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Abstract
In distributed interactive proofs, the nodes of a graph G interact with a powerful but untrustable
prover who tries to convince them, in a small number of rounds and through short messages,
that G satisfies some property. This series of interactions is followed by a phase of distributed
verification, which may be either deterministic or randomized, where nodes exchange messages with
their neighbors.

The nature of this last verification round defines the two types of interactive protocols. We say
that the protocol is of Arthur-Merlin type if the verification round is deterministic. We say that the
protocol is of Merlin-Arthur type if, in the verification round, the nodes are allowed to use a fresh
set of random bits.

In the original model introduced by Kol, Oshman, and Saxena [PODC 2018], the randomness
was private in the sense that each node had only access to an individual source of random coins.
Crescenzi, Fraigniaud, and Paz [DISC 2019] initiated the study of the impact of shared randomness
(the situation where the coin tosses are visible to all nodes) in the distributed interactive model.

In this work, we continue that research line by showing that the impact of the two forms of
randomness is very different depending on whether we are considering Arthur-Merlin protocols or
Merlin-Arthur protocols. While private randomness gives more power to the first type of protocols,
shared randomness provides more power to the second. Our results also connect shared randomness
in distributed interactive proofs with distributed verification, and new lower bounds are obtained.
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51:2 Randomness in Distributed Interactive Proofs

1 Introduction

Distributed decision refers to the task in which the nodes of a connected graph G have to
collectively decide whether G satisfies some graph property [19]. For performing any such
task, the nodes exchange messages through the edges of G. The input of distributed decision
problems may also include labels given to the nodes and/or to the edges of G. For instance,
the nodes could decide whether G is properly colored, or decide whether the weight of the
minimum spanning tree lies below some threshold.

Acceptance and rejection are defined as follows. If G satisfies the property, then all
nodes must accept; otherwise, at least one node must reject [15]. This type of algorithms
could be used in distributed fault-tolerant computing, where the nodes, with some regularity,
must check whether the current network configuration is in a legal state for some Boolean
predicate [9]. Then, if the configuration becomes illegal at some point, the rejecting node(s)
raise the alarm or launch a recovery procedure.

Deciding whether a given coloring is proper can be done locally, by exchanging messages
between neighbors. These types of properties are called locally decidable. Nevertheless, some
other properties, such as deciding whether G is a tree, are not. As a remedy, the notion
of proof-labeling scheme (PLS) was introduced [15]. Similar variants were also introduced:
non-deterministic local decisions [7], locally checkable proofs [12], and others.

Roughly speaking, in all these models, a powerful prover gives to every node v a certificate
c(v). This provides G with a global distributed-proof. Then, every node v performs a local
verification using its local information together with c(v). PLS can be seen as a distributed
counterpart to the class NP, where, thanks to nondeterminism, the power of distributed
algorithms increases.

Just as it happened in the centralized framework [10, 11], a natural step forward is to
consider a model where the nodes are allowed to have more than one interaction with the
prover. In fact, with the rise of the Internet, prover-assisted computing models are more
relevant than ever. We can think of asymmetric applications like Facebook, where, together
with the social network itself, there is a very powerful central entity that stores a large
amount of data (the topology of the network, preferences, and activities of the users, etc.).
Or we can consider Cloud Computing, where computationally limited devices delegate costly
computations to a cloud with tremendous computational power. The central point lies in
the fact that these devices may not trust their cloud service (as it may be malicious, selfish,
or buggy). Therefore, the nodes must regularly verify the correctness of the computation
performed by the cloud service.

Interestingly, there is no gain when interactions are all deterministic. When there is no
randomness, the prover, from the very beginning, has all the information required to simulate
the interaction with the nodes. Then, in just one round, he could simply send to each node
the transcript of the whole communication, and the nodes simply verify that the transcript
is indeed consistent. A completely different situation occurs when the nodes have access to
some kind of randomness [2, 9]. In that case, the exact interaction with the nodes is unknown
to the prover until the nodes communicate the realization of their random variables. Adding
a randomized phase to the non-deterministic phase gives more power to the model [2, 9].

Two model variants arise in this new randomized scenario, regarding the order of the phases.
Assume that we have two phases. When the random phase precedes the non-deterministic
phase, we refer to distributed Arthur-Merlin protocols, and we denote them by dAM (following
the terminology and notation of [13]). Conversely, when nodes access randomness only after
receiving the certificates, we refer to distributed Merlin-Arthur protocols, and we denote them
by dMA. Note that Merlin is the powerful but untrustable prover of the PLS model, while
Arthur represents the nodes, which are simple and limited verifiers that can flip coins.



P. Montealegre, D. Ramírez-Romero, and I. Rapaport 51:3

In a dMA protocol, the prover does not see the nodes’ randomness when choosing the
certificates. Instead, only once the prover assigns certificates to the nodes, each node randomly
selects a message that broadcasts to its neighbors. Then, each node decides whether to
accept or reject, based on its randomness, input, certificate, and the messages it received
from its neighbors.

These definitions can be easily extended to a more general setting [5], where the number
of interactions between Arthur and Merlin is constant but not fixed to only one interaction
per player. This model was introduced in [13] and further studied in [5, 8, 18]. For instance,
a dMAM protocol involves three interactions: Merlin provides a certificate to Arthur, then
Arthur queries Merlin by sending a random string. Finally, Merlin replies to Arthur’s query
by sending another certificate. Recall that this series of interactions is followed by a phase
of distributed verification performed between every node and its neighbors. When the
number of interactions is k we refer to dAM[k] protocols (if the last player is Merlin) and
dMA[k] protocols (otherwise). For instance, dAM[2] = dAM, dMA[3] = dAMA, etc. Also, the
scenario of distributed verification, where there is no randomness and only Merlin interacts,
corresponds to dAM[1], which we denote by dM. In other words, dM is the PLS model.

In distributed interactive proofs, Merlin tries to convince the nodes that G satisfies some
property in a small number of rounds and through short messages. We say that an algorithm
uses O(f(n)) bits if the messages exchanged between the nodes (in the verification round)
and also the messages exchanged between the nodes and the prover are upper bounded by
O(f(n)). We include this bandwidth bound in the notation, which becomes dMA[k, f(n)] and
dAM[k, f(n)] for the corresponding protocols.

In this article we cope with an important issue, well-studied in the context of communica-
tion complexity, but much less considered in distributed computing, related to the visibility
of the coins: they can be either shared or private [1, 3, 6, 16, 20]. The theory of distributed
decision has restricted itself to private randomness, in the sense that each node has only
access to a private source of random coins. These coins are shared with the prover but
remain private to the other nodes. We explore the role of shared randomness, that is, the
situation in which the same set of random bits is produced on every node. The issue of shared
randomness in distributed interactive proofs was explicitly formulated by Naor, Parter, and
Yogev [18]. It is also expressly addressed in Crescenzi, Fraigniaud, and Paz [5].

For distinguishing the two types of randomness, we denote the private randomness setting
by dAMp[k, f(n)], and the shared randomness setting by dAMs[k, f(n)]. Also, as explained
before, we omit the number of interactions k when they are 2. For instance, we denote
dAMp[2, f(n)] simply by dAMp[f(n)].

Some distributed problems are hard, even when a powerful prover provides the nodes
with certificates. It is the case of symmetry, the language of graphs having a non-trivial
automorphism (i.e., a non-trivial one-to-one mapping from the set of nodes to itself preserving
edges). Any proof labelling scheme recognizing symmetry requires certificates of size
Ω(n2) [12].

Many problems requiring Ω(n2)-bit certificates in any PLS, such as symmetry, admit
distributed interactive protocols with small certificates, and very few interactions. In fact,
symmetry is in both dMAMp[logn] and dAMp[n logn] [13]. Moreover, symmetry (i.e. the
languages of graphs not having a non-trivial automorphism) belongs to dAMAMp[logn] [18].

In [5], the authors explore the role of shared randomness in distributed interactive proofs.
They prove that private randomness does not limit the power of Arthur-Merlin protocols
compared to shared randomness, up to a small additive factor in the certificate size. Roughly,
they show that, if L ∈ dAMs[k, f(n)], then L ∈ dAMp[k, f(n) + logn].

We deepen this study by finding explicit inclusions and separations between models.
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1.1 Our Results
In Section 3 we show that any interactive protocol using shared randomness can be deran-
domized into a non-interactive proof, with an exponential-factor overhead in the bandwidth.
Roughly, we prove that, if L ∈ dAMs[k, f(n)], then L ∈ dM(2O(k f(n)) + logn). From
this we conclude many lower bounds. For instance, we can conclude that symmetry
∈ dAMs[k,Ω(logn)], for any fixed k. This result is tight, because it is already known that
symmetry ∈ dMAMs[logn] (in fact, it is known that symmetry ∈ dMAMp[logn] [13], but
the private coin protocol can be easily adapted to work with shared randomness).

Later, in Section 4, we separate the models with private and shared randomness through
the language amos, which is the language of labeled graphs having at most one selected node.
More precisely, amos is the language of n-node graphs with labels in {0, 1}, and where at
most one vertex is labeled 1. In [8] it is shown amos is easy for private-coin Arthur-Merlin
protocols, as amos ∈ dAMp[1]. We prove that amos ∈ dAMs[k,Θ(log logn)] and hence there
exists an unbounded gap between the two models.

Interestingly, regarding private and shared randomness, roles are reversed when we address
dMA protocols instead of dAM protocols. In fact, in Section 5, we get an analogous result
to that in [5] by proving that dMA protocols with shared randomness are more powerful
than dMA protocols with private randomness. More precisely, if L ∈ dMAp

ε [f(n)], then
L ∈ dAMs

ε+δ[f(n) + logn + log
(
δ−1)]. We then separate the two classes. We introduce

another language denoted 2-col-eq, which consists of graphs with n-bit labels corresponding
to proper 2-colorings. In other words, the language consists of bipartite graphs where each
part is colored with an n-bit label. We show that 2-col-eq separates shared and private
randomness on distributed Merlin-Arthur protocols. More precisely, we show first that
2-col-eq ∈ dMAs[logn]. Then, we show that, for ε < 1/4, 2-col-eq ∈ dAMp

ε [Θ(
√
n)].

1.2 Related Work
The study of the role of shared and private randomness in distributed interactive proofs
was initiated very recently [5]. With respect to the case dAMs[2] = dAMs, the authors
show that any Arthur-Merlin protocol for both symmetry and symmetry must have
certificates and messages of size Ω(log logn). Note that this is stronger than just saying
symmetry, symmetry /∈ dAMs(o(log logn)). On the positive side, in [5] the authors show
that, in the dMAs model, shared randomness helps significantly if we want to decide whether a
graph has no triangles. In fact, the language of triangle-free graphs belongs to dMAs[

√
n logn]

while any PLS requires certificates of size n/eO(
√

logn).
By contrast, the issue of private versus shared randomness has been intensively addressed

in the communication complexity framework. More precisely, in the Simultaneous Messages
Model (SM). This two-player model was already present in Yao’s seminal communication
complexity paper of 1979 [21].

In the SM model, the two parties are unable to communicate with each other, but,
instead, can send a single message to a referee. Yao proved that the message size complexity
of Eq, which tests whether two n-bit inputs are equal, is Θ(n) in the deterministic case
(in fact he proved that this is also true even if players can communicate back-and-forth).
Later, clear separations have been proved between deterministic, private randomness, and
shared randomness algorithms. In the shared randomness setting with constant one-sided
error, the message size complexity of Eq is O(1) [1]. On the other hand, for private
randomness algorithms of constant one-sided error, the message size complexity is much
higher, Θ(

√
n) [1, 20]. More generally, Babai and Kimmel [1] proved that, for any function

f , the use of private randomness in simultaneous messages might lead to at most a square
root improvement.
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There are natural ways to extend the SM model to more than two players. This issue is
addressed in [6] in the context of the number-in-hand model (where each player only knows
its own input, there is no input graph G and players broadcast messages in each round). In
problem AllEq there are k players, each one receives a boolean vector {0, 1}n, and they
have to decide whether all the k vectors are equal. In problem ExistsEq, the k players have
to decide whether there exist at least two players with the same input. It is not difficult
to see that in both the deterministic case and the shared randomness case, the results for
two players can be extended to k players (the number of players is irrelevant). The private
coin case is more involved than the case of shared randomness. With respect to private
coin algorithms of constant error, the authors prove, for problem AllEq, an upper bound
of O(

√
n/k + log(min(n, k))) and a lower bound of Ω(logn). In the case of ExistsEq the

upper bound they show is O(log k
√
n) while the lower bound is Ω(

√
n).

2 Model and Definitions

Let G be a simple connected n-node graph, let I : V (G) → {0, 1}∗ be an input function
assigning labels to the nodes of G, where the size of all inputs is polynomially bounded on n.
Let id : V (G)→ {1, . . . ,poly(n)} be a one-to-one function assigning identifiers to the nodes.
A distributed language L is a (Turing-decidable) collection of triples (G, id, I), called network
configurations. In this paper, we are particularly interested in two languages. The first one,
denoted amos, is the language of graphs where at most one node is selected. The second
language, denoted 2-col-eq, consists in graphs with n-bit labels corresponding to proper
2-colorings. Formally,

amos =
{

(G, id, I) | I : V (G)→ {0, 1} and |{v ∈ V (G) : I(v) = 1}| ≤ 1
}
,

2-col-eq =
{

(G, id, I) | I : V (G)→ {0, 1}n is a proper two-coloring of G
}
.

Also, we introduce other problems that will be of interest in the following sections: sim-
metry, diameter, planar, outerplanar, 3-col, spanning tree and 4-free consisting
in, respectively, deciding the existence of a non-trivial automorphism, determining whether
the graph has diameter bounded by some threshold, whether the graph is (outer) planar,
whether the graph is 3-colorable, whether a set of edges of the graph form a spanning tree,
and whether the graph has no triangles (as subgraphs). For simplifying the notation, we
denote by Jp(x)K the function that equals one iff the proposition p(x) is true.

A distributed interactive protocol consists of a constant series of interactions between
a prover called Merlin, and a verifier called Arthur. The prover Merlin is centralized, has
unlimited computing power and knows the complete configuration (G, id, I). However, he
can not be trusted. On the other hand, the verifier Arthur is distributed, represented by the
nodes in G, and has limited knowledge. In fact, at each node v, Arthur is initially aware
only of his identity id(v), and his label I(v). He does not know the exact value of n, but
he knows that there exists a constant c such that id(v) ≤ nc. Therefore, for instance, if one
node v wants to communicate his id(v) to its neighbors, then the message is of size O(logn).

Given any network configuration (G, id, I), the nodes of G must collectively decide whether
(G, id, I) belongs to some distributed language L. If this is indeed the case, then all nodes
must accept; otherwise, at least one node must reject (with certain probabilities, depending
on the precise specifications we are considering).

There are two types of interactive protocols: Arthur-Merlin and Merlin-Arthur. Both
types of protocols have two phases: an interactive phase and a verification phase. Let
us define first Arthur-Merlin interactive protocols. If Arthur is the party that starts the
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51:6 Randomness in Distributed Interactive Proofs

interactive phase, he picks a random string r1(v) at each node v of G (this string could be
either private or shared) and send them to Merlin. Merlin receives r1, the collection of these
n strings, and provides every node v with a certificate c1(v) that is a function of v, r1 and
(G, id, I). Then again Arthur picks a random string r2(v) at each node v of G and sends r2 to
Merlin, who, in his turn, provides every node v with a certificate c2(v) that is a function of
v, r1, r2 and (G, id, I). This process continues for a fixed number of rounds. If Merlin is the
party that starts the interactive phase, then he provides at the beginning every node v with a
certificate c0(v) that is a function of v and (G, id, I), and the interactive process continues as
explained before. In Arthur-Merlin protocols, the process ends with Merlin. More precisely,
in the last, k-th round, Merlin provides every node v with a certificate cdk/2e(v). Then, the
verification phase begins. This phase is a one-round deterministic algorithm executed at each
node. More precisely, every node v broadcasts a message Mv to its neighbors. This message
may depend on id(v), I(v), all random strings generated by Arthur at v, and all certificates
received by v from Merlin. Finally, based on all the knowledge accumulated by v (i.e., its
identity, its input label, the generated random strings, the certificates received from Merlin,
and all the messages received from its neighbors), the protocol either accepts or rejects at
node v. Note that Merlin knows the messages each node broadcasts to its neighbors because
there is no randomness in this last verification round.

A Merlin-Arthur interactive protocols of k interactions is an Arthur-Merlin protocol with
k − 1 interactions, but where the verification round is randomized. More precisely, Arthur is
in charge of the k-th interaction, which includes the verification algorithm. The protocol
ends when Arthur picks a random string r(v) at every node v and uses it to perform a
(randomized) verification algorithm. In other words, each node v randomly chooses a message
Mv from a distribution specified by the protocol, and broadcast Mv to its neighbors. Finally,
as explained before, the protocol either accepts or rejects at node v. Note that, in this
case, Merlin does not know the messages each node broadcasts to its neighbors (because
they are randomly generated). If k = 1, a distributed Merlin-Arthur protocol is a (1-round)
randomized decision algorithm; if k = 2, it can be viewed as the non-deterministic version of
randomized decision, etc.

I Definition 1. Let V be a verifier andM a prover of a distributed interactive proof protocol
for languages over graphs of n nodes. If (V,M) corresponds to an Arthur-Merlin (resp.
Merlin Arthur) k-round, O(f(n)) bandwidth protocol, we note (V,M) ∈ dAMprot[k, f(n)]
(resp. (V,M) ∈ dMAprot[k, f(n)]).

I Definition 2. Let ε ≤ 1/3. The class dAMε[k, f(n)] (resp. dMAε[k, f(n)]) is the class of
languages L over graphs of n nodes for which there exists a verifier V such that, for every
configuration (G, id, I) of size n, the two following conditions are satisfied.

Completeness. If (G, id, I) ∈ L then, there exists a proverM such that
(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]) and

Pr
[
V accepts (G, id, I) in every node givenM

]
≥ 1− ε.

Soundness. If (G, id, I) /∈ L then, for every proverM such that
(V,M) ∈ dAMprot[k, f(n)] (resp. (V,M) ∈ dMAprot[k, f(n)]),

Pr
[
V rejects (G, id, I) in at least one nodes givenM

]
≥ 1− ε.

We also denote dAM[k, f(n)] = dAM1/3[k, f(n)] and dMA = dMA1/3[k, f(n)].
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We omit the subindex ε when its value is obvious from the context. For small values
of k, instead of writing dAM[k, f(n)] and dMA[k, f(n)], we alternate Ms and As. For
instance: dMAM[f(n)] = dAM[3, f(n)], dAMA[f(n)] = dMA[3, f(n)], etc. In particular
dAM[f(n)] = dAM[2, f(n)], dMA[f(n)] = dMA[2, f(n)].

I Definition 3. The shared randomness setting may be seen as if all the nodes, in any
given round, sent the same random string to Merlin. In order to distinguish between the
settings of private randomness and shared randomness, we denote them by dAMp[k, f(n)]
and dAMs[k, f(n)], respectively.

2.1 Simultaneous Messages Model
In the simultaneous messages model (SM) there are three players, Alice, Bob and a referee,
who jointly want to compute a function f(x, y). Alice and Bob are given inputs x and y,
respectively. The referee has no input. Alice and Bob are unable to communicate with each
other, but, instead, are able to send a single message to the referee. Their messages depend
on their inputs and a number of random bits. Then, using only the messages of Alice and
Bob and eventually another random string, the referee has to output f(x, y) (up to some
error probability ε, given by the coins of Alice, Bob, and the referee). A randomized protocol
with error ε is correct in the SM model if the answer is correct with probability at least 1− ε.

We are only interested in the SM model with private coins, i.e., when the random strings
generated by Alice, Bob, and the referee are independent. Interestingly, in this model, the
power of randomness is very restricted. Indeed, in [1], Babai and Kimmel show that any
randomized protocol computing a function f in the SM model using private coins requires
messages of size at least the square root of its deterministic complexity. More precisely, if we
define the deterministic complexity of f , D(f), as the size of the messages of an optimal SM
deterministic protocol for f , the following proposition holds.

I Proposition 4 ([1], Theorem 1.4). Let f : X × Y → {0, 1} be any boolean function. Let
0 ≤ ε < 1

2 . Any ε-error SM protocol for solving f using private coins needs the messages to
be of size at least Ω

Ä√
D(f)

ä
.

By incorporating a prover, we can define interactive proofs in the SM model. More
precisely, we define MAsym as follows.

I Definition 5. Let f : X × Y → {0, 1} be a boolean function. We say that f ∈ MAsym
ε if

there exists a protocol for Alice and Bob, where:
A fourth player, the prover, provides Alice and Bob with a proof m (which he builds as a
function of the input of Alice x ∈ X and the input of Bob y ∈ Y ).
Alice and Bob simultaneously send a message to the referee, that depends on their inputs,
their own randomness, and the certificate m provided by the prover. Let ωx,m(r) be the
message sent by Alice given the input x and the seed r and let ϕy,m(s) be the message
sent by Bob, given y and the seed s.
Finally, let ρ(ω, ϕ) be the random variable indicating the referee’s decision given the
messages ωϕ and its random bits.

For all x ∈ X, y ∈ Y , the protocol must satisfy the following:

Completeness. If f(x, y) = 1, there exists a proof m s.t. Pr (ρ(ωx,m, ϕy,m = 1) ≥ 1− ε.
Soundness. If f(x, y) = 0 then, for any proof m, Pr(ρ(ωx,m, ϕy,m) = 1) < ε.
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51:8 Randomness in Distributed Interactive Proofs

Let f : X ×Y → {0, 1} be a boolean function. The cost of an MAsym protocol that solves
f is the sum of the proof size, along with the maximum size of a message considering all
possible random bits. When there is no randomness we recover the classical definition of
non-deterministic complexity in the SM model, which we denote by Msym(f).
I Remark 6. The assumption that both Alice and Bob receive the same proof does not affect
the definition of the class: in case that Alice receives ma and Bob receives mb as proofs,
then Merlin may concatenate mamb and then Alice and Bob just consider their part of the
message (the referee verifies that Alice and Bob received, indeed, the same message).

3 The Limits of Shared Randomness

In this section we show that the largest possible gap between non-interactive proofs and
interactive proofs with shared randomness is exponential. More precisely, we show that any
interactive protocol using shared randomness can be derandomized into a non-interactive
proof, with an exponential-factor overhead in the bandwidth. From this result we can obtain
lower bounds, some of them even tight, for the bandwidth of interactive-proofs with shared
randomness.

I Theorem 7. Let k ≥ 1 and let L be a language such that L ∈ dAMs[k, f(n)]. Then,
L ∈ dM(2O(k f(n)) + logn).

Proof. Let P be a protocol deciding L using shared randomness, k rounds of interaction,
bandwidth f(n), and with error probability 1/3. We use P to define a protocol P ′ for L
with only one round of interaction and bandwidth 2O(k·f(n)) + logn. Let us fix (G, id, I), an
instance of L.

For a prover M for protocol P, we define a transcript of a node v ∈ G as a k-tuple
τ(M, v) = (τ1, τ2, . . . , τk) such that τi ∈ {0, 1}f(n) is a sequence of bits communicated in the
i-th round of interaction of P, for each i ∈ {1, . . . , k}. If both k and i are even, then τi is a
message thatM sends to node v in the i-th interaction. If k is even and i is odd, then τi is
a random string drawn from the shared randomness. Finally, roles are reversed fin the case
where k is odd.

Let us fix ` = bk2 c and let R be the set of all `-tuples r = (r1, . . . , r`) such that
ri ∈ {0, 1}f(n), for each i ∈ {1, . . . , `}. For v ∈ G and r ∈ R and a fixed proverM, we call
τ(M, v, r) the transcript τ(M, v) such that τ2i−1 = ri when k is even and τ2i = ri otherwise,
for each i ∈ {1, . . . , `}. In full words, τ(M, v, r) is the transcript of the protocol, when the
nodes draw the random strings from r.

We can construct a one-round protocol P ′, where the prover sends to each node v the
following certificate:
1. A spanning tree T given by the id of a root ρ, the parent of v in the tree, denoted by tv,

and the distance in T from ρ to v, given by dv.
2. The list mv = {mv

r}r∈R, where mv
r ∈ {0, 1}kf(n) is interpreted as τ(M, v, r).

3. A vector acc(v) ∈ {0, 1}|R| where acc(v)r indicates that u accept in the transcript given
by mu

r , for all u in the subtree Tv associated to v.

Given the messages received from the prover, the nodes first verify the consistency of
the tree given by (1), following the spanning tree protocol given in [15]. Then, each node v
checks that for each r ∈ R the given transcript mr

v is consistent with r. Then, for each r ∈ R,
each node simulates the k rounds of protocol P using the certificates of its neighborhood,
and decide whether to accept or reject. That information is stored in a vector av ∈ {0, 1}|R|.
In order to check the consistency of the vector acc(v), for each r ∈ R we say that acc(v)r = 1
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if and only if avr = 1 and acc(u)r = 1 for every children u in Tv. If all previous conditions
are satisfied and v is not the root, then v accepts. Finally, the root ρ verifies previous
conditions and counts the number of accepting entries in acc(ρ) and accepts if they are at
least two-thirds of the total. In any other case, the nodes reject.

The number of bits sent by the prover is: O(logn) in (1), (kf(n)) · 2O(k·f(n)) = 2O(k·f(n))

in (2) and 2O(k·f(n)) in (3). So, in total, the number of bits communicated in any round is
2O(k·f(n)) + logn. We now explain the completeness and soundness.

Completeness. If an instance (G, id, I) is in L, an honest prover will send the real
answers that each node would have received in the k-round protocol, for which at least
two-thirds of the coins all nodes accept, therefore the root accepts.

Soundness. Suppose now that (G, id, I) is not in L, and suppose by contradiction
that there exist a prover M̃ of protocol P ′ accepted by all vertices. Let mv be the
certificate that M̃ gives to vertex v given by (2). Now, let M̂ be a prover of P such that
τ(M̂, v, r) = mr

v, for each r ∈ R. Since the root accepts, all nodes must accept two thirds
of the transcripts, which contradicts the soundness of P. J

A direct consequence of previous result is the transfer of lower bounds from non-
determinism to distributed interactive protocols with shared randomness.

I Corollary 8. Let k ≥ 1 and let L be a language such that L ∈ dM[Ω(f(n))], where
f(n) = ω(logn). Then, L ∈ dAMs[k,Ω( log f(n)

k )] = dAMs[k,Ω(log f(n))].

I Corollary 9. Let k ≥ 1. Then, problems symmetry, diameter, 3-col, 4-free ∈
dAMs[k,Ω(logn)]. Also, mst ∈ dAMs[k,Ω(log logn)].

Proof. We just need to apply already known lower bounds: symmetry ∈ dM[Ω(n)] from [12],
diameter ∈ dM[Ω(n)] from [4], 3-col ∈ dM[Ω(n)] from [12], 4-free ∈ dM[Ω(n)] from [5],
mst ∈ dM[Ω(log2 n)] from [14]. J

I Remark 10. The lower bound saying that symmetry ∈ dAMs[k,Ω(logn)] is tight. More
precisely, the dMAMp[logn] protocol given by Kol, Oshman and Saxena [13] for solving
symmetry can be easily adapted to work with shared randomness. In fact, the protocol is
somehow designed in that way, where one particular node generates the random string and
shares it with the other nodes (through Merlin). Therefore, symmetry ∈ dMAMs[logn]. On
the other hand, symmetry ∈ dM[Ω(n2)] [12].

In the proof of Theorem 7, in order to design a dM protocol, we had to construct a
spanning tree for verifying that two thirds of all coins are accepted by all nodes. In fact,
it could be the case that, for negative instances, every node rejects a very small portion
of the coins, getting the wrong idea that the instance is positive. For avoiding that, and
coordinating the nodes, in the dM protocol we construct a spanning tree. This is where the
additive logn term comes from. Next result states that previous situation does not occur if,
instead of two thirds, we ask the interactive protocol to accept with high probabilty.

I Theorem 11. Let k ≥ 1 and let L be a language such that L ∈ dAMs
ε[k, f(n)], with

ε < 1
n+1 . Then, L ∈ dM[2O(k f(n))].

I Corollary 12. Let k ≥ 1 and let L be a language such that L ∈ dM[Ω(f(n))]. Then,
L ∈ dAMs

ε[k,Ω( log f(n)
k )] = dAMs

ε[k,Ω(log f(n))], with ε < 1
n+1 .

I Corollary 13. Let k ≥ 1. Then, problems planar, outerplanar, spanning-tree
∈ dAMs

ε[k,Ω(log logn)], with ε < 1
n+1 .

Proof. All these languages belong to dM[logn] [12]. J
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4 dAMs vs dAMp

A recent result shows that dAM protocols with private randomness are more powerful
than dAM protocols with shared randomness [5]. The precise result corresponds to next
proposition.

I Proposition 14 ([5]). Let k ≥ 1, 0 < ε < 1
2 , and L be a language such that L ∈

dAMs
ε[k, f(n)]. Then, L ∈ dAMp

ε [k, f(n) + logn].

A natural question is whether the two models are equivalent. In this section we give
a negative answer. We separate them through problem amos. Recall that amos is the
language of labeled graphs where at most one node is selected. It is already known that
amos ∈ dM[Θ(logn)] [12]. Moreover, in [8] the authors show that adding randomness after
the nondeterministic round does not help. More precisely, amos ∈ dMAp

ε [Ω(logn)], for
0 < ε < 1

5 .
The situation changes dramatically when randomness goes before nondeterminism, as

explained in the following proposition.

I Proposition 15 ([8]). Let 0 < ε < 1
2 . Then, amos ∈ dAMp

ε [log
(
ε−1)] = dAMp

ε [1].

In the shared randomness framework, we can construct a protocol that uses bandwidth
O(log logn). As we are going to see in Theorem 17, this upper bound is indeed tight.

I Lemma 16. amos ∈ dAMs[log logn].

Proof. The protocol is the following. First, each node considers the smallest prime q such
that logc+2 n ≤ q ≤ 2 logc+2 n and constructs a polynomial over the field Fq associated to
its id given by pv(x) =

∑
i≤log(id(v)) bini(id(v)) · xi. Where bini(m) corresponds to i-th bit in

the binary representation of m. All nodes generate a random string s ∈ Fq using the shared
randomness. Then, the prover sends to each node the random evaluation of the selected
node v0. More precisely, p̄ = pv0(s), which is of size O(log logn). The nodes first check
if they all received the same value p̄. If a node v is not selected, then it always accepts;
otherwise, it accepts if and only if pv(s) = p̄. If an instance belongs to amos, then all nodes
accept. Otherwise, there exist at least two selected nodes u and v. But the probability that
pv(s) = pu(s) is at most 1

logc n . J

From Corollary 12 we conclude that, for every k ≥ 1, amos ∈ dAMs
ε[k,Ω(log logn)] with

ε < 1
n+1 . In other words, the protocol given in Lemma 16 matches the lower bound for all

correct protocols that run with high probability. Next theorem says that the upper bound is
matched even when ε = 1

3 .

I Theorem 17. Let k ≥ 1. Then, amos ∈ dAMs[k,Θ(log logn)].

5 dMAs vs dMAp

In this section we first see that, in what regards private and shared randomness, roles are
reversed when we address dMA protocols instead of dAM protocols. In fact, we get a result
analogous to that of Crescenzi, Fraigniaud, and Paz [5] (Proposition 14) which says that
dMA protocols with shared randomness are more powerful than dMA protocols with private
randomness.

I Theorem 18. Let ε, δ > 0 with ε+δ < 1
2 and let L be a language such that L ∈ dMAp

ε [f(n)].
Then, L ∈ dAMs

ε+δ[f(n) + logn+ log
(
δ−1)].
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As we did in previous section for dAM protocols, we are going to give here a negative
answer to the question whether dMAs and dMAp are equivalent models. For obtaining such
separation, we use the problem 2-col-eq. Recall that this language is the set of network
configurations (G, id, I), where I is a function I : V (G)→ {0, 1}n, such that I is a proper
two-coloring of G. In other words, (G, id, I) belongs to 2-col-eq if and only if there is
a partition {V0, V1} of V (G), such that both V0 and V1 are inependent sets and, for all
v, w ∈ Vi, we have that I(v) = I(w), for i ∈ {0, 1}.

Next lemma says that 2-col-eq is “easy” to solve using shared randomness.

I Lemma 19. 2-col-eq ∈ dMAs[logn].

The goal now is to prove that 2-col-eq ∈ dMAp[Θ(
√
n)]. Babai and Kimmel devise

a private coin, randomized protocol in the simultaneous messages model (SM) that solves
equality communicating O(

√
n) bits [1]. Problem equality consists in deciding whether

two n-bit boolean vectors, the inputs of Alice and Bob, are equal.

I Proposition 20 ([1]). There exists a private coin, randomized protocol in the SM model
that solves equality using O(

√
n) bits.

By using the protocol of Babai and Kimel, one can directly construct a dMAp protocol
for 2-col-eq.

I Lemma 21. 2-col-eq ∈ dMAp[
√
n].

The lower bound is considerably more involved, and we explain it in the next subsection.

5.1 The lower bound
In order to give a lower-bound on the bandwidth of any dMAp protocol solving 2-col-eq,
we show that the result of Babai and Kimmel given by Proposition 4 can be extended to the
scenario where Alice and Bob have access to random bits.

I Theorem 22. Let f : X×Y → {0, 1} be any boolean function. Let 0 < ε < 1
2 . Any ε-error

MAsym protocol for solving f using private coins needs the messages to be of size at least
Ω
Ä√

Msym(f)
ä
.

Using previous theorem, we can construct a lower-bound for 2-col-eq.

I Lemma 23. If 2-col-eq ∈ dMAp
ε [f(n)] with ε < 1/4, then there exists a protocol P solving

Equality in the MAsym model with bandwidth O(f(n)).

Sketch of the proof of Lemma 23. We show that, any dMA protocol P for 2-col-eq that
uses random coins and error probability ε, can be transformed into an MAsym protocol P∗
with error probability 3ε. Let x, y ∈ {0, 1}n, and assume without loss of generality that n is
even. Given n ∈ N, Alice, Bob and the referee, construct the following network configuration
(G, id, I):

G is a path of 2n+ 1 nodes v1, . . . , v2n+1.
id(vi) = i for each i ∈ {1, . . . , 2n+ 1}.

I(vi) =


0n if i is odd,
x if i is even and i ≤ n,
y if i is even and i > n.
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v1 v2 . . . vn−2 vn−1 vn vn+1 vn+2 . . . v2n−1 v2n

0n 0n 0n 0n0nx x y y

Figure 1 An instance (G, id, I) constructed by Alice and Bob. The blue box corresponds to the
set of nodes assigned to Alice, along with input x. Those in the red box are the ones assigned to
Bob, along with input y. The orange box contains a single node assigned to the referee, whose input
is fixed.

Observe that (G, id, I) is a yes-instance of 2-col-eq if and only if (x, y) is a yes-instance
of Equality. Given the input x for Alice and y for Bob, the players proceed to construct the
instance (G, id, I): Alice takes the first n nodes of G while Bob takes the last n. Finally, the
central node is assigned to the referee. For each v ∈ G, let m(v) be the certificate that Merlin
sends to node v according to protocol P. In protocol P∗, Alice receives from the prover the
certificate (m(vn),m(vn+1)), and Bob receives the certificate (m(vn+1),m(vn+2)). Then, the
players construct all the possible certificates of the vertices in their side and communicate
the most probable output to the referee, together with the messages that nodes vn and vn+2
communicate to node vn+1 in protocol P . Using the information received, the referee accepts
if Alice, Bob and vertex vn+1 accept. J

We are now ready to explicitly give the lower bound for 2-col-eq.

I Theorem 24. 2-col-eq ∈ dMAp
ε [Θ(
√
n)] for any ε < 1

4 and 2-col-eq ∈ dMAs
1/3[Θ(logn)].

Proof. In the classic 2-party communication model of Alice and Bob the problem equality
has complexity Θ(n) even with the help of nondeterminism [17]. This bound translates natu-
rally to the simultaneous messages model, and so N(equality) = Θ(n). From Theorem 22
we deduce that any protocol in the model MAsym for equality using random bits requires
Θ(
√
n) bits. Now, let ε < 1/4. If there exists a protocol P for 2-col-eq using o(

√
n) bits

with error smaller than ε, then, by Lemma 23, there would exist a protocol P∗ for equality
in the model MAsym using o(

√
n) bits with error smaller than 1/3, a contradiction.

Moreover, for every ε ≤ 1/3, if 2-col-eq belongs to dMAs
ε[f(n)] then f(n) = Ω(logn),

as we can derandomize the protocol and it would contradict the bound for equality. Thus,
by Lemma 19, we conclude that the protocol is tight. J
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