
Tezla, an Intermediate Representation for Static
Analysis of Michelson Smart Contracts
João Santos Reis
Release Lab, Nova-Lincs, University of Beira Interior, Portugal
joao.reis@ubi.pt

Paul Crocker
Release Lab, C4, University of Beira Interior, Portugal
crocker@di.ubi.pt

Simão Melo de Sousa
Release Lab, C4, Nova-Lincs, University of Beira Interior, Portugal
desousa@di.ubi.pt

Abstract
This paper introduces Tezla, an intermediate representation of Michelson smart contracts that
eases the design of static smart contract analysers. This intermediate representation uses a store and
aims to preserve the semantics, flow and resource usage of the original smart contract. This enables
properties like gas consumption to be statically verified. We provide an automated decompiler of
Michelson smart contracts to Tezla. In order to support our claim about the adequacy of Tezla,
we develop a static analyser that takes advantage of the Tezla representation of Michelson smart
contracts to prove simple but non-trivial properties.
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1 Introduction

The term “smart contract” was proposed by Nick Szabo as a way to formalize and secure
relationships over public networks [26]. In a blockchain, a smart contract is an application
written in some specific language that is embedded in a transaction (hence the program code
is immutable once it is on the blockchain). Some examples of smart contracts applications are
the management of agreements between parties without resorting to a third party (escrow)
and to function as a multisignature account spending requirement. Smart contracts have
the ability to transfer/receive funds to/from users or from other smart contracts and can
interact with other smart contracts.

There are reports of bugs and consequently attacks in smart contracts that have led to
losses of millions of dollars worth of assets. One of the most famous and most costly of
these attacks was on the Distributed Autonomous Organization (DAO), on the Ethereum
blockchain [8]. The attacker managed to withdraw approximately 3.6 million ethers from the
contract.
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4:2 Tezla, an Intermediate Representation for Michelson

Given the fact that a smart contract in a blockchain cannot be updated or patched, there
is an increasing interest in providing tools and mechanisms that guarantee or potentiate the
correctness of smart contracts and to verify certain properties. However, current tools and
algorithms for program verification that are based, for example, on deductive verification
and static analysis, are usually designed for classical store-based languages in contrast
with Michelson [15], the smart contract language for the Tezos Blockchain [11], which is
stack-based.

To facilitate the usage of such tools to verify Michelson smart contracts, we present
Tezla, a store-based intermediate representation language for Michelson, and its respective
tooling. We provide an automated translator of Michelson smart contracts to Tezla. The
translator was designed and implemented in a way that aims to preserve the semantics, flow,
and resource usage of the original smart contract, so that properties like gas consumption
can be faithfully verified at the Tezla representation level. To support our work, we present
a case study of a demo platform for the static analysis of Tezos smart contracts using the
Tezla intermediate representation alongside with an example analysis.

The paper is structured as follows. In section 2, we introduce the Tezla intermediate
representation and the translation mechanism of Michelson code to Tezla. Section 3
addresses the static analysis platform case study that targets Tezla-represented smart
contracts. In section 4, we talk about the related work. Finally, section 5 concludes with a
general overview of this contribution and future lines of work.

2 Tezla

Tezla aims to facilitate the adoption of existing static analysis tools and algorithms. As
such, Tezla is an intermediate representation of Michelson code that uses a store instead
of a stack, enforces the Static Single-Assignment Form (SSA) [20] and aims to preserve
information about gas consumption. We will see in the next section how such characteristics
ease the translation of a Tezla program into its Control Flow Graph (CFG) forms and the
construction of data-flow equations.

Compiled languages (like Albert [5], LIGO [1], SmartPy [16], Lorentz [25], etc.) also
provide a higher-level abstraction over Michelson. However, as it happens with most
compiled languages, the produced code may not be as concise or compact as expected which,
in the case of smart contracts, may result in a higher gas consumption and, consequentially,
undesired costs. Tezla was designed to have a tight integration with the Michelson code
to be executed, not as a language that compiles to Michelson neither as a higher level
language to ease the writing of Michelson smart contracts.

Tezla adapts the Michelson syntax and semantics in order to transform the stack usage
to a traditional store usage. As such, we encourage the reader to head to the Michelson
documentation [14] for more information about the Michelson language and its syntax and
semantics.

Due to its large extent, the full syntax and semantics of the Tezla representation
are not presented here but can be found at https://gitlab.com/releaselab/fresco/
tezla-semantics.

In a general way, Michelson push-like instructions are translated into variable assign-
ments, whereas instructions that consume stack values are translated to expressions that use
as arguments the variables that match the values from the stack. Furthermore, lists, sets and
maps deconstruct and lifting of option and or types that happen implicitly are represented
through explicit expressions added to Tezla.

https://gitlab.com/releaselab/fresco/tezla-semantics
https://gitlab.com/releaselab/fresco/tezla-semantics
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Since the operational effect of stack manipulation is transposed into variable assignments,
we also expose in a Tezla represented contract the stack manipulation as instructions that
act as no-op instructions in the case of a semantics that do not take resource consumption
into account1. In the case of a resource aware semantics, these instructions will semantically
encode this consumption.

The following section describes in detail the process of transforming a Michelson smart
contract to a Tezla representation.

2.1 Push-like instructions and stack values consumption
Instructions that push N values to the stack are translated to N variable assignments of
those values. The translation process maintains a Michelson program stack that associates
each stack position to the variable to which that position value was assigned to. When a
stack element is consumed, the corresponding variable is used to represent the value. A very
simple example is provided in listings 1 and 2.

Listing 1 Stack manipulation ex-
ample – Michelson code.
PUSH nat 5;
PUSH nat 6;
ADD;

Listing 2 Stack manipulation ex-
ample – Tezla code.
v1 := PUSH nat 5;
v2 := PUSH nat 6;
v3 := ADD v1 v2;

The block on listing 1 is translated to the Tezla representation shown in listing 2.
From the previous example, we can also observe that Michelson instructions that

consume N stack variables are translated to an expression that consumes those N values.
Concretely, the instruction ADD that consumes two values (say, a and b), from the stack is
translated to ADD a b.

2.2 Branching and deconstructions
Michelson provides developers with branching structures that act on different conditions.
As Tezla aims at being used as an intermediate representation for static analysis, there are
some properties we would like to maintain. One such property is static single-assignment
form (SSA-form) [20], so that we obtain data flow information in a way that simplifies
analyses and code optimization. This is guaranteed as Tezla-represented smart contracts
are, by construction, in SSA-form, since each assignment uses new variables.

In order to deal with branching, the Tezla representation makes use of φ-functions
(see [20]) that select between two values depending on the branch. As an illustration consider
the Michelson example in listing 3.

The IF_CONS instruction tests if the top of the stack is a non-empty list, and deconstructs
the list in the true branch by putting the head and the tail of the list on top of the stack.

In this example, the IF_CONS instructions checks the top of the stack and if it is a
non-empty list it inserts the sum of a int value already on the stack with the head of the
list at the lists’s head. If the list is empty, it inserts the value into the empty list. Here,
each branch of the IF_CONS instruction will result in a stack with a list of integers, whose
values depends on which branch was executed. This translates to the Tezla representation
presented on listing 4.

1 This is the case of the semantics presented in this paper.
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4:4 Tezla, an Intermediate Representation for Michelson

Listing 3 Branching example – Michelson
code.
IF_CONS

{ DUP ;
DIP { CONS ; SWAP } ;
ADD ; CONS }

{ NIL int ; SWAP ; CONS } ;
DUP ;
PAIR;

Listing 4 Branching example - Tezla
code.
IF_CONS v1
{

v2 := hd v1;
v3 := tl v1;
v4 := DUP v2;
v5 := CONS v2 v3;
SWAP;
v6 := ADD v4 v0;
v7 := CONS v6 v5

}
{

v8 := NIL int;
SWAP;
v9 := CONS v0 v8

};
v10 := φ(v7 , v9);
v11 := DUP v10;
v12 := PAIR v11 v10;

The variable v10 will receive its value through a φ-function that returns the value of v7
if the true branch is executed, or the value of v9 otherwise.

From this example, it is possible to observe that the deconstruction of a list is explicit
through two variable assignments. This is also the behaviour of IF_NONE and IF_LEFT
instructions, where the unlifting of option and or types happens explicitly through an
assignment.

2.3 Loops, maps and iterations

Michelson also provides language constructs for looping and iteration over the elements
of lists, sets and maps. Sets in Michelson are defined as ordered lists, whereas maps
are defined as lists of key-value pairs ordered by key. These are treated using the same
φ-functions mechanism in order to preserve SSA-form. We can observe this on the example
listing 5.

This example uses a LOOP_LEFT (loop with an accumulator) to sum 1 to a nat (starting
with the value 0) until that value becomes greater than 100 and casts the result to an int.
This example translates to the code presented in listing 6.

Note that the LOOP_LEFT variable is assigned to the value of v1 if it is the first time
that the loop condition is checked, or v12 if the program flow comes from the loop body.
Moreover, notice that the same explicit deconstruction of an or (union type) variable is
applied here, where v3 gets assigned the value of the unlifting of the loop variable in the
beginning of the loop body and v13 at the end of the loop. Similar behaviour applies to the
other looping and iteration instructions.

2.4 Parameter and Storage

We now present an example of a complete Michelson smart contract (listing 7).
The contract takes an int as parameter and adds 1 to that value, which is later put in

the storage. This contract translates to the Tezla code of figure 8.
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Listing 5 Loop example – Michelson code.
PUSH nat 0 ;
LEFT nat ;
LOOP_LEFT

{ DUP ;
PUSH nat 100 ;
COMPARE ;
GE ;
IF

{ PUSH nat 1 ;
ADD ; LEFT nat }

{ RIGHT nat } } ;
INT ;

Listing 6 Loop example – Tezla code.
v0 := PUSH nat 0;
v1 := LEFT nat v0;
LOOP_LEFT v2 := φ(v1 , v12)
{

v3 := unlift_or v2;
v4 := DUP v3;
v5 := PUSH nat 100;
v6 := COMPARE v5 v4;
v7 := GE v6;
IF v7
{

v8 := PUSH nat 1;
v9 := ADD v8 v3;
v10 := LEFT nat v9;

}
{

v11 := RIGHT nat v3;
}
v12 := φ(v10 , v11 );

}
v13 := unlift_or v2;
v14 := INT v13;

Listing 7 Example contract – Michelson
code.
parameter (int) ;
storage (int) ;
code { CAR ;

PUSH int 1;
ADD;
NIL operation ;
PAIR; }

Listing 8 Example contract – Tezla code.
v0 := CAR parameter_storage ;
v1 := PUSH int 1;
v2 := ADD v1 v0;
v3 := NIL operation ;
v4 := PAIR v3 v2;
return v4;

In this example, we can observe that a Michelson contract has a parameter and storage.
The initial stack of any Michelson smart contract is a stack that contains a single pair
whose first element is the input parameter and second element is the contract storage. As
such, we introduce a variable called parameter_storage that contains the value of that pair.

The final stack of any Michelson smart contract is also a stack that contains a single
pair whose first element is a list of internal operations that it wants to emit and whose second
element is the resulting storage of the smart contract. We identify the variable containing
this pair through the addition of a return instruction.

3 Building static analyses for Tezla smart contracts

In this section, we present the experiments conducted in order to test and demonstrate the
applicability of the Tezla intermediate representation to perform static analysis.

3.1 SoftCheck
We build and organise these static analyses upon a generic data-flow analysis platform called
SoftCheck [18]. SoftCheck provides an internal and intermediate program representation,
called SCIL, rich enough to express high-level as well as low-level imperative programming
constructs and simple enough to be adequately translated into CFGs.
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4:6 Tezla, an Intermediate Representation for Michelson

SoftCheck is organised upon a generic monotone framework [12] that is able to extract
a set of data-flow equations from (1) a suitable representation of programs and; (2) a set of
monotone functions; and then to solve them. SoftCheck is written in OCaml and makes
use of functor interfaces to leverage its genericity (see figure 1).

By generic we mean that, given a translation from a programming language to SCIL.
SoftCheck gives the ability to instantiate its underlying monotone framework by means of
a functor interface. Then all defined static analyses are automatically available for the given
programming language.

On the other hand, once written as a set of properties that define the domain of the
analysis and the monotone functions on that domain, a particular static analysis can be
incorporated (again, through instantiating a functor) as an available static analysis for all
interfaced programming languages.

SoftCheck offers several standard data-flow analysis such as very busy expressions,
available expressions, tainted analysis etc.

We propose in the next sections to detail how we have interfaced Tezla with SCIL, how
we have designed a simple but useful data-flow analysis within SoftCheck and how we have
tested this analysis on the Michelson smart contracts running in the Tezos blockchain.

Language1

Ast Cfg

Analysis1Language1

Analysis1Language2

...

Language2

Ast Cfg

Analysis1Language2

Analysis1Language2

...

...

Language specific
input

Analysis1

Properties Monotone functions

Analysis2

Properties Monotone functions

...

Analysis specific
input

Lattices

Dependences

Fix CfgGenerator

Support libraries

Framework

Solver

Program

Result

Solver engine

Figure 1 SoftCheck in a picture (adapted from [21]).

3.2 Constructing a Tezla Representation of a Contract
To obtain the Tezla representation of a smart contract, we first developed a parser to
obtain an abstract syntax representation of a Michelson smart contract. This parser
was implemented in OCaml and Menhir and respects the syntax described in the Tezos
documentation [15]. It allows us to obtain a data type that fully abstracts the syntax (with
the exception of annotations). The reason behind the implementation of our own parser was
to obtain a data type that would better suit and ease the adoption of the integration with
SoftCheck. Therefore, to improve the integration between these two forms, Tezla data
types were built upon the data types of Michelson.

Control-flow graphs are a common representation among static analysis tools. We
provide a library for automatic extraction of such representation from any Tezla-represented
smart contract. This library is based upon the control-flow generation template present in
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SoftCheck. As such, control-flow graphs generated with this library can be used with
SoftCheck without further work. To instantiate the control-flow graph generation template,
we simply provided the library with a module with functions that describe how control flows
between each node.

3.3 Sign Detection: An Example Analysis
At this point, the SoftCheck platform is ready to be used to develop data flow analyses
targeting Tezla represented smart contracts.

Here we devise an example of a static analysis for sign detection. The abstract domain
consists of the following abstract sign values: 0 (zero), 1 (one), 0+ (zero or positive), 0- (zero
or negative), + (positive), - (negative), > (don’t know) and ⊥ (not a number). These values
are organised according to the lattice on figure 2.

1

+

0+

0

0-

>

⊥

-

Figure 2 Sign lattice.

Using SoftCheck, we implemented a simple sign detection analysis of numerical values.
By definition, nats have a lowest precision value of 0+, while ints can have any value. Every
other data type has a sign value of ⊥.

This implementation does not propagate information to non-simple types (pair, or, etc.),
but it does perform some precision refinements on branching.

To implement such an analysis, we provided SoftCheck, in addition to the previously
defined Tezla control-flow graph library, a module that defines how each instruction impacts
the sign value of a variable. Then, using the integrated solver mechanism based on the
monotone framework, we are able to run this analysis on any Tezla represented smart
contract.

We now present an example. Listings 9 and 10 show the code of a smart contract and
its Tezla representation. This contract multiplies its parameter by −5 if the parameter
is equal to 0, or by −2 otherwise, and stores the result in the storage. Figure 3 shows the
control-flow graph of representation of that contract.

Running this analysis on the previously mentioned contract produced the results shown
in Figure 4. In these results we can observe the known sign value of each variable at the exit
of each block of the control-flow graph in Figure 3. For brevity, we omitted non-numerical
variables from the result.

It it possible to observe from the results that the analysis takes into account several
details. For instance, the sign of values of type nat are, by definition, always zero or positive.
The analysis also refines the sign values on conditional branches according to the test. In
this case, we can observe that in blocks 6 and 7 (true branch) the sign value of v1 must be 0,
as the test corresponds to 0 == v1. Complementary to this, in blocks 8 and 9 the value of
v1 assumes the sign value of +, since being a nat value its value must be 0+ and we know
that its values is not zero because the test 0 == v1 failed.
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Listing 9 Example contract for sign analysis –
Michelson code.
parameter nat ;
storage int ;
code { CAR ;

DUP ;
PUSH nat 0 ;
COMPARE ;
EQ ;
IF { PUSH int -5 ; MUL }

{ PUSH int -2 ; MUL } ;
NIL operation ;
PAIR }

Listing 10 Example contract for sign
analysis – Tezla code.
v0 := CAR parameter_storage ;
v1 := DUP v0;
v2 := PUSH nat 0;
v3 := COMPARE v2 v1;
v4 := EQ v3;
IF v4
{

v5 := PUSH int -5;
v6 := MUL v5 v0;

}
{

v7 := PUSH int -2;
v8 := MUL v7 v0;

};
v9 := phi(v6 , v8);
v10 := NIL operation ;
v11 := PAIR v10 v9;
return v11;

Due to the Tezla nature, we were able to take advantage of existing tooling, such as
the SoftCheck platform, and effortlessly design the run a data-flow analysis. This enables
and eases the development of static analysis that can be used to verify smart contracts but
also to perform code optimisations, such as dead code elimination. Albeit simple, the sign
analysis can be used to instrument such dead code elimination procedure.

3.4 Experimental Results and Benchmarking
Tezla and all the tooling are implemented in OCaml and are available at [13]. Tezla
accepts Michelson contracts that are valid according to the Tezos protocol 006 Carthage. We
conducted experimental evaluations that consisted in transforming to Tezla and running
the developed analyses on a batch of smart contracts.

To do so, we implemented a tool that allows the extraction of smart contracts available
in the Tezos blockchain. With that tool, we extracted 142 unique smart contracts. We tested
these unique contracts alongside 21 smart contracts we have implemented ourselves.

We successfully converted all smart contracts with a coverage result of all Michelson
instructions except for 9 instructions that were not used in any of these 163 contracts. On
those, we ran the available analyses and obtained the benchmarks presented on table 1.
These experiments were performed on a machine with an Intel i7–8750H (2.2 GHz) processor
with 6 cores and 32 GB of RAM.

In the absence of an optimisation tool that takes advantage of the information computed
by the analysis, we do not produce any optimisations from the analyses results. To do so,
currently one must manually inspect the reports produced by the analysis. These reports,
the source code of contracts under evaluation, as well as the respective analysis results and
other performed static analyses are available at [22, 19].

4 Related Work

Albert [5] is an intermediate language for the development of Michelson smart contracts. This
language provides an high-level abstraction of the stack and some of the language datatypes.
This language can be compiled to Michelson through a compiler written in Coq that targets
Mi-Cho-Coq [4], a Coq specification of the Michelson language.
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Figure 3 Generated CFG, by the SoftCheck tool.

Table 1 Benchmark results.

Average time 0.48 s
Worst-case
(number of
instructions)

2231
(6.08 s)

Worst-case (time) 9.87 s
(926 instructions)

Average time
per instrucion 0.0009

Several high-level languages [1, 2, 16, 7, 25] that target Michelson have been developed.
Each one presents a different mechanism that abstracts the low-level stack usage. However, a
program analysis tool that would target one of these languages should not be easily reusable
to programs written in the other languages.

Scilla [23, 24] is an intermediate language that aims to be a translation target of high-level
languages for smart contract development. It introduces a communicating automata-based
computational model that separates the communication and programming aspects of a
contract. The purpose of this language is to serve as a basis representation for program
analysis and verification of smart contracts. We believe that Tezla is at a different level
than Scilla, as we could use a Tezla representation to be mid step between having a Scilla
representation and the Michelson code.

Slither [10], presented in 2019, is a static analysis framework for Ethereum smart contract.
It uses the Solidity smart contract compiler generated Abstract Syntax Tree to transform the
contract into an intermediate representation called SlithIR. This representation also uses a
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0: {
v0: 0+

}
1: {

v0: 0+,
v1: 0+

}
2: {

v0: 0+,
v1: 0+,
v2: 0

}
3: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-

}
4: {

v0: 0+,
v1: 0+,

v2: 0,
v3: 0-

}
5: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-

}
6: {

v0: 0,
v1: 0,
v2: 0,
v3: 0-,
v5: -

}
7: {

v0: 0,
v1: 0,
v2: 0,
v3: 0-,

v5: -,
v6: 0

}
8: {

v0: +,
v1: +,
v2: 0,
v3: 0-,
v7: -

}
9: {

v0: +,
v1: +,
v2: 0,
v3: 0-,
v7: -,
v8: -

}
10: {

v0: 0+,
v1: 0+,

v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
11: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
12: {

v0: 0+,

v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}
13: {

v0: 0+,
v1: 0+,
v2: 0,
v3: 0-,
v5: -,
v6: 0,
v7: -,
v8: -,
v9: 0-

}

Figure 4 Generated report for the sign analysis.

SSA form and a reduced instruction set to facilitate the implementation of program analyses
of smart contracts. However, the Slither intermediate representation is not able to accurately
model some low-level information like gas computations, which we took into account when
designing Tezla. Also, this work does not contemplate a formal semantics of SlithIR.

Solidifier [3] is a bounded model checker for Ethereum smart contracts that converts
the original source code to Solid, a formalisation of Solidity that runs on its own execution
environment. Solid is translated to Boogie, an intermediate verification language that is
used by the bounded model checker Corral, which is then used to look for semantic property
violations.

Durieux et. al [9] presented a review on static analysis tools for Ethereum smart contracts.
This work presents an extensive list of 35 tools, of which 9 respected their inclusion criteria:
the tool is publicly available and supports a command-line interface; takes as input a Solidity
contract; requires nothing but the source code of the contract; the tool claims to be able to
identify vulnerabilities and bad practices in the contract. The authors then used those tools
to test several vulnerabilities on a sample set of 47,587 smart contracts. This work presents
some interesting results, as it was able to detect 97% of the smart contracts as vulnerable, as
well as identify two categories of DASP10 as not able to be detect by the tools.

5 Conclusion

To the best of our knowledge, this is the first work towards a static analysis framework for
Tezos smart contracts. Tezla positions itself as an intermediate representation obtained
from a Michelson smart contract, the low-level language of Tezos smart contracts. This
representation abstracts the stack usage through the usage of a store, easing the adoption
of mechanisms and frameworks for program analysis that assume this characteristic, while
maintaining the original semantics of the smart contract.
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We have presented a case study on how this intermediate representation can be used to
implement a static analysis by using Tezla along side the SoftCheck platform. This has
shown how effortlessly one can perform static analysis on Michelson code without forcing
developers to use a different language or implement ad hoc static analysis tooling for a
stack-based language.

Michelson smart contracts have a mechanism of contract level polymorphism called
entrypoints, where a contract can be called with an entrypoint name and an argument. This
mechanism takes the form of a parameter composed as nesting of or types with entrypoint
name annotations. This parameter is then checked at the top of the contract in a nesting of
IF_LEFT instructions, running the desired entry point this way. This mechanism is optional
and transparent to smart contracts without entry points. As such, they are also transparent
to Tezla. We therefore plan to extend Tezla to deal with entrypoints and generate isolated
components for each entrypoint of a smart contract, which allow us to obtain clearer control
flow graphs and analysis results. This allows us to analyse each entry point separately and
possibly obtain more fine-grained results.

5.1 Future Work

At the moment of this paper writing, there is an initial work on an static analysis of Tezla
represented smart contracts to detect potentially costly loops.

Future plans include a proof of correctness of the Michelson to Tezla transformation
through a proof of equivalence of the Tezla semantics in respect to Michelson semantics.
We aim to do so by developing a Tezla semantics using the Why3 deductive program
verification platform and using the work done in WhylSon [6] to prove the semantic
equivalence of Michelson and Tezla. Furthermore, this semantics should be accountable
of gas consumption, so that we can provide a sound Tezla resource analysis in respect to
the original Michelson code. This will also make way to the development of a platform for
principled static analysis of Michelson smart contracts.

We plan to study which problems and properties are of interest so that we can integrate
existing tools and algorithms for code optimization, resource usage and security analysis and
correctness verification.

Another direction to tackle is the interfacing of Tezla with other static analysis platforms
such as those provided by the MOPSA project [17] which, among other capabilities, provides
a means to integrate static analyses. The integration with different static analysis platforms
makes way to a more diverse universe of possible static analysis. Furthermore, it reinforces
the statement that Tezla is an intermediate representation suitable not only for SoftCheck
but for other platforms.
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