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Abstract
Energy losses experienced by a fast electron probe moving through a dielectric medium have
been studied both numerically and analytically, where the response function varies continuously
with position in one transverse direction. The frequent assumption that the loss spectrum should
exhibit a peak determined by the plasmon energy in a homogeneous medium with the
composition found locally at the probe position can be incorrect. In free electron systems,
inhomogeneous effects can cause spectral shape changes as well as peak shifts. Computations
for diffuse interfaces between semiconductors with differing band gaps are also reported.
Prospects for improved spatial resolution in valence loss spectroscopy at higher momentum
transfer are discussed.

1. Introduction

For spatially localized spectroscopy, electron microscopists
have generally favoured the core loss region because the data
can be related quite directly to local chemical composition
and even electronic structure. However the valence region has
significant advantages because of the strength of the signal and
the frequent occurrence of prominent peaks associated with the
excitation of plasmons that can provide a simple connection
to valence electron density or more generally a means of
identifying specific local phases. Plasmon loss mapping
has consequently attracted attention both in early pioneering
work [1–4] and more recently [5, 6] but has proceeded on a
local excitation assumption that the loss spectrum at each point
is identical to that from a homogeneous medium with the same
local composition. In this low energy and momentum transfer
region, the problem of Coulomb delocalization is potentially
significant and was first emphasized particularly vividly by the
work of Echenique and Pendry [7] on the excitation of surface
plasmons by an electron travelling outside a metal.

Detailed analytical theories of valence excitation have
more recently been developed and tested for sharp interfaces
with simple planar, cylindrical or spherical geometry and
numerical approaches have been used for more complex
geometries [8–10]. A general principle emerging from this
work is that for each nanostructure there are plasmons or
other characteristic valence excitation eigenmodes at energies
determined by peaks in the imaginary parts of bulk or interface

response functions. The excitation amplitude of each mode and
hence its contribution to the energy loss spectrum depends on
the trajectory (i.e., impact parameter of the fast electron used
in the excitation). Furthermore the sum of these different mode
contributions is often constant under changes in the impact
parameter. This so-called begrenzungs effect is manifested
most clearly in the case of excitations near a planar interface.

In other cases in which continuous changes rather
than sharp interfaces may be present, electron microscopists
continue to make their local excitation assumption ignoring
any gradient corrections in the plasmon energies or in their
excitation probabilities. Surface scientists have already
addressed the influence on surface plasmon energies and
dispersion of the details of the valence electron density profile
at a free surface (see [12, 13] and references therein), but have
not considered the more general variations of interest here nor
have they included the details of the excitation process by the
high energy electrons used in electron microscopy. Here we
develop a general classical theory to handle situations where
the dielectric response is a function of one spatial coordinate
normal to the electron beam direction. The general spatial
variation has to be solved numerically but we also note some
special cases that admit analytical solution.

2. General theory

Consider a diffuse interface between two semi-infinite media
with dielectric functions ε1 and ε2 (see figure 1(a)). In the
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Figure 1. (a) Scheme for the diffuse interface between two media; (b) the erf(x/a) function used to model the transition region in the
boundary.

direction x normal to the interface the diffuse region extends
over a distance characterized by a length parameter a and
within which the permittivity ε(x, ω) is a continuous function
of the position x . In this work we have employed two
different profiles: a linear dependence of ε on x (this is solved
analytically in section 3.1) and a more realistic smooth profile
described by the error function erf(x/a) shown in figure 1(b).
We study the energy loss experienced by a fast electron moving
with velocity v in the z direction parallel to the interface, and
with impact parameter b relative to the centre of the interfacial
region.

The energy loss per unit length is related to the induced
potential φind(x, q, ω), which can be obtained from Poisson’s
equation for a moving source charge eδ(x − b)δ(y)δ(z − vt).
Making use of the translational invariance along the y and z
axes, we can Fourier transform the potential from variables
(x, y, z, t) to (x, qy, qz, ω) and write the Poisson equation in
the form:

d2

dx2
φ(x, q, ω) + 1

ε

(
dε

dx

)
d

dx
φ(x, q, ω) − q2φ(x, q, ω)

= 8eπ2

ε
δ(x − b)δ(qzv − ω), (1)

where q2 = q2
y + q2

z , and qy and qz are the momentum
components conjugate to the y and z coordinates. The
rightmost delta function in equation (1) comes from energy
conservation and ensures that only one value of qz = ω/v

arises, so we can from now on assume q2 = q2
y + (ω

v
)2.

The diffuse interface response is thus characterized by the
dimensionless parameter qa which has a minimum value
ωa/v.

The general solution of equation (1) can be expressed
in terms of the regular solutions φ+(x, q, ω) = e−qx for
x > a and φ−(x, q, ω) = eqx for x < a in both
homogeneous regions, which are then propagated through
the inhomogeneous region up to x = b (this can be done
numerically for arbitrary dependence of ε(x, ω) on x). Let
φ±(x, q, ω) be the values of these solutions in the interface.
The continuity of the potential at x = b leads to the expression

φ(x, q, ω) =
{

Aφ+(b, q, ω)φ−(x, q, ω), x < b,

Aφ−(b, q, ω)φ+(x, q, ω), x > b,

where the normalization constant A is determined by imposing
at x = b the jump in the first derivative of φ(x, q, ω) given by
equation (1). One finds:

A = − 8eπ2

ε(b, ω)W (b, q, ω)
δ(qzv − ω), (2)

where W (b, q, ω) is the Wronskian

W (b, q, ω) = φ−(b, q, ω)
d

dx
φ+(x, q, ω)

∣∣∣∣
x=b

− φ+(b, q, ω)
d

dx
φ−(x, q, ω)

∣∣∣∣
x=b

.

The component of the slowing down force in the direction
of the probe velocity evaluated at the probe position is the
stopping power (i.e., the energy loss per unit length), which
is given by
dW

dz
= ie2

πv2

∫ ∞

−∞
ω dω dqy

φ+(b, q, ω)φ−(b, q, ω)

ε(b, ω)W (b, q, ω)

=
∫ ∞

0
ω dω

dP(ω)

dz
,

where

dP(ω)

dz
= − 2e2

πv2

∫ ∞

0
dqy Im

{
φ+(b, q, ω)φ−(b, q, ω)

ε(b, ω)W (b, q, ω)

}

(3)
is the energy loss probability per unit length. The remainder of
our paper will focus on this quantity, which is directly probed
by EELS.

3. Analytical solutions

3.1. Dielectric function depending linearly on the position

Here we consider a dielectric function in the interface that
is a linear function of position. Although the abrupt change
of slope at the edge of the homogeneous regions may be
somewhat unrealistic, the model can be analytically solved,
providing a useful understanding of the role of the interface
thickness a in the loss spectra. Our dielectric function is now
given by

ε(x, ω) =

⎧⎪⎪⎨
⎪⎪⎩

ε1(ω), x < −a,

α(ω) + β(ω)
x

a
, −a < x < a,

ε2(ω), x > a,

(4)
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where
α(ω) = 1

2 [ε1(ω) + ε2(ω)]

and
β(ω) = 1

2 [ε2(ω) − ε1(ω)].

Using the non-dimensional complex variable t (x, ω) =
qaε(x, ω)β(ω)−1, equation (1) in the interface becomes:

t2 d2

dt2
φ(t, q, ω) + t

d

dt
φ(t, q, ω) − t2φ(t, q, ω)

= −8eπ2at

β
δ(t − tb)δ(qzv − ω), (5)

where we have defined tb = t (b, ω). When the probe trajectory
lies in one of the homogeneous regions (e.g., b > a), the
solution of the homogeneous equation (5) in the interfacial
region can be written as

φ(t, q, ω) = B(q, ω)I0(t) + C(q, ω)K0(t),

−a < x < a, (6)

where K0 and I0 are modified Bessel functions [14]. Outside
the interface the potential reduces to

φ(t, q, ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(q, ω)eqx, x < −a

4eπ2

qε2(ω)
e−q|x−b|δ(ω − qzv)

+ D(q, ω)e−qx , x > a,

(7)

where A, B, C and D are functions determined by the
continuity of the potential and the normal displacement at the
edges of the interface (x = ±a). After some tedious algebra
the coefficient D(q, ω), needed to obtain the potential induced
at the position of the electron, is found to be

D(x, q, ω) = 4eπ2

qε2
eq(2a−b)δ(ω − qzv)	(q, ω), (8)

where

	(q, ω) = 
I (−)(t2)
K (+)(t1) − 
I (−)(t1)
K (+)(t2)


I (+)(t2)
K (+)(t1) − 
I (−)(t1)
K (−)(t2)
,

(9)
the coefficients 
I (±) and 
K (±) are defined as


I (±)(ti) = I0(ti ) ± I1(ti)


K (±)(ti) = K0(ti ) ± K1(ti )

and ti = qaβ−1εi (i = 1, 2). The energy loss probability per
unit length can be written in terms of 	(q, ω) as

dP(ω)

dz
= e2

πv2

∫
dqy

q
Im

{−1

ε2
− e2q(a−b)

ε2
	(q, ω)

}
. (10)

Equation (10) is an exact solution valid for any interface
with dielectric function varying linearly between two regions
of constant dielectric function. The first term is the well
known expression of the energy loss probability per unit
length of a probe moving in a homogeneous medium. The
second one is the interface correction to the local bulk loss

spectrum and represents a contribution from the excitation of
interface plasmons and a related reduction in the local bulk
loss probability. The exponential dependence on the impact
parameter relative to the edge agrees with the dependence
found in the general EELS theory for sharp interfaces.

Although equation (10) is not particularly transparent,
it allows investigation of the role played by different q
contributions to the overall loss spectrum, in connection with
the sharpness of the interface. Assuming that ε(x, ω) does not
vanish (i.e., that at the plasmon energy it has a non-negligible
imaginary part), one can use the series expansions of the Bessel
functions to calculate the small q contribution (qa � 1) to the
loss probability

1

ε2
	(q, ω) ∼

[−1

ε2
− −2

ε1 + ε2

]

× 1 − qa
β

[ 1
2 (ε1 + ε2) − ε1ε2

ε2−ε1
ln ε2

ε1
]

1 + qa
β

[ 1
2 (ε2 − ε1) + ε1ε2

ε2+ε1
ln ε2

ε1
] . (11)

In the limit qa → 0, equation (11) reproduces the surface
term corresponding to a sharp interface. The term in
Im{ε−1

2 } describes a negative correction to the bulk excitation
probability arising from the presence of the interface: this is
the well known begrenzungs effect first found in thin films by
Ritchie [15]. The second term corresponds to the excitation of
surface plasmons, given by the condition Re{ε1 + ε2} ≈ 0.

In figure 2, we show the response function of the interface
Im{ε−1

2 	(q, ω)} for a 100 keV electron moving in the right
side of an Al–Mg interface. Drude dielectric functions

ε(ω) = 1 − ω2
p

ω(ω + iγ )
(12)

with bulk plasmon energies h̄ωp = 15.3 eV (Al) and h̄ωp =
10.6 eV (Mg) have been considered for both media, and
a constant value of the damping has been used throughout
(h̄γ = 1 eV). To allow comparison with the case of a sharp
interface we have added its corresponding response function
Im{ε−1

2 − 2(ε2 + ε1)
−1}. The dependence of the response

function on qa is twofold: on one hand the intensity decreases
as qa increases, and on the other hand the interfacial peak
shifts toward the local bulk plasmon energy. Both effects are
a consequence of the fact that increasing q acts to reduce the
size of the region scanned by the q component of the field, and
therefore the contrast between the dielectric function in this
region is weaker.

Note that in a typical electron microscope the minimum
momentum qmin = ω/v is of the order of 0.1 nm−1 and
therefore the suitability of equation (11) is restricted to fairly
sharp interfaces, and in the low momentum transfer range.
Convenient interfaces for study might be those in polar
media which on energy grounds may not be atomically or
electronically sharp [16].

This Bessel function solution can be adapted to the case
of probe trajectories inside the interface by using on either
side of the probe position different solutions of the form of
equation (6).
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Figure 2. Response function of an interface with a
linearly-dependent dielectric function ε(x, ω) for four different
values of qa: (. . . . . .) qa = 0.01, (- - - -) qa = 0.1, (— — —)
qa = 1 and (— · —) qa = 5. The full line (——) corresponds to the
sharp interface.

3.2. WKB method

We can obtain further insight by recasting equation (1) into a
form where a WKB-like solution can be examined [11]. We
change to the function

�(x, q, ω) = ε(x, ω)−
1
2 φ(x, q, ω), (13)

which outside the probe position satisfies the homogeneous
equation

d2

dx2
�(x, q, ω) − G(x, q, ω)2�(x, q, ω) = 0, (14)

where

G(x, q, ω)2 = q2 −
[

1

2ε(x, ω)

dε(x, ω)

dx

]2

+ 1

2ε(x, ω)

d2ε(x, ω)

dx2
. (15)

Assuming that the permittivity varies slowly in the interface,
so that the behaviour of G is ruled mainly by the q2 term, the
regular WKB solutions are

�±(x, q, ω) = e∓ ∫
Gdx

[ε(x, ω)G(x, q, ω)]1/2
. (16)

Substituting these values in equation (3) one obtains

dP(ω)

dz
= − e2

πv2

∫ ∞

−∞
dqy Im

{
1

ε(b, ω)q
√

1 − (qλ)−2

}
,

(17)
where the constant

λ =
{[

1

2ε(b, ω)

dε(x, ω)

dx

∣∣∣∣
x=b

]2

− 1

2ε(b, ω)

d2ε(x, ω)

dx2

∣∣∣∣
x=b

}−1/2

(18)

can be interpreted as the length required to yield a significant
change in the dielectric function. In the limit qλ � 1 this
equation reduces to

dP(ω)

dz
= e2

πv2
Im

{ −1

ε(b, ω)

}∫ ∞

−∞
dqy

q

+ e2

2πv2
Im

{ −λ−2

ε(b, ω)

}∫ ∞

−∞
dqy

q3
. (19)

The first term is the usual expression describing local bulk
plasmon excitation, while the second one provides a weak
gradient correction with additive contributions from the square
of the gradient and from the second derivative or curvature.
In fact it can readily be seen that, in cases where the local
bulk plasmon excitation function is symmetrical about the peak
position, the loss peak will not be shifted by the first of these
two correction terms, although it may be reduced in height and
broadened. The WKB approximation may still be useful in
more rapidly varying situations where the loss function has a
high damping or when q-dependent spectroscopy is employed
to select only larger values of qy . In many cases of interest
however, particularly of less diffuse interfaces, the simple
WKB approximation used here will not be valid. The function
G in equation (15) may even change sign leading to opposite
curvature or even to oscillations of the potential in critical
regions.

4. Numerical results

4.1. Free electron interfaces

Smooth interfaces between good conductor regions can be
mimicked by the simple Drude dielectric response function of
equation (12), modified to include a one-dimensional variation
of the valence electron density n(x), with the corresponding
free electron plasmon frequency ωp = (4πne2/m)1/2.

Figure 3 shows computed loss spectra for 100 keV (v =
75.1 au) electrons travelling parallel to an interface between
Al (left side corresponding to negative impact parameters)
and Mg. Dielectric functions of both homogeneous media
are described by parameters as specified in section 3.1. The
interface width is about 100 au (i.e., a = 2.7 nm) with
a valence electron density profile given by the erf function
shown in figure 1(b). Equation (3) has been numerically
integrated up to a cut-off qc in the integration variable qy ,
which is directly related to the scattering acceptance semi-
angle in the direction parallel to the interface θc according to
h̄qc = mv sin θc. In this figure we compare the actual loss
spectra at the centre (b = 0) and near the edges of the interface
with the loss probability corresponding to a homogeneous
medium described by a local dielectric function ε(b, ω) (i.e.,
that at the position of the electron). The computed interface
spectra exhibit a plasmon peak lower than in the homogeneous
case but with a corresponding increase in width consistent with
the begrenzungs effect.

As noted above on general grounds, there is no shift of
the plasmon loss peak in the central, approximately linear,
region. However in the regions where there is curvature
in the profile plot, the position of the plasmon is shifted

4



J. Phys.: Condens. Matter 20 (2008) 304205 A Howie et al

Figure 3. EEL spectra for 100 keV electrons travelling parallel to an
Al–Mg interface, for three different beam trajectories. The solid lines
correspond to the spectra in the diffuse interface with a = 2.7 nm.
Broken lines spectra correspond to a homogeneous medium of
dielectric function ε(b, ω). The cut-off in qy corresponds to a
collecting aperture θc = 1 mrad in the direction parallel to the
interface (y).

toward the values of the central plasmon peak, i.e., toward
the position where an interface plasmon would appear for
a sharp interface. This peak shift is shown in figure 4 for
three different cut-off values qc showing a roughly linear
dependence on d2ωp/dx2 (and indeed also on d2ω2

p/dx2). In
accordance with the above discussion, the peak shift is much
more pronounced for small values of qy . For these free
electron situations, the delocalization parameter [qλ(x, ω)]−2

employed in equation (17) and evaluated at the peak frequency
ω = ωp(x) takes the form

[qλ(x, ω)]−2

= −1

q2

⎧⎨
⎩

1

4ωp(x)2γ 2

[
dω2

p

dx

]2

+ i

ωp(x)γ

d2ω2
p

dx2

⎫⎬
⎭ . (20)

At the minimum momentum transfer qmin = ω/v = 0.14 nm−1

(inside Al), the magnitude of each of the terms in the right-hand
side of equation (20) exceeds unity over much of the profile
shown in figure 3, so that we are well outside the range of the
WKB approximation. Nevertheless our computations indicate
that the peak displacement is still proportional to the second
term including its dependence on q and γ . The dependence on
qc is less marked since this reflects an average over a range of
qy .

4.2. Semiconductor interface

To provide a simple model of a diffuse interface between two
semiconductors with different band gaps h̄ωg but the same
valence electron density n, we employ the response function

ε(x, ω) = 1 + 4πne2m−1

ωg(x)2 − ω(ω + iγ )
. (21)

In particular, we chose a valence electron density with
h̄[4πne2/m]1/2 = 17 eV, band gaps h̄ω1g = 1 eV and h̄ω2g =

Figure 4. (a) Shift in the loss peak energy as a function of the beam
position. Three cut-off upper limits on qy integration corresponding
to θc = 0.1 mrad (——), θc = 1 mrad (– – –) and θc = 10 mrad
(— · —), have been considered. Plot (b) shows the second spatial
derivative of the local plasmon energy along the interface.

3 eV with a continuous erf variation between these values
across the diffuse boundary region of half width a = 2.7 nm,
and a damping parameter h̄γ = 0.1 eV.

As in the local approximation, the bulk loss near 17 eV
is only very slightly influenced by the band gap and does not
exhibit any significant variation across the interface. The well
known interface plasmon arises at 2.2 eV between the two band
edges where ε1(ω) + ε2(ω) ≈ 0 and, being dependent on the
dielectric contrast between the two media, will be completely
absent in any local excitation model. As shown in figures 5(a)
and (b), the height of the peak is much lower for a diffuse
interface than for a sharp one. Quantitative measurements
of interface loss peak intensities may therefore offer the best
means of addressing the sharpness of the interface, although
the dependence on aperture size (or cut-off wavevector qc)
should be noted. For the sharp interface (figure 5(b)), the
peak intensity at b = 0 shows the familiar logarithmic
dependence on aperture size or cut-off wavevector, in contrast
to the diffuse interface (figure 5(a)), in which this dependence
weakened at higher q values. This behaviour stems from
the low value of ωa/v = 0.06, which means that the
interface loss is excited over a large range of impact parameters
corresponding predominantly to low-q transfers. This effect is
more significant at the plasmon peak frequency, thus giving
rise to a pronounced broadening of the observed loss feature.

5. Discussion

Our results suggest that for a typical objective aperture of
10 mrad a shift in the free electron plasmon peak of 
(h̄ωp) =
0.05 eV could be induced by a curvature d2(h̄ωp)/dx2 =
0.4 eV nm−2 with a rough proportionality between these
quantities. This correction would be too small to have any
effect on the slowly varying valence density profiles studied

5
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Figure 5. EEL spectra in a diffuse (a) and sharp (b) interface between two semiconductors with band energies h̄ω1g = 1 eV and h̄ω2g = 3 eV.
The impact parameter is b = 0 and the probe energy 100 keV. Three collecting apertures in the direction parallel to the interface have been
considered: θc = 0.1 mrad (— · —), θc = 1 mrad (- - - -) and θc = 10 mrad (——). The diffuse interface has a = 2.7 nm.

in early work [1–4], although the changes in peak shape could
invalidate more general adoption of the method used there to
detect extremely small changes in ωp. Curvature corrections
could well be non-negligible in current observations of more
rapidly varying situations. Observed changes in peak height
or shape might then be a useful indicator of the need
for gradient and curvature corrections to the local model.
Our computations on interface plasmons in semiconductors
highlight a sensitivity to interface diffuseness which should
be more easily detectable. Relativistic corrections, which we
have ignored, are however more likely to be significant in
this situation [17] than would be expected for bulk plasmon
excitation in metals.

The methods presented here can yield spectra for any
assumed model of a one-dimensional dielectric profile. Ideally
of course we would prefer to have a solution to the inverse
problem of deducing directly the dielectric profile from the
collected valence loss spectra. In the absence of such a
procedure the best option is probably to start with a profile
obtained from the local valence excitation model supplemented
by imaging or core loss spectroscopy information. This profile
could then be adjusted by trial and error methods to improve
consistency with the observed valence loss spectra and those
computed as described here.

Although the classical theory agrees with quantum theory
provided all inelastically scattered electrons are collected [19]
it gives only approximate results for each value of q .
Nevertheless it is clear that the corrections to the local model
are smallest for large values of q , which raises the possibility
of carrying out momentum-selected spectroscopy. The usual
circular objective aperture, imposing an axial cut-off qa , axially
limits the Fourier range of loss probability as a function of x
to values of qx < [q2

a − q2
y]1/2. Within the restrictions of

classical excitation theory, this effect can be modelled by a
further Fourier transform of our data [17]. Another option,
already explored as a route to higher spatial resolution in

Figure 6. Sketch of a hollow cone electron beam illumination set-up
for collection of high momentum transfers.

valence EELS [18], is to work with a spectrometer collection
aperture displaced in the qy direction to select only high values
of q with less need for non-local corrections but at the expense
of reduced signal strength. This simple displaced-aperture
procedure would of course be suitable only for dielectric
variations in only one dimension. To obtain high spatial
resolution more generally in valence excitation, it might be
easiest to resort to hollow cone illumination in STEM mode
with a relatively smaller axial spectrometer collecting aperture
as indicated in figure 6. With aberration correction, the hollow
cone semi-angle could be as much as 40 mrad, giving potential
spatial resolution on the unit cell or even sub-unit cell level.
For such large values of q , the direct valence excitations would
be well outside the plasmon excitation region and would be
concentrated near the Bethe ridge energy q2/2m. Plasmon
loss electrons could still obviously reach the spectrometer by
additional large elastic or quasi-elastic scattering processes. By
tuning the spectrometer to accept a range of energies in the
Bethe ridge region, but still avoiding core losses on the one
hand and plasmon losses on the other, it might be possible to
access valence bond geometries by such a Bethe ridge mapping
procedure.

It would be useful to improve the theory to take more
exact account of each momentum transfer h̄q . The effects

6
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of dispersion should also be included in developing a more
accurate theory of plasmon excitation in inhomogeneous
situations.
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