andersen high-volume air sampler provided with a PM10 cut off inlet 

to collect particulate phase in a Teflon-coated, fibre-glass filter (0.6 m pore size; 20.5 

cm × 25.5 cm) and gas phase in polyurethane foam (PUF) (Callén et al., 2008a). 

Samples were collected every week from April 7, 2003 to July 5, 2004 on week days, 

collecting a total of 50 samples. More details regarding the sampling site were given in 

previous articles (López et al., 2005; Callén et al., 2008b). 

2.2 Analysis of metals  

The following metals (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and 

Zn) were analysed by ICP-OES (JY 2000 Ultrace Horiba) after solubilization of ¼ of 

filter with HNO3 according to a procedure previously described (López et al., 2005).  

2.3. Analyses of soluble inorganic ions 

2.3.1 Sample extraction 

1/8 of the filter was extracted by ultrasonic bath for 30 minutes in 15 mL of Milli-Q 

water. The extract was filtered through a Cameo 30N Nylon filter (0.22 m pore size 

and 30 mm filter diameter).  

2.3.2. Analytical technique 

Analyses were carried out by a Dionex ICS2000 ionic chromatograph with Chromeleon 

version 6.60SP2 software. The anion and cation methods used the AS17 analytical 

column (2 mm × 250 mm) and the CS17 analytical column (3 mm × 250 mm), 

respectively, as described in the IonPac-AS17 and the IonPac-CS17 manuals. In both 



cases, the detector was a conductivity cell working at 35 ºC. An eluent ion suppressor 

working at 19 mA (anions) and 62 mA (cations) was placed before the detector in order 

to prevent saturation by the background signal. 

A total of seven anions (F
-
, Cl

-
, NO2

-
, Br

-
, NO3

-
, SO4

2-
, PO4

3-
) and six cations (Li

+
, Na

+
, 

NH4
+
, K

+
, Mg

2+
, Ca

2+
) were analyzed. The sulphate concentration of marine origin, 

mSO4
2- 

was determined indirectly by considering the Na
+
 soluble concentration 

according to the ratio: mSO4
2-

/Na
+
= 0.25 in weight (Duce et al., 1983). The non-sea-

salt-sulphate, nss-SO4
2-

, generally of anthropogenic origin, was obtained by subtracting 

this value to the SO4
2-

 concentration. The detection and quantification limits were 

determined according to 3 and 10 times the blank standard deviation (the lowest 

detection limit for Br
-
: 0.001 mg L

-1
, the highest detection limit for Na

+
: 0.602 mg L

-1
).  

2.4. PAH analysis  

The following PAH (phenanthrene (Phe), anthracene (An), 2+2/4-methylphenanthrene 

(2+2/4MePhe), 9-methylphenanthrene (9MePhe), 1-methylphenanthrene (1MePhe), 2,5-

/2,7-/4,5-dimethylphenanthrene (Dimephe), fluoranthene (Flt), pyrene (Py), 

benzaanthracene (BaA), chrysene (Chry), benzobfluoranthene (BbF), 

benzokfluoranthene (BkF), benzoepyrene (BeP), benzoapyrene (BaP), indeno1,2,3-

cdpyrene (IcdP), dibenzoa,hanthracene (DahA), benzoghiperylene (BghiP) and 

coronene (Cor) contained in the filter and PUF were quantified according to previous 

publications using gas chromatography mass-spectrometry mass-spectrometry (GC-MS-

MS) (Callén et al., 2008a). 

2.5. Quality control and quality assurance  

Analyses of two standard reference materials, SRM 1944 and SRM 1649a, both 

provided by NIST, were carried out in order to check the analytical accuracy and 

precision of trace elements, ions and PAH. Measured values were satisfactorily 



comparable to certified values with deviations lower than 30% with the exception of Na, 

16% and 23% for all trace elements, ions and PAH, respectively.  

2.6. Models 

PCA-APCS, Unmix and PMF were applied to the Zaragoza data in order to estimate 

source profiles and contributions. Because there is a lot of bibliography regarding the 

theoretical aspects of these receptor models, only details that are specific to this 

application are discussed below. 

PCA-APCS was applied to the data using software package SPSS version 11.5. Due to 

the high number of analysed variables versus the samples number and considering that 

n>30+(V+3)/2, where n= number of samples and V= number of variables, a total of 35 

variables were considered in the PCA (Karar and Gupta, 2007). Prior to statistical 

analyses, all variables were typified and transformed into a dimensionless standardized 

form. Once obtained the PCA results, the communalities were checked in order to 

choose the variables which could provide a more feasible solution. Results from all 

PCA analyses were evaluated only for factors with eigenvalues higher than unity by 

adopting Kaiser´s criteria. Chemical variables were considered to identify source 

categories only when factor loadings were >0.5 (absolute value).  

Unmix 6.0 and PMF 1.1 models were available at EPA site 

(http://www.epa.gov/heasd/products/unmix/unmix.htm;http://www.epa.gov/heasd/produ

cts/pmf/pmf.htm). 

In the Unmix model, missing values were represented by the geometric mean 

concentration of the compound. A value equal to one half the analytic detection limit 

was used in source apportionment modeling for species with concentrations below the 

detection limit. Scatterplots of all species versus mass were also useful in choosing 

those species that influenced the mass yielding well-defined edges and were included in 

http://www.epa.gov/heasd/products/unmix/unmix.htm
http://www.epa.gov/heasd/products/pmf/pmf.htm
http://www.epa.gov/heasd/products/pmf/pmf.htm


the analysis. No influential points were found so that all data were included in the 

model. The fitting species were chosen using the select initial species function and the 

suggesting more species function. Numerous attempts were made in order to resolve the 

number of sources using various sets of fitting species. In general, model inputs of four 

sources resulted in some blending of sources with very few species included in the 

model. For these reasons and after several tests, the model identified five sources by 

including 17 species with the highest correlation between predicted and measured 

concentrations of PM10 and with standardized residuals between -3 and 3 that will be 

commented in section 3.2. Efforts to incorporate other species did not lead to feasible 

solution. The model was set to consider PM10 as the total mass.  

Regarding the PMF model, one of the main differences with the models previously 

described is that PMF considers the uncertainties of variables. The matrix of 

measurement uncertainties was calculated by considering the detection limit for each 

variable and the error after comparing results with certified values from SRM. The 

election of variables and the optimal number of factors was conditioned by the signal to 

noise ratio (S/N), the convergence of results between the Q robust and Q true, the 

distribution of residuals for individual compounds and the scatterplots of predicted mass 

versus the actual mass. 

Different runs were carried out by down weighting the species category from “strong” 

to “weak” to those species with low signal/noise but results did not improve. In this 

way, a total of 11 variables were excluded by considering them “bad” (PM10, Zn, V, 

Co, Ni, Cr, Na, K, Mg, Ca, PO4
3-

) and 32 variables were included by considering them 

“strong”. All samples were considered in the model. In addition, 12% of the extra 

modelling uncertainty was considered.  



The theoretical Q value, identical to the number of data entries, was 1600. The 

‘‘optimal’’ solution was considered to have a Q value near the theoretical Q value and a 

solution that did not depend on the initial seed suggesting that a stable solution was 

obtained. The number of factors was increased one by one by considering that if Q 

decreases by less than 2*(n+m) when increasing P by one, then the decrease of Q is 

insignificant and increasing P is not supported, where n= number of variables, m= 

number of samples and P= number of factors. The nine-factor solution was chosen 

because an increase from 7 to 8 to 9 factors improved the interpretation of the factor 

profiles (Figure S1, Supplementary material). The PMF was run with 9 factors and 50 

random starting points and with random seed equal to rand as well as with different 

random seed values. All runs converged finding a similar global minimum, which was 

quite near the theoretical Q. The robust Q was 1695 and the true Q was 1764. 

Once a reasonable solution was found, the uncertainties in the modelled solution were 

estimated using a bootstrapping technique. A total of 300 bootstrap runs were 

performed with a minimum r-value for base-boot factor mapping of 0.6 finding that all 

runs converged. Residuals were also checked to be between -3 and 3 the standard 

deviation for all species for at least 88% of the observations.  

3. Results and Discussion 

3.1. Source apportionment by PCA-APCS  

A total of 35 variables were considered in the PCA with Varimax rotation and a total of 

eight components were extracted covering 86% of the data variance (Table S1, 

Supplementary material). The first factor PC1 was related to BaP, BkF, BaA, BbjF, 

Chry, IcdP+DahA, BghiP, Py, Flt, BeP, Cor, Phe and An and it explained 32.6% of the 

variance. This factor was associated with the combustion of fossil fuels: coal 

combustion and coke production (Duval and Friedlander, 1981), natural gas home 



appliances (Rogge et al., 1993) and vehicles emissions (Harrison et al., 1996; Li and 

Kamens, 1993). The location of the sampling point close to a highway, the presence of 

near power stations in Escatrón (Zaragoza) and Andorra (Teruel) burning coal, small 

industrial activities located in the surroundings of the sampling point and the main use 

of natural gas as home heating justified this factor.  

The second factor was related to 1MePhe, DiMePhe, 2+2/4 MePhe, 9MePhe and it 

explained 14.3% of the variance. The high loadings of MePhe have been attributed by 

different authors to the evaporation of uncombusted petroleum during fuel handling and 

refueling operations (Kavouras et al., 2001; Simcik et al., 1999). Two petrol stations 

located close to the sampling area could support this factor that was labeled as 

evaporative emissions.  

The third factor was related to Cu, Cr, Pb, Mn, Fe and Zn explaining 10.7% of the 

variance. This factor was considered as industrial activities related to steel 

manufacturing and production (Cetin et al., 2007; Querol et al., 2007) and traffic 

emissions (Weckwerth, 2001; Ramadan et al., 2000; Fergussion and Kim, 1991). 

The fourth factor was associated with Ca
2+

, nmSO4
2-

, K
+
 and Mg

2+
 and it explained 

8.3% of the variance. Non-marine sulphate can have a double origin, anthropogenic due 

to the oxidation of fossil fuel combustion products or natural origin, mainly related to 

gypsum, limestone and dolomite as consequence of soil resuspension (Hedge et al., 

2007). In fact, gypsum deposits are very abundant in Aragón and there are also 

important quarries of limestone in Zaragoza and Teruel. These materials are also used as 

construction materials. This factor was labelled as crustal 1 and related to soil 

resuspension and abrasions from construction materials such as cement.  

The fith factor was related to Na
+
, Mg

2+
, Cl

-
 and it explained 7.0% of the total variance. 



This component was associated with marine components and with halite exploitation 

due to the presence of salt mines localised 35 km away from the sampling point.  

The sixth factor was related to Co, Ni and V and it explained 5.9% of the total variance. 

It was considered as fuel-oil combustion (Pacyna, 1986) showing the contribution not 

only of local pollution sources associated with some industrial processes and some 

domestic heating systems but also the long-range transport processes from different 

power stations located in other regions of Spain. 

The seventh factor was related to crustal elements Sr and Al, explaining 3.8% of the 

total variance. This factor labelled as crustal 2 was related to clay soils, typical from 

Aragón area. Finally, the last factor was related to NO3
-
, NH4

+ 
and slightly to K+ 

explaining 3.3% of the total variance. This profile is typical of combustion processes, in 

particular the biomass burning (Ryu et al., 2007) and it was justified by residual water 

treatment and paper industries located in the city.  

Once the PCA was obtained, the absolute factor scores (AFS) were regressed on the 

observed PM10 concentration to apportion the particulate matter to each sample (Kumar 

et al., 2001) (Figure 1). According to this model, 88% (28.45 g m
-3

) of the 

experimental PM10 was explained and the non justified mass in the analysis was the 

remaining 12% (3.50 g m
-3

). 

The chemical profile of each element (Figure 2) was also obtained by following the 

methodology established by Thurston and Spengler (1985). The dependent variable was 

the concentration of the different chemical species analyzed and the independent 

variables were the daily contributions of each source. This chemical profile and the 

PCA allowed the correct identification of the eight factors explained above.  

3.2. Source apportionment by Unmix model 



The model identified five sources using 17 species (PM10, Pb, Mn, Fe, Cl-, nmSO4
2-

, 

Na
+
, K

+
, Mg

2+
, Ca

2+
, 2+2/4MePhe, 9MePhe, 1MePhe, DiMePhe, IcdP+DahA, BghiP, 

Cor). The following species were discarded by the model according to suggest 

exclusion (Zn, V, Ni, Cr, Cu, Co, Ba and PO4
3-

) due to specific variances SV>0.5. The 

minimum correlation coefficient (r
2
) was 0.93 with a minimum signal to noise ratio of 

2.67, fulfilling the requirements of this model (r
2
>0.80 and signal/noise>2.0).  

The uncertainties were calculated by Unmix using a bootstrap procedure resampling the 

data 100 times. The source profiles as mass fractions, the estimated uncertainty in mass 

fraction and the relative certainty of each species mass fraction are shown in Table S2, 

Supplementary material. It can be deduced that four of the five sources founded by the 

model showed a reasonable amount of confidence in source composition with high 

relative certainty. In this case, the mass attributed to the evaporative emissions, the 

fourth component mainly associated with methylphenanthrenes, was 0.32 g m
-3

 and 

this source was not further considered in the Unmix analysis. This reflected one of the 

disadvantages of the Unmix model due to its difficulty in identifying small sources with 

less than 10% of the total mass (US-EPA, 2004).  

The chemical profile for each identified source and its average contribution are shown 

in Figure 3. Four of the five sources coincided with the sources identified by the PCA-

APCS model. These were industry+traffic, marine aerosol, evaporative emissions and 

crustal 1. A different source associated with IcdP+DahA, BghiP and Cor was obtained 

by the Unmix model. This factor was associated with heavy duty vehicles. The high 

contribution of high molecular weight PAH was considered as heavier oil combustion 

by Lee et al. (2004). These three compounds are typical markers of traffic emissions 

(Venkataraman et al., 1994; Harrison et al., 1996; Simcik et al., 1999) and IcdP was 

associated with diesel emissions (Li and Kamens, 1993). In addition, previous studies 



carried out in Zaragoza showed high concentrations of Cor in areas using diesel as main 

fuel and with high density of traffic (López et al., 2003). Unmix slightly overestimated 

the PM10 concentration so that the average modeled value was 33.11 μg m
-3

, 103% of 

the experimental PM10. 

3.3. Source apportionment by Positive Matrix Factorization 

A total of nine factors were chosen as the optimal number for the PMF model and the 

contribution of each factor was obtained by regressing the contribution of each factor 

against the PM10 concentrations (Figure 1). These factors together to the chemical 

profiles (Figure 4) were associated to different sources: industrial emissions, biomass 

combustion, crustal 2, evaporative emissions, traffic emissions, combustion of fossil 

fuels, crustal 1, marine aerosol and heavy duty vehicles. It is worthy saying that PMF 

was able to distinguish a component associated with Ba and considered as traffic 

emissions related to tyre and brake abrasion (Monaci and Bargagli, 2004). The 86% of 

the experimental PM10 was explained according to this model, 27.6 g m
-3

, while the 

14% of the PM10, 4.64 g m
-3

 was not identified. 

3.4. Comparison of PCA-APCS, Unmix and PMF results 

One of the novelties of this work was focused on the exhaustive characterization of the 

PM10 in Zaragoza by studying not only the inorganic component of the PM (trace 

elements and ions) but also studying the organic component of the PM10 (PAH 

analysis). In addition, three different receptor models were applied to apportion the 

PM10 in Zaragoza in order to compare results and the adequacy of models.  

The comparison of the three models was performed by considering different aspects: the 

fitting quality between the PM10 measured and the modelled ones, the number and 

nature of the identified sources, the contribution of each source to the total PM10 as 

well as the temporal evolution of each identified source.  



The quality of the models was shown by regressing the PM10 modelled for each model 

against the one measured. It was found that all three models provided good results 

regarding their ability to reproduce measured PM10 concentrations (Figure S2, 

Supplementary material) with very similar slopes in all cases but with the PCA model 

showing the best correlation and the closest slope to the unity. The intercepts were also 

similar with the lowest one for the PMF model. 

An inter-comparison was also performed between the models by plotting the PM10 

modelled for each model. Good correlations were found between the three models, in 

particular PCA-PMF (r
2
=0.92, slope=0.99) and PMF-Unmix (r

2
=0.90, slope=1.07). This 

indicated that these models track the PM10 almost perfectly as well as the mass 

explained. The worst correlation was found between the PCA and Unmix models. 

Nevertheless, the r
2
 was quite good with a value of 0.88 and a slope of 0.81.  

Four common sources were identified by the three models (Figure 1): crustal1, marine, 

industry+traffic and evaporative emissions. The crustal 1 component, with high 

correlation coefficients by the three models (Table S3, Supplementary material), 

showed a good correlation with the PM10 concentration (dashed line in Figure 5a) with 

high concentration peaks for those dates in which local soil resuspension and North-

African intrusions were produced (de la Cruz, 2008). This fact reflected the importance 

of considering, in particular areas, the natural contribution of the PM to fulfil the 

legislation concerning PM10 (Directive 2008/50/EC), especially in Mediterranean 

countries that can be influenced by long-range transport from North Africa. The 

temporal contribution of this factor by the three models showed a seasonal behavior at 

99% level of significance with higher concentrations in the warm season as also 

happened with the PM10 (Figure 5a). The three models identified the marine source and 

Unmix attributed a higher concentration to this source than the other two models (Table 



1 and Figure 5b). The marine component showed a seasonal trend statistically 

significant with higher contribution in the cold season due to Atlantic advections. The 

correlation among the contributions determined by each model was in all cases 

significant at 99% level (Table S3, Supplementary material). The contribution of the 

industry and traffic source was similar according to the three models (Figure 5c). In the 

case of the PMF model, the contribution of the factor associated with Ba and related 

with traffic was also added. No seasonal behavior (Figure 5c) was found as these 

emissions are produced in a constant way all the year as consequence of the industrial 

parks surrounding the city as well as the highway close to the sampling point. 

Regarding traffic, PCA was not able to distinguish the contribution of traffic fuels from 

the fossil fuel combustion while PMF and Unmix identified independently a factor 

associated with heavy duty vehicles (Figure 5d). This heavy duty vehicles factor 

showed maximum peaks for those dates in which the BaP equivalent concentration 

(BaP-eq) exceeded the value of 1 ng m
-3

 (de la Cruz, 2008) according to Larsen and 

Larsen (1998) indicating that traffic is one of the main sources producing PAH. The 

correlation between the contribution found by the two models was high (Table S3, 

Supplementary material) and followed a seasonal trend statistically significant with 

higher concentrations in the cold seasons. The source related with the evaporative 

emissions from petrol stations (Figure 5e) was identified by the three models but the 

contribution according to Unmix was quite lower than the obtained by the PCA and 

PMF and no correlation was found with them (Table S3, Supplementary material). No 

statistically significant seasonal behavior was found for this source but the average 

values were higher during the warm season that is quite reasonable with the evaporation 

processes.  



In addition, the PCA and PMF models were able to distinguish three common sources: a 

second crustal component mainly related to clays (crustal 2) (Figure 5f) that represented 

a small percentage of the PM10, a biomass combustion component and a fossil fuel 

combustion factor. This crustal 2 factor also presented higher concentrations in the 

warm season at 99% level of significance with high correlation coefficient between the 

two models (Table S3, Supplementary material). The biomass combustion factor 

(Figure 5g) showed a good correlation (Table S3, Supplementary material) between the 

two models with a statistically significant seasonal trend with higher values in cold 

season probably due to the lower dispersion capacity of the atmosphere and the 

influence of the temperature of the NH4NO3 dissociation in its gaseous species. 

The contributions determined by these two models (PCA and PMF) for the fossil fuel 

combustion factor (Figure 5h) were well correlated. The fossil fuel factor determined by 

PCA was also correlated with the traffic factor identified by PMF and PCA (Table S3, 

Supplementary material). This factor showed a statistically significant seasonal trend 

with higher values in the cold seasons. Although the use of fossil fuel in industrial 

processes remains constant along the year, the use of natural gas for domestic heating 

increases during cold seasons. The cold weather also favors the pollutant accumulation 

due to the lower mixing layer and the photochemical reactions contribute less to PAH 

transformation due to lower grade of solar radiation. This factors also showed maximum 

peaks (Figure 5h) for those dates in which the benzo(a)pyrene equivalent (BaP-eq) 

exceeded 1 ng m
-3

 (de la Cruz, 2008) corroborating the anthropogenic origin of PAH. 

Finally, the PCA was able to identify a factor related with fuel-oil (Figure 5i). The fuel-

oil is used as fuel in some power stations and in domestic heating systems. In Zaragoza 

there are no power stations using this fuel but this factor could be identified in long-

range transport episodes from Spanish areas in which power stations are located (de la 



Cruz, 2008). In fact, although higher concentrations of this factor were found in cold 

season, the difference with the warm season was not statistically significant because of 

these long-range transport episodes. 

The differences regarding the identified sources by each receptor model were mainly 

due to the considerations of the models to choose the species selected as variables. PCA 

and PMF identified similar sources although the first one was not able to distinguish the 

fossil fuel factor from the heavy duty vehicles factor. Because the communalities and 

the regression for Co, Ni and V were good according to PCA-APCS, these variables 

were included in the model and a source related to traffic was identified. Unmix was 

more limited and identified a lower number of sources, five versus eight and nine by the 

PCA and PMF models, respectively. This limitation is related to the model because it 

does not take into account the uncertainty in the experimental data but it is very 

sensitive to this one, excluding some variables. In this case, Unmix excluded species 

where most of the measurements were replaced by half the detection limit. The Unmix 

solution is highly dependant on the species that are selected. On the other hand, this 

model showed problems to identify those sources contributing with a low percentage to 

the total mass corroborating the weakness of Unmix related to identify ubiquitous 

sources, infrequent sources and relatively small sources (contributing less than about 

10% to the total mass). Nevertheless, the sources with the highest contribution to the 

total PM10 were included among the identified sources. It is also worthy saying that 

although the PAH concentrations in weight represent a low percentage to the total 

PM10 (de la Cruz, 2008), two of the five sources explaining the PM10 are attributed to 

PAH and constitute the 16% of the total PM10 concentration. 

With regard to the total of PM10 explained by each model (Table 1), the three models 

explained similar percentage of the experimental PM10 and Unmix was the only model 



that slightly overestimated the concentration. This could be interpreted in terms that 

Unmix was the best model regarding the explained mass. However, in this work two 

essential components of the PM were not analysed, the organic carbon and the 

elemental carbon. In this way, it was considered that Unmix results were less realistic 

and PCA and PMF, both showing similar results, were more adequate to explain the 

Zaragoza PM10.  

The models´ performance was also evaluated by estimating the correlation coefficients 

and the error percentages between the estimated and experimental PM10 concentrations 

(Table 2). The correlation coefficients were, in general, quite high predicting quite well 

the temporal variations of the analysed species. PMF was the model with the lowest 

error in the determination. It always modelled lower concentrations than the 

experimental ones in the range 1-37% (except for Phe). PCA overestimated the 

concentration of some species and underestimated the concentration of others with 

errors up to 87% for Ni. Unmix overestimated the concentration of all species and 

although the r
2
 were quite good, the errors, always in excess, were quite considerable. 

These large errors in the model might have been caused by the model itself (e.g. 

uncertainties parameters) and the data quality. While PCA-APCS differs from the 

Unmix and PMF models in not having a non-negativity constraint, Unmix provides a 

relatively coarse means of down-weighting outliers and PMF utilizes point-by-point 

estimates of errors in the data allowing down weighting of missing observations and 

outliers. That could be one of the reasons why PMF model provided better results than 

the Unmix model. For the two models that do not require measurement of uncertainty, 

PCA-APCS was much better than the Unmix model.  

4. Conclusions 



The particulate matter of Zaragoza city was apportioned for the first time by three 

multivariate receptor models based on factor analysis: PCA-APCS, Unmix and PMF 

contributing to the knowledge of the Spanish particulate matter. The similarity between 

the three models was proved with the correlation coefficients and the percentage of 

PM10 explained. The three applied models were able to identify the main sources 

contributing to the PM10. While PCA and PMF were more specific in the source 

identification with eight and nine different factors, respectively, Unmix was more 

conservative and some sources could not be differentiated. A reasonable agreement 

between PCA and PMF was found, with both models identifying the same sources and 

with good correlations for the same identified sources. The greater requirements of 

measure of uncertainty in PMF permitted to obtain better results than with the other two 

models: PCA-APCS and Unmix. However, the application of three models to the PM10 

Zaragoza data allowed: 1) the identification of a reasonable number of sources in 

agreement with the sampling point, 2) the corroboration of the main identified sources 

and 3) the possibility of separating some sources related with traffic that could not be 

discerned by other models, providing more complete information for the apportionment 

of the Zaragoza PM10 than using only one model. 
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Table 1. Sources and source contributions (g m
-3

) calculated by the three 

receptor models. 

 

 

 PCA-APCS Unmix PMF 

Crustal 1 16.61 (52%) 20.95 (65%) 12.56 (39%) 

Marine 1.28 (4%) 3.22 (10%) 2.20 (7%) 

Industry+traffic 2.73 (8%) 2.90 (9%) 0.57
a
 (2%) 

Evaporative emissions 2.12 (7%) 0.32 (<1%) 5.65 (18%) 

Crustal 2 1.44 (4%)  0.45 (1%) 

Biomass combustion 1.63 (5%)  2.10 (6%) 

Fossil fuel combustion 1.04 (3%)  1.80 (6%) 

Heavy duty vehicles  4.84 (15%) 2.25 (7%) 

Fuel oil 1.61 (5%)   

Determined 28.45 (88%) 33.11 (103%) 27.60 (86%) 
a
 
The traffic factor associated with Ba in the PMF model was added to the industry+traffic factor. 
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Table 2. Concentration of each component in ng m
-3

 (g m
-3

 for the PM10) obtained by experimental determination and by 

modelling with PCA-APCS, PMF and Unmix model (r
2
= correlation coefficient). 

 

 

  PCA-APCS PMF Unmix 

 Experimental Modelled r
2
 % error Modelled r

2
 % error Modelled r

2
 % error 

PM10 32.24 28.45 0.79 -12 27.60 0.75 -14 33.11 0.77 3 

Al 2683 3570 0.82 33 2335 0.89 -13    

Co 6.82 11.56 0.72 70       

Cr 6.51 5.58 0.81 -14       

Cu 34.58 27.93 0.83 -19 30.04 0.45 -13    

Fe 620.2 616.5 0.82 -1 594.5 0.81 -4 601.0 0.74 -3 

Mn 14.42 14.65 0.85 2 13.79 0.83 -4 14.06 0.86 -2 

Ni 11.19 20.92 0.79 87       

Pb 13.20 11.74 0.79 -11 11.81 0.92 -11 15.65 0.99 19 

Sr 16.92 15.68 0.80 -7 14.47 0.75 -14    

V 11.84 12.90 0.61 9       

Zn 176.3 285.1 0.67 62       

Cl
-
 685.8 1039 0.93 52 573.8 0.90 -16 823.7 0.74 20 

NO3
-
 2677 2722 0.83 2 2550 0.93 -5    

nmSO4
2-

 3919 4546 0.81 16 3511 0.65 -10 5126 0.88 31 

Na
+
 618.8 581.5 0.88 -6 614.5 0.92 -1 902.2 0.58 46 

NH4
+
 580.7 620.1 0.89 7 546.9 0.88 -6    

K
+
 243.4 207.8 0.73 -15 236.7 0.76 -3 294.0 0.48 21 

Mg
2+

 69.08 87.69 0.92 27 66.74 0.95 -3 112.4 0.63 63 

Ca
2+

 1228 1309 0.92 7 1167 0.83 -5 1678 0.80 37 

2+2/4MePhe 0.67 0.72 0.94 7 0.64 0.90 -4 0.8 0.90 19 

9MePhe 0.86 0.90 0.93 5 0.83 0.88 -3 1.17 0.93 36 

1MePhe 0.71 0.69 0.94 -3 0.68 0.92 -4 0.94 0.95 32 



 25 

DiMePhe 0.70 0.77 0.77 10 0.62 0.74 -11 0.7 0.80 0 

Phe 2.30 3.87 0.76 68 2.46 0.70 7    

An 0.46 0.48 0.75 4 0.40 0.73 -13    

Flt 1.06 1.07 0.88 1 0.96 0.84 -9    

Py 1.12 1.00 0.90 -11 1.06 0.88 -5    

Chry 0.41 0.44 0.87 7 0.26 0.91 -37    

BaA 0.33 0.53 0.95 61 0.36 0.78 9    

BbF 0.47 0.51 0.93 9 0.42 0.95 -11    

BkF 0.13 0.13 0.95 0 0.12 0.96 -8    

BaP 0.29 0.36 0.96 24 0.22 0.63 -24    

BeP 0.27 0.29 0.80 7 0.24 0.95 -11    

IcdP+DahA 1.08 1.70 0.89 57 0.93 0.94 -14 2.04 0.93 89 

BghiP 1.02 1.23 0.83 21 0.98 0.92 -4 1.65 0.94 62 

Cor 1.47 2.18 0.90 48 1.28 0.81 -13 2.45 0.87 67 

 0 
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Fig. 1. 
Percentage of contribution of sources to the average concentration of 

PM10 at Zaragoza obtained by Unmix, PCA-APCS and PMF models. 
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Fig. 2. 

 
Contribution of the selected species obtained by PCA-APCS (g m

-3
) to 

the PM10 for the different factors: a) evaporative emissions, fossil fuel 

combustion, b) biomass combustion, fuel-oil, industry+traffic and c) 

crustal 1, crustal 2 and marine. 
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Fig. 3. 

 
Contribution of the selected species obtained by Unmix (g m

-3
) to the 

PM10 for the different factors: a) industry+traffic, evaporative 

emissions, heavy duty vehicles and b) marine and crustal 1. 
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Fig. 4. 

 
Contribution of the selected species obtained by PMF (g m

-3
) to the 

PM10 for the different factors: a) traffic, industry+traffic, heavy-duty 

vehicles, b) biomass combustion, evaporative emissions, fossil fuel 

combustion and c) crustal 1, crustal 2 and marine. 
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Fig. 5. 

 
Temporal evolution of the identified sources (g m

-3
) for the three 

receptor models: a) crustal 1, b) marine, c) industry and traffic, d) 

heavy duty vehicles, e) evaporative emissions, f) crustal 2 g) biomass 

combustion, h) fossil fuel combustion and i) fuel-oil. 
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SUPPLEMENTARY MATERIAL 

 

Table S1. Principal Component Analysis after Varimax rotation for the selected 

components analysed in the PM10 in Zaragoza sampling from July 

2001 to July 2002. Only factor loading values greater than 0.5 are 

shown. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 Communalities 

BaP 0.96        0.95 

BkF 0.92        0.90 

BaA 0.91        0.94 

BbjF 0.91        0.89 

Chry 0.85        0.84 

IcdP+DahA 0.84        0.91 

BghiP 0.83        0.91 

Py 0.83        0.90 

Flt 0.81        0.90 

BeP 0.81        0.78 

Cor 0.73        0.87 

Phe 0.72        0.75 

An 0.67        0.79 

1MePhe  0.94       0.95 

2+2/4MePhe  0.90       0.94 

9MePhe9  0.86       0.94 

DiMePhe  0.81       0.81 

Cu   0.90      0.84 

Cr   0.89      0.83 

Pb   0.85      0.81 

Mn   0.75      0.88 

Fe   0.58      0.89 

Zn         0.67 

Ca
2+

    0.92     0.88 

nmSO4
2-

    0.73     0.80 

K
+
    0.70     0.77 

Na
+
     0.86    0.90 

Mg
2+

    0.55 0.76    0.91 

Cl
-
     0.76    0.90 

Co      0.83   0.75 

Ni     0.59 0.70   0.87 

V      0.64   0.73 

Sr       0.90  0.84 

Al       0.89  0.85 

NH4
+
        0.94 0.91 

NO3
-
        0.86 0.88 
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Table S2. Source composition results from UNMIX receptor modelling  

 

 
 Industry + traffic Heavy duty vehicles Marine Evaporative emissions Crustal 1 

 

Mass 

fraction Uncertainty 

Relative 

certainty 

Mass 

fraction Uncertainty 

Relative 

certainty 

Mass 

fraction Uncertainty 

Relative 

certainty 

Mass 

fraction Uncertainty 

Relative 

certainty 

Mass 

fraction Uncertainty 

Relative 

certainty 

PM10 3.178 2.744 0.6 5.450 2.832 1.0 3.685 2.168 0.8 -3.262 2.977 -0.5 22.966 8.041 1.4 

Pb 0.015 0.004 1.9 -0.002 0.001 -1.0 0.000 0.001 0.0 0.000 0.001 0.0 0.000 0.001 0.0 

Mn 0.005 0.001 2.5 0.000 0.001 0.0 0.002 0.001 1.0 0.000 0.001 0.0 0.007 0.003 1.2 

Fe 0.153 0.047 1.6 0.013 0.043 0.2 0.088 0.044 1.0 0.033 0.052 0.3 0.319 0.128 1.2 

Cl- 0.006 0.054 0.1 0.034 0.086 0.2 0.781 0.256 1.5 -0.117 0.069 -0.8 -0.024 0.075 -0.2 

nmSO4
2- 0.601 0.401 0.7 0.535 0.393 0.7 -0.351 0.319 -0.6 -0.923 0.485 -1.0 3.993 1.210 1.7 

Na+ 0.085 0.048 0.9 0.042 0.078 0.3 0.361 0.132 1.4 -0.283 0.091 -1.6 0.415 0.150 1.4 

K+ 0.040 0.021 1.0 0.071 0.024 1.5 0.041 0.023 0.9 -0.058 0.025 -1.2 0.145 0.048 1.5 

Mg2+ 0.010 0.006 0.8 -0.005 0.009 -0.3 0.034 0.014 1.2 -0.036 0.012 -1.5 0.069 0.023 1.5 

Ca2+ 0.117 0.102 0.6 0.307 0.127 1.2 0.021 0.097 0.1 -0.415 0.188 -1.1 1.229 0.425 1.446 

2+2/4MePhe 0.000 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.000 0.000  

9MePhe 0.000 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.000 0.000  

1MePhe 0.000 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.000 0.000  

DiMePhe 0.000 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.000 0.000  

IP+DBahA 0.000 0.000  0.002 0.000  0.000 0.000  0.000 0.000  -0.001 0.000  

BghiPe 0.000 0.000  0.001 0.000  0.000 0.000  0.000 0.000  -0.001 0.000  

Cor 0.000 0.000  0.002 0.001  0.000 0.000  0.000 0.000  -0.001 0.000  
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Table S3. Pearson correlation coefficients between the common sources identified 

by the models. All correlation are statistically significant at 99% level.  

 
 

Source Models Pearson coefficient 

Crustal 1 PCA-PMF 0.85 

 PCA-Unmix 0.82 

 PMF-Unmix 0.75 

Crustal 2 PCA-PMF 0.94 

Marine PCA-PMF 0.73 

 PCA-Unmix 0.79 

 PMF-Unmix 0.69 

Industry+traffic PCA-PMF 0.86 

 PCA-Unmix 0.85 

 PMF-Unmix 0.96 

Heavy duty vehicles PCA
a
-PMF 0.74 

 PCA
a
-Unmix 0.64 

 PMF-Unmix 0.90 

Evaporative emissions PCA-PMF 0.92 

Biomass combustion PCA-PMF 0.90 

Fossil fuel combustion PCA
a
-PMF 0.92 

a
 
In order to compare, it was calculated the correlation between the fossil fuel combustion and traffic factor determined by PCA and 

the fossil fuel combustion and traffic factor identified by PMF and Unmix. 
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Figure S1. Plot of the Q value as a function of the number of factors in PMF 

model. 
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Figure S2. Regressions between measured and modelled PM10 results with the 

three models: PCA-APCS, Unmix and PMF models (PM10 expressed 

in g m
-3

). 
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