
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Preference inference based on hierarchical and simple lexicographic
models

Author(s) Wilson, Nic; George, Anne-Marie; O'Sullivan, Barry

Publication date 2017

Original citation Wilson, N., George, A.-M., and O'Sullivan, B. (2017) 'Preference
Inference Based on Hierarchical and Simple Lexicographic Models',
Journal of Applied Logics - IfCoLog Journal, 4 (7), pp. 1997-2038.

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://collegepublications.co.uk/ifcolog/?00016
http://collegepublications.co.uk/ifcolog/
Access to the full text of the published version may require a
subscription.

Rights © Individual authors and College Publications 2017. All rights
reserved. This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International
License.
https://creativecommons.org/licenses/by-nc-nd/4.0/

Item downloaded
from

http://hdl.handle.net/10468/10804

Downloaded on 2021-11-27T11:03:22Z

https://libguides.ucc.ie/openaccess/impact?suffix=10804&title=Preference inference based on hierarchical and simple lexicographic models
http://collegepublications.co.uk/ifcolog/?00016
http://collegepublications.co.uk/ifcolog/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/10468/10804

PREFERENCE INFERENCE BASED ON HIERARCHICAL

AND SIMPLE LEXICOGRAPHIC MODELS

NIC WILSON, ANNE-MARIE GEORGE AND BARRY O’SULLIVAN

Insight Centre for Data Analytics, School of Computer Science and IT
University College Cork, Ireland

{nic.wilson, annemarie.george,
barry.osullivan}@insight-centre.org

Abstract

Preference Inference involves inferring additional user preferences from elicited
or observed preferences, based on assumptions regarding the form of the user’s pref-
erence relation. In this paper we consider a situation in which alternatives have an
associated vector of costs, each component corresponding to a different criterion, and
are compared using a kind of lexicographic order, similarly to the way alternatives are
compared in a Hierarchical Constraint Logic Programming model. It is assumed that
the user has some (unknown) importance ordering on criteria, and that to compare two
alternatives, firstly, the combined cost of each alternative with respect to the most im-
portant criteria are compared; only if these combined costs are equal, are the next most
important criteria considered. The preference inference problem then consists of deter-
mining whether a preference statement can be inferred from a set of input preferences.
We show that this problem is coNP-complete, even if one restricts the cardinality of
the equal-importance sets to have at most two elements, and one only considers non-
strict preferences. However, it is polynomial if it is assumed that the user’s ordering
of criteria is a total ordering (which we call a simple lexicographic model); it is also
polynomial if the sets of equally important criteria are all equivalence classes of a given
fixed equivalence relation. We give an efficient polynomial algorithm for these cases,
which also throws light on the structure of the inference. We give a complete proof
theory for the simple lexicographic model case, and analyse variations of preference
inference.1

1 Introduction

There are increasing opportunities for decision making/support systems to take into account
the preferences of individual users, with the user preferences being elicited or observed from

1This is an extended version of an IJCAI-2015 paper[19].

Vol. No.
IFCoLog Journal of Logics and Their Applications

the user’s behaviour. However, users tend to have limited patience for preference elicitation,
so such a system will tend to have a very incomplete picture of the user preferences. Pref-
erence Inference involves inferring additional user preferences from elicited or observed
preferences, based on assumptions regarding the form of the user’s preference relation.
More specifically, given a set of input preferences Γ, and a set of preference models M
(considered as candidates for the user’s preference model), we infer a preference statement
ϕ if every model inM that satisfies Γ also satisfies ϕ. Preference Inference can take many
forms, depending on the choice ofM, and on the choices of language(s) for the input and
inferred statements. For instance, if we just assume that the user model is a total order (or
total pre-order), we can setM as the set of total [pre-]orders over a set of alternatives. This
leads to a relatively cautious form of inference (based on transitive closure), including, for
instance, the dominance relation for CP-nets and some related systems, e.g., [3, 5, 4, 1].

Often it can be valuable to obtain a much less cautious form of inference. In recom-
mender systems for example, we aim to present the user with a relatively small set of al-
ternatives. We can determine this set of alternatives as the undominated alternatives of a
preference inference relation based on previously expressed user preferences [7, 14], with
a more adventurous form of inference generating a smaller set of alternatives. Another ex-
ample arises in a multi-objective context (as in a simple form of a Multi-Attribute Utility
Theory model [9]). Again, it is often better if the number of optimal (undominated) solu-
tions is relatively small, which can be achieved with a less cautious order relation on the
set of objectives. These less cautious forms of inference include assuming that the user’s
preference relation is a simple weighted sum as considered in [7, 13, 12], or different lex-
icographic forms of preference models as in [16, 14, 18]. A comparison of Pareto orders,
weighted sums and lexicographic orders in an multi-objective context shows that the lexico-
graphic case is the least cautious and results in the least undominated solutions [12]. Note
that all these systems involve reasoning about what holds in a set of preference models that
coincide with the user’s preference statements. This contrasts with work in preference learn-
ing that typically learns a single model, with the intention that this model closely resembles
the real user’s preference model [11, 8, 10, 6, 2].

In this paper we consider a situation in which alternatives have an associated vector of
costs, each component corresponding to a different criterion, and are compared using a kind
of lexicographic order, similarly to the way alternatives (feasible solutions) are compared
in a Hierarchical Constraint Logic Programming (HCLP) model [15]. It is assumed that
the user has some (unknown) importance ordering on criteria, and that to compare two
alternatives, firstly, the combined cost of each alternative with respect to the most important
criteria are compared; only if these combined costs are equal, are the next most important
criteria considered. Implicitly, we assume that the costs of the alternatives are available to
the user in order to express preference statements. Also, we assume to know all criteria the
user might use and their costs.

We consider the case where the input preference statements are of a simple form that
one alternative is preferred to another alternative, where we allow the expression of both
strict and non-strict preferences (in contrast to most related preference logics, such as
[17, 3, 16, 18] where only non-strict preferences are considered). We assume that the cri-
teria by which the alternatives are compared are unfavorable facts like costs, distances, etc.
Thus the lower the values on the alternatives are the better. Accordingly, a strict prefer-
ence α < β expresses that alternative α is better than β; a non-strict preference α ≤ β
means that α is at least as good as β. This form of preference is natural in many contexts,
including for conversational recommender systems [7]. The preference inference problem
then consists of determining whether a preference statement can be inferred from a set of
input preferences, i.e., if every preference model (of the assumed form) satisfying the inputs
also satisfies the query. We show that this problem is coNP-complete, even if one restricts
the cardinality of the equal-importance sets to have at most two elements, and one only
considers non-strict preferences. However, it is polynomial if it is assumed that the user’s
ordering of criteria is a total ordering (which we call the simple lexicographic model case);
it is also polynomial if the sets of equally important criteria are all equivalence classes of a
given fixed equivalence relation. We give an efficient polynomial algorithm for these cases,
which also throws light on the structure of the inference.

Briefly, the idea behind the polynomial algorithm is as follows. Preference inference
can be expressed in terms of testing consistency of a set of preference statements Γ. It turns
out to be helpful to consider Γ(≤), which is the same as Γ except that strict statements are
replaced by non-strict ones on the same alternatives. We show that Γ is consistent if and
only if some maximal model of Γ(≤) satisfies Γ, which is if and only if every maximal
model of Γ(≤) satisfies Γ. Generating a maximal model of Γ(≤) can be done in a simple
and efficient way, using a greedy algorithm, thus allowing efficient testing of consistency
(and thus preference inference). We also show that preference inference is compact, i.e.,
that if ϕ can be inferred from Γ then it can be inferred from a finite subset of Γ; and we
analyse variations of preference inference, based on only considering maximal models, and
only considering models that involve all the criteria.

We have defined our logics of preference inference in a semantic way. It is natural
to consider whether we can define a complete proof theory, based on syntactic notion of
consequence. We show how this can be done, if we extend the set of alternatives.

Section 2 defines our simple preference logic based on hierarchical models, along with
some associated preference inference problems. Section 3 shows that in general the prefer-
ence inference problem is coNP-complete. Section 4 considers the case where the impor-
tance ordering on criteria is a total order, and gives a polynomial algorithm for consistency;
here we also consider variations of preference inference and relationships with a logic of
disjunctive ordering constraints. In Section 5 we construct a complete proof theory, based
on an extended set of alternatives. Section 6 concludes.

2 A preference logic based on hierarchical models

We consider preference models, based on an importance ordering of criteria, that is basically
lexicographic, but involving a combination of criteria which are at the same level in the
importance ordering. We call these “HCLP models", because models of a similar kind
appear in the HCLP system [15] (though we have abstracted away some details from the
latter system).

HCLP structures: Define an HCLP structure to be a tuple S = 〈A,⊕, C〉, where A
(the set of alternatives) is a (possibly infinite) set; ⊕ is an associative, commutative and
monotonic operation (x ⊕ y ≤ z ⊕ y if x ≤ z) on the non-negative rational numbers
Q+, with identity element 0; and C (known as the set of (A-)evaluations) is a finite set2of
functions from A to Q+. We also assume that operation ⊕ can be computed in linear time
(which holds for natural definitions of ⊕, including addition and max). The evaluations
in C may be considered as representing criteria or objectives under which the alternatives
are evaluated. For c ∈ C and α ∈ A, if c(α) = 0 then α fully satisfies the objective
corresponding to c; more generally, the smaller the value of c(α), the better α satisfies the
c-objective.

Example 1. Suppose, a user wants to buy a new prepay mobile phone SIM card. She wants
to make her decision between different providers based on the price per 10MB data usage
d, the price per text message m and the price per minute for calls to the same provider c.
These prices of d, m and c can be combined by addition. Consider four different options
(providers) α, β, γ and δ with the following prices in cents.

α β γ δ

d 18 15 13 14

m 15 17 15 13

c 10 11 14 15

In this context, the HCLP structure 〈A,⊕, C〉 is given by the set of alternatives A =
{α, β, γ, δ}, the operator ⊕ being the ordinary addition on the integers and the set of eval-
uation functions C = {d,m, c}.

2We could easily extend this to the case where C is a multi-set. (Or alternatively, we can reason about the
latter case using the current formalism by adding an artificial alternative that every evaluation differs on.)

HCLP orderings: With each subset C of C we define ordering 4⊕C on A by α 4⊕C β if
and only if

⊕
c∈C c(α) ≤

⊕
c∈C c(β). Relation 4⊕C represents how well the alternatives

satisfy the set of evaluations C if the latter are considered equally important. 4⊕C is a total
pre-order (a weak order, i.e., a transitive and complete binary relation). We write ≡⊕C for
the associated equivalence relation on A, given by α ≡⊕C β ⇐⇒ α 4⊕C β and β 4⊕C α.
We write ≺⊕C for the associated strict weak ordering, defined by α ≺⊕C β ⇐⇒ α 4⊕C β
and β 64⊕C α. Thus, α ≡⊕C β if and only if

⊕
c∈C c(α) =

⊕
c∈C c(β); and α ≺⊕C β if and

only if
⊕
c∈C c(α) <

⊕
c∈C c(β).

HCLP models: An HCLP model H based on 〈A,⊕, C〉 is defined to be an ordered parti-
tion (C1, . . . , Ck) of a (possibly empty) subset of C; we label this subset as σ(H), so that
σ(H) = C1 ∪ · · · ∪ Ck. The sets Ci are called the levels of H , which are thus non-empty,
disjoint and have union σ(H). If c ∈ Ci and c′ ∈ Cj , and i < j, then we say that c appears
before c′ (and c′ appears after c) in H . Associated with H is an ordering relation 4⊕H on A
given by:

α 4⊕H β if and only if either:

(I) for all i = 1, . . . , k, α ≡⊕Ci β; or

(II) there exists some i ∈ {1, . . . , k} such that (i) α ≺⊕Ci β and (ii) for all j with 1 ≤ j <
i, α ≡⊕Cj β.

Relation 4⊕H is a kind of lexicographic order on A, where the set Ci of evaluations at the
same level are first combined into a single evaluation. 4⊕H is a weak order on A. We
write ≡⊕H for the associated equivalence relation (corresponding with condition (I)), and
≺⊕H for the associated strict weak order (corresponding with condition (II)), so that 4⊕H is
the disjoint union of ≺⊕H and ≡⊕H . If σ(H) = ∅ then the first condition for α 4⊕H β holds
vacuously (since k = 0), so we have α 4⊕H β for all α, β ∈ A, and ≺⊕H is the empty
relation.

Preference language inputs: Let A be a set of alternatives. We define LA≤ to be the
set of statements of the form α ≤ β (“α is preferred to β”), for α, β ∈ A (the non-strict
statements); we writeLA< for the set of statements of the form α < β (“α is strictly preferred
to β”), for α, β ∈ A (the strict statements); and we letLA = LA≤∪LA<. If ϕ is the preference
statement α ≤ β then ¬ϕ is defined to be the preference statement β < α. If ϕ is the
preference statement α < β then ¬ϕ is defined to be the preference statement β ≤ α.

Satisfaction of preference statements: For an HCLP model H over the HCLP structure
〈A,⊕, C〉, we say that H satisfies α ≤ β (written H |=⊕ α ≤ β) if α 4⊕H β holds.

Similarly, we say that H satisfies α < β (written H |=⊕ α < β) if α ≺⊕H β. For Γ ⊆ LA,
we say that H satisfies Γ (written H |=⊕ Γ) if H satisfies ϕ for all ϕ ∈ Γ. If H |=⊕ ϕ then
we sometimes say that H is a model of ϕ (and similarly, if H |=⊕ Γ).

Satisfaction of negated preference statements behaves as one would expect:

Lemma 1. Let H be a HCLP model over HCLP structure S. Then, H satisfies ϕ if and
only if H does not satisfy ¬ϕ.

Proof: Write S as 〈A,⊕, C〉. It is sufficient to show that, for any α, β ∈ A, H satisfies
α ≤ β if and only if H does not satisfy β < α. We have that H satisfies α ≤ β if and only
if α 4⊕H β, which, since 4⊕H is a weak order, is if and only if β 6≺⊕H α, i.e., H does not
satisfy β < α. 2

Example 2. Consider Example 1 of a user choosing between different providers to buy a
prepay SIM card. Suppose that the user is not interested in using data, and regards m and
c as equally important. She can express her preferences by the corresponding HCLP model
H = ({m, c}). Since m(α) + c(α) = 25 < m(β) + c(β) = 28 = m(δ) + c(δ) = 28 <
m(γ) + c(γ) = 29, H satisfies α ≺⊕H β ≡⊕H δ ≺⊕H γ. The evaluations involved in H
are σ(H) = {m, c}. If the user is most interested in the text message prices, and only if
these are equal in the call prices, and only if these are also equal in the data prices, then
the corresponding HCLP model is H ′ = ({m}, {c}, {d}). The induced order relation for
this model satisfies δ ≺⊕H′ α ≺

⊕
H′ γ ≺

⊕
H′ β, since m(δ) < m(α) = m(γ) < m(β) and

c(α) < c(γ). The evaluations involved in H ′ are σ(H ′) = {d,m, c}.

Preference inference/deduction relation: We are interested in different restrictions on
the set of models, and the corresponding inference relations. Let M be a set of HCLP
models over HCLP structure 〈A,⊕, C〉. For Γ ⊆ LA, and ϕ ∈ LA, we say that Γ |=⊕M ϕ, if
H satisfies ϕ for every H ∈ M satisfying Γ. Thus, if we elicit some preference statements
Γ of a user, and we assume that their preference relation is an HCLP model inM (based on
the HCLP structure), then Γ |=⊕M ϕ holds if and only if we can deduce (with certainty) that
the user’s HCLP model H satisfies ϕ.

Consistency: For set of HCLP models M over HCLP structure 〈A,⊕, C〉, and set of
preference statements Γ ⊆ LA, we say that Γ is (M,⊕)-consistent if there exists H ∈
M such that H |=⊕ Γ; otherwise, we say that Γ is (M,⊕)-inconsistent. In the usual
way, because of the existence of a negation operator, deduction can be reduced to checking
(in)consistency.

Proposition 1. Γ |=⊕M ϕ if and only if Γ ∪ {¬ϕ} is (M,⊕)-inconsistent.

Proof: Suppose that Γ |=⊕M ϕ. By definition, H satisfies ϕ for every H ∈ M satisfying
(every element of) Γ. Thus, using Lemma 1, there exists no H ∈ M that satisfies Γ and
¬ϕ, which implies that Γ ∪ {¬ϕ} is (M,⊕)-inconsistent.

Conversely, suppose Γ ∪ {¬ϕ} is (M,⊕)-inconsistent. By definition, there exists no
H ∈M that satisfies Γ∪¬ϕ. Thus, every H ∈M that satisfies Γ does not satisfy ¬ϕ, and
therefore satisfies ϕ, by Lemma 1. Hence, Γ |=⊕M ϕ. 2

Let t be some number in {1, 2, . . . , |C|}. We define C(t) to be the set of all HCLP models
(C1, . . . , Ck) based on HCLP structure 〈A,⊕, C〉 such that |Ci| ≤ t, for all i = 1, . . . , k.
An element of C(1) thus corresponds to a sequence of singleton sets of evaluations; we
identify it with a sequence of evaluations (c1, . . . , ck) in C. Thus, Γ |=⊕C(t) ϕ if and only if
H |=⊕ ϕ for all H ∈ C(t) such that H |=⊕ Γ. Note that for t = 1, these definitions do not
depend on ⊕ (since there is no combination of evaluations involved), so we may drop any
mention of ⊕.

Let ≡ be an equivalence relation on C, and let E be the set of equivalence classes of
≡. Thus, for each c ∈ C there exists a unique element E ∈ E such that E 3 c, and
E = {c′ ∈ C : c′ ≡ c}. We define C(≡) to be the set of all HCLP models (C1, . . . , Ck)
such that each Ci is an equivalence class with respect to ≡, i.e., Ci ∈ E . It is easy to see
that the relation |=⊕C(≡) is the same as the relation |=C′(1) where C ′ is defined as follows. C ′

is in 1-1 correspondence with E . If E is the ≡-equivalence class of C corresponding with
c′ ∈ C ′ then, for α ∈ A, c′(α) is defined to be

⊕
c∈E c(α), so that each Ci in an HCLP

model is replaced by a single evaluation equivalent to the combination of all the elements
of Ci.

For |= either being |=⊕C(t) for some t ∈ {1, 2, . . . , |C|}, or being |=⊕C(≡) for some equiv-
alence relation ≡ on C, we consider the following decision problem.

HCLP-DEDUCTION FOR |=: Given C, Γ and ϕ is it the case that Γ |= ϕ?

In Section 4, we will show that this problem is polynomial for |= being |=⊕C(t) when
t = 1. Thus it is polynomial also for |=⊕C(≡), for any equivalence relation ≡. It is coNP-
complete for |= being |=⊕C(t) when t > 1, as shown below in Section 3.

Theorem 1. HCLP-DEDUCTION FOR |=⊕C(t) is polynomial when t = 1, and is coNP-
complete for any t > 1, even if we restrict the language to non-strict preference statements.
HCLP-DEDUCTION FOR |=⊕C(≡) is polynomial for any equivalence relation ≡.

Example 3. Consider the HCLP structure of Example 1. Suppose, the user states that she
prefers α to β, i.e. α ≤ β, and strictly prefers β to γ, i.e. β < γ. Only the HCLP models
of the forms ({c}, . . .), ({m}, . . .), ({c,m}, . . .) or ({d,m, c}) satisfy α ≤ β. Only the
HCLP models ({c}, . . .), ({c, d}, . . .) or ({c,m}, . . .) satisfy β < γ. Thus, the models
({c}, . . .) and ({c,m}, . . .) are the only ones that satisfy the set Γ = {α ≤ β, β < γ}

of the user’s input preferences. Let t ∈ {1, 2, 3}. Then Γ 6�⊕C(t) δ ≤ β since the model
H = ({c}) ∈ C(1) ⊆ C(t) satisfies Γ and β ≺⊕H δ, i.e., H 6�⊕ δ ≤ β. Furthermore,
Γ 6�⊕C(2) β ≤ δ since the model H ′ = ({c,m}, {d}) ∈ C(2) satisfies Γ and δ ≺⊕H′ β, i.e.,
H ′ 6�⊕ β ≤ δ. However, we can infer Γ �⊕C(1) β ≤ δ, and even Γ �⊕C(1) β < δ, since
all Γ-satisfying HCLP models in C(1), i.e., ({c}), ({c}, {m}), ({c}, {d}), ({c}, {m}, {d}),
and ({c}, {d}, {m}), satisfy the relation β < δ.

3 Proving coNP-completeness of HCLP-deduction for |=⊕C(t) for
t > 1

Given an arbitrary 3-SAT instance we will show that we can construct a set Γ and a statement
α ≤ β such that the 3-SAT instance has a satisfying truth assignment if and only if Γ 6|=⊕C(t)
α ≤ β (see Proposition 2 below). This then implies that determining if Γ 6|=⊕C(t) α ≤ β

holds is NP-hard.
We have that Γ 6|=⊕C(t) α ≤ β if and only if there exists an HCLP-model H ∈ C(t)

such that H |=⊕ Γ and H 6|=⊕ α ≤ β. For any given H , checking that H |=⊕ Γ and
H 6|=⊕ α ≤ β can be performed in polynomial time. This implies that determining if
Γ 6|=⊕C(t) α ≤ β holds is in NP, and therefore is NP-complete, and thus determining if
Γ |=⊕C(t) α ≤ β holds is coNP-complete.

Consider an arbitrary 3-SAT instance based on propositional variables p1, . . . , pr, con-
sisting of clauses Λj , for j = 1, . . . , s. For each propositional variable pi we associate two
evaluations q+

i and q−i , where q−i corresponds with literal ¬pi, and q+
i corresponds with

literal pi.
The idea behind the construction is as follows: we generate a (polynomial size) set

Γ ⊆ LA≤ as the disjoint union of sets Γ1, Γ2 and Γ3, and we choose a non-strict statement
α ≤ β. For the remainder of this section, let H be an arbitrary HCLP-model in C(t). Γ1 is
chosen so that if H |=⊕ Γ1 then, for each i = 1, . . . , r, σ(H) cannot contain both q+

i and
q−i , i.e., q+

i and q−i do not both appear in H . (Recall H is an ordered partition of σ(H),
so that σ(H) is the subset of C that appears in H .) If H |=⊕ Γ2 and H |=⊕ β < α then
σ(H) contains either q+

i or q−i . Together, this implies that if H |=⊕ Γ and H 6|=⊕ α ≤ β
then for each propositional variable pi, model H involves either q+

i or q−i , but not both. Γ3
is used to make the correspondence with the clauses. For instance, if one of the clauses is
p2 ∨ ¬p5 ∨ p6 then any HCLP model H ∈ C(t) of Γ ∪ {β < α} will involve either q+

2 , q−5 ,
or q+

6 .
Suppose that H satisfies Γ but not α ≤ β. We can generate a satisfying assignment of

the 3-SAT instance, by assigning pi to 1 (TRUE) if and only if q+
i appears in H .

The monotonicity assumption for operation ⊕ implies that 1 ⊕ 1 > 0, since we have
1⊕ 1 ≥ 1⊕ 0 = 1 > 0. In fact, in the proof below we do not need to assume monotonicity
of ⊕; it is sufficient to just assume that 1⊕ 1 > 0.

We describe the construction more formally below.

Defining A and C: The set of alternatives A is defined to be the union of the following
sets

• {α, β} ∪ {αi, βi, δi : i = 1, . . . , r}

• {γki : i = 1, . . . , r, k = 1, . . . , t− 1}

• {θj , τj : j = 1, . . . , s}.

We define the set of evaluations C to be {c∗} ∪ {q+
i , q

−
i : i = 1, . . . , r} ∪ A1 ∪ · · · ∪ Ar,

where Ai = {aki : k = 1, . . . , t− 1}. Both A and C are of polynomial size.

Satisfying β < α: The evaluations on α and β are defined as follows:

• c∗(α) = 1, and for all c ∈ C − {c∗}, c(α) = 0.

• For all c ∈ C, c(β) = 0.

It immediately follows that: H |=⊕ β < α ⇐⇒ σ(H) 3 c∗.

The construction of Γ1: We define Γ1 =
⋃r
i=1 Γi1 where, for each i = 1, . . . , r, we

define Γi1 = {δi ≤ γki , γki ≤ δi : k = 1, . . . , t− 1}. We make use of auxiliary evaluations
Ai = {a1

i , . . . , a
t−1
i }. The values of the evaluations on γki and δi are defined as follows:

• aki (γki) = 1, and for all c ∈ C − {aki } we set c(γki) = 0.

• q+
i (δi) = q−i (δi) = 1, and for other c ∈ C, c(δi) = 0.

Thus, for any B ⊆ Ai, we have (
⊕
a∈B a⊕ q+

i)(δi) =
⊕
a∈B a(δi)⊕ q+

i (δi) = 0⊕ · · · ⊕
0⊕ 1 = 1. Similarly, (

⊕
a∈B a⊕ q−i)(δi) = 1. Furthermore, (

⊕
a∈B a⊕ q+

i)(γki) = 1 ⇔
aki ∈ B and (

⊕
a∈B a⊕ q−i)(γki) = 1⇔ aki ∈ B.

Lemma 2. H |=⊕ Γi1 if and only if either (i) σ(H) does not contain any element in Ai
or q+

i or q−i , i.e., σ(H) ∩ (Ai ∪ {q+
i , q

−
i }) = ∅; or (ii) Ai ∪ {q+

i } is a level of H , and
σ(H) 63 q−i ; or (iii) Ai ∪ {q−i } is a level of H , and σ(H) 63 q+

i . In particular, if H |=⊕ Γi1
then σ(H) does not contain both q+

i and q−i .

Proof: Consider any H ∈ C(t), so that for each level E of H we have |E| ≤ t. We have
that H |=⊕ Γi1 if and only if for each level E of H and for all k = 1, . . . , t− 1, δi ≡⊕E γki .
Now, δi ≡⊕E γki if and only if

⊕
c∈E c(δi) =

⊕
c∈E c(γki). Also,

⊕
c∈E c(δi) = 0 unless E

contains either q+
i or q−i ; and

⊕
c∈E c(δi) = 1 ⊕ 1 > 0 if E contains both q+

i and q−i ; and
equals 1 if E contains either q+

i or q−i , but not both.
⊕

c∈E c(γki) equals 1 if and only if E
contains aki , and equals 0 otherwise.

This implies that if for all k = 1, . . . , t − 1, δi ≡⊕E γki and E contains q+
i or q−i then

for all k = 1, . . . , t − 1, E contains aki , and so E ⊇ Ai. Because of the condition that
|E| ≤ t (since H ∈ C(t)), and |Ai| = t − 1, we then have that E equals either Ai ∪ {q+

i }
or Ai ∪ {q−i }.

Similarly, if for all k = 1, . . . , t − 1, δi ≡⊕E γki and E contains aki for some k ∈
{1, . . . , t− 1}, then E contains q+

i or q−i , and so, by the previous paragraph, E equals
either Ai ∪ {q+

i } or Ai ∪ {q−i }.
Thus, if H |=⊕ Γi1, then for at most one level E of H do we have E ∩ (Ai ∪ {q+

i , q
−
i })

non-empty (else we would have two levels both containing Ai, contradicting disjointness
of levels); also if E ∩ (Ai ∪ {q+

i , q
−
i }) is non-empty then E equals either Ai ∪ {q+

i } or
Ai ∪ {q−i }. In particular, if H |=⊕ Γi1 then σ(H) does not contain both q+

i and q−i .
Regarding the converse, let us suppose first that (i) σ(H) does not intersect with Ai ∪

{q+
i , q

−
i }. Then for all levels E of H , and for all k = 1, . . . , t− 1, we have

⊕
c∈E c(δi) =⊕

c∈E c(γki) = 0, and thus δi ≡⊕E γki , which implies H |=⊕ Γi1.
Now suppose (ii) that Ai ∪ {q+

i } is a level E′ of H and σ(H) 63 q−i . Then every
other level E is disjoint from Ai ∪ {q+

i , q
−
i }, so for all k = 1, . . . , t − 1,

⊕
c∈E c(δi) =⊕

c∈E c(γki) = 0, and thus δi ≡⊕E γki . Also,
⊕
c∈E′ c(δi) =

⊕
c∈E′ c(γki) = 1, and thus

H |=⊕ Γi1. Case (iii), when Ai ∪ {q−i } is a level E′ of H and σ(H) 63 q+
i , is essentially

identical to Case (ii), just switching the roles of q+
i and q+

i . 2

The construction of Γ2: For each i = 1, . . . , r, define ϕi to be αi ≤ βi. We let Γ2 =
{ϕi : i = 1, . . . , r}. The values of the evaluations on αi and βi are defined as follows. We
define c∗(αi) = 1, and for all c ∈ C − {c∗}, c(αi) = 0. Define q+

i (βi) = q−i (βi) = 1,
and for all c ∈ C − {q+

i , q
−
i }, c(βi) = 0. Thus, similarly to the previous observations

for Γ1, (c∗ ⊕ q+
i)(βi) = (c∗ ⊕ q−i)(βi) = 1 and (c∗ ⊕ q+

i)(αi) = (c∗ ⊕ q−i)(αi) = 1.
Also, (q+

i ⊕ q
−
i)(αi) = 0 and (q+

i ⊕ q
−
i)(βi) ≥ 1, because of the monotonicity of ⊕, and

(c∗ ⊕ q+
i ⊕ q

−
i)(αi) = 1 and (c∗ ⊕ q+

i ⊕ q
−
i)(βi) ≥ 1.

The following result easily follows.

Lemma 3. If q+
i or q−i appears before c∗ in H then H |=⊕ ϕi. If σ(H) 3 c∗ and H |=⊕ ϕi

then σ(H) 3 q+
i or σ(H) 3 q−i .

Proof: Consider any H ∈ C(t), and consider any i ∈ {1, . . . , r}. Then the following hold
for any level E of H .

(I) If E does not contain any of {c∗, q+
i , q

−
i } then

⊕
c∈E c(αi) =

⊕
c∈E c(βi) = 0 so

αi ≡⊕E βi.

(II) If E contains c∗ but neither of q+
i or q−i , then

⊕
c∈E c(αi) = 1 and

⊕
c∈E c(βi) = 0,

so αi 64⊕E βi.

(III) If E contains q+
i or q−i but not c∗ then

⊕
c∈E c(αi) = 0 and

⊕
c∈E c(βi) > 0 using

the fact that 1⊕ 1 > 0, so αi ≺⊕E βi.

Assume that σ(H) 3 c∗. If σ(H)∩{q+
i , q

−
i } = ∅ then by considering the level contain-

ing c∗ we can see, using (I) and (II), that αi 64⊕H βi, so H 6|=⊕ ϕi. This proves the second
half of the lemma.

If q+
i or q−i (or both) appear before c∗ in H then (I) and (III) imply that αi ≺⊕H βi and

thus H |=⊕ ϕi. 2

The construction of Γ3: For each i = 1, . . . , r, define Q(pi) = q+
i and Q(¬pi) = q−i .

This defines the function Q over all literals. Let us write the jth clause as l1 ∨ l2 ∨ l3
for literals l1, l2 and l3. Define Qj = {Q(l1), Q(l2), Q(l3)}. For example, if the jth
clause were p2 ∨ ¬p5 ∨ p6 then Qj = {q+

2 , q
−
5 , q

+
6 }. We define ψj to be θj ≤ τj , and

Γ3 = {ψj : j = 1, . . . s}. Define c∗(θj) = 1 and c(θj) = 0 for all c ∈ C − {c∗}. Define
q(τj) = 1 for q ∈ Qj , and for all other c (i.e., c ∈ C −Qj), define c(τi) = 0.

Lemma 4. If some element of Qj appears in H before c∗, and no level of H contains more
than one element of Qj , then H |=⊕ ψj . If σ(H) 3 c∗ and H |=⊕ ψj then σ(H) contains
some element of Qj .

Proof: The proof of this result is similar to that of Lemma 3. Consider any H ∈ C(t) any
clause j. Then the following hold for any level E of H .

(I) If E does not contain any element of Qj ∪ {c∗} then
⊕
c∈E c(θj) =

⊕
c∈E c(τj) = 0

so θj ≡⊕E τj .

(II) If E contains c∗ but no element of Qj neither of q+
i or q−i , then

⊕
c∈E c(θj) = 1 and⊕

c∈E c(τj) = 0, so θj 64⊕E τj .

(III) If E contains exactly one element of Qj but not c∗ then
⊕
c∈E c(θj) = 0 and⊕

c∈E c(τj) = 1, so θj ≺⊕E τj .

Assume that σ(H) 3 c∗. If σ(H) ∩ Qj = ∅ then by considering the level containing
c∗ we can see, using (I) and (II), that θj 64⊕H τj , so H 6|=⊕ ϕi. This argument proves that if
σ(H) 3 c∗ and H |=⊕ ψj then σ(H) contains some element of Qj .

If some element of Qj appears in H before c∗, and no level of H contains more than
one element of Qj , then (I) and (III) imply that θj ≺⊕H τj and thus H |=⊕ ϕi. 2

We set Γ = Γ1∪Γ2∪Γ3. The following result implies that the HCLP deduction problem
is coNP-hard (even if we restrict to the case when Γ ∪ {ϕ} ⊆ LA≤).

Proposition 2. Using the notation defined above, the 3-SAT instance is satisfiable if and
only if Γ 6|=⊕C(t) α ≤ β.

Proof: First let us assume that Γ 6|=⊕C(t) α ≤ β. Then by definition, there exists an HCLP
model H ∈ C(t) with H |=⊕ Γ and H 6|=⊕ α ≤ β. Since H 6|=⊕ α ≤ β ⇐⇒
H |=⊕ β < α, we have H |=⊕ Γ ∪ {β < α}. Because H |=⊕ β < α, we have σ(H) 3 c∗.

Because also H |=⊕ Γi2, either σ(H) 3 q+
i or σ(H) 3 q−i , by Lemma 3. Since

H |=⊕ Γi1, the set σ(H) does not contain both q+
i and q−i , by Lemma 2.

Let us define a truth function f : P → {0, 1} as follows: f(pi) = 1 ⇐⇒ σ(H) 3 q+
i .

Since σ(H) contains exactly one of q+
i and q−i , we have f(pi) = 0 ⇐⇒ σ(H) 3 q−i . We

extend f to negative literals in the obvious way: f(¬pi) = 1− f(pi), and thus, f(¬pi) = 1
⇐⇒ σ(H) 3 q−i .

Since H |=⊕ Γ3 and σ(H) 3 c∗, then σ(H) contains at least one element of each Qj ,
by Lemma 4. Thus for each j, f(l) = 1 for at least one literal l in the jth clause, and hence
f satisfies clause Λj . We have shown that f satisfies each clause of the 3-SAT instance,
proving that the instance is satisfiable.

Conversely, suppose that the 3-SAT instance is satisfiable, so there exists a truth function
f satisfying it. We will construct an HCLP model H ∈ C(t) such that H |=⊕ Γ∪{β < α},
and thus H 6|=⊕ α ≤ β, proving that Γ 6|=⊕C(t) α ≤ β.

For i = 1, . . . , r, let Si = Ai ∪ {q+
i } if f(pi) = 1, and otherwise, let Si = Ai ∪ {q−i }.

Thus, if f(pi) = 1 then Q(pi) ∈ Si; and if f(¬pi) = 1 then Q(¬pi) ∈ Si. We then define
H to be the sequence S1, S2, . . . , Sr, {c∗}. Since σ(H) 3 c∗, we have that H |=⊕ β < α.
By Lemma 2, for all i = 1, . . . , r, H |=⊕ Γi1 and so H |=⊕ Γ1. By Lemma 3, for all
i = 1, . . . , r, H |=⊕ ϕi, so H |=⊕ Γ2.

Consider any j ∈ {1, . . . , s}, and, as above, write the jth clause as l1 ∨ l2 ∨ l3. Truth
assignment f satisfies this clause, so there exists k ∈ {1, 2, 3} such that f(lk) = 1. Then
Q(lk) appears in H before c∗, so, by Lemma 4, H |=⊕ ψj . Thus H |=⊕ Γ3. Since
Γ = Γ1∪Γ2∪Γ3, we have shown that H |=⊕ Γ∪{β < α}, proving that Γ 6|=⊕C(t) α ≤ β.2

Example 4. Let (p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3) be an instance of 3-SAT with the
three propositional variables p1, p2, p3 and clauses Λ1,Λ2. From this we construct a C(2)
HCLP-Deduction instance as in the previous paragraphs (so with t = 2). Corresponding
to the two possible assignments of each of the propositional variables p1, p2, p3, we con-
struct evaluation functions q+

1 , q
+
2 , q

+
3 and q−1 , q

−
2 , q

−
3 . We also introduce the additional

evaluation functions c∗ and A1 = {a1
1, a

1
2, a

1
3}. Furthermore, we construct alternatives

α, β, α1, α2, α3, β1, β2, β3, δ1, δ2, δ3, γ1
1 , γ

1
2 , γ

1
3 , θ1, θ2, τ1, τ2 for the preference statements

α > β, Γ1, Γ2 and Γ3, with the values of the evaluation functions given as follows:

Γ2 Γ1 Γ3

α > β α1 ≤ β1 α2 ≤ β2 α3 ≤ β3 δ1 ≤,≥ γ1
1 δ2 ≤,≥ γ1

2 δ3 ≤,≥ γ1
3 θ1 ≤ τ1 θ2 ≤ τ2

q+
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

q+
2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1

q+
3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

q−1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

q−2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

q−3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

c∗ 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

a1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

a1
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

a1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Here, the values of τ1 and τ2 correspond to the occurrences of the literals pi or ¬pi in
the clauses Λ1 and Λ2, respectively. Since the statement α > β is strict, the evaluation c∗

has to be included in any satisfying HCLP modelH of Γ∪{α > β}, where Γ = Γ1∪Γ2∪Γ3.
To satisfy a non-strict preference statement ν ≤ ρ, if a level contains an evaluation function
with value 1 for ν then the same or an earlier level must contain an evaluation function
with value 1 for ρ. The preference statement e.g., α1 ≤ β1 in Γ2 then enforces that either
q+

1 or q−1 appears in some level of H (and no later than c∗) because c∗(α1) = 1 and
q+

1 (β1) = q−1 (β1) = 1. Since Γ1 contains δ1 ≤ γ1
1 and γ1

1 ≤ δ1, a C(2)-HCLP model H
satisfying Γ ∪ {α > β} must have a1

1 appearing in the same level as q+
1 or q−1 , and both

q+
1 and q−1 cannot then appear in H . Thus H involves either q+

1 or q−1 but not both. Γ3
contains ψ1, i.e., θ1 ≤ τ1, which ensures that at least one element in Q1 = {q+

1 , q
+
2 , q

−
3 }

appears in some level of a satisfying HCLP model, which corresponds to satisfying the first
clause. The assignment p1 = true, p2 = true, p3 = false satisfies the instance (p1 ∨ p2 ∨
¬p3) ∧ (¬p1 ∨ p2 ∨ p3). A corresponding Γ ∪ {α > β}-satisfying HCLP model in C(2) is
({q+

1 , a
1
1}, {q+

2 , a
1
2}, {q−3 , a1

3}, {c∗}).

4 Simple lexicographic models

In this section, we consider the case where we restrict to HCLP models which consist of
a sequence of singletons; thus each model corresponds to a sequence of evaluations, and
generates a lexicographic order based on these. We call such models: simple lexicographic
models.

Let C be a set of evaluations on A. To simplify notation, we redefine a C(1)-model
to be a sequence of different elements of C (rather than a sequence of singleton sets). As
mentioned earlier, the operation ⊕ plays no part, so we can harmlessly abbreviate ordering
4⊕H to just 4H , for any C(1)-model H , and similarly for ≺H and ≡H . The deduction
problem for the sequence of singletons case is thus as follows. Given Γ ∪ {ϕ} ⊆ LA, is it
the case that Γ |=C(1) ϕ? That is, is it the case that for all C(1)-models H (over A), if H
satisfies Γ then H satisfies ϕ?

Given set of evaluations C and set of preference statements Γ, we introduce in Sec-
tion 4.1 the important concept of maximal inconsistency base (Γ⊥, C⊥), where Γ⊥ ⊆ Γ
and C⊥ ⊆ C. No model of Γ involves any element of C⊥, and it turns out (Corollary 1)
that Γ is C(1)-inconsistent if and only if Γ⊥ contains a strict element. It is helpful (see
Section 4.2) to consider Γ(≤), a version of Γ where each strict element is replaced by the
corresponding non-strict one. Models of Γ(≤) can be generated in a simple iterative way.
If one model of Γ(≤) extends another, then the former satisfies at least as many elements
of Γ as the latter does. It is natural to then consider maximal models of Γ(≤). We show
(Proposition 8) that maximal models of Γ(≤) involve every evaluation except the ones in
C⊥, and satisfy every element of Γ except the strict statements in Γ⊥. This implies that
all maximal models of Γ(≤) involve the same evaluations and satisfy the same subset of Γ.
Thus to determine if Γ is C(1)-consistent, we just have to generate any maximal model of
Γ(≤) (see Theorems 2 and 3), which can be done with a simple greedy algorithm, and test
if this model satisfies Γ.

A nice mathematical property of this form of preference inference is compactness (see
Corollary 2): any inference from an infinite set Γ also follows from some finite subset of it.

Our notion of preference inference is an intuitive one; however, there are also natural
variations based on only considering models that involve all the evaluations; or alternatively,
only considering maximal models. We explore such variations of preference inference in
Section 4.3, and show strong connections with the main notion of preference inference. In
Section 4.4 we show how the preference inference based on simple lexicographic models is
very closely related to a logic based on disjunctive ordering statements.

4.1 Some basic definitions and results

We write ϕ ∈ LA as αϕ < βϕ, if ϕ is strict, or as αϕ ≤ βϕ, if ϕ is non-strict. We consider
a set Γ ⊆ LA, and a set C of evaluations on A.

SuppϕC , OppϕC and IndϕC : For ϕ ∈ Γ, define SuppϕC to be {c ∈ C : c(αϕ) < c(βϕ)}; define
OppϕC to be {c ∈ C : c(αϕ) > c(βϕ)}; and define IndϕC to be {c ∈ C : c(αϕ) = c(βϕ)}.
Thus, SuppϕC , OppϕC and IndϕC form a partition of C, for any ϕ ∈ LA. Note that these
three sets do not depend on whether ϕ is strict or not. We may abbreviate SuppϕC to Suppϕ,
and similarly for OppϕC and IndϕC . Suppϕ are the evaluations that support ϕ; Oppϕ are the
evaluations that oppose ϕ. Indϕ are the other evaluations, that are indifferent regarding ϕ.
For a model H to satisfy ϕ it is necessary that no evaluation that opposes ϕ appears before
all evaluations that support ϕ. More precisely, we have the following:

Lemma 5. Let H be an element of C(1), i.e., a sequence of different elements of C. For
strict ϕ, H |= ϕ if and only if an element of SuppϕC appears in H which appears before any
(if there are any) element in OppϕC that appears. For non-strict ϕ, H |= ϕ if and only if
an element of SuppϕC appears in H before any element in OppϕC appears, or no element of
OppϕC appears in H (i.e., σ(H) ∩ OppϕC = ∅).

Proof: Let H = (c1, . . . ck) be a C(1)-model. Suppose that ϕ is a strict statement. Then
H |= ϕ, i.e., αϕ ≺H βϕ, if and only if there exists some i ∈ {1, . . . , k} such that
{c1, . . . ci−1} ⊆ Indϕ and ci ∈ SuppϕC , which is if and only if an element of SuppϕC ap-
pears in H before any element in OppϕC appears.

Now suppose that ϕ is a non-strict statement. Then H |= ϕ, i.e., αϕ 4H βϕ, if and
only if either (i) for all i = 1, . . . , k, α ≡ci β; or (ii) there exists some i ∈ {1, . . . , k}
such that α ≺ci β and for all j such that 1 ≤ j < i, α ≡cj β. (i) holds if and only if
σ(H) ⊆ Indϕ, i.e., no element of SuppϕC or OppϕC appears in H . (ii) holds if and only if an
element of SuppϕC appears in H before any element in OppϕC appears, and some element of
SuppϕC appears in H . Thus, H |= ϕ holds if and only if either no element in OppϕC appears
in H or some element of SuppϕC appears in H and the first such element appears before any
element in OppϕC appears. 2

The following defines inconsistency bases, which are concerned with evaluations that
cannot appear in any model satisfying the set of preference statements Γ (see Proposition
3 below). They are a valuable tool in understanding the structure of the set of satisfying
models (see e.g., Proposition 8 below).

Definition 1. Let Γ ⊆ LA, and let C be a set of A-evaluations. We say that (Γ′, C ′) is an
inconsistency base for (Γ, C) if Γ′ ⊆ Γ, and C ′ ⊆ C, and

(i) for all ϕ ∈ Γ′, SuppϕC ∪ OppϕC ⊆ C ′ (and thus C − C ′ ⊆ IndϕC); and

(ii) for all c ∈ C ′, there exists ϕ ∈ Γ′ such that OppϕC 3 c.

Thus, for all ϕ ∈ Γ′, the set C ′ contains all evaluations that are not indifferent regarding
ϕ, and for all c ∈ C ′ there is some element of Γ′ that is opposed by c.

Example 5. Consider evaluations C = {e, f, g, h} with values for alternatives α, β, γ and
δ as in the following table.

α β γ δ

e 2 2 3 3

f 0 3 1 1

g 0 2 2 0

h 1 1 3 2

Consider the strict preference statement ϕ1 : α < β, and the non-strict preference
statements ϕ2 : β ≤ γ, ϕ3 : γ ≤ δ. Let Γ = {ϕ1, ϕ2, ϕ3}. Then, Oppϕ1

C = ∅, Suppϕ1
C =

{f, g} and Indϕ1
C = {e, h}. Similarly, Oppϕ2

C = {f}, Suppϕ2
C = {e, h} and Indϕ2

C = {g}.
For ϕ3, Oppϕ3

C = {g, h}, Suppϕ3
C = ∅ and Indϕ3

C = {e, f}.
The HCLP model (e, f) satisfies Γ. As stated in Lemma 5, the evaluation e ∈ Suppϕ2

C
precedes the only element f in Oppϕ2

C . The tuple (Γ′, C′) = ({ϕ3}, {g, h}) is an inconsis-
tency base of (Γ, C). Condition (i) of Definition 1 is satisfied by Suppϕ3

C ∪Oppϕ3
C = {g, h} ⊆

C′. Since for g, h ∈ C′, g ∈ Oppϕ3
C and h ∈ Oppϕ3

C , condition (ii) is satisfied as well.

The following result motivates the definition of inconsistency bases, showing that no
model of Γ can involve any element of C ′, and that if Γ′ contains a strict element then Γ is
C(1)-inconsistent.

Proposition 3. Let (Γ′, C ′) be an inconsistency base for (Γ, C). Let H be an element of
C(1). If H |= Γ′ then C ′∩σ(H) = ∅ and for any ϕ ∈ Γ′, αϕ ≡H βϕ, so H 6|= αϕ < βϕ. In
particular, no C(1) model of Γ can involve any element of C ′. Also, if Γ is C(1)-consistent
then Γ′ contains no strict preference statements.

Proof: Let (Γ′, C ′) be an inconsistency base for (Γ, C). Let H = (c1, . . . ck) be an element
of C(1) with H |= Γ′. Suppose H contains some element in C ′ and let ci be the element
in C ′ ∩ σ(H) with the smallest index. By Definition 1(ii), there exists ϕ ∈ Γ′ such that
OppϕC 3 ci. Furthermore, since cj /∈ C ′ for all 1 ≤ j < i, Definition 1(i) implies cj ∈ IndϕC .

But then, an evaluation that opposes ϕ appears before all evaluations that support ϕ. By
Lemma 5, this is a contradiction to H |= Γ′; hence we must have C ′ ∩ σ(H) = ∅. Also,
for all ϕ ∈ Γ′, σ(H) ⊆ C − C ′ ⊆ IndϕC by Definition 1(i). Therefore, for any ϕ ∈ Γ′,
αϕ ≡H βϕ, and thus H 6|= αϕ < βϕ. Since H |= Γ′, this implies that Γ′ contains no strict
elements. The last parts follow from the fact that Γ′ is a subset of Γ, so if H |= Γ then
H |= Γ′. 2

We next give a small technical lemma that will be useful later. In particular, part (i) will
be used in proving compactness of preference inference.

Lemma 6. Assume that (Γ′, C ′) is an inconsistency base for (Γ, C). Then the following
hold.

(i) There exists a finite set Γ′′ ⊆ Γ such that (Γ′′, C ′) is an inconsistency base for (Γ, C),
and if Γ′ contains a strict statement then Γ′′ does also.

(ii) For any ∆ such that Γ′ ⊆ ∆ ⊆ Γ, (Γ′, C ′) is an inconsistency base for (∆, C).

Proof: (i): By condition (ii) of the definition of an inconsistency base, for each c ∈ C ′,
there exists ϕc ∈ Γ′ such that OppϕcC 3 c. If Γ′ contains a strict statement ψ then let
Γ′′ = {ψ} ∪ {ϕc : c ∈ C ′}; else let Γ′′ = {ϕc : c ∈ C ′}. Because C is finite, Γ′′ is finite.
The definition implies that (Γ′′, C ′) is an inconsistency base for (Γ, C).

Part (ii) follows immediately from Definition 1, since conditions (i) and (ii) of the defi-
nition do not directly refer to Γ, but just to Γ′, which is a subset of Γ. 2

We will show there is, in a natural sense, a unique maximal inconsistency base for
(Γ, C).

For inconsistency bases (Γ1, C1) and (Γ2, C2) for (Γ, C), define (Γ1, C1) ∪ (Γ2, C2) to
be (Γ1 ∪ Γ2, C1 ∪ C2). More generally, for inconsistency bases (Γi, Ci), i ∈ I , we define
∪i∈I(Γi, Ci) to be (∪i∈IΓi,∪i∈ICi), which can be easily shown to be an inconsistency
base.

Lemma 7. Suppose, for some (finite or infinite) non-empty index set I , and for all i ∈ I ,
that (Γi, Ci) is an inconsistency base. Then ∪i∈I(Γi, Ci) is an inconsistency base.

Proof: For all i ∈ I , by Definition 1(i), for all ϕ ∈ Γi, SuppϕC ∪ OppϕC ⊆ Ci; thus, for all
ϕ ∈ ∪i∈IΓi, SuppϕC ∪ OppϕC ⊆ ∪i∈ICi. This proves condition (i). To prove condition (ii):
for all i ∈ I , by Definition 1(ii), for all c ∈ Ci, there exists ϕ ∈ Γi such that OppϕC 3 c.
Thus, for all c ∈ ∪i∈ICi, there exists ϕ ∈ ∪i∈IΓi such that OppϕC 3 c. 2

Define MIB(Γ, C), the maximal inconsistency base for (Γ, C), to be the union of all
inconsistency bases for (Γ, C), i.e.,

⋃
{(Γ′, C ′) ∈ I}, where I is the set of inconsistency

bases for (Γ, C). This is well-defined, because I is non-empty, since it always contains the
tuple (∅, ∅).

The next result states that MIB(Γ, C) is an inconsistency base for (Γ, C).

Proposition 4. MIB(Γ, C) is an inconsistency base for (Γ, C), which is maximal in the
following sense: if (Γ1, C1) is an inconsistency base for (Γ, C) then Γ1 ⊆ Γ⊥ andC1 ⊆ C⊥,
where MIB(Γ, C) = (Γ⊥, C⊥).

Proof: By Lemma 7, the union of an arbitrary set of inconsistency bases is an inconsistency
base. Consequently, MIB(Γ, C) is an inconsistency base. Let MIB(Γ, C) = (Γ⊥, C⊥). The
definition immediately implies that if (Γ1, C1) is an inconsistency base for (Γ, C), then
Γ1 ⊆ Γ⊥ and C1 ⊆ C⊥. 2

By Proposition 3, if Γ is C(1)-consistent then Γ⊥ contains no strict elements, proving
the next result. The converse also holds—see Corollary 1.

Proposition 5. Suppose that Γ is C(1)-consistent, i.e., there exists a C(1) model of Γ. Then
for any inconsistency base (Γ′, C ′) of (Γ, C), Γ′ ∩ LA< = ∅. In particular, if MIB(Γ, C) =
(Γ⊥, C⊥) then Γ⊥ ∩ LA< = ∅.

Example 6. Consider the HCLP structure and preference statements as in Example 5. The
only inconsistency bases of (Γ, C) are (∅, ∅) and ({ϕ3}, {g, h}). Thus, ({ϕ3}, {g, h}) is the
maximal inconsistency base MIB(Γ, C) and does not contain any strict statements of Γ.

In the following sections, it will be important to consider models extending other mod-
els.

Definition 2. For H,H ′ ∈ C(1), write H as (c1, . . . , ck) and H ′ = (c′1, . . . , c′l). we say
that H ′ extends H if l > k and for all j = 1, . . . , k, c′j = cj .

Lemma 8. Suppose that H,H ′ ∈ C(1) and that H ′ extends H . Then,

(i) If H |= α < β then H ′ |= α < β.

(ii) If H ′ |= α ≤ β then H |= α ≤ β.

Proof: (i) Suppose that H |= α < β, so that α ≺H β. Write H as (c1, . . . , ck). For some
i, ci(α) 6= ci(β); and let i be minimal such that ci(α) 6= ci(β). Since α ≺H β, we have
ci(α) < ci(β). Because, H ′ extends H , this implies that α ≺H′ β, i.e., H ′ |= α < β.

(ii) Suppose that H ′ |= α ≤ β. Then H ′ 6|= β < α, by Lemma 1. Part (i) implies that
H 6|= β < α, and thus H |= α ≤ β, using Lemma 1 again. 2

4.2 Towards a polynomial algorithm for consistency and deduction

Throughout this section we consider a set Γ ⊆ LA of input preference statements, and a set
C of A-evaluations.

Define OppΓ(c) (usually abbreviated to Opp(c)) to be the set of elements opposed by
c, i.e., ϕ ∈ Γ such that c(αϕ) > c(βϕ), and define SuppΓ(c) (abbreviated to Supp(c)) to
be the set of elements ϕ of Γ supported by c, (i.e., c(αϕ) < c(βϕ)). For for C ′ ⊆ C,
we define SuppΓ(C ′) to be the elements of Γ that are supported by some element of C ′,
i.e., Supp(C ′) =

⋃
c∈C′ Supp(c). Also, for sequence of evaluations (c1, . . . , ck), we define

Supp(c1, . . . , ck) to be
⋃k
i=1 Supp(ci), which equals Supp({c1, . . . , ck}).

We thus have ϕ ∈ Supp(c) ⇐⇒ c(αϕ) < c(βϕ) ⇐⇒ c ∈ Suppϕ; and ϕ ∈ Opp(c)
⇐⇒ c(αϕ) > c(βϕ) ⇐⇒ c ∈ Oppϕ.

Γ(≤), the non-strict version of Γ: It turns out to be helpful to consider a non-strict version
of Γ; we define Γ(≤) to be {αϕ ≤ βϕ : ϕ ∈ Γ}, i.e., Γ where the strict statements are
replaced by corresponding non-strict statements. Clearly, if H |= Γ then H |= Γ(≤) (since
H |= α < β implies H |= α ≤ β).

The next lemma follows immediately, since the definition of maximal inconsistency
base does not depend on whether elements of Γ are strict or not.

Lemma 9. For any Γ and C, MIB(Γ(≤), C) = MIB(Γ, C).

In order to determine the consistency of set of preference statements Γ, we want a
method for generating a model H ∈ C(1) satisfying Γ. (Determining (non-)inference can
be similarly performed by generating a model satisfying Γ ∪ {¬ϕ}, using Proposition 1.)
A necessary condition for H |= Γ is H |= Γ(≤). There is a simple necessary and sufficient
condition for H |= Γ(≤), where H = (c1, . . . , ck), which is that every ϕ ∈ Γ that is
opposed by cj is supported by some earlier element in the sequence (see Proposition 6).
This condition allows one to easily incrementally grow models of Γ(≤), until one has a
maximal model of Γ(≤). We only need to consider maximal models because if a model H
of Γ(≤) satisfies Γ then any maximal model of Γ(≤) extendingH satisfies Γ (see Lemma 11).
The results about maximal inconsistency bases allow us to show (Theorem 2) that if Γ is
consistent then any maximal model of Γ(≤) satisfies Γ, so to determine consistency of Γ we
just need to generate any maximal model of Γ(≤), which can be done in a straight-forward
iterative way. This is the basis of the algorithm.

4.2.1 Γ-allowed sequences, i.e., models of Γ(≤)

We define the notion of Γ-allowed sequence, which turns out to be the same as a model of
Γ(≤) (see Proposition 6), and derive important properties (Proposition 7), which are useful
for deriving the main results about maximal Γ-allowed sequences in Section 4.2.2.

Define NextΓ(C ′) to be the set of all c ∈ C − C ′ such that Opp(c) ⊆ Supp(C ′), i.e., the
set of c ∈ C −C ′ that only oppose elements in Γ that are supported by elements of C ′. The
following result gives an equivalent condition for c ∈ NextΓ(C ′).

Lemma 10. Consider any c ∈ C. Then, c ∈ NextΓ(C ′), i.e., Opp(c) ⊆ Supp(C ′), if and
only if for all ϕ ∈ Γ− Supp(C ′), c ∈ Suppϕ ∪ Indϕ.

Proof: Suppose first that Opp(c) ⊆ Supp(C ′), and consider any ϕ ∈ Γ − Supp(C ′). Since
ϕ /∈ Supp(C ′), then ϕ /∈ Opp(c), and thus, c /∈ Oppϕ. This implies that c ∈ Suppϕ ∪ Indϕ.

Conversely, suppose that for all ϕ ∈ Γ − Supp(C ′), c ∈ Suppϕ ∪ Indϕ. Consider any
ϕ ∈ Opp(c). Then c ∈ Oppϕ and so c /∈ Suppϕ ∪ Indϕ, and therefore, ϕ ∈ Supp(C ′). 2

Consider an arbitrary sequence H = (c1, . . . , ck) of elements of C. Let us say that
H is a Γ-allowed sequence (of C) if for all j = 1, . . . , k, cj ∈ Next({c1, . . . , cj−1}), i.e.,
Opp(cj) ⊆ Supp({c1, . . . , cj−1}). These turn out to be just models of Γ(≤).

Example 7. Consider the HCLP structure as in Example 5 and preference statements Γ =
{ϕ1, ϕ2} with ϕ1 : α < β and ϕ2 : β ≤ γ. Then H = (h, f, e) is a Γ-allowed sequence
since:

• e ∈ Next({h, f}), i.e., Opp(e) = ∅ ⊆ Supp({h, f}) = {ϕ1, ϕ2}.

• f ∈ Next({h}), i.e., Opp(f) = {ϕ2} ⊆ Supp({h}) = {ϕ2}.

• h ∈ Next(∅), i.e., Opp(h) = ∅ ⊆ Supp(∅) = ∅.

H satisfies both preference statements in Γ.

Proposition 6. Consider an arbitrary sequence H = (c1, . . . , ck) of elements of C. Then,
H |= Γ(≤) if and only H is a Γ-allowed sequence.

Proof: Suppose that H 6|= Γ(≤), so there exists some ϕ ∈ Γ such that H 6|= αϕ ≤ βϕ.
If all elements cj of H were indifferent to ϕ (i.e., cj(αϕ) = cj(βϕ)) then we would have
H |= αϕ ≤ βϕ. Thus, some element cj in H is not indifferent to ϕ; let ci be the first such
element in H . If it were the case that ci(αϕ) < ci(βϕ) then we would have H |= αϕ ≤ βϕ,
so we must have ci(αϕ) > ci(βϕ), and thus, ϕ ∈ Opp(ci). Now, ϕ /∈ Supp({c1, . . . , ci−1}),
since cj(αϕ) = cj(βϕ) for all j < i, and hence, Opp(ci) 6⊆ Supp({c1, . . . , ci−1}). This
shows that ci /∈ Next({c1, . . . , ci−1}), and so H is not a Γ-allowed sequence.

Conversely, suppose that for some j ∈ {1, . . . , k}, cj /∈ Next({c1, . . . , cj−1}), and
let ci be the first such cj . Then for all j < i, cj ∈ Next({c1, . . . , cj−1}). Since ci /∈
Next({c1, . . . , ci−1}), there exists some ϕ ∈ Γ − Supp({c1, . . . , ci−1}) such that ϕ ∈

Opp(ci). so that ci(αϕ) > ci(βϕ). Let j be minimal such that cj(αϕ) 6= cj(βϕ). Since
ϕ /∈ Supp({c1, . . . , ci−1}), we do not have cj(αϕ) < cj(βϕ), so we must have cj(αϕ) >
cj(βϕ). This implies that H 6|= αϕ ≤ βϕ, where αϕ ≤ βϕ is an element of Γ(≤), and thus
H 6|= Γ(≤). 2

We also have the following property of Γ-allowed sequences.

Proposition 7. Suppose that H is a Γ-allowed sequence. Then, for all ϕ ∈ Supp(H),
H |= αϕ < βϕ, and for all ϕ ∈ Γ−Supp(H), αϕ ≡H βϕ, so, in particular H 6|= αϕ < βϕ.
Thus, for ϕ ∈ Γ, we have H |= αϕ < βϕ if and only if ϕ ∈ Supp(H). Also, H |= Γ if and
only if every strict element of Γ is in Supp(H).

Proof: First, consider any ϕ ∈ Supp(H). Thus there exists cj ∈ σ(H) such that cj(αϕ) <
cj(βϕ), so, in particular, cj(αϕ) 6= cj(βϕ). Let i be minimal such that ci(αϕ) 6= ci(βϕ).
Proposition 6 implies that H |= αϕ ≤ βϕ, which implies that ci(αϕ) 6> ci(βϕ), and thus
ci(αϕ) < ci(βϕ), proving that H |= αϕ < βϕ.

Now, consider ϕ ∈ Γ − Supp(H). If it were the case that there exists cj ∈ σ(H)
such that cj(αϕ) 6= cj(βϕ), then the argument above implies that there exists i such that
ci(αϕ) < ci(βϕ), and thus ϕ ∈ Supp(H). Thus, for all cj ∈ σ(H), cj(αϕ) = cj(βϕ), and,
hence, αϕ ≡H βϕ.

For the last part, since, by Proposition 6, H |= Γ(≤), we have: H |= Γ if and only if for
every strict element ϕ of Γ, H |= αϕ < βϕ, i.e., ϕ ∈ Supp(H). 2

4.2.2 Maximal Γ-allowed sequences, i.e., maximal models of Γ(≤)

We say that H is a maximal Γ-allowed sequence of C if H is a Γ-allowed sequence of C
and no extension of H is a Γ-allowed sequence of C, i.e., Next(σ(H)) = ∅. More generally,
when talking about maximal models, with respect to some set of models D, we mean max-
imality with respect to the extension relation, so a model in D is (D-)maximal if there is no
element of D that extends it.

Lemma 11. Suppose that H,H ′ ∈ C and H,H ′ |= Γ(≤), and that H ′ extends H . Then for
all ϕ ∈ Γ, if H |= ϕ then H ′ |= ϕ. In particular, if H |= Γ then H ′ |= Γ.

Proof: Assume that H,H ′ |= Γ(≤), and H ′ extends H . Consider any ϕ ∈ Γ, and suppose
that H |= ϕ. If ϕ is non-strict then ϕ ∈ Γ(≤) and so H ′ |= ϕ. If ϕ is strict, then Lemma 8(i)
implies that H ′ |= ϕ. 2

We use this in proving the next result, which shows that if we are interested in finding
models of Γ it is sufficient to only consider maximal Γ-allowed sequences, i.e., maximal
models of Γ(≤).

Lemma 12. If H is a Γ-allowed sequence, then either H is a maximal Γ-allowed sequence
or there exists a maximal Γ-allowed sequence H ′ that extends H . Then, for all ϕ ∈ Γ, if
H |= ϕ then H ′ |= ϕ. In particular, if H |= Γ then H ′ |= Γ.

Proof: The extends relation on the finite set of Γ-allowed sequences is transitive and acyclic.
It follows that for any Γ-allowed sequence H there exists a maximal Γ-allowed sequence
extending H . The last part follows from previous result, Lemma 11 (using the equivalence
stated by Proposition 6). 2

The following key lemma shows the close relationship between maximal Γ-allowed
sequences and the maximal inconsistency base.

Lemma 13. Suppose that H is a maximal Γ-allowed sequence. Then (Γ − Supp(H), C −
σ(H)) equals MIB(Γ, C).

Proof: We first check the two conditions in the definition of an inconsistency base (see Def-
inition 1). Consider any element ϕ of Γ− Supp(H). Proposition 7 implies that αϕ ≡H βϕ,
so that for all c ∈ σ(H), c(αϕ) = c(βϕ), and so σ(H) ⊆ Indϕ, showing that Condition (i)
holds. Now, consider any evaluation c in C − σ(H). By definition of a maximal Γ-allowed
sequence, Next(σ(H)) = ∅, so c /∈ Next(σ(H)). Therefore, by Lemma 10, there exists
ϕ ∈ Γ− Supp(H) such that c /∈ Suppϕ ∪ Indϕ, so c ∈ Oppϕ, showing that Condition (ii) of
an inconsistency base holds.

Write MIB(Γ, C) as (Γ⊥, C⊥). Thus, by definition, Γ − Supp(H) ⊆ Γ⊥ and C −
σ(H) ⊆ C⊥. Proposition 6 implies that H |= Γ(≤). Lemma 9 implies that MIB(Γ(≤), C) =
(Γ⊥, C⊥). Proposition 3 then implies that C⊥∩σ(H) = ∅, and so, C−σ(H) ⊇ C⊥. Thus,
C − σ(H) = C⊥.

Consider any ϕ ∈ Γ⊥. By definition of an inconsistency base, C − C⊥ ⊆ Indϕ, i.e.,
σ(H) ⊆ Indϕ, which implies αϕ ≡H βϕ, and so, by Proposition 7, ϕ ∈ Γ − Supp(H).
Thus, Γ⊥ ⊆ Γ − Supp(H), and hence, Γ⊥ = Γ − Supp(H), completing the proof that
(Γ− Supp(H), C − σ(H)) equals (Γ⊥, C⊥). 2

Different maximal Γ-allowed sequences satisfy the same subset of Γ and involve the
same subset of C:

Proposition 8. Suppose that H is a maximal Γ-allowed sequence. Write MIB(Γ, C) as
(Γ⊥, C⊥). Then Γ⊥ = Γ− Supp(H) and C⊥ = C −σ(H). Thus, if H ′ is another maximal
Γ-allowed sequence, then σ(H ′) = σ(H) and Supp(H ′) = Supp(H). Also, for all ϕ ∈ Γ,
H |= ϕ ⇐⇒ H ′ |= ϕ, which is if and only if ϕ is not a strict element of Γ⊥. Hence, every
maximal Γ-allowed sequence satisfies the same elements of Γ.

Proof: By Lemma 13, Γ⊥ = Γ−Supp(H) andC⊥ = C−σ(H). For any maximal Γ-allowed
sequence H ′, σ(H ′) = C − C⊥ = σ(H), and Supp(H ′) = Γ− Γ⊥ = Supp(H).

To prove the last part, suppose that ϕ ∈ Γ is such that H 6|= ϕ. Proposition 6 implies
that ϕ is strict. Proposition 7 implies that ϕ /∈ Supp(H) and thus ϕ ∈ Γ⊥. Conversely, if ϕ
is strict and ϕ ∈ Γ⊥ then ϕ /∈ Supp(H), so H 6|= ϕ by Proposition 7. We have shown, for
ϕ ∈ Γ, that H |= ϕ if and only if ϕ is not a strict element of Γ⊥; the same argument applies
to H ′, so H |= ϕ ⇐⇒ H ′ |= ϕ. 2

No model of Γ(≤) satisfies any element of Γ that is not satisfied by a maximal Γ-allowed
sequence H .

Proposition 9. Consider any maximal Γ-allowed sequence H , and any H ′ ∈ C(1) such
that H ′ |= Γ(≤). For any ϕ ∈ Γ, if H ′ |= ϕ then H |= ϕ.

Proof: Suppose that ϕ ∈ Γ and H 6|= ϕ, and so, by Proposition 7, ϕ is strict and ϕ ∈ Γ −
Supp(H). Consider any model H ′ |= Γ(≤). By Proposition 6, H ′ is a Γ-allowed sequence.
By Lemma 12, there exists some maximal Γ-allowed sequence H ′′ that extends or equals
H ′. We have Supp(H ′) ⊆ Supp(H ′′). Proposition 8 implies that Supp(H) = Supp(H ′′), so
ϕ /∈ Supp(H ′). Since ϕ is strict, H ′ 6|= ϕ, again using Proposition 7. 2

The theorem below shows that to test consistency, one just needs to generate a single
maximal Γ-allowed sequence (i.e., maximal model of Γ(≤)), which can be easily done using
an iterative algorithm.

Theorem 2. Γ is C(1)-consistent if and only if some maximal Γ-allowed sequence satisfies
Γ, which is if and only if every maximal Γ-allowed sequence satisfies Γ.

Proof: First assume that Γ is C(1)-consistent, so there exists some HCLP model H ∈ C(1)
such thatH |= Γ. This trivially implies thatH |= Γ(≤) (sinceH |= α < β⇒H |= α ≤ β),
so by Proposition 6, H is a Γ-allowed sequence. By Lemma 12, there exists a maximal Γ-
allowed sequence H ′ that extends or equals H , and H ′ |= Γ. We have proved that some
maximal Γ-allowed sequence satisfies Γ. The converse is obvious: if some maximal Γ-
allowed sequence satisfies Γ then Γ is C(1)-consistent. The last part of Proposition 8 implies
that some maximal Γ-allowed sequence satisfies Γ, if and only if every maximal Γ-allowed
sequence satisfies Γ. 2

This leads to a simple characterisation of C(1)-consistency using the maximal incon-
sistency base: Γ is C(1)-consistent if and only if no inconsistency base involves any strict
element of Γ.

Corollary 1. Write MIB(Γ, C) as (Γ⊥, C⊥). Γ is C(1)-consistent if and only if Γ⊥∩LA< = ∅,
which is if and only if Γ⊥ is C(1)-consistent. If Γ is C(1)-inconsistent then there exists a

finite set Γ′ ⊆ Γ⊥ such that Γ′ is C(1)-inconsistent, and (Γ′, C⊥) is an inconsistency base
for (Γ, C).

Proof: Let Γ< = Γ∩LA<. First, suppose that Γ is C(1)-consistent. Then, by Theorem 2, any
maximal Γ-allowed sequence H satisfies Γ. By Proposition 7, Γ< ⊆ Supp(H), and thus,
Γ< ⊆ Γ− Γ⊥, by Proposition 8. Hence, Γ< ∩ Γ⊥ = ∅, and so Γ⊥ ∩ LA< = ∅.

Conversely, suppose that Γ⊥ ∩ LA< = ∅. Proposition 8 implies that for any maximal
Γ-allowed sequence H , Γ− Γ⊥ = Supp(H) and thus, Γ< ⊆ Supp(H). Proposition 7 then
implies that H |= Γ, and so Γ is C(1)-consistent.

If Γ is C(1)-consistent then Γ⊥ is C(1)-consistent, since Γ⊥ ⊆ Γ. Conversely, suppose
that Γ⊥ is C(1)-consistent. Lemma 6 implies that (Γ⊥, C⊥) is an inconsistency base for
(Γ⊥, C). Proposition 5 implies that Γ⊥ ∩ LA< = ∅, which by the first part, implies that Γ is
C(1)-consistent.

Now suppose that Γ is C(1)-inconsistent. The first part implies that Γ⊥ contains a strict
statement. By Lemma 6(i), there exists finite Γ′ ⊆ Γ⊥ such that (Γ′, C ′) is an inconsistency
base for (Γ, C), and Γ′ contains a strict statement. By Lemma 6(ii), (Γ′, C ′) is an inconsis-
tency base for (Γ′, C), and thus, by Proposition 5, Γ′ is C(1)-inconsistent, since it contains
a strict statement. 2

The following result shows that this kind of preference inference is compact.

Corollary 2. Consider any Γ ⊆ LA and ϕ ∈ LA.

(i) If Γ is C(1)-inconsistent then there exists finite Γ′ ⊆ Γ which is C(1)-inconsistent.

(ii) If Γ |=C(1) ϕ then there exists finite Γ′ ⊆ Γ such that Γ′ |=C(1) ϕ.

Proof: (i) Suppose that Γ is C(1)-inconsistent. The last part of Corollary 1 implies that then
there exists finite Γ′ ⊆ Γ which is C(1)-inconsistent.

(ii) Suppose that Γ |=C(1) ϕ. Then Γ ∪ {¬ϕ} is C(1)-inconsistent, by Proposition 1.
Part (i) implies that there exists finite C(1)-inconsistent ∆ ⊆ Γ ∪ {¬ϕ}. If ∆ ⊆ Γ then we
can let Γ′ = ∆, since trivially ∆ |=C(1) ϕ. Otherwise, ∆ 3 ϕ, and we let Γ′ = ∆ − {ϕ}.
We have Γ′ ⊆ Γ, and Γ′ |=C(1) ϕ, again by Proposition 1. 2

4.2.3 The algorithm

The idea behind the algorithm is to build up a maximal Γ(≤)-satisfying sequence by repeat-
edly adding evaluations to the end; suppose that we have picked a sequence of elements of
C, C ′ being the set picked so far. We need to choose next an evaluation c such that, if c

opposes some ϕ in Γ, then ϕ is supported by some evaluation in C ′ (or else the generated
sequence will not satisfy ϕ).

H is initialised as the empty sequence () of evaluations. H ← H + c means that
evaluation c is added to the end of H .

Function Cons-check(Γ, C)
H ← ()
for k = 1, . . . , |C| do

if ∃ c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H)
then choose some such c; H ← H + c

else stop
end for

return H

Note that at each stage, an element of NextΓ(σ(H)) is chosen, so at each stage H is
a Γ-allowed sequence. Also, the termination condition is equivalent to NextΓ(σ(H)) = ∅,
which implies that the returned H is a maximal Γ-allowed sequence.

The algorithm involves often non-unique choices. However, if we wish, the choosing
of c can be done based on an ordering c1, . . . , cm of C, where, if there exists more than
one c ∈ C − σ(H) such that Opp(c) ⊆ Supp(H), we choose the element ci fulfilling
this condition that has smallest index i. The algorithm then becomes deterministic, with a
unique result following from the given inputs.

A straight-forward implementation runs in O(|Γ||C|2) time; however, a more careful
implementation runs in O(|Γ||C|) time, which we now describe. Let Hk be the HCLP
model after the k-th iteration of the for-loop. In every iteration of the for-loop, we update
sets Opp∆

k (c) = Opp(c) − Supp(Hk) and Supp∆
k (c) = Supp(c) − Supp(Hk) for all c ∈

C−σ(Hk). This costs usO(|C −σ(Hk)|× |Supp(Hk)\Supp(Hk−1)|) = O(|C −σ(Hk)|×
|Supp∆

k−1(ck)|) more time for every iteration k in which we add evaluation ck to Hk−1.
However, the choice of the next evaluation ck can be performed in constant time by marking
evaluations cwith Opp∆

k−1(c) = ∅. Suppose the algorithm stops after 1 ≤ l ≤ |C| iterations.
Since all Supp∆

k−1(ck) are disjoint,
∑l
k=1 |Supp∆

k−1(ck)| = |Supp(Hl)| ≤ |Γ|. Altogether,
the running time isO(

∑l
k=1 |C−σ(Hk)|×|Supp∆

k−1(ck)|) ≤ O(|C|×
∑l
k=1 |Supp∆

k−1(ck)|),
and thus the running time is O(|C| × |Γ|).

Properties of the Algorithm

The algorithm will always generate an HCLP model satisfying Γ if Γ is C(1)-consistent. It
can also be used for computing the maximal inconsistency base. The following result sums
up some properties related to the algorithm.

Theorem 3. Let H be a sequence returned by the algorithm with inputs Γ and C, and write
MIB(Γ, C) as (Γ⊥, C⊥). Then C⊥ = C − σ(H) (i.e., the evaluations that don’t appear in
H), and Γ⊥ = Γ − Supp(H). We have that H |= Γ(≤). Also, Γ is C(1)-consistent if and
only if Supp(H) contains all the strict elements of Γ, which is if and only if Γ⊥ ∩ LA< = ∅.
If Γ is C(1)-consistent then H |= Γ.

Proof: By the construction of the algorithm, H is a maximal Γ-allowed sequence, as ob-
served earlier. Proposition 8 implies that C⊥ = C − σ(H) and Γ⊥ = Γ − Supp(H). By
Proposition 6, we have H |= Γ(≤). Corollary 1 implies that Γ is C(1)-consistent if and
only if Γ⊥ ∩ LA< = ∅. Theorem 2 implies that Γ is C(1)-consistent if and only if H |= Γ.
Proposition 7 implies that H |= Γ if and only if Supp(H) contains all the strict elements of
Γ. 2

The algorithm therefore determines C(1)-consistency, and hence C(1)-deduction (be-
cause of Proposition 1), in polynomial time, and also generates the maximal inconsistency
base.

4.2.4 The case of inconsistent Γ

For the case when Γ is not C(1)-consistent, the output H of the algorithm is a model which,
in a sense, comes closest to satisfying Γ: it always satisfies Γ(≤), the non-strict version of
Γ, and if any model H ′ ∈ C(1) satisfies Γ(≤) and any element ϕ of Γ, then H also satisfies
ϕ.

Proposition 10. Let H be a sequence returned by the algorithm with inputs Γ and C, and
suppose that H ′ ∈ C(1) is such that H ′ |= Γ(≤). Then, for all ϕ ∈ Γ, if H ′ |= ϕ then
H |= ϕ.

Proof: Since H is a maximal Γ-allowed sequence, we have (by Proposition 6) that H |=
Γ(≤). Suppose thatH ′ ∈ C(1) is such thatH ′ |= Γ(≤). Proposition 9 implies that ifH ′ |= ϕ
then H |= ϕ. 2

These properties suggest the following way of reasoning with C(1)-inconsistent Γ. Let
us define Γ′ to be equal to (Γ−Γ⊥)∪Γ(≤). By Theorem 3, this is equal to Supp(H)∪Γ(≤),
where H is a model generated by the algorithm, enabling easy computation of Γ′. Γ′ is
C(1)-consistent, since it is satisfied by H . We might then (re-)define the (non-monotonic)
deductions from C(1)-inconsistent Γ to be the deductions from Γ′.

4.3 Strong consistency and max-model inference

In the set of models C(1), we allow models involving any subset of C, the set of evaluations.
We could alternatively consider a semantics where we only allow models H that involve all
elements of C, i.e., with σ(H) = C.

Let C(1∗) be the set of elements H of C(1) with σ(H) = C. Γ is defined to be strongly
C(1)-consistent if and only if there exists a model H ∈ C(1∗) such that H |= Γ. Let
MIB(Γ, C) = (Γ⊥, C⊥). Proposition 3 implies that, if Γ is strongly C(1)-consistent then
C⊥ is empty, and Γ⊥ consists of all the elements of Γ that are indifferent to all of C, i.e., the
set of ϕ ∈ Γ such that c(αϕ) = c(βϕ) for all c ∈ C.

There is an associated preference inference based on this restricted set of models. We
write Γ |=C(1∗) ϕ if H |= ϕ holds for every H ∈ C(1∗) such that H |= Γ.

This form of deduction can be expressed in terms of strong consistency, as the following
result shows.

Lemma 14. If Γ is strongly C(1)-consistent then Γ |=C(1∗) ϕ holds if and only if Γ ∪ {¬ϕ}
is not strongly C(1)-consistent.

Proof: First suppose that Γ∪{¬ϕ} is strongly C(1)-consistent. Then there exists H ∈ C(1)
such that H |= Γ ∪ {¬ϕ} and σ(H) = C. Thus H |= Γ and H 6|= ϕ (using Lemma 1),
showing that Γ 6|=C(1∗) ϕ.

Now suppose that Γ 6|=C(1∗) ϕ. Then there exists H ∈ C(1) such that H |= Γ and
σ(H) = C and H 6|= ϕ. Then H |= Γ ∪ {¬ϕ} (again using Lemma 1), so Γ ∪ {¬ϕ} is
strongly C(1)-consistent. 2

In the next section we will consider a related (and, in a sense, more general) form of
preference inference, where we only consider maximal models.

4.3.1 Max-model inference

For Γ ⊆ LA, letMmax
C(1)(Γ) be the set of maximal models within C(1) of Γ, i.e., the set of

H ∈ C(1) such that H |= Γ, and for all H ′ ∈ C(1) extending H , H ′ 6|= Γ. We define the
max-model inference relation |=max

C(1) by:

Γ |=max
C(1) ϕ if and only if H |= ϕ for all H ∈Mmax

C(1)(Γ).
The following result shows that maximal models of Γ involve the same set of evaluations.
It also shows that, if Γ is C(1)-consistent, the maximal models are the same as the maximal
Γ-allowed sequences discussed earlier.

Proposition 11. Suppose that Γ is C(1)-consistent. Then, for H ∈ C(1), we have H ∈
Mmax
C(1)(Γ) if and only if H is a maximal Γ-allowed sequence in C. Thus, for all H,H ′ ∈

Mmax
C(1)(Γ), we have σ(H) = σ(H ′) = C − C⊥, where MIB(Γ, C) = (Γ⊥, C⊥).

Proof: Consider any H ∈ Mmax
C(1)(Γ). Since H |= Γ we have H |= Γ(≤), and so Proposi-

tion 6 implies that H is a Γ-allowed sequence. Suppose that H is not a maximal Γ-allowed
sequence. Then, by Lemma 12, there exists a maximal Γ-allowed sequence H ′ extending
H , and H |= Γ. This contradicts H ∈Mmax

C(1)(Γ).
Conversely, suppose that H is a maximal Γ-allowed sequence in C. Theorem 2 implies

that H |= Γ. To prove a contradiction, suppose that H 6∈ Mmax
C(1)(Γ), so that there exists

H ′ ∈ Mmax
C(1)(Γ) with H ′ extending H . The argument above implies that H ′ is a maximal

Γ-allowed sequence, which contradicts H being a maximal Γ-allowed sequence.
The last part follows from Proposition 8. 2

The next result shows that the same non-strict preference statements are inferred for the
max-model inference relation |=max

C(1) as for the inference relation |=C(1).

Proposition 12. Consider any Γ ⊆ LA, and any preference statement α ≤ β in LA.

(i) Γ is C(1)-consistent if and only ifMmax
C(1)(Γ) 6= ∅.

(ii) Γ |=max
C(1) α ≤ β ⇐⇒ Γ |=C(1) α ≤ β.

Proof: (i) follows easily: if Γ is C(1)-consistent, then there exists someH ∈ C(1) withH |=
Γ, so there exists H ′ ∈Mmax

C(1)(Γ) extending or equalling H . The converse is immediate: if
there exists H ∈Mmax

C(1)(Γ) then H ∈ C(1) and H |= Γ, so Γ is C(1)-consistent.
(ii) If Γ is not C(1)-consistent then by part (i),Mmax

C(1)(Γ) = ∅, so Γ |=max
C(1) α ≤ β and

Γ |=C(1) α ≤ β both hold vacuously. Let us thus now assume that Γ is C(1)-consistent.
⇒: Assume Γ |=max

C(1) α ≤ β, and consider any H ∈ C(1) such that H |= Γ. We need

to show that H |= α ≤ β. Since H |= Γ, we have H |= Γ(≤), and so H is a Γ-allowed
C-sequence, by Proposition 6. Choose, by Lemma 12, any maximal Γ-allowed sequenceH ′

extending or equallingH , and we haveH ′ |= Γ. By, Proposition 11,H ′ ∈Mmax
C(1)(Γ). Then,

Γ |=max
C(1) α ≤ β implies that H ′ |= α ≤ β. Lemma 8(ii) then implies that H |= α ≤ β.
⇐: Assume Γ |=C(1) α ≤ β, and consider any H ∈ Mmax

C(1)(Γ). This implies that
H ∈ C(1) and H |= Γ, so H |= α ≤ β showing that Γ |=max

C(1) α ≤ β. 2

We write Γ |=C(1) α ≡ β as an abbreviation of the conjunction of Γ |=C(1) α ≤ β and
Γ |=C(1) β ≤ α; and similarly for other inference relations. The last result can be used to
prove that inferred equivalences are the same for max-model inference, and have a simple
form.

Proposition 13. Consider any C(1)-consistent Γ ⊆ LA, and any C. Let MIB(Γ, C) equal
(Γ⊥, C⊥). Consider any α, β ∈ A. Then, Γ |=C(1) α ≡ β if and only if Γ |=max

C(1) α ≡ β if
and only if for all c ∈ C − C⊥, c(α) = c(β).

Proof: First assume that Γ |=C(1) α ≡ β. This trivially implies that Γ |=max
C(1) α ≡ β, since

|=max
C(1) ⊆ |=C(1).

Now assume that Γ |=max
C(1) α ≡ β. Γ is C(1)-consistent soMmax

C(1)(Γ) 6= ∅, by Propo-
sition 12(i). Consider any H ∈ Mmax

C(1)(Γ). Then α ≡H β, which implies that for all
c ∈ σ(H), c(α) = c(β), and thus, by Proposition 11, for all c ∈ C − C⊥, c(α) = c(β).

Finally, let us assume that for all c ∈ C − C⊥, c(α) = c(β). Consider any H ∈ C(1)
such thatH |= Γ. Proposition 3 implies that σ(H)∩C⊥ = ∅, i.e., σ(H) ⊆ C−C⊥. So, for
all c ∈ σ(H), c(α) = c(β), and thus α ≡H β, and hence Γ |=C(1) α ≡ β. This completes
the proof that the three statements are equivalent. 2

The following result shows that the strict inferences with |=max
C(1) are closely tied with the

non-strict inferences.

Proposition 14. Γ |=max
C(1) α ≤ β if and only if either Γ |=max

C(1) α ≡ β or Γ |=max
C(1) α < β.

Also, if Γ is C(1)-consistent then Γ |=max
C(1) α < β holds if and only if Γ |=max

C(1) α ≤ β and
Γ 6|=max

C(1) α ≡ β.

Proof: If Γ is not C(1)-consistent then, by Proposition 12(i), Mmax
C(1)(Γ) = ∅, so Γ |=max

C(1)
α ≤ β and Γ |=max

C(1) α ≡ β (and Γ |=max
C(1) α < β) hold vacuously, and therefore the

equivalence holds. Let us thus now assume that Γ is C(1)-consistent. One direction holds
easily: suppose that Γ |=max

C(1) α ≡ β or Γ |=max
C(1) α < β, and consider any H ∈ Mmax

C(1)(Γ).
We have either α ≡H β or H |= α < β, so either α ≡H β or α ≺H β, and thus α 4H β,
and H |= α ≤ β, showing that Γ |=max

C(1) α ≤ β.
Now, let us assume that Γ |=max

C(1) α ≤ β, and that it is not the case that Γ |=max
C(1) α ≡ β.

It is sufficient to show that Γ |=max
C(1) α < β. Consider any H ∈ Mmax

C(1)(Γ). Since, Γ |=max
C(1)

α ≤ β, we have H |= α ≤ β. Proposition 13 implies that there exists c ∈ C − C⊥ such
that c(α) 6= c(β), where MIB(Γ, C) = (Γ⊥, C⊥). By, Proposition 11, σ(H) = C − C⊥, so
there exists some c ∈ σ(H) such that c(α) 6= c(β); let c be earliest such element of σ(H).
Since H |= α ≤ β, we have c(α) < c(β), so H |= α < β. This shows that Γ |=max

C(1) α < β,
as required.

Assume that Γ is C(1)-consistent. Suppose that Γ |=max
C(1) α < β holds. Then clearly,

Γ |=max
C(1) α ≤ β. Consider any H |= Γ. Then we have α ≺H β, so we do not have α ≡H β,

which implies that Γ |=C(1) α ≡ β does not hold. Conversely, suppose that Γ |=max
C(1) α ≤ β

and Γ 6|=max
C(1) α ≡ β. The first part then implies that Γ |=max

C(1) α < β. 2

4.3.2 Properties of strong consistency and of the associated inference

The following result shows that the consequences of Γ with respect to |=C(1∗) are the same
as those with respect to |=max

C(1), when Γ is strongly C(1)-consistent. (Of course, if Γ is not

strongly C(1)-consistent then all ϕ in LA are consequences of |=C(1∗).)

Lemma 15. If Γ is strongly C(1)-consistent then, for any ϕ ∈ LA, Γ |=C(1∗) ϕ ⇐⇒
Γ |=max

C(1) ϕ.

Proof: Assume that Γ is strongly C(1)-consistent, so there exists a model H ′ with σ(H ′) =
C. By definition of |=C(1∗) and |=max

C(1) it is sufficient to show that Mmax
C(1)(Γ) is equal to

the set H of all H ∈ C(1) such that H |= Γ and σ(H) = C. It immediately follows
thatMmax

C(1)(Γ) ⊇ H. Conversely, consider any H ∈ Mmax
C(1)(Γ). Since H ′ ∈ H, we have

H ′ ∈Mmax
C(1)(Γ). Proposition 11 implies that σ(H) = σ(H ′) = C, proving that H ∈ H. 2

The next result shows that the non-strict |=C(1∗) inferences are the same as the non-strict
|=C(1) inferences, and that (in contrast to the case of |=C(1)) the strict |=C(1∗) inferences
almost correspond with the non-strict ones. The result also implies that the algorithm in
Section 4.2 can be used to efficiently determine the |=C(1∗) inferences.

To illustrate the difference between the |=C(1) inferences and the |=C(1∗) inferences for
the case of strict statements, consider some strongly C(1)-consistent Γ which only includes
non-strict statements. Then, for every strict preference statement α < β, we will have
Γ 6|=C(1) α < β since the empty sequence satisfies Γ but not α < β. However, we will
have Γ |=C(1∗) α < β if Γ |=C(1) α ≤ β and Γ 6|=C(1) β ≤ α. For example, if Γ is just
{α ≤ β}, where for some c ∈ C, c(α) < c(β), then we will have Γ |=C(1∗) α < β but not
Γ |=C(1) α < β.

Proposition 15. Let MIB(Γ, C) = (Γ⊥, C⊥). Γ is strongly C(1)-consistent if and only if
C⊥ = ∅ and Γ ∩ LA< ⊆ Supp(C).

Suppose that Γ is strongly C(1)-consistent. Then,

(i) Γ |=C(1) α ≤ β ⇐⇒ Γ |=C(1∗) α ≤ β;

(ii) Γ |=C(1∗) α ≡ β if and only if α and β agree on all of C, i.e., for all c ∈ C, c(α) =
c(β);

(iii) Γ |=C(1∗) α < β if and only if Γ |=C(1) α ≤ β and α and β differ on some element of
C, i.e., there exists c ∈ C such that c(α) 6= c(β).

Proof: First, suppose that Γ is strongly C(1)-consistent. Then there exists H ′ ∈ C(1) such
that H ′ |= Γ and σ(H ′) = C. Since H ′ |= Γ(≤), by Proposition 6, H ′ is a Γ-allowed
sequence. By Lemma 12, there exists a maximal Γ-allowed sequence H extending or
equalling H ′, so, since σ(H ′) = C, we must have H = H ′. Proposition 8 implies that
C⊥ = ∅ and Γ⊥ = Γ − Supp(H) = Γ − Supp(C), and Corollary 1 shows then that
(Γ− Supp(C)) ∩ LA< = ∅, which implies that Γ ∩ LA< ⊆ Supp(C).

Conversely, suppose that C⊥ = ∅ and Γ ∩ LA< ⊆ Supp(C). Let H be a maximal Γ-
allowed sequence. Proposition 8 implies that σ(H) = C. Then Supp(H) = Supp(C), and
Proposition 7 implies that H |= Γ, showing that Γ is strongly C(1)-consistent.

Now suppose that Γ is strongly C(1)-consistent. Lemma 15 implies that for anyϕ ∈ LA,
Γ |=C(1∗) ϕ ⇐⇒ Γ |=max

C(1) ϕ. Part (i) then follows by Proposition 12(ii). Part (ii) follows
from Proposition 13, using the fact that C⊥ is empty. Part (iii) follows from part (ii) and
Proposition 14. 2

The next result shows that |=C(1) inference is not affected if one removes the evaluations
in the MIB.

Proposition 16. Suppose that Γ is C(1)-consistent, let MIB(Γ, C) = (Γ⊥, C⊥), and let
C ′ = C−C⊥. Then Γ is stronglyC ′(1)-consistent, and Γ |=C(1) ϕ if and only if Γ |=C′(1) ϕ.

Proof: By Theorem 3, any output of the algorithm is in C ′(1∗) and satisfies Γ. Thus Γ is
strongly C ′(1)-consistent. Let H′ = {H ∈ C ′(1) : H |= Γ} and H = {H ∈ C(1) :
H |= Γ}. Then H′ ⊆ H, because C ′(1) ⊆ C(1). By Proposition 3, for every H ∈ H, we
have σ(H) ∩ C⊥ = ∅, and hence H ∈ H′. Thus H′ = H and Γ |=C(1) ϕ if and only if
Γ |=C′(1) ϕ. 2

4.4 Orderings on evaluations

The preference logic defined here is closely related to a logic based on disjunctive ordering
statements. Given set of evaluations C, we consider the set of statements OC of the form
C1 < C2, and of C1 ≤ C2, where C1 and C2 are disjoint subsets of C.

We say that H |= C1 < C2 if some evaluation in C1 appears in H before every element
of C2, that is, there exists some element of C1 in H (i.e., C1 ∩ σ(H) 6= ∅) and the earliest
element of C1 ∪ C2 to appear in H is in C1.

We say that H |= C1 ≤ C2 if either H |= C1 < C2 or no element of C1 or C2 appears
in H: (C1 ∪ C2) ∩ σ(H) = ∅. By Lemma 5 we have that

H |= αϕ < βϕ ⇐⇒ H |= SuppϕC < OppϕC ,
and H |= αϕ ≤ βϕ ⇐⇒ H |= SuppϕC ≤ OppϕC .

This shows that the language OC can express anything that can be expressed in LA. It can
be shown, conversely, that for any statement τ in OC , one can define αϕ and βϕ, and the
values of elements of C on these, such that for all H ∈ C(1), H |= τ if and only if H |= ϕ
(where ϕ is strict if and only if τ is strict). For instance, if τ is the statement C1 < C2, we
can define c(αϕ) = 1 for all c ∈ C2, and c(αϕ) = 0 for c ∈ C − C2; and define c(βϕ) = 1
for all c ∈ C1, and c(βϕ) = 0 for c ∈ C − C1.

The algorithm adapts in the obvious way to the case where we have Γ consisting of
(or including) elements in OC . When viewed in this way, the algorithm can be seen as a

simple extension of a topological sort algorithm; the standard case corresponds to when the
ordering statements only involve singleton sets.

5 Proof theory for simple lexicographic inference

Preference inference has been defined semantically, and we have an efficient algorithm for
the simple lexicographic case. From a logical perspective, it is natural to consider if we can
construct an equivalent syntactical definition of inference via a proof theory; this can give
another view of the assumptions being made by the logic. In this section we construct such
a proof theory for preference inference based on simple lexicographic models, involving an
axiom schema and a number of fairly simple inference rules. We consider a fixed set of
evaluations C here, and we abbreviate |=C(1) to just |=.

We make use of a form of Pareto (pointwise) ordering on alternatives, and we define a
kind of addition and rescaling operation on alternatives and thus on preference statements.

We define the following pointwise (or weak Pareto) ordering on alternatives. For α, β ∈
A, α �par β ⇐⇒ for all c ∈ C, c(α) ≤ c(β). We also define the Pareto Difference relation
between elements of LA. For ψ, θ ∈ LA, we say that ψ �parD θ holds if and only if (i)
ψ and θ are either both strict or both non-strict; and (ii) for all c ∈ C, c(βψ) − c(αψ) ≤
c(βθ)− c(αθ). Thus, if ψ �parD θ and c(αψ) ≤ c(βψ) then c(αθ) ≤ c(βθ). If ψ �parD θ
and H |= ψ then H |= θ (see Lemma 16(vi) below).

Pointwise multiplication of alternatives and preference statements: Let F be the set
of functions from C to the strictly positive rational numbers. For f ∈ F , we define 1

f ∈ F
in the obvious way, by, for c ∈ C, 1

f (c) = 1
f(c) . Let f be an arbitrary element of F .

• For α, γ ∈ A, we say that α .= fγ if for all c ∈ C, c(α) = f(c) × c(γ) (where × is
the standard multiplication).

• For ϕ,ψ ∈ LA, we say that ϕ .= fψ if (i) αϕ
.= fαψ and βϕ

.= fβψ, and (ii) ϕ is
strict if and only if ψ is strict.

Note that if ϕ .= fψ then for all c ∈ C, c(αϕ) ≤ c(βϕ) ⇐⇒ c(αψ) ≤ c(βψ). It is
then easy to show that if H ∈ C(1) and ϕ .= fψ then H |= ϕ if and only if H |= ψ: see
Lemma 16(iv).

Addition of alternatives and preference statements:

• For α, β, γ ∈ A, we say that γ .= α+ β if for all c ∈ C, c(γ) = c(α) + c(β).

• For ϕ,ψ, χ ∈ LA, we say that ϕ .= ψ + χ if (i) αϕ
.= αψ + αχ, and βϕ

.= βψ + βχ;
and (ii) ϕ is non-strict if both ψ and χ are non-strict, and otherwise, ϕ is strict.

5.1 Syntactic deduction ` and soundness of inference rules

As usual the proof theory is constructed from axioms and inference rules.
Axioms:
α ≤ β for all α, β ∈ A with α �par β.

Inference rules schemata:
(1) From Strict to Non-Strict: For any α, β ∈ A the following rule:

From α < β deduce α ≤ β.
(2) Addition: For χ ∈ LA such that χ .= ϕ+ ψ the following inference rule

From ϕ and ψ deduce χ.
(3) Pointwise Multiplication: For any f ∈ F and ϕ ∈ LA such that ϕ .= fψ the following
rule

From ψ deduce ϕ.
(4) Inconsistent Statement: For any α ∈ A and any ϕ ∈ LA,

From α < α deduce ϕ.
(5) Pareto Difference: For any ψ, θ ∈ LA such that ψ �parD θ:

From ψ deduce θ.

Defining syntactic deduction `: Let Γ be a subset of LA and ϕ ∈ A. We say that ϕ
can be proved from Γ, written Γ ` ϕ, if there exists a sequence ϕ1, . . . , ϕk of elements
of LA such that ϕk = ϕ and for all i = 1, . . . , k, either ϕi ∈ Γ or ϕi is an axiom, or
there exists an instance of one of the inference rules with consequent ϕi and such that the
antecedents are in {ϕ1, . . . , ϕi−1}. Relation ` depends strongly on the set of alternatives
A; e.g., {ϕ,ψ} ` ϕ + ψ (if and) only if ϕ + ψ ∈ LA, i.e., only if αϕ + αψ and βϕ + βψ
are in A. We write ` as `A if we want to emphasise this dependency. It can happen that
for Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ `B ϕ, but Γ 6`A ϕ. (We could also write |=A
to emphasise the dependency on A; however, it isn’t usually important to do so, since for
Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ |=B ϕ ⇐⇒ Γ |=A ϕ.)

Any given set of alternatives may not be closed under addition (for instance), and there
may be α, β ∈ A with no γ ∈ A such that γ .= α + β. We assume that we can augment
A with additional alternatives, and for any function g : C → Q+, we can construct an
alternative α with, for all c ∈ C, c(α) = g(c).

Next we state a lemma showing soundness of the axioms and inference rules, which is
used to prove soundness of the associated syntactic deduction (Proposition 17).

Lemma 16. Consider any H ∈ C(1), any α, β ∈ A, and any ϕ,ψ, χ, θ ∈ LA.

(i) If α �par β then H |= α ≤ β.

(ii) If H |= α < β then H |= α ≤ β.

(iii) If χ .= ϕ+ ψ, and H |= ϕ and H |= ψ then H |= χ.

(iv) If ϕ .= fψ then H |= ϕ ⇐⇒ H |= ψ.

(v) H 6|= α < α.

(vi) If H |= ψ and ψ �parD θ then H |= θ.

Proof: Write H as (c1, . . . , ck). For ϕ ∈ LA we define iϕ to be k+ 1 if for all i = 1, . . . , k,
ci(αϕ) = ci(βϕ); otherwise, we define iϕ to be the minimum i such that ci(αϕ) 6= ci(βϕ).
Then αϕ ≡H βϕ ⇐⇒ iϕ = k + 1, and H |= αϕ < βϕ ⇐⇒ iϕ ≤ k and ciϕ(αϕ) <
ciϕ(βϕ).

(i): Assume that α �par β, so that for all c ∈ C, we have c(α) ≤ c(β). This implies
α 4H β and thus H |= α ≤ β.

(ii): Assume that H |= α < β, so that α ≺H β. This implies α 4H β and hence
H |= α ≤ β.

(iii): Assume that χ .= ϕ+ ψ, and H |= ϕ and H |= ψ.
Case (I): iϕ = iψ = k + 1. Then for all i = 1, . . . , k, ci(αϕ) = ci(βϕ) and ci(αψ) =

ci(βψ). Then, ci(αχ) = ci(αϕ) + ci(αψ) = ci(βϕ) + ci(βψ) = ci(βχ), so iχ = k + 1,
which implies that αχ ≡H βχ. We have αϕ ≡H βϕ, and also H |= ϕ, so ϕ is non-strict.
Similarly, ψ is non-strict. Thus χ is non-strict, and so H |= χ.

Case (II): iϕ = iψ ≤ k. Because ciϕ(αϕ) 6= ciϕ(βϕ) and H |= ϕ, we have ciϕ(αϕ) <
ciϕ(βϕ). The same argument implies that ciϕ(αψ) < ciϕ(βψ). We then have ciϕ(αχ) <
ciϕ(βχ), and iχ = iϕ. This implies that H |= αχ < βχ, and thus, H |= χ, whether χ is
strict or non-strict.

Case (III): iϕ < iψ. Arguing as in Case (II), we have ciϕ(αϕ) < ciϕ(βϕ). We also
have ciϕ(αψ) = ciϕ(βψ). We then have ciϕ(αχ) < ciϕ(βχ), and iχ = iϕ. Again we have
H |= χ, whether χ is strict or non-strict.

Case (IV): iϕ > iψ. This is similar to Case (III), but with the roles of ϕ and ψ reversed.

(iv): Assume that ϕ .= fψ, and consider any c ∈ C. Because f(c) > 0, we have c(αϕ) =
c(βϕ) if and only if c(αψ) = c(βψ); and c(αϕ) < c(βϕ) if and only if c(αψ) < c(βψ). This
shows that H |= ϕ ⇐⇒ H |= ψ.

(v): H 6|= α < α follows since α ≡H α and so α 6≺H α.

(vi): Suppose that H |= ψ and ψ �parD θ, so that ψ and θ are either both strict or both
non-strict; and for all c ∈ C, c(βψ)−c(αψ) ≤ c(βθ)−c(αθ). If it were the case that iψ < iθ

then, because H |= ψ, we would have that ciψ(αψ) < ciψ(βψ) and ciψ(αθ) = ciψ(βθ), and
thus, ciψ(βψ)− ciψ(αψ) > 0 = ciψ(βθ)− ciψ(αθ), which contradicts ψ �parD θ. Thus we
must have that iψ ≥ iθ.

First consider the case when iθ = k + 1. Then iψ = k + 1, and so αθ ≡H βθ and
αψ ≡H βψ. The latter implies that ψ is non-strict, since H |= ψ. Then θ is non-strict and
thus, H |= θ.

Now consider the case when iθ ≤ k, and thus ciθ(αθ) 6= ciθ(βθ). We showed earlier that
iθ ≤ iψ. If iθ = iψ then H |= ψ implies that ciθ(αψ) < ciθ(βψ). If iθ < iψ then ciθ(αψ) =
ciθ(βψ). So, in either case we have ciθ(αψ) ≤ ciθ(βψ), i.e., ciθ(βψ) − ciθ(αψ) ≥ 0. The
assumption ψ �parD θ then implies that ciθ(βθ)− ciθ(αθ) ≥ 0, and so, ciθ(αθ) ≤ ciθ(βθ).
Since iθ ≤ k we have ciθ(αθ) < ciθ(βθ), showing thatH |= αθ < βθ, and thereforeH |= θ
whether θ is strict or non-strict. 2

We are now ready to state and prove the soundness result.

Proposition 17. For Γ ∪ {ϕ} ⊆ LA, and any B ⊇ A, if Γ `B ϕ then Γ |=A ϕ.

Proof: First note that if Γ is C(1)-inconsistent, then there is nothing to prove, since Γ |=A ϕ
follows trivially. So, let us assume now that Γ is C(1)-consistent. We use an inductive proof
based on Lemma 16. Suppose that Γ `B ϕ. Consider any H ∈ C(1) such that H |= Γ. We
need to show that H |= ϕ. Since Γ `B ϕ there exists a sequence ϕ1, . . . , ϕk of elements of
LB such that ϕk = ϕ and for all i = 1, . . . , k, either ϕi ∈ Γ or ϕi is an axiom, or there exists
an instance of one of the inference rules with consequent ϕi and such that the antecedents
are in {ϕ1, . . . , ϕi−1}. Consider any i ∈ {1, . . . , k}. We will prove that, if for all j < i,
H |= ϕj then H |= ϕi. This then implies that for all i = 1, . . . , k, we have H |= ϕi, and
thus H |= ϕk, as required.

Therefore, let i be some arbitrary element in {1, . . . , k}, and assume that for all j < i,
H |= ϕj . We will prove that H |= ϕi. Let us abbreviate ϕi to be θ. One of the cases (1)–(7)
below applies. We consider each case in turn.

(1): θ equals α ≤ β for some α, β ∈ B, and there exists some j < i with ϕj equalling
α < β. Since H |= ϕj , by Lemma 16(ii), we have H |= α ≤ β, i.e., H |= θ.

(2): θ equals χ for some χ ∈ LB such that χ .= ϕ + ψ, and for some j, l < i we have
ϕ = ϕj and ψ = ϕl. Since H |= ϕj , ϕk, Lemma 16(iii) implies that H |= θ.

(3): There exists j < i and f ∈ F such that θ .= fϕj . Lemma 16(iv) implies that H |= θ.

(4): There exists α ∈ B and j < i such that ϕj equals α < α, so we have H |= α < α.
However, by Lemma 16(v), this is impossible, so Case (4) cannot arise.

(5): There exists j < i such that ψ = ϕj ∈ LB and ψ �parD θ. Lemma 16(vi) implies
H |= θ.

(6): θ ∈ Γ. Then H |= θ.

(7): θ is equal to α ≤ β for some α, β ∈ B such that α �par β. Lemma 16(i) implies
H |= θ.

2

5.2 Completeness of proof theory

We now give a pair of technical lemmas which we will use in the completeness proof.

Lemma 17. Consider any C(1)-inconsistent Γ ⊆ LA, and suppose that ({ϕ1, . . . , ϕk}, C ′)
is an inconsistency base for (Γ, C), with {ϕ1, . . . , ϕk} being inconsistent. Then there exist
strictly positive functions f1, . . . , fk ∈ F , set of alternatives B ⊇ A with B − A finite,
preference statement ρ ∈ LB and strict preference statement ψ in LB such that ρ .= f1ϕ1 +
· · ·+ fk−1ϕk−1 and ψ .= f1ϕ1 + · · ·+ fkϕk, and Γ `B ρ and Γ `B ψ, and βψ �par αψ.

Proof: Let T = {|c(αϕi)− c(βϕi)| : c ∈ C, i ∈ {1, . . . , k}} − {0}. If T = ∅ then set
a = b = 1, and if T 6= ∅ let a = minT and let b = max T , so 0 < a ≤ b. For i = 1, . . . , k
and c ∈ C, we define fi(c) = 1 if c(αϕi) > c(βϕi), and otherwise, we define fi(c) = d
where d = a/(kb) > 0.

For i = 1, . . . , k we include elements γi, δi, εi, λi in B, where γi
.= fiαϕi , and δi

.=
fiβϕi ; and we let ε1 = γ1 and λ1 = δ1, and for i = 2, . . . , k, εi

.= εi−1 + γi, and
λi

.= λi−1 + δi.
There exists ψ1 ∈ LB with ψ1

.= f1ϕ1, and αψ1 = γ1 = ε1 and βψ1 = δ1 = λ1.
Similarly, for i = 2, . . . , k, there exists ψi ∈ LB with ψi

.= ψi−1 + fiϕi, and αψi = εi and
βψi = λi.

By the Addition and Pointwise Multiplication rules, for each i = 1, . . . , k, we have
Γ `B ψi. Abbreviate ψk to ψ and ψk−1 to ρ. We have Γ `B ψ and ψ .= f1ϕ1 + · · ·+ fkϕk,
and Γ `B ρ and ρ .= f1ϕ1 + · · · + fk−1ϕk−1. Since {ϕ1, . . . , ϕk} is inconsistent, some
ϕi is strict (else the empty model satisfies them all), and therefore, ψ is a strict preference
statement.

Consider any c ∈ C − C ′. By Definition 1(i), c(αϕi) = c(βϕi) for all i = 1, . . . , k.
Thus c(αψ) = c(βψ).

Now consider any c ∈ C ′. For any j ∈ {1, . . . , k}, c(αϕj) − c(βϕj) ≥ −b, and so
c(γj) − c(δj) ≥ −bd = −a/k. By Definition 1(ii), there exists some i ∈ {1 . . . , k} such
that c(αϕi) > c(βϕi). This implies that T 6= ∅. We have c(αϕi) − c(βϕi) ≥ a, and thus

c(γi) − c(δi) ≥ a > 0. Now, c(αψ) =
∑k
j=1 c(γj) and c(βψ) =

∑k
j=1 c(δj). Therefore,

c(αψ)− c(βψ) ≥ a− (k − 1)a/k > 0. We have shown that for all c ∈ C, c(αψ) ≥ c(βψ),
so βψ �par αψ. 2

Lemma 18. Suppose Γ ∪ {ϕ} ⊆ LA, and that Γ is C(1)-consistent and Γ |= ϕ. Then there
exists B ⊇ A (with B − A finite), and χ, θ ∈ LB such that Γ `B χ, and θ is strict and
θ
.= χ+ ¬ϕ, and βθ �par αθ.

Proof: By Lemma 1, Γ ∪ {¬ϕ} is C(1)-inconsistent. By Corollary 1 there exists an incon-
sistency base (∆, C ′) for (Γ ∪ {¬ϕ}, C) with ∆ being a finite and C(1)-inconsistent subset
of Γ ∪ {¬ϕ}, and C ′ ⊆ C. Now, ∆ contains ¬ϕ, since ∆ is C(1)-inconsistent and Γ is
C(1)-consistent. We write ∆ as {ϕ1, . . . , ϕk} with ϕk = ¬ϕ.

By Lemma 17, there exist strictly positive functions f1, . . . , fk ∈ F , set of alternatives
B ⊇ A with B−A finite, preference statement ρ ∈ LB and strict preference statement ψ in
LB such that ρ .= f1ϕ1 + · · ·+fk−1ϕk−1 and ψ .= f1ϕ1 + · · ·+fkϕk, Γ `B ρ and Γ `B ψ,
and βψ �par αψ.

Let B′ = B ∪ {αχ, βχ, αθ, βθ}, where αχ
.= 1
fk
αρ and βχ

.= 1
fk
βρ, and αθ

.= αχ + βϕ

and βθ
.= βχ+αϕ, and χ, θ (which are thus in LB′) are such that χ .= 1

fk
ρ and θ .= χ+¬ϕ,

i.e., θ .= χ+ ϕk. We have fkθ
.= fkχ+ fkϕk

.= ρ+ fkϕk and thus ψ .= fkθ. This implies
that θ is a strict statement and that βθ �par αθ. Now, Γ `B ρ implies that Γ `B′ ρ (because
B′ ⊆ B). Since χ .= 1

fk
ρ, we have Γ `B′ χ, using the Pointwise Multiplication inference

rule, completing the proof. 2

These lemmas lead to the completeness theorems.

Theorem 4. Consider any Γ ⊆ LA and any ϕ ∈ LA. Then there exists B ⊇ A, with B−A
finite such that Γ |= ϕ ⇐⇒ Γ `B ϕ.

Proof:⇐ follows by Proposition 17. To prove the converse, let us assume that Γ |= ϕ; we
will show that A can be extended to B such that Γ `B ϕ.

First let us consider the case when Γ is C(1)-inconsistent. By Corollary 1 there exists
C ′ ⊆ C and a C(1)-inconsistent subset {ϕ1, . . . , ϕk} of Γ, such that ({ϕ1, . . . , ϕk}, C ′)
is an inconsistency base for (Γ, C). By Lemma 17, there exist strictly positive functions
f1, . . . , fk ∈ F , set of alternatives B ⊇ A with B−A finite, and strict preference statement
ψ in B such that ψ .= f1ϕ1 + · · · + fkϕk, and Γ `B ψ and βψ �par αψ. Consider any
γ ∈ A. Then βψ �par αψ implies for all c ∈ C, c(βψ) − c(αψ) ≤ 0 = c(γ) − c(γ). The
Pareto Difference inference rule then implies that Γ `B γ < γ, since ψ is strict, and hence,
by the Inconsistent Statement inference rule, Γ `B ϕ, as required.

Now we consider the case when Γ is C(1)-consistent. By Lemma 18, we have that there
exists set of alternatives B ⊇ A with B−A finite, and χ, θ ∈ LB such that Γ `B χ, and θ is

strict, θ .= χ+¬ϕ, and βθ �par αθ. Then, by definition of ¬ϕ, we have αθ
.= αχ +βϕ and

βθ
.= βχ + αϕ. This implies that for all c ∈ C, c(βχ) + c(αϕ) ≤ c(αχ) + c(βϕ), and thus,

for all c ∈ C, c(βχ)− c(αχ) ≤ c(βϕ)− c(αϕ). Now, since θ .= χ+ ¬ϕ and θ is strict, if χ
is non-strict then ¬ϕ must be strict and so ϕ is non-strict. The Pareto Difference inference
rule then implies that Γ `B ϕ. If, on the other hand, χ is strict then the Pareto Difference
inference rule implies that Γ `B αϕ < βϕ, and thus Γ `B αϕ ≤ βϕ, using the From Strict
to Non-Strict rule. Therefore Γ `B ϕ whether ϕ is strict or non-strict. 2

Let A∗ be a set of alternatives including for each function g : C → Q+, an alternative
α with, for all c ∈ C, c(α) = g(c), and let A′ = A ∪ A∗. Consider any Γ ⊆ LA and any
ϕ ∈ LA. Then Γ ∪ {ϕ} ⊆ LA′ . If we use A′ instead of A in the proofs of Lemma 17
and 18, and Theorem 4, we can use B = A′ in each case. This leads, for arbitrary Γ and ϕ,
to: Γ |=A′ ϕ ⇐⇒ Γ `A′ ϕ, which since Γ |=A′ ϕ holds if and only if Γ |=A ϕ holds,
gives the following version of the completeness result.

Theorem 5. For any A, there exists A′ ⊇ A such that for any Γ ⊆ LA and any ϕ ∈ LA,
Γ |= ϕ ⇐⇒ Γ `A′ ϕ.

Discussion of related preference inference based on weighted sum

Another natural notion of preference inference, which is similar to that defined e.g., in
[13, 12], is based on weighted sums. In each model a non-negative weight is assigned to
each evaluation, and the overall desirability of an alternative is the weighted sum of the
evaluations on the alternative. More precisely, let the set of models be the set of functions e
from C to Q+. We say that e satisfies α ≤ β if

∑
c∈C e(c)c(α) ≤

∑
c∈C e(c)c(β). Similarly,

we say that e satisfies α < β if
∑
c∈C e(c)c(α) <

∑
c∈C e(c)c(β). As for the other kinds

of preference inference, we say, for Γ ∪ {ϕ} ⊆ LA, that Γ entails ϕ if e satisfies ϕ for
every e satisfying Γ. This preference inference satisfies the above axiom schema, and all
the inference rules except for (3) Pointwise Multiplication (and thus is weaker than |=C(1)).
Instead a weaker form of (3) holds, based on using only constant functions f . The Point-
wise Multiplication inference rule might thus be considered as characteristic of preference
inference based on simple lexicographic models.

6 Discussion and conclusions

We defined a class of relatively simple preference logics based on hierarchical models.
These generate an adventurous form of inference, which can be helpful if there is only
relatively sparse input preference information. We showed that the complexity of preference
deduction is coNP-complete in general, and polynomial for the case where the criteria are
assumed to be totally ordered (the simple lexicographic models case, Section 4).

The latter logic has strong connections with the preference inference formalism de-
scribed in [18]. To clarify the connection, for each evaluation c ∈ C we can generate a
variable Xc, and let V be the set of these variables. For each alternative α ∈ A we gen-
erate a complete assignment α∗ on the variables V (i.e., an outcome as defined in [18])
by α∗(Xc) = c(α) for each Xc ∈ V . Note that values of α∗(Xc) are non-negative num-
bers, and thus have a fixed ordering, with zero being the best value. A preference statement
α ≤ β in LA≤ then corresponds with a basic preference formula α∗ ≥ β∗ in [18]. Each
model H ∈ C(1) corresponds to a sequence of evaluations, and thus has an associated
sequence of variables; this sequence together with the fixed value orderings, generates a
lexicographic model as defined in [18].

In contrast with the lexicographic inference system in [18], the logic developed in this
paper allows strict (as well as non-strict) preference statements, and allows more than one
variable at the same level. However, the lexicographic inference logic from [18] does not
assume a fixed value ordering (which, translated into the current formalism, corresponds to
not assuming that the values of the evaluation function are known); it also allows a richer
language of preference statements, where a statement can be a compact representation for a
(possibly exponentially large) set of basic preference statements of the form α ≤ β. Many
of the results of Section 4 immediately extend to richer preference languages (by replacing a
preference statement by a corresponding set of basic preference statements). In future work
we will determine under what circumstances deduction remains polynomial when extending
the language, and when removing the assumption that the evaluation functions are known.

The coNP-hardness result for the general case (and for the |=⊕C(t) systems with t ≥ 2)
is notable and perhaps surprising, since these preference logics are relatively simple ones.
The result obviously extends to more general systems. The preference inference system
described in [16] is based on much more complex forms of lexicographic models, allow-
ing conditional dependencies, as well as having local orderings on sets of variables (with
bounded cardinality). Theorem 1 implies that the (polynomial) deduction system in [16] is
not more general than the system described here (assuming P 6= NP). It also implies that if
one were to extend the system from [16] to allow a richer form of equivalence, generalising
e.g., the |=⊕C(2) system, then the preference inference will no longer be polynomial.

Acknowledgements

This publication has emanated from research conducted with the financial support of Sci-
ence Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. Nic Wilson was also
supported by the School of EEE&CS, Queen’s University Belfast. We are grateful to the
reviewers for their helpful comments.

References

[1] M. Bienvenu, J. Lang, and N. Wilson. From preference logics to preference languages, and
back. In Proc. KR 2010, 2010.

[2] R. Booth, Y. Chevaleyre, J. Lang, J. Mengin, and C. Sombattheera. Learning conditionally
lexicographic preference relations. In Proc. ECAI-2010, pages 269–274, 2010.

[3] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A tool for reason-
ing with conditional ceteris paribus preference statements. Journal of Artificial Intelligence
Research, 21:135–191, 2004.

[4] S. Bouveret, U. Endriss, and J.Lang. Conditional importance networks: A graphical language
for representing ordinal, monotonic preferences over sets of goods. In Proc. IJCAI-09, pages
67–72, 2009.

[5] R. Brafman, C. Domshlak, and E. Shimony. On graphical modeling of preference and impor-
tance. Journal of Artificial Intelligence Research, 25:389–424, 2006.

[6] M. Bräuning and E. Hüllermeier. Learning conditional lexicographic preference trees. In
Preference Learning (PL-12), ECAI-12 workshop, 2012.

[7] D. Bridge and F. Ricci. Supporting product selection with query editing recommendations. In
RecSys ’07, pages 65–72, New York, NY, USA, 2007. ACM.

[8] J. Dombi, C. Imreh, and N. Vincze. Learning lexicographic orders. European Journal of
Operational Research, 183(2):748–756, 2007.

[9] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Analysis—State of the Art
Surveys. Springer International Series in Operations Research and Management Science Vol-
ume 76, 2005.

[10] P. A. Flach and E.T. Matsubara. A simple lexicographic ranker and probability estimator. In
Proc. ECML-2007, pages 575–582, 2007.

[11] J. Fürnkranz and E. Hüllermeier (eds.). Preference Learning. Springer-Verlag, 2010.
[12] Anne-Marie George, Abdul Razak, and Nic Wilson. The comparison of multi-objective pref-

erence inference based on lexicographic and weighted average models. In 27th IEEE Inter-
national Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy,
November 9-11, 2015, pages 88–95, 2015.

[13] R. Marinescu, A. Razak, and N. Wilson. Multi-objective constraint optimization with tradeoffs.
In Proc. CP-2013, pages 497–512, 2013.

[14] W. Trabelsi, N. Wilson, D. Bridge, and F. Ricci. Preference dominance reasoning for conver-
sational recommender systems: a comparison between a comparative preferences and a sum of
weights approach. International Journal on Artificial Intelligence Tools, 20(4):591–616, 2011.

[15] Molly Wilson and Alan Borning. Hierarchical constraint logic programming. The Journal of
Logic Programming, 16(3-4):277–318, 1993.

[16] N. Wilson. Efficient inference for expressive comparative preference languages. In
Proc. IJCAI-09, pages 961–966, 2009.

[17] N. Wilson. Computational techniques for a simple theory of conditional preferences. Artificial
Intelligence, 175(7-8):1053–1091, 2011.

[18] N. Wilson. Preference inference based on lexicographic models. In Proc. ECAI-2014, pages
921–926, 2014.

[19] N. Wilson, A.-M. George, and B. O’Sullivan. Computation and complexity of preference
inference based on hierarchical models. In Proc. IJCAI-2015, 2015.

Received xx Month 20xx

	Introduction
	A preference logic based on hierarchical models
	Proving coNP-completeness of HCLP-deduction for modelsCoplust for cardup > 1
	Simple lexicographic models
	Some basic definitions and results
	Towards a polynomial algorithm for consistency and deduction
	Gamma-allowed sequences, i.e., models of Gammadestrict
	Maximal Gamma-allowed sequences, i.e., maximal models of Gammadestrict
	The algorithm
	The case of inconsistent Gamma

	Strong consistency and max-model inference
	Max-model inference
	Properties of strong consistency and of the associated inference

	Orderings on evaluations

	Proof theory for simple lexicographic inference
	Syntactic deduction vdash and soundness of inference rules
	Completeness of proof theory

	Discussion and conclusions

