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Abstract 

 

The correct mobilization of cytoplasmic granules is essential for the proper functioning 

of human neutrophils in host defense and inflammation. In this study, we have found 

that peripheral blood human neutrophils expressed high levels of Rab27a, whereas 

Rab27b expression was much lower. This indicates that Rab27a is the predominant 

Rab27 isoform present in human neutrophils. Rab27a was upregulated during neutrophil 

differentiation of HL-60 cells. Subcellular fractionation and immunoelectron 

microscopy studies of resting human neutrophils showed that Rab27a was mainly 

located in the membranes of specific and gelatinase-enriched tertiary granules, with a 

minor localization in azurophil granules. Rab27a was largely absent from CD35-

enriched secretory vesicles. Tertiary and specific granule-located Rab27a population 

was translocated to the cell surface upon neutrophil activation with phorbol 12-

myristate 13-acetate (PMA) that induced exocytosis of both tertiary and specific 

granules. Specific Abs against Rab27a inhibited Ca2+ and GTP-γ-S-, and PMA-induced 

exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized 

neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely 

affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, 

putative Rab27 effectors, suggesting that additional proteins should act as Rab27a 

effectors in human neutrophils.  Our data indicate that Rab27a is a major component of 

the exocytic machinery of human neutrophils, modulating the secretion of tertiary and 

specific granules that are readily mobilized upon neutrophil activation. 
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Introduction 

Polymorphonuclear neutrophils (PMN)3 constitute 54% to 70% of circulating white 

cells in humans and are the cornerstone of the cell-mediated microbicidal activity of 

innate immunity, phagocytosing and killing damaging pathogens (1). Neutrophils also 

play a crucial role in inflammation, and overexuberant activation of these cells may lead 

to extensive degranulation and release of cytoplasmic granule contents, which may be 

fatal in septic shock, acute lung injury, and other serious inflammatory disorders (2, 3). 

Central to the physiological role of neutrophils are their three major characteristic 

cytoplasmic granules, namely primary or azurophil granules, secondary or specific 

granules and gelatinase-rich tertiary granules (4, 5), which differ in their respective 

contents and readiness for mobilization. Azurophil granules, mainly involved in 

phagocytosis, contain a large number of lytic enzymes and are sluggishly mobilized 

upon neutrophil activation. Specific and tertiary granules contain several proteins 

involved in the adhesion and extravasation of human neutrophils, and are prone to fuse 

with the plasma membrane. Due to the particularly high tendency of tertiary granules to 

be exocytosed upon neutrophil activation and to their distinctive constituents, 

mobilization of tertiary granules is suggested to constitute a regulatory mechanism for a 

number of early functional responses in human neutrophils (6), including respiratory 

burst (7, 8), acidification (9), adhesion (10, 11), extravasation (12, 13), and priming 

(14). In addition, neutrophils contain the so-called secretory vesicles (15), which are 

also prone to be exocytosed, and, together with secondary and tertiary granules, 

constitute a reservoir of plasma membrane proteins that are translocated to the cell 

surface upon neutrophil activation (4, 5). Thus, there is a hierarchical mobilization of 

cytoplasmic granules in human neutrophils, which must be tightly regulated to avoid 

damage to the surrounding tissue if secreted in an uncontrolled manner, and to keep a 
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proper cell function in the surveillance of host organism. A regulated secretory pathway 

is then critical in human neutrophils, where synthesized products are first stored in 

distinct cytoplasmic organelles and then released to the extracellular medium or into a 

phagocytic vacuole when cells are appropriately stimulated. Each store organelle is 

mobilized towards the cell surface (exocytosis) or to the phagocytic vacuole 

(phagocytosis) at a distinct speed and kinetics in accordance with the biological 

function of the organelle products. Regulatory mechanisms underlying mobilization of 

neutrophil granules are complex and ill-defined, and some molecules involved in this 

process have only recently begun to be recognized. A number of soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been 

identified as regulators of granule fusion and exocytosis in human neutrophils (16-19). 

In addition, neutrophils are rich in low-molecular-mass GTP-binding proteins (20, 21), 

including Rab proteins (22-25), which have been implicated in the regulation of 

vesicular traffic in the secretory pathways of several cell types (26). Rab proteins are 

GTPases that form the largest family within the Ras superfamily of small GTPases with 

more than 60 members in human cells (27, 28), and promote docking and fusion of 

vesicles between specific pairs of vesicle donor and acceptor membranes (29). Rab27a 

is believed to play a central role in regulated secretion in a wide range of secretory cells 

(30-32) and is the first Rab protein that has been shown to be directly associated with a 

human disease. Mutations of the rab27a gene cause type 2 Griscelli syndrome in 

humans (33-36), a rare autosomal recessive immunodeficiency that results in defects in 

the transport of at least two types of specialized lysosome-related organelles: 

melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes (27, 37, 

38). Analysis of rab27a-deficient ashen mice (a model for human Griscelli syndrome) 

has revealed involvement of Rab27a in the vesicle-docking step in a number of 
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secretory cells, including cytotoxic T-lymphocytes (37, 38) and pancreatic β-cells (39). 

Type 2 Griscelli syndrome is characterized by impaired melanosome transport, which 

causes partial albinism of hair and skin, and by immunological abnormalities that are 

responsible for the poor prognosis of the disease. The capacity of lymphocytes and NK 

cells from these patients to lyse target cells is impaired or absent, as a result of their 

inability to secrete the content of their lytic granules (35-37). In addition, decreased 

respiratory burst and chemotaxis responses in neutrophils have been reported in some 

Griscelli syndrome patients (34). Rab27a protein has been recently found to be 

expressed in human neutrophils (40, 41), but its subcellular localization and function 

have not been clearly established. In the present study, we have characterized the 

expression, subcellular localization and function of Rab27a in human neutrophils by 

using different experimental approaches, showing the involvement of Rab27a in the 

exocytosis of tertiary and specific granules in human neutrophils. 

 

Materials and Methods 

Antibodies 

Anti-Rab27a mouse mAb was purchased from BD Transduction Laboratories 

(Lexington, KY). Anti-Slp1, anti-Slp2-a, anti-Slp3-a, anti-Slp4-a, anti-Slp5, anti-Slac2-

a, anti-Slac2-c, and anti-Rab27b rabbit polyclonal Abs were prepared as described 

previously (42, 43). The specificity of each Ab was checked by immunoblotting with 

recombinant T7-tagged Slp1-5 and Slac2-a/c (or FLAG-tagged Rab27a/b) expressed in 

COS-7 cells (44). Lack of cross-reaction between Abs to Rab27a and Rab27b was 

assessed previously (43). An additional anti-Rab27a rabbit poyclonal Ab was prepared 

as described previously (45). Both anti-Rab27a mAb and polyclonal Ab behaved 

similarly in Western blot and electron microscopy analyses. Anti-CD35 mAb was from 
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Immunotech (Marseille, France). Rabbit anti-human lactoferrin Ab was purchased from 

Cappel Laboratories (Cochranville, PA). Rabbit anti-human myeloperoxidase Ab was 

purchased from DAKO (Glostrup, Denmark). Rabbit anti-gelatinase Ab (46) was 

generously provided by Dr. N. Borregaard (National University Hospital, Copenhagen, 

Denmark). Anti-CD20 mAb was a kind gift of Dr. M. Romero (Hospital Rio Hortega, 

Valladolid, Spain). Specific mAbs against human CD63 (clone CLB-gran/12,435) and 

CD66b (clone CLB-B13.9) were from the Central Laboratory of The Netherlands Red 

Cross Blood Transfusion Service (CLB; Amsterdam, The Netherlands). Biotinylated 

anti-mouse and anti-rabbit IgG were from Amersham (Buckinghamshire, UK). 

Fluorescein isothiocyanate (FITC)-conjugated anti-mouse immunoglobulin was from 

DAKO. P3X63 myeloma culture supernatant, kindly provided by Dr. F. Sánchez-

Madrid (Hospital de la Princesa, Madrid, Spain), was used as a negative control. 

 

Cell culture 

The human acute myeloid HL-60 cell line, the promyelocytic leukemia NB4 cell line, as 

well as the NK-like cell line YT-Indy, were grown in RPMI-1640 medium 

supplemented with 10% (v/v) heat-inactivated FCS, 2 mM glutamine, 100 units/ml 

penicillin, and 100 μg/ml streptomycin at 37ºC in a humidified atmosphere of air/CO2 

(19/1). Neutrophil differentiation of HL-60 cell line was induced by adding 1.3% (v/v) 

DMSO as previously described (47). 

 

Neutrophil isolation and activation 

Neutrophils were obtained from fresh human peripheral blood by dextran sedimentation 

and Ficoll-Hypaque centrifugation, followed by hypotonic lysis of residual erythrocytes 

as previously described  (48). Freshly isolated human neutrophils were resuspended at 
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3-5 × 106 cells/ml in HEPES/glucose buffer (150 mM NaCl , 10 mM HEPES, 5 mM 

KCl, 1.2 mM MgCl2, 1.3 mM CaCl2, 5.5 mM glucose, pH 7.5), and incubated at 37°C 

for 10 min with 100 ng/ml phorbol 12-myristate 13-acetate (PMA). Release of 

gelatinase, lactoferrin, and peroxidase following neutrophil activation was determined 

as previously described (6, 9, 12). 

 

Subcellular fractionation 

Resting neutrophils were resuspended in 50 mM Tris-HCl, pH 7.5, containing 2 mM 

PMSF, and then disrupted by repeated freeze-thaw. Homogenates were centrifuged at 

1200 rpm in a Sorvall T 6000D centrifuge for 10 min, and the supernatant, representing 

the postnuclear extract, was saved. After centrifugation of the postnuclear extract at 

45000 rpm in a TLA rotor for 90 minutes at 4°C using an Optima TL Ultracentrifuge  

(Beckman Instruments, Palo Alto, CA), supernatant (soluble fraction) and pellet 

(membrane fraction), resuspended in 50 mM Tris-HCl, pH 7.5, containing 2 mM PMSF, 

were saved. 

To prepare the distinct subcellular fractions, freshly prepared neutrophils (~3-6 x 

108) were gently disrupted as described previously (7, 9), and the postnuclear fraction 

(6-ml) was layered onto a 27-ml, 15-40% (w/w) continuous sucrose gradient, with a 1-

ml cushion of 60% (w/w) sucrose, and centrifuged at 25000 rpm in a Beckman L8-70B 

ultracentrifuge using a SW27 rotor (16). Fractions (4-ml each, save fraction 1-cytosol-, 

6-ml) were collected by pumping 60% (w/w) sucrose into the bottom, and 2 mM PMSF 

was added at each fraction. Subcellular fractions were assayed for marker proteins, 

namely lactate dehydrogenase (cytosol), HLA (plasma membrane), latent alkaline 

phosphatase (secretory vesicles), gelatinase (tertiary granules), lactoferrin (specific 

granules) and peroxidase (azurophil granules) as described previously (17). Secretory 
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vesicles were not resolved from the plasma membrane under the fractionation 

conditions used (7, 16). Membranes from each fraction were obtained by diluting the 

fractions with 50 mM Tris-HCl, pH 8.0, 100 mM NaCl and centrifugation at 45000 rpm 

for 90 min at 4ºC using a 70 Ti type rotor (Beckman Instruments). Pellets were then 

resuspended in 50 mM Tris-HCl, pH 7.5, containing 2 mM PMSF, and stored at -20ºC 

until use. 

 

Western blotting and immunoprecipitation 

Proteins were separated by SDS-7.5%, SDS-10% or SDS-14% polyacrylamide gels and 

then immunoblotted (17). After blocking for 3 h at room temperature in 4% powdered 

defatted milk in TBS buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) containing 

0.05% Tween 20, blots were incubated overnight with the respective primary Abs, and 

then Ab reactivity was monitored with biotinylated anti-mouse IgG or anti-rabbit IgG 

and streptavidin-horseradish peroxidase conjugate, using an enhanced 

chemiluminescence detection system (Amersham). Immunoprecipitation assays were 

conducted from solubilized and biotinylated proteins as described previously (49). 

 

Electropermeabilization and immunofluorescence flow cytometry 

Neutrophils were permeabilized immediately before use as reported previously (16, 50, 

51). In brief, 5 × 106 cells were washed with PBS, resuspended in 0.5 ml of ice-cold 

electropermeabilization buffer (120 mM KCl, 10 mM NaCl, 1 mM KH2PO4, 20 mM 

HEPES, pH 7.0), transferred to a BTX cuvette and subjected to two discharges of 5 

kV/cm, 25 µF and 72 Ω using a BTX electroporator (Biotechnologies & Experimental 

Research, San Diego, CA). The cells were stirred gently between the two pulses, using a 

plastic pipette. Permeabilized cells were immediately transferred to plastic tubes 
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containing buffer or the Abs used in the study, and incubated for 5 min at room 

temperature to allow incorporation of Abs into electroporated neutrophils. 

Electropermeabilized neutrophils were then incubated for 5 min with 5 µg/ml 

cytochalasin B at 37°C, followed by stimulation with 1 µM Ca2+  (0.1 mM CaCl2, 5.37 

mM MgCl2, 5 mM hydroethyl EDTA, 10 mM glucose) and 50 µM GTP-γ-S for 10 min 

at 37ºC. The free Ca2+ concentration was checked by Fura-2 measurement. In some 

cases, cells were stimulated by incubation with 100 ng/ml PMA for 10 min at 37°C 

without cytochalasin B pretreatment. Cells were then placed on ice, fixed with 1% 

paraformaldehyde and processed for immunofluorescence flow cytometry. Control 

untreated electropermeabilized cells were run in parallel. Antigen cell surface 

expression was measured in paraformaldehyde-fixed neutrophils as described 

previously (16) using a BD Biosciences FACScalibur flow cytometer. 

 

RT-PCR 

Total RNA (5 μg), primed with oligo-dT, was reverse-transcribed into cDNA at 37ºC 

for 2 h using a first-strand cDNA synthesis kit (Amersham Biosciences, Piscataway, 

NJ) according to the manufacturer’s instructions in a final volume of 20 μl. A 25-μl 

PCR mixture contained 250 ng of cDNA template, 20 pmol of each primer, 0.2 mM 

dNTPs, 1.5 mM MgCl2 and 5 units of Taq DNA polymerase (Roche, Basel, 

Switzerland). PCR reactions were performed in a GeneAmp PCR system model 9600 

(Perkin-Elmer, Norwalk, CT). The primers used are listed in Table 1, where the 

nucleotide numbers indicate the primer location in the corresponding sequences 

obtained from the GenBank/EMBL database. PCR amplification was as follows: 1 cycle 

at 95ºC for 5 min as an initial denaturation step, then denaturation at 95ºC for 30 s, 

annealing for 30 s at distinct temperatures as shown in Table 1, and extension at 72ºC 
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for 60 s (35 cycles), followed by further incubation for 15 min at 72ºC (1 cycle). PCR 

products were electrophoresed on 2-2.5 % agarose gels in 1 X TAE (40 mM Tris-

acetate, 1 mM EDTA, pH 8.0) and visualized by ethidium bromide staining. 

PCR products were either extracted from the gel using ConcertTM kit (Gibco-

BRL) or cloned into the pCR®2.1 vector, using the TA-TOPO cloning kit (Invitrogen, 

San Diego, CA) following the manufacturer’s indications, and sequenced in an 

automatic sequencer. 

 For semiquantitative analysis, the number of cycles was reduced (20-28 cycles) 

to achieve the linear phase of amplification. Amplification of human β-actin (GenBank 

accession number: NM_001101) was used as an internal control. The sense and anti-

sense primers for β-actin cDNA amplification were 5’-

AATATGGCACCACACCTTCTACA-3’ and 5’-

CGACGTAGCACAGCTTCTCCTTA-3’. This primer pair amplified a 403-bp 

fragment. 

 

Immunoelectron microscopy 

Resting human neutrophils were fixed for 24 h in 2% paraformaldehyde in 0.1M PHEM 

buffer (60 mM PIPES, 25 mM HEPES, 2 mM MgCl2, 10 mM EGTA, pH 6.9) and then 

processed for ultrathin cryosectioning as previously described (52). Forty-five-

nanometer cryosections were cut at -120ºC using diamond knives (Drukker 

International B.V., Cuijk, The Netherlands) in an ultracryomicrotome (Leica, Vienna, 

Austria) and transferred with a mixture of sucrose and methylcellulose onto formvar-

coated copper grids (53). The grids were placed on 35-mm petri dishes containing 2% 

gelatin. For double immunolabeling, the procedure described by Slot et al. (54) was 

followed with 10- and 15-nm protein-A conjugated colloidal gold probes (Electron 
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Microscopy Laboratory, Utrecht University, Utrecht, The Netherlands). After 

immunolabeling, the cryosections were embedded in a mixture of methylcellulose and 

uranyl acetate and examined with a Philips CM 10 electron microscope (Philips, 

Eindhoven, The Netherlands). Negative controls, prepared by replacing the primary Ab 

by a nonrelevant Ab, showed no staining. 

 

Statistical analysis 

Statistical evaluation of the effect of anti-Rab27a Ab on neutrophil secretion was 

performed by Students’s t-test. The criterion for statistical significance was taken as 

p  < 0.05. 

 

Results 

Rab27a expression in human neutrophils 

By using different sets of primers (Table 1) we found that human peripheral blood 

neutrophils expressed rab27a mRNA by RT-PCR (Fig. 1) and subsequent sequencing, 

whereas the level of rab27b transcripts was negligible (data not shown). Two 

consecutive PCR runs were required to scarcely detect rab27b amplification. 

Subsequent cloning and sequencing of the respective amplicons confirmed that both 

rab27 isoforms were expressed, but as indicated above at very different levels. Rab27a 

mRNA was also readily detectable in the NK-like cell line YT-Indy (Fig. 1), the human 

acute myeloid HL-60 cell line and the human promyelocytic cell line NB4 (data not 

shown), but rab27b mRNA expression was absent in these cell types. In agreement with 

the RT-PCR data, we found that human neutrophils contained high amounts of Rab27a 

protein, whereas the level of Rab27b protein was much lower (Fig. 2). Rab27b protein 

was only detected after protracted autoradiogram exposure (Fig. 2A). Thus, these data 
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indicate that Rab27a is the predominant isoform expressed in human neutrophils. The 

use of both a very specific anti-Rab27a mAb (Fig. 2) and a rabbit polyclonal Ab against 

Rab27a (Fig. 3A) detected this protein as a band of 27-29 kDa. Interestingly, Rab27a 

expression was particularly high in human neutrophils when compared to other rab27a-

expressing cells (Fig. 3A). The HL-60 cell line has been largely used a cell culture 

model for human neutrophils (47). The expression of Rab27a was increased during 

differentiation of HL-60 cells with DMSO towards neutrophils (Fig. 3B). These results 

show that human neutrophils express high levels of Rab27a, suggesting a major role of 

this protein in mature neutrophils. 

 

Subcellular localization of Rab27a in resting and activated human neutrophils  

Two different specific anti-Rab27a Abs (a mAb and a rabbit polyclonal Ab), recognized 

a band of about 27-29 kDa in the postnuclear extract and in the membrane fraction of 

human neutrophils, but not in the soluble fraction containing the cytosol (Fig. 4A, and 

data not shown), indicating that Rab27a was membrane-bound. To determine the 

subcellular localization of Rab27a in resting human neutrophils, we performed 

subcellular fractionation assays that resolved cytosol, plasma membrane, as well as 

tertiary, specific and azurophil granules (Fig. 4B). Under these experimental conditions, 

secretory vesicles, identified by latent alkaline phosphatase, were not resolved from the 

plasma membrane (7, 16). We found that Rab27a was located mainly in the membranes 

prepared from subcellular fractions 4-6, enriched in tertiary and specific granules, with a 

minor location in fraction 8, enriched in azurophil granules (Fig. 4C). When human 

neutrophils were activated with PMA that released tertiary and specific granules (81% 

gelatinase and 68% lactoferrin secretion, respectively), but not primary granules (less 

than 5% secretion) (6, 7, 17), the tertiary/specific granule location of Rab27a was 
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translocated to the plasma membrane (fraction 2), whereas the azurophil granule-located 

Rab27a remained in the last fraction (fraction 8) of the subcellular fractionation (Fig. 

4C). A comparison of the subcellular fractionation distribution of Rab27a in resting 

neutrophils (Fig. 4C) suggests that Rab27a is slightly more abundant in tertiary granules 

(fractions 4-5) than in specific granules (fractions 5-6). 

 

Ultrastructural localization of Rab27a in human neutrophils 

To get a better insight on the subcellular localization of Rab27a, resting neutrophils 

were immunolabeled for Rab27a and analyzed by immunogold electron microscopy. 

Gold label was detected predominantly on the membrane of some granules (Fig. 5A). A 

small amount of gold label was found in vesicles and Golgi (Fig. 5A), that could be 

related to the low macromolecule synthesis capacity displayed by these cells (55, 56). 

Quantitation of the relative percentage of gold particles in the distinct subcellular 

structures of neutrophils showed that most of Rab27a was located in granules (66.4%), 

with a minor proportion in vesicles (31.6%) and a very low amount on plasma 

membrane (2.0%). To further identify the Rab27a-positive vesicles, we double labeled 

neutrophils with Abs against anti-Rab27a and anti-CD35, this latter as a marker for 

secretory vesicles. CD35 was present in both vesicles and plasma membrane (Fig. 5B) 

as a result of the endocytic origin of these secretory vesicles together with their 

proneness to be secreted (57). Granules positive for Rab27a (small gold particles, 

arrows in Fig. 5B) were devoid of CD35 labeling, and no CD35-rich vesicles were 

positive for Rab27a (Fig. 5B). After counting 200 positive vesicles, we found 54% of 

them were labeled only for CD35, 41% labeled only for Rab27a and 5% labeled for 

both CD35 and Rab27a. These data agree with our above subcellular fractionation 

analysis and indicate that Rab27a is largely absent from CD35- and latent alkaline 
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phosphatase-rich secretory vesicles. Cryosections of resting human neutrophils were 

also double labeled with Abs against Rab27a and markers for the different cytoplasmic 

granules, namely gelatinase (tertiary granules), lactoferrin (specific granules), or 

myeloperoxidase (azurophil granules), and analyzed by immunogold electron 

microscopy. Interestingly, Rab27a was mainly located on the membrane of tertiary and 

specific granules, with a minor presence in myeloperoxidase-positive granules (Fig. 6, 

A-C). The degree of colocalization of Rab27a with the distinct granule markers is 

shown in Fig. 6D, after analyzing at least 300 positive granules for Rab27a. Because 

labeling with anti-Rab27a Ab was weaker than labeling with the corresponding granule 

markers and only one section was examined for each granule, we analyzed 

colocalization only in Rab27a-positive granules in order to avoid that the less abundant 

granule constituent, i.e. Rab27a, could be missed in a particular section of the same 

granule. These results demonstrate the presence of Rab27a in both tertiary and specific 

granules, which are readily exocytosed upon cell activation, with a minor location in 

azurophil granules. Rab27a was more abundant in tertiary granules than in specific 

granules, about 80% of the Rab27a-positive granules were also enriched in gelatinase 

(Fig. 6D). Thus, our results suggest that practically all the tertiary granules contain 

Rab27a in their membranes. 

 

Involvement of Rab27a in neutrophil exocytosis 

We next analyzed whether Rab27a has a functional role in neutrophil exocytosis. 

Human mature neutrophils are non-dividing end cells with poor survival after isolation 

and show a low macromolecule biosynthesis capacity (47, 55, 58, 59). Consequently, 

exogenous gene expression or gene down-regulation in these cells is challenging. In 

addition, there is a lack of transfectable human models of leukocytes to analyze 
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secretion of tertiary and specific granules as human cell lines, such as HL-60 or NB4, 

lack these granules when differentiated towards the granulocytic lineage (60, 61). Thus, 

we used permeabilized neutrophils for the analysis of tertiary and specific granule 

secretion in human neutrophils. To this aim, we prepared electropermeabilized 

neutrophils that were able to undergo exocytosis of cytoplasmic granules upon cell 

activation with Ca2+ and GTP-γ-S (16, 50, 51), and allowed rapid access of antibodies 

into the cytoplasm (16). More than 95% of electropermeabilized neutrophils, following 

two discharges of 5 kV/cm, were rendered permeable to exogenously added antibodies 

(16). Degranulation was analyzed by measuring upregulation of the granule membrane 

markers CD63 and CD66b at the cell surface, as a measure of neutrophil degranulation 

in electropermeabilized neutrophils (16, 51). This method has been previously shown to 

monitor efficiently neutrophil degranulation in electropermeabilized neutrophils (16-18, 

50, 51). Following paraformaldehyde fixation of electropermeabilized neutrophils, we 

monitored the expression of both CD63 and CD66b only at the cell surface, allowing us 

to determine neutrophil degranulation (16). Upregulation of CD63 parallels secretion of 

azurophil granules, whereas CD66b upregulation parallels secretion of both tertiary and 

specific granules (17). Incubation of electropermeabilized neutrophils with anti-Rab27a 

Abs largely inhibited CD66b upregulation (≅70% inhibition, p < 0.01) after cell 

activation with Ca2+ and GTP-γ-S, whereas the effect on CD63 upregulation was rather 

low (≅20% inhibition) (Fig. 7A) and was not statistically significant (p > 0.05). PMA 

induced secretion of only tertiary and specific granules, but not of azurophil granules, in 

electropermeabilized neutrophils (Mollinedo, F. and Martin-Martin, B., unpublished 

observations), and we found that preincubation of human neutrophils with anti-Rab27a 

Abs led to a high inhibition of the CD66b upregulation (≅76% inhibition, p < 0.01) 

induced by PMA (Fig. 7B). Incubation of electropermeabilized neutrophils with an 
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unrelated and irrelevant Ab, such as anti-CD20 mAb, or with P3X63 myeloma culture 

supernatant or rabbit preimmune serum, used as a negative controls, had no effect on 

neutrophil degranulation (Fig. 7). These data indicate that anti-Rab27a Ab inhibits 

secretion of CD66b-containing tertiary and specific granules. 

 

Expression of Slp/Slac2 proteins in human neutrophils 

Rab proteins promote membrane trafficking through interaction of the GTP-bound form 

of Rab with specific effector molecules (26). To date, a group of Rab27 effectors, 

collectively named Slp/Slac2 or exophilins, have been identified that share a common 

N-terminal homologous Rab-binding region (31, 32, 62). Despite Rab27a protein was 

readily detectable in neutrophil extracts (Figs. 2 and 3), we were unable to detect 

Slp/Slac2 proteins in human neutrophils (Fig. 8A). Under our immunoblot conditions 

(Fig. 8, A and B), neither Slp nor Slac2 proteins were detected in human neutrophils, 

suggesting that additional Rab27 effectors other than Slp/Slac2 proteins may function in 

human neutrophils. RT-PCR, followed by sequencing, as well as immunoprecipitation 

assays allowed identification of Slp1 (or JFC1) and Slp3-a in human neutrophils (Fig. 8, 

C and D). This agrees with the previously reported expression of JFC1 in human 

neutrophils (63). Overall, our data suggest that neutrophils are rather deficient in most 

Slp/Slac2 proteins, or express very low amounts of these proteins.   

 

Discussion 

The data reported here demonstrate that Rab27a is present in tertiary and specific 

granules of human neutrophils, and it regulates their secretion upon cell activation. Our 

ultrastructural and biochemical data indicate that tertiary granules are particularly 

enriched in Rab27a. A minor location of Rab27a is found in the azurophil granules, 
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where it hardly affects their mobilization. The isoform Rab27b is also expressed in 

human neutrophils, but at a much lower extent than Rab27a. Thus, Rab27a protein is the 

predominant isoform in neutrophils, where it is highly expressed. Our data agree with a 

recent proteomic analysis of the three major neutrophil granules that showed a higher 

presence of Rab27a in gelatinase granules, albeit it could be detected in the three major 

granule populations (40). A very recent report has claimed that Rab27a is distributed 

mainly in a minor population of myeloperoxidase-containing granules that were 

assumed to be azurophil granules (41). However, a close examination of the results 

reported by Munafo et al. (41) showed that Rab27a was mainly present in low-density 

granules, enriched in VAMP-2 and readily exocytosed upon PMA stimulation. These 

latter features correspond more likely to tertiary and specific granules, which are low-

density organelles (4, 5), are enriched in VAMP-2 (17), and are readily secreted 

following PMA activation (6, 7, 17). In contrast, azurophil granules are high-density 

granules, do not contain VAMP-2 and are not mobilized after PMA incubation (4-7, 

17). At the first identification of tertiary granules as a novel entity (8), it became 

apparent that they contained low levels of some azurophil granule markers, and this 

might explain the above claim for the presence of Rab27a in low-density 

myeloperoxidase-containing granules. Our present findings, together with previous 

reported evidences, indicate that Rab27a is abundantly expressed in human neutrophils, 

with a predominant location in specific and, above all, gelatinase-rich tertiary granules, 

and regulates the exocytosis of these granules. Interestingly, we did not find Rab27a in 

the CD35-rich secretory vesicles, which have been previously reported to contain Rabs 

3a, 4, and 5a (24), thus suggesting a rather selective role of Rab27a in the secretion of 

particular human neutrophil granules.  
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 Tertiary and specific granules are readily mobilized at the early stages of 

neutrophil activation, and they might be so-called secretory granules, in contrast to 

azurophil granules, which are sluggishly mobilized following neutrophil activation and 

are more involved in phagocytosis. The rapid mobilization of tertiary and specific 

granules upon cell activation, together with their characteristic protein constituents 

involved in diapedesis, chemotaxis and superoxide anion generation, suggest a major 

role of these two granules in the early stages of neutrophil activation and inflammation 

(6, 12, 14). Thus, the role of Rab27a in the exocytosis of tertiary and specific granules 

might explain the reported defects in respiratory burst and chemotaxis in some type 2 

Griscelli syndrome patients (34). 

We found that Rab27a was upregulated during neutrophil differentiation of HL-

60 cells. However, HL-60 cells do not form specific and tertiary granules during 

neutrophil differentiation (60, 64), despite they retain the ability to express a number of 

proteins typically located in these organelles in mature neutrophils when driven into 

granulocytic maturation (17, 18, 65). In this regard, the expression of Rab27a during 

DMSO-induced neutrophil differentiation of HL-60 cells resembles the high induction 

of CD11b expression during HL-60 differentiation (47, 65), even though most of this 

protein is located in specific and tertiary granules in mature resting human neutrophils 

(10, 11). This observation suggests a different location of CD11b in neutrophil-

differentiated HL-60 cells, namely, cell surface (47). On these grounds, Rab27a should 

be present in neutrophil-differentiated HL-60 cells in a distinct location as compared to 

mature human peripheral blood neutrophils. Munafo et al. (41) have recently found that 

HL-60 cells transfected with Rab27a-specific siRNA showed a dramatic decrease in the 

level of expression of Rab27a and a significant inhibition in secretion, suggesting a role 

for this protein in myeloid cell exocytosis.  
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We found that the GTP-binding Rab27a was membrane-bound in human 

neutrophils, which is in agreement with its usual membrane localization through 

geranylgeranylation (66, 67). The involvement of Rab27a in the regulated exocytosis of 

lysosome-related organelles and secretory granules is dependent on its interaction with a 

wide array of effectors (31, 32), most of them are classified within the collective name 

of Slp/Slac2 proteins or exophilins, that share an N-terminal Rab27a-binding region (31, 

32, 62). However, we failed to detect expression of most Slp/Slac2 proteins, except Slp1 

(JFC1) and Slp3-a, in human neutrophils. Nevertheless, expression of Slp1/JFC1 and 

Slp3-a was scarce, and they were only detected by RT-PCR or immunoprecipitation. 

Slp1/JFC1 has been previously identified in neutrophils and assigned to play a role in 

the respiratory burst of neutrophils (63). In addition, Slp1/JFC1 was found to 

coimmunoprecipitate with Rab27a in human neutrophil lysates (41). These results might 

agree with a predominant location of Rab27a in tertiary granules as these organelles are 

enriched in the cytochrome b required for superoxide anion generation (8), and they are 

readily mobilized to the plasma membrane where Slp1/JFC1 has been located (63). In 

this regard, fusion of tertiary granules with plasma membrane primes neutrophils for 

respiratory burst (14). However, the lack of correlation between the relatively high 

abundance of Rab27a and the low expression of Slp/Slac2 proteins suggests that 

additional proteins should act as Rab27a effectors in human neutrophils. Rab proteins 

have been suggested to interact with SNARE proteins to ensure appropriate membrane 

fusion processes (68-70). This could be an attractive possibility as human neutrophils 

express a high number of SNARE proteins (16-19, 48, 71, 72) that could act as putative 

Rab27a effector candidates. Both Rab (73, 74) and SNARE proteins (75) might become 

major regulators of secretory processes during the immune response. Another putative 

candidate for a Rab27a effector molecule in neutrophils might be Munc13-4, as 
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previously demonstrated in other cell systems, including platelets, mast cells, cytotoxic 

lymphocyts and NK cells (76-78), but this remains to be elucidated. 

Rab27a is expressed in a broad range of specialized secretory cells, including 

exocrine, endocrine, ovarian, and hematopoietic cells, most of which undergo regulated 

exocytosis (30, 79-81). The regulation of the secretion of tertiary and specific granules 

by Rab27a reported here suggests a major role for Rab27a in inflammation. Our present 

data, together with the rather widespread presence of Rab27a in cells of the immune 

system (38, 74), suggest that Rab27a is a key player in secretory processes occurring in 

both innate and adaptative immune systems. The present findings on the role of Rab27a 

in the regulation of the exocytosis of tertiary and specific granules in human neutrophils 

might explain, at least in part, some of the clinical manifestations of type 2 Griscelli 

syndrome regarding defects in neutrophil function. 
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Table 1 
 
Gene Sequence Annealing 

temperature 
rab27a (accession number: NM_004580) 
       set 1   

       (forward; nt 426-443): 5’-GCCACTGGCAGAGGCCAG-3’ 62 ºC 

       (reverse; nt 679-698): 5’-GAGTGCTATGGCTTCCTCCT-3’  
       set 2   
       (forward; nt 426-443): 5’-GCCACTGGCAGAGGCCAG-3’ 62 ºC 

       (reverse; nt 896-911): 5’-CTCGAGTCAACAGCCACATGCC-3’  
rab27b (accession number: U57093) 
       set 1   
       (forward; nt 273-290): 5’-TCTTCAGGGAAAGCATTT-3’ 53 ºC 
       (reverse; nt 526-545): 5’-CAGTTCCCGAGCTTGCCGTT-3’  
       set 2   
       (forward; nt 273-290): 5’-TCTTCAGGGAAAGCATTT-3’ 53 ºC 
       (reverse; nt 731-749): 5’-GGCTCGAGCTAGCAGATACATTTCTTC-3’  
slp1 (accession number: NM_032872) 

       (forward; nt 300-318): 5’-CTTGCCCTTCATTGACTCC-3’ 60ºC 

       (reverse; nt 549-566): 5’-TGGTCGCTGATCTTGAGC-3’  

slp2 (accession number: NM_032943) 

       (forward; nt 2477-2498): 5’-GTAAAAAAACAGCGTTCAGACC-3’ 52ºC 

       (reverse; nt 3205-3223): 5’-CTCCCAGAGAGCAACTTCC-3’  

slp3 (accession number: XM_087804) 

       (forward; nt 1781-1802): 5’-AATCCGTATGTGAAGACCTACC-3’ 65ºC 

       (reverse; nt 2383-2400): 5’-AAGCTTGACTGCCTCAGC-3’  

slp4 (accession number: NM_080737) 

       (forward; nt 2050-2070): 5’-CCCTGAATCCTCACTACAACC-3’ 60ºC 

       (reverse; nt 2778-2799): 5’-TGTCTTTACTAACCAACCCTGC-3’  

slp5 (accession number: NM_138780) 

       (forward; nt 1438-1456): 5’-ACTATCAGCCATACCCAGC-3’ 55ºC 

       (reverse; nt 2023-2041): 5’-AATTCAAACGAACTCCTCC-3’  

slac2-a (accession number: NM_024101) 

       (forward; nt 347-365): 5’-GACACTGCCCATCTGAACG-3’ 55ºC 

       (reverse; nt 769-790): 5’-ATCTGAGTCTCCCTCGAAGTCG-3’  

slac2-c (accession number: NM_015460) 

       (forward; nt 681-701): 5’-CAGAAGGACATAGTGTGATGG-3’ 60ºC 

       (reverse; nt 1353-1370): 5’-GACACAGCTTGCTCAAGG-3’  
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Figure Legends 

FIGURE 1. Expression of small GTPase rab27a mRNA in human neutrophils. 

Expression of rab27a gene in human peripheral blood neutrophils (PMN) and the NK-

like cell line YT-Indy by RT-PCR. PCR amplification of β-actin was used as an internal 

control. 

 

FIGURE 2. Expression of Rab27a/b protein in human neutrophils. (A) Similar amounts 

of recombinant FLAG-tagged Rab27a/b in COS-7 cells (lane 1) and human neutrophil 

lysates (80 µg protein; lane 2) were loaded on SDS-10% polyacrylamide gels and 

immunoblotted with anti-Rab27a mAb (upper panel) or anti-Rab27b specific polyclonal 

Ab (lower panel). The migration positions of Rab27a and Rab27b are denoted 

(arrowheads). Lane 3 shows a long exposure autoradiogram. The positions of the 

molecular mass markers (in kDa) are shown on the left. (B) Recombinant FLAG-

Rab27a/b were used as positive controls in the top two panels.  Similar amounts of the 

FLAG-tagged proteins were loaded into each lane. 

 

FIGURE 3. Expression of Rab27a in distinct cell types and during HL-60 cell 

differentiation. (A) Presence of Rab27a protein in cell extracts (30 µg protein) derived 

from the NK-like cell line YT-Indy, NB4 cells and human peripheral blood neutrophils 

(PMN), assessed by Western blot using an anti-Rab27a polyclonal Ab. (B) Expression 

of Rab27a protein during DMSO-induced differentiation of HL-60 cells towards the 

neutrophil lineage, assessed by Western blot (30 µg protein) using an anti-Rab27a 

polyclonal Ab. The position of Rab27a is indicated (arrowhead). Data shown are 

representative of three separate experiments. 
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FIGURE 4. Subcellular distribution of Rab27a in human neutrophils. (A) Equal 

amounts (40 µg protein) of postnuclear extract (E), soluble (S) and membrane (M) 

proteins from resting human peripheral blood neutrophils were run on SDS-

polyacrylamide gels and analyzed by immunoblotting using an anti-Rab27a polyclonal 

Ab. The molecular masses (kDa) of protein markers are indicated on the left. (B) 

Resting human neutrophils were gently disrupted and subjected to subcellular 

fractionation as described in Materials and Methods. Fractions were collected and 

analyzed for the activity of specific organelle markers, which are plotted normalized to 

the fraction with maximal activity. The following markers were assayed. Cytosol 

(CYT): lactate dehydrogenase (open squares); plasma membrane (PM): HLA (closed 

circles); tertiary granules (TG): gelatinase (open triangles); specific granules (SG): 

lactoferrin (closed inverted triangles); azurophil granules (AG): peroxidase (open 

diamonds). (C) Membrane proteins (30 µg) from the subcellular fractions 2-8 of resting 

(Rest.) and PMA-activated (Act.) human neutrophils were assayed for Rab27a by 

immunoblotting. The migration position of Rab27a is indicated (arrowheads). All data 

shown are representative of three separate experiments. 

 

FIGURE 5. Rab27a is localized at the membranes of both intracellular granules and 

vesicles of human neutrophils. (A) Cryosections of neutrophils were immunogold 

labeled with anti-Rab27a (10-nm gold). Rab27a localized (arrows) at the membrane of 

granules and vesicles (v). (B) To characterize the Rab27a-positive vesicles, neutrophils 

were double labeled with anti-Rab27a (10 nm-gold) and anti-CD35 (15 nm-gold). No 

CD35-positive vesicles were positive for Rab27a. Arrows pointed to Rab27a-positive 

granules. Scale bar, 200 nm. 
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FIGURE 6. Characterization of Rab27a-positive granules. Neutrophils were double 

labeled with Rab27a and respectively, gelatinase (Gel, A), lactoferrin (Lf, B) or 

myeloperoxidase (MPO, C).  In A and B, many of the Rab27a-positive granules are also 

labeled for gelatinase and lactoferrin respectively (arrows); whereas the majority of 

Rab27a-positive granules (arrows) were negative for MPO. Scale bar, 200 nm. (D) 

Ultrathin cryosections were double immunogold-labeled for Rab27a and either 

gelatinase (marker for tertiary granules), lactoferrin (marker for specific granules) or 

myeloperoxidase (marker for azurophil granules). Histograms indicate the percentage of 

Rab27-positive granules displaying  colocalization with the marker of these granules. 

For each experiment at least 300 positive granules were analyzed. 

 

FIGURE 7. Involvement of Rab27a in the secretion of neutrophil granules. (A) 

Electropermeabilized neutrophils (PMN) were incubated in the absence (Control), or in 

the presence of P3X63 (20 µg/ml), anti-CD20 mAb (20 µg/ml), rabbit preimmune 

serum (20 µg/ml), or of increasing concentrations of anti-Rab27a polyclonal Ab, and 

then activated with Ca2+ + GTP-γ-S, and assayed for CD63 and CD66b antigen 

expression by flow cytometry. Data are expressed as the percentage of CD63 and 

CD66b cell surface increase upon electropermeabilized neutrophil activation compared 

with the CD63 and CD66b cell surface upregulation detected in control Ca2+ + GTP-γ-

S-stimulated electropermeabilized neutrophils in the absence of any Ab (Control). (B) 

Electropermeabilized neutrophils (PMN) were incubated in the absence (Control), or in 

the presence of P3X63 (20 µg/ml), anti-CD20 mAb (20 µg/ml), rabbit preimmune 

serum (20 µg/ml), or of increasing concentrations of anti-Rab27a polyclonal Ab, and 

then activated with PMA, and assayed for CD66b antigen expression by flow 

cytometry. Data are expressed as the percentage of CD66b cell surface increase as in A. 



 31 

Mean values ± S.D. of five independent determinations are shown. Asterisks indicate 

values that are significantly different from preimmune serum-treated cells at p < 0.01 

(**) level by Student’s t-test. 

 

FIGURE 8. Expression of Rab27 effectors (Slp and Slac2) in human neutrophils. (A) 

Expression of the Slp and Slac2 family members in human neutrophils. Similar amounts 

of recombinant T7-tagged Slp1-5 and Slac2-a/c expressed in COS-7 cells (lane 1; see B) 

and total homogenates of human peripheral blood neutrophils (PMN) (80 µg; lane 2) 

were loaded on SDS-7.5% polyacrylamide gels and immunoblotted with anti-Slp1, anti-

Slp2-a, anti-Slp3-a, anti-Slp4-a, anti-Slp5, anti-Slac2-a, or anti-Slac2-c specific Abs. 

(B) Recombinant T7-Slp1-5 and T7-Slac2-a/c were used as positive controls in A. 

Similar amounts of the T7-tagged proteins were loaded into each lane. The positions of 

the molecular mass markers (in kDa) are shown on the left. (C) Expression of slp1 and 

slp3-a mRNA in human neutrophils and neutrophil-differentiating HL-60 cells. Total 

RNA was purified from untreated HL-60 cells, HL-60 cells treated with 1.3% (v/v) 

DMSO for 4 days, and human peripheral blood neutrophils (PMN), and subjected to 

semiquantitative RT-PCR analysis using specific oligonucleotide primers for each gene. 

PCR amplification of β-actin was used as an internal loading control. The PCR products 

were electrophoresed onto a 2% agarose gel and stained with ethidium bromide. (D) 

Immunoprecipitation of Slp1 and Slp3-a in human neutrophils. Biotinylated extracts 

from untreated HL-60 cells, HL-60 cells treated with 1.3% (v/v) DMSO for 4 days, and 

human peripheral blood neutrophils (PMN), were immunoprecipitated with specific 

antibodies against Slp1 and Slp3-a or with P3X63 myeloma supernatant, as a negative 

control, and immunoprecipitates were subjected Western blot. The molecular mass of 



 32 

the immunoreactive bands are indicated on the right (arrowheads). Data shown are 

representative of three separate experiments. 
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Figure 1 
Herrero-Turrion et al. 
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Figure 2 
Herrero-Turrion et al. 
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Figure 3 
Herrero-Turrion et al. 
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Figure 4 
Herrero-Turrion et al. 
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Figure 5 
Herrero-Turrion et al. 
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Figure 6 
Herrero-Turrion et al. 

 



 39 

Figure 7 
Herrero-Turrion et al. 
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Figure 8 
Herrero-Turrion et al. 
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