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Abstract
Recursed is a 2D puzzle platform video game featuring “treasure chests” that, when jumped into,
instantiate a room that can later be exited (similar to function calls), optionally generating a “jar”
that returns back to that room (similar to continuations). We prove that Recursed is RE-complete
and thus undecidable (not recursive) by a reduction from the Post Correspondence Problem. Our
reduction is “practical”: the reduction from PCP results in fully playable levels that abide by all
constraints governing levels (including the 15 × 20 room size) designed for the main game. Our
reduction is also “efficient”: a Turing machine can be simulated by a Recursed level whose size is
linear in the encoding size of the Turing machine and whose solution length is polynomial in the
running time of the Turing machine.
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1 Introduction

Recursed1 [15] is an indie puzzle platform video game by lone developer Portponky. The
game’s main feature is having rooms contained within treasure chests, often recursively,
inspired by functional programming; see Section 2 for details.

In this paper, we show that deciding whether a given Recursed level can be solved is
RE-complete and thus undecidable (not recursive).2 We thus positively settle a player’s
claim that Recursed is NP-hard [5] and another player’s conjecture that it is undecidable [11].
Our proof is by a reduction from the Post Correspondence Problem (PCP); refer to Section 3

1 All products, company names, brand names, trademarks, and sprites are properties of their respective
owners. Sprites are used here under Fair Use for the educational purpose of illustrating mathematical
theorems.

2 A brief recap on terminology: RE (Recursively Enumerable) is the class of decision problems whose “yes”
instances are accepted by a Turing machine in finite time, but whose “no” instances may be indicated by
the machine running for infinite time, while R (Recursive or Decidable) is the class of decision problems
whose “yes” and “no” instances are accepted and rejected, respectively, by a Turing machine in finite
time. It is known that RE $ R; for example, the Halting Problem is in the difference RE \ R.
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for a definition. We use the properties of PCP that the constraints are locally checkable and
that the resolution of choices proceeds in only one direction (adding more words/dominoes
to the string).

RE-completeness of a video game requires some source of arbitrarily unbounded state in
the game. The unbounded state we use in Recursed stems only from the player’s ability to
generate instances of rooms arbitrarily deeply through normal use of the game’s recursive
chest mechanics (and by extension, its jar mechanics); see Section 2 for details. Each of the
finitely many rooms resulting from our reduction has constant size – even fitting within the
15× 20 size of standard Recursed rooms – and contains only a constant number of objects
and a constant amount of state. Indeed, the Recursed levels generated by our reduction are
“practical”: they could, in principle, be solved by a human, provided they knew which PCP
dominoes to place at each placement step. Using the custom level feature of Recursed, we
have built a fully playable custom level demonstrating the reduction applied to a simple
2-domino PCP instance, which is available for download [9].

Our reduction is also efficient, meaning that it efficiently represents the execution of a
Turing machine. The Recursed level size is linear in the number k of dominoes in the PCP
instance, and the Recursed solution length is O(L log k) where L is the number of symbols in
a solution to the PCP instance. Using the standard reduction from the Halting Problem to
PCP [18], the Recursed level size is linear in the encoding size k of the Turing machine, and
the Recursed solution length is O(TS log k) = O(T 2 log k) where T is the running time and
S is the space used by the Turing machine. As a consequence, deciding whether a Recursed
level can be solved in a polynomial number of steps is NP-complete, and deciding whether a
Recursed level can be solved in an exponential number of steps is NEXPTIME-complete.

Related Work. The first RE-completeness/undecidability result for a video game was for
another indie puzzle game, Braid [12], designed by Jonathan Blow. (The computational
complexity of Blow’s other puzzle game, The Witness, has also been studied, with NP-, Σ2-,
and PSPACE-completeness results for various aspects of the game [1].) To our knowledge,
our result is the second RE-completeness/undecidability result for a (real-world) single-player
video game.

The Braid reduction [12] produces a Braid level of finite size. The unbounded state
it exploits comes from the game’s ability to generate arbitrarily unbounded quantities of
enemies and pack them into the same location, allowing the level to increment a counter
arbitrarily high. Enemies prevent the player from getting to a location, allowing the player to
detect when the counter is zero. In this way, the Braid reduction simulates a counter machine.
Because the reduction from Turing machine to counter machine [14] requires an exponential
slowdown, the Braid reduction is not efficient: the resulting solution length is exponential in
the running time of the Turing machine. Also, because the items in Recursed all help rather
than hinder the player’s mobility, this type of approach cannot work for Recursed.

For two-player games, there is one undecidability result we are aware of: Magic: The
Gathering is RE-hard/undecidable even for two players [4], via an efficient Turing machine
simulation. In fact, the players’ moves are all forced, so this result is arguably about
a zero-player simulation (but only the two-player game is “real-world”). An earlier RE-
hardness/undecidability proof [3] simulated a counter machine, and thus was inefficient; it
also required more players and a small tweak to the game rules.

Team multiplayer games are often RE-complete/undecidable even when the game’s state
is finite; the source of unboundedness is the hypothetical game strategies built in the players’
heads [13]. Recently, this technique has been applied to prove RE-completeness/undecidability
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of real-world team video games, including Team Fortress 2, Super Smash Brothers: Brawl,
and Mario Kart [6]. These reductions are naturally very different from Recursed, given the
different source of unboundedness.

Roadmap. Section 2 gives an overview of the mechanics of Recursed relevant to our
construction. Section 3 presents a sketch of our reduction construction. For full details,
please refer to the full paper [10]. Section 4 describes some open questions and conjectures
regarding the complexity of subsets of Recursed.

2 Game Rules

This section covers the rules of Recursed insofar as they are needed for our construction in
Section 3. For simplicity, we omit those objects and notions which we will not use.3 See [16]
for a video illustration of some core mechanics, including blocks, keys, doors, chests, and jars.

2.1 Basic Player Actions

We will call the player character Rico. By default, Rico can run horizontally and jump
or fall vertically. Rico can jump up to a surface at most 3 tiles higher than where they
jumped from, but can fall arbitrarily far with no penalty. Rico can pick up objects they are
standing next to (see below for an enumeration). Rico can only carry one object at a time,
and cannot pick up further objects until releasing the one held. While holding an object,
Rico can drop it, causing it to fall, or throw it. Thrown objects travel in a perfectly vertical
or horizontal trajectory until hitting a solid tile (or reaching the apex, if thrown upwards),
at which point they fall until landing on a floor tile, or falling off the bottom of the screen.
Note that other objects do not impede the horizontal trajectory of a thrown object, but,
when falling, objects can land on blocks. If Rico is carrying an object, their jump height is
lowered to at most 2 blocks.

Typically, walls, floors, and ceilings are comprised of tiles, which are immovable and
impassable, by Rico or any object. At any given time, Rico will be situated in a room of size
at most 15× 20 (though sometimes smaller), which is what is shown to the player. Typically,
rooms will have borders consisting of solid tiles (counting towards the size). It is possible for
some walls, floor, or ceiling to be missing. If Rico falls off the edge, they bounce back up a
few blocks, but we will not have any missing floors in our construction.

A level is comprised of a collection of rooms (see Section 2.3 for more details). Rico’s
goal is to reach a purple crystal, of which exactly one exists in some room of each level.

There is one additional special environmental feature called a ledge (see Figure 1). Ledges
are always oriented horizontally. Rico can jump upwards through a ledge, but cannot by
any means traverse back downwards through a ledge. Thrown or dropped objects ignore
ledges entirely in both directions.

2.2 Basic Objects

We depict all of the objects necessary for our construction in Figure 1. A description of each
follows.

3 Inexhaustively including water, acid, Ooblecks, cauldrons, paradoxes, glitches, and cloud walls.

ISAAC 2020
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doordoor
ricorico pink flamepink flame

blockblock keykey

ringring chestchest jarjar green flamegreen flame

green glowgreen glow
crystalcrystal ledgeledge

Figure 1 A toy level containing a copy of each object used in our construction.

Blocks. The primary use of blocks is for Rico to stand on and be able to jump higher. In
particular, if Rico is standing on a block, they can jump to a height of 4 above the ground (3
if carrying another object), which would be otherwise impossible. Furthermore, blocks can
be stacked arbitrarily high, and Rico can “climb” stacks of blocks, so with k blocks, Rico can
reach a height of k + 3.

Keys and doors. Keys are carryable objects which open doors. Doors are static objects
in the level which occupy a space 3 tiles high by 1 tile wide, generally preventing traversal
from one side to the other. A key can be carried directly to a door, or thrown at it. In either
case, the key and the door both disappear, allowing Rico to traverse the space previously
occupied by the door. There is only one type of key and one type of door, so any key in the
game can open any door.

Rings. The only direct use of rings in-game is to trigger pre-scripted dialog when thrown
against a wall. Therefore, they provide no particular use toward solving a level. Nevertheless,
we will make use of rings in our construction as a generic object which specifically does
nothing except lower Rico’s jump height to 2 tiles when held. See Section 3.2.2.

2.3 Chests
Chests are the primary “gimmick” of Recursed. They were designed to emulate function
calls (in the programming sense) to some degree. In Recursed, chests do not contain objects,
but rather entire rooms. Rico can jump into chests, thereby entering the room contained
therein. The room contained in a chest is an immutable property of the chest itself – a
particular chest will always contain a particular room, according to the specification of that
chest. Different chests can contain the same room.

When Rico enters a room via a chest, they appear at a pre-specified entry point4, along
with a pink flame, which we refer to interchangeably as an exit. The room will be generated
freshly from its specification each time Rico enters a chest containing it regardless of whether

4 The entry point is a property of the room itself; Rico will appear at the same entry point regardless of
which chest was used to enter the room.
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Rico has previously visited and/or interacted with objects in the room. This follows the
function call intuition of each invocation entering the function at the beginning with no local
state.

While in a room contained in a chest (which is most of the time), Rico can freely interact
with any objects present including other chests. Every room except for the initial room Rico
begins the level in will necessary have a pink flame exit. If Rico returns to the exit of a
room, they can choose to leave by interacting with the pink flame. In doing so, they will hop
back out of the chest they initially came in, thus re-entering the “parent” room in the same
state that it was when Rico jumped in the chest. Note the asymmetry between entering and
exiting chests. Again, this emulates the function call behavior of saving the local state of
the parent function when returning from a child function. Because any future entries to the
chest room will re-generate the room anew, any state that room had when Rico leaves is
entirely forgotten.

Rico can of course recursively enter chests (hence the name), thereby saving a “call
history” in a stack-like fashion. Rico can even enter a room via a chest contained in that
same room, reminiscent of a recursive function calling itself.

One final key property of chests is that when Rico jumps into a chest, or leaves via the
pink flame, they can do so while carrying at most one object. Thus, provided that Rico can
manage to get access to it, Rico can bring a block, a key, or another chest with them into or
out of a chest. To demonstrate the impact of this ability, observe that on the one hand, if
Rico carries, say, a block into a chest and then subsequently leaves the chest empty-handed,
that block is lost forever. On the other hand, if Rico enters a chest empty-handed, but
manages to leave while carrying a block, the parent room now has a block that in effect did
not previously exist. In particular, Rico can repeat the same sequence of actions any number
of times to produce an unbounded number of blocks in the parent room.

2.4 Green Glow
Some objects in the game have a green glow (see Figure 1). These objects violate the
“function call” rules of chests described above, in that the state of a green glowing object
is saved no matter when or where it is interacted with. The simplest example is a green
glowing door, since it cannot be moved, but only open. If a green glowing door in a room is
opened by any key, it will always be open when Rico revisits that room, even if doing so by
entering a chest and thus regenerating (the nonglowing parts of) the room.

Movable objects, including blocks, keys, and chests can also glow green. In this case, if
the object moves around the room it begins the level in, then whenever Rico revisits that
room the location of the object will be remembered. This is the only property we will make
use of in the construction, but we note for posterity that green glowing objects can be moved
between rooms and this will be remembered as well. Green glowing chests have even more
interesting properties, but we encourage the reader to play the game and discover those for
themselves!

2.5 Jars
Jars are similar to chests in that they contain rooms, but unlike chests, they are designed to
emulate continuations (in the functional programming sense), rather than function calls.
Jars can never be present in the initial state of a level. Rather, some rooms (other than the
initial starting room) will have a green flame exit in addition to the standard pink flame
exit (not to be confused with green glow above). The green flame can be located anywhere
in the room and is independent of Rico’s initial point of entry. There can even be more than

ISAAC 2020
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one (though not in our construction). If Rico exits a room via a green flame exit, they will
hop back out of the containing chest, just like by the pink flame, except they will now be
carrying a newly created jar . Note that Rico cannot be carrying any object when leaving
via green flame exits in order to have space to carry the jar.

Rico can carry the jar around just like any other object. If, subsequently, Rico enters a
jar, they will re-enter the room containing the green flame the jar was created with, at the
location of the green flame, with the room in the same state that it was in when the jar was
created, except that the green flame itself is now gone, so no further jars can be created from
the same place. Thus, any doors previously opened or objects previously moved or placed
will be just where they were when Rico used the green flame. Importantly, when Rico later
exits a room after entering it from a jar, they will reappear in the parent room just as if
they had used a chest, and may even be carrying an object, but the jar will be destroyed.
Thus, any particular jar can only be entered once.

3 Main Result

I Theorem 3.1 (Recursed is RE-complete). It is RE-complete to decide whether a player can
reach the crystal in a given level.

Containment is straightforward: the game can obviously be simulated, given an initial
state and sequence of player inputs. Thus, with a recursively enumerable Turing machine,
one can enumerate every input string frame-by-frame and check whether any such string
solves the level.

The hardness reduction is from the Post Correspondence Problem (PCP). Originally
shown undecidable by Post in [17], we follow Sipser’s description of the problem [18]. Given
a set of dominoes D1, . . . , Dk each with a string Ai = ai1ai2 . . . aisi

on the top half and a
string Bi = bi1 . . . biri

on the bottom half, denoted Di = 〈Ai | Bi〉. We are tasked with
laying such dominoes next to each other (copying dominoes as much as necessary) such
that the concatenation of the top halves equals the concatenation of the bottom halves. We
will enforce that the first domino must be D0 which will simplify the initial part of the
construction. (Forcing the first domino to be of a specified type clearly does not make the
problem decidable, since if it did there is a trivial nondeterministic decision algorithm which
guesses the first domino and then calls the hypothesized decision oracle).

We will implement a (nondeterministic) algorithm to solve PCP in Recursed. The
algorithm is as follows:
1. Nondeterministically choose a domino Di = 〈Ai | Bi〉 to add to the solution, or stop and

skip to 4.
2. Push Ai onto stack SA and Bi onto stack SB .
3. Return to 1.
4. Pop SA and SB and check whether the popped symbols are equal; REJECT if not.
5. Repeat 4 until one stack empties, then check if the other stack is also empty; if yes,

ACCEPT, else REJECT.

3.1 High-Level Overview
Rico initially spawns in a room next to a block and a chests, with another chest and a locked
door past a ledge, shown in Figure 2. On the other side of the locked door is the goal crystal,
but it is 6 tiles above the ground, one tile too high for Rico to jump to reach unaided5. The

5 Rico can reach a jump height of 3 tiles and is 2 tiles tall, and so can reach a crystal 5 blocks high.
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chest next to the door is a Global-Lock chest, which, once unlocked, will provide the key
to this very door. All Rico has to do is open the Global-Lock gadget and get the block to
the other side of the locked door! Of course, it will not be so easy...

The reduction is demonstrated with a fully playable level [9] for a PCP instance with
D0 = 〈01 | 0〉, D1 = 〈0 | 10〉, whose (shortest) solution is of course D0D1.

A0,0A0,0 GLGL

Figure 2 The initial room.

The high level structure of the construction is as follows: We will store SA in the “call
history” of chests Rico has jumped into and we will store SB in a chain of jars. For each
symbol aij ∈ SA, there will be one corresponding room in our call history. For each symbol
bij ∈ SB , there will be one corresponding room in our chain of jars. Rico will need to carry
the top level jar around pretty much all the time, unless changing the state of another gadget.
The very last jar at the bottom of the chain representing SB will contain a single block6
which, if retrieved in the crystal room, Rico can use to jump on and reach the crystal.

The intended solution path which Rico must follow is comprised of two phases: a “Pushing”
phase, and a “Checking” phase. During the pushing phase, Rico will push symbols to SA via
the explicit chest stack, and to SB by building the chain of jars (i.e., the outermost jar Rico
is carrying contains machinery corresponding to the top symbol of SB as well as a second
jar which itself contains machinery corresponding to the next symbol of SB, etc.). During
the checking phase, Rico will need to traverse back up the history of chests and prove that
each room corresponding to a symbol at the top of SA matches the symbol corresponding
to the room contained in the outermost jar, i.e. at the top of SB, and “popping” both off
their stacks. Rico can reach the crystal only if they reach the starting room (thereby having
emptied SA) when SB is also exactly empty, at which point Rico will be carrying the initial
block rather than a jar.

3.2 Gadgets
In this section, we will enumerate a collection of gadgets which will be used in the overall
construction. A gadget is a template for a section of a level with specific properties. We
first describe the One-Way, Proof-of-Holding, and One-Time-Traversal gadgets
which are simple and useful subcomponents we will use repeatedly. Section 3.2.4 describes
the Prove-Verifygadget which has one entrance which can only be traversed if another
entrance has previously been traversed. It is the main component in our ability to record
state in our construction. Finally, Section 3.3 gives a brief sketch of the full construction with
figures depicting the important rooms in the construction. These include gadgets for the
choice of domino placement (Figure 7, symbols in the top stack SA (Figure 8), and symbols
in the bottom stack SB (Figure 9).

6 One might be forgiven for referring to this as the “blockchain representation” of SB .
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3.2.1 One-Way
A One-Way gadget allows Rico to pass from one side of the gadget to another, but not back
in the opposite direction. Our One-Way gadgets have the additional property that Rico is
not able to throw an object through one without traversing it themself.

We use two One-Way implementations: the first is comprised of two “stair steps”, each
two blocks high, followed by a four block drop. Rico can only jump at most 3 blocks, so after
jumping down from the ledge, they cannot get back up. The second implementation is a
simple ledge: Rico can jump up onto the ledge but then is unable to get back down. Layout
constraints govern the choice of implementation.

The latter ledge implementation trivially satisfies the thrown object requirement, since
objects always pass through ledges. The stair step implementation requires one extra feature,
which is to make sure the floor below the four block cliff is a ledge, so that any object dropped
over the edge will fall through the ledge and become inaccessible, either by getting trapped
in an unreachable pit, or by falling off the bottom of the screen, depending on placement.
Further, we add a multi-block “stalactite” over the ledge to ensure that any item thrown
from above the stairs will hit this wall and fall below the ledge.

The ledge One-Way can be seen on the far left sides of Figures 7 and 8. The stair
implementation can be seen once in the bottom of Figure 7 and in triplet in the bottom of
Figure 8.

3.2.2 Proof-of-Holding
The Proof-of-Holding gadget (H) is a simple gadget which is traversable if and only if
Rico is carrying an object. It has the additional important property that the held object
must also traverse the gadget, and cannot be left at the entry side of the gadget for later
retrieval. See Figure 3a. It makes use of the fact that while carrying something Rico’s jump
height is lower. If Rico jumps three blocks high, which is unavoidable while not carrying an
object, they will get stuck in the enclosed area at the top of the gadget. However, if Rico is
carrying an object, they will jump only two blocks high and land on the lower edge, and have
space to walk out of the gadget to the right. The pit at the bottom of the gadget prevents
Rico from dropping the held object back down and leaving it behind (accessibly), as it will
get stuck in the pit.

3.2.3 One-Time-Traversal
The One-Time-Traversal (1O) is what it says on the tin. Rico can traverse it one time in
one direction, after which it cannot be traversed in that direction again. See Figure 3b. It is
implemented by forcing Rico to be holding an object (we use a ring so as not to bestow any
other abilities) in order to jump up a small step, without irreversibly getting stuck on the
ledge 3 blocks up. If Rico is not holding the ring while jumping up the step, getting stuck
on the ledge is unavoidable. The gap below the ring’s tile is to allow Rico to throw a held
object over to the other side of the gadget to be retrieved after traversal (recall that Rico,
being two tiles high, cannot fit through that gap).

I Lemma 3.2. The One-Time-Traversal gadget can be traversed at most once.

Proof. The reason the gadget is one-time use is because (1) once the ring is removed it is
impossible to get it or any other object up to the tile where the ring is initially and (2) the
gadget is only possible to traverse from left to right if there is an object present precisely on
that tile.
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It is easy to see (1) by recalling that Rico cannot jump to a height of 3 blocks while
holding an object, nor is there anyway to throw an object upwards with any horizontal
velocity, so Rico can neither carry nor throw an object up to the ring’s starting tile. Given
(1), (2) becomes clear because there is no way Rico can be carrying an object while standing
on the lower ledge except by grabbing one off the ring’s starting tile. J

For notational convenience, and because we always want to force Rico to prove that the jar
is never dropped, we will always combine One-Time-Traversal with Proof-of-Holding
gadgets, to get a gadget which Rico can traverse if and only if they are carrying something
and even then at most once. We denote this combined gadget by 1O + H, or 9.

(a) Proof-of-Holding gadget. (b) One-Time-Traversal gadget.

(c) Combined start-of-room construction.

Figure 3 The Proof-of-Holding and One-Time-Traversal gadgets. These exclusively appear
together and at the start of most rooms, so we will always use the combined version shown in (c)
for compactness. Note that Rico cannot jump from the ledge on the left directly to the ring, as they
will necessarily bump their head on the “stalactite” block and fall, even while holding an object.

3.2.4 Prove-Verify Gadget
The primary driving gadget behind much of our construction is what we call a Prove-Verify
(PV) gadget. The basic idea is that the gadget primarily consists of a single room which
contains a green glowing block which can be in one of two states: set or unset. If Rico is able
to visit a Prove chest, P , they can put the gadget in the set state. If Rico visits a Verify
chest, V , they will be able to retrieve a key from V if and only if the gadget is Set, and in
doing so must return it to the Unset state. In this way, retrieving the key from V verifies
that P was visited. Note that a Verify chest is always followed by a locked door. Unless
otherwise stated, PV gadgets are initially unset. We note that this is a minor variation on
the “Self-closing Door” gadget [2] in the framework of [8].

A major use case for PV gadgets is to force Rico to prove that a room is being entered
when and from where it is intended to be. To enforce this, for most rooms R, the first element
encountered will be a VR gadget corresponding to that particular room, which will be set

ISAAC 2020
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only if Rico is coming into that room immediately after visiting a corresponding PR gadget
in the previous room. Correspondingly, whenever we intend Rico to continue on to R in the
intended call stack, we will precede the chest containing R with a PR gadget followed by a
one-way.

The crux of the gadget is a stateful memory room Mx shared by a Prove-Verify
pair Px and Vx, shown in Figure 4. If the green block is in the pit, the gadget is Unset, for
Rico cannot retrieve the key (or indeed, leave the gadget at all once falling down the cliff
next to the entry). If the block is not in the pit, Rico can jump on it to retrieve the other
block up on the ledge, and put both of them in the pit which is enough to get up to the key
and back around to the exit. Of course, after doing so the green block is in the pit and the
gadget is unset again.

(a) Unset state. (b) Set state.

Figure 4 The Mem component of the Prove-Verify gadget.

The Prove gadget simply gives Rico a block to take into the corresponding Verify
chest with which they can retrieve the green block from the pit (by using both the extra
block and the block up on the ledge), shown in Figure 5a. At no point can anything but the
block enter the Mem room, due to the 3 block high barrier which Rico cannot carry any
object over. Similarly, no object but the key may exit the Mem gadget, and bringing the key
out of the Mem chest while in the Prove chest is clearly not useful due to the same barrier
preventing it going anywhere else.

MxMx

(a) Prove gadget Px.

MxMx

(b) Verify gadget Vx.

Figure 5 The Prove and Verify gadgets.
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The Verify gadget, shown in Figure 5b, is intended to allow retrieval of a single key if
the corresponding Mem room is set. The intended usage is to jump into the Mem room and
retrieve a key, then throw that key against the door on the left to allow access to the other
key, which can then be brought out of the Verify chest.

There is some additional complexity in order to prevent cheating, embodied by the
following lemma.

I Lemma 3.3. No object (other than a block from the corresponding Prove gadget) can
enter the Mem chest.

Proof. First, note that the Mem chest only appears in the Prove and Verify gadgets. For
the Prove gadget, the 3 tile high barrier ensures that nothing can be brought from the
entrance of the gadget to the Mem chest. For the Verify gadget, we again use a 3 tile high
barrier which nothing can be carried over. However, in order to allow the Mem chest state
to interact with the rest of the gadget, we require a gap which the key retrieved from the
Mem room can be thrown through, opening the door on the left. The important observation
is that no object can be usefully thrown through the gap except a key going from right to
left hitting and opening the door. Any other object will hit a wall or the door and land
inaccessibly in the pit under one of the ledges. Thus, again, no object can enter the Mem
chest, and no object can leave the Mem chest except a key, and therefore no object can leave
the Verify chest except the key behind the door. Finally, we need to ensure that the Mem
chest itself cannot exit the Prove or Verify gadgets. Once again, the 3 tile high barriers
and the ledges also prevent this.

Note that Rico could bring in a key from outside to open the door with, but all this would
achieve is replacing the old key with a new key, so doing so cannot be eminently useful. J

If Lemma 3.3 did not hold and Rico could bring in, say, another chest, they could then
move the green glowing block from the Mem chest into some other room, and this could
subsequently result in Bad Things.

3.2.5 Global-Lock
We will also use a variant of the Prove-Verify gadget semantics which we will call a
Global-Lock (GL). The Global-Lock can be “set” just once, and subsequently used to
retrieve a key any number of times. The Global-Lock gadget will only be used to allow
Rico to transition between the pushing phase and the checking phase, and subsequently verify
that the transition was made. The Global-Lock is just a room with a green glowing locked
door with a key behind it (see Figure 6). As long as the door is locked, the key is irretrievable,
but once Rico is given a key to take into even one chest containing the Global-Lock room,
they can permanently unlock the door and allow all the other chests containing this room to
dispense keys.

Figure 6 The Global-Lock gadget.
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3.3 Construction Sketch

In this section we present figures for the primary structural rooms of the construction
(Figures 7, 8, and 9), as well as full details for the Aij rooms (Figure 8) in Section 3.3.1, thus
giving a “flavor” of the setup. Full construction details, including those for the DC rooms
(Figure 7) and the Bij rooms (Figure 9), are omitted and can be found in our full paper [10].

Figure 7 depicts rooms which allow Rico to select a domino to logically place at each step.
Figure 8 depicts a room type representing symbols on stack SA, and Figure 9 depicts a pair
of room types representing symbols on stack SB . During the checking phase, for each pair of
symbols at the front of SA and SB Rico will have to perform a 2-way handshake between
the machinery in the respective corresponding room Aij and B

(J)
i′j′ to prove that the symbols

are the same. If they aren’t, Rico will get stuck. On the other hand, if Rico can successfully
perform all handshakes and simultaneously empty the call stack and the jar chain, they will
be able to deliver the initial block to the start room and reach the goal!

3.3.1 Aij Rooms

Consider the jth symbol in the top half of the ith domino. We uniquely identify that location
by Aij and the (nonunique) symbol by s(Aij). Similarly, we label the bottom half locations
Bij corresponding to symbol s(Bij). Each location Aij has a corresponding room, also
labeled Aij , shown in Figure 8.

VDCi
VDCi

PDCi+1PDCi+1

GLGL DCi+1,2jDCi+1,2j DCi+1,2j+1DCi+1,2j+1

Figure 7 The Domino-Choice rooms,
Dij . Rico can traverse these rooms through
a series of binary choices to select a domino
to logically place at each step.

VAi,j
VAi,j

PAi,j+1PAi,j+1

Ps(Ai,j ),bPs(Ai,j ),b PhsPhs Ai,j+1Ai,j+1
GLGL

Vs(Ai,j ),bVs(Ai,j ),bVs(Ai,j ),aVs(Ai,j ),a

Figure 8 The Aij rooms. When placing
domino i, Rico must traverse all of the cor-
responding Aij rooms. During the checking
phase, Rico must traverse the latter halves
of these rooms in reverse order, through ma-
chinery representing the jth symbol on the
domino.

Pushing. During the pushing phase, Rico will do the following. Upon entering, Rico must
interact with several elements, each separated from the next by a one-way:
1. Traverse a Proof-of-Holding gadget
2. Traverse a VAij

gadget
3. Traverse a PAi,j+1 gadget
4. Enter a chest leading to the next symbol room, Ai,j+1.
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If Aij is the last symbol in the top half string for this domino (i.e. Domino i has exactly
j top half symbols), Ai,j+1 and PAi,j+1 will be replaced with Bi0 and PBi0 , leading to the
Bij rooms for this domino. If the bottom string of Domino i is empty, the replacements will
instead be the first Domino-Choice room, DC00, and PDC00 , respectively. This is as far as
Rico will go during the Domino Selection phase.

Popping. Of course, that is not the end of the room, for when Rico jumps back out of the
Ai,j+1 chest they entered in Step 4 above during the checking phase, this is the point where
they will need to pop a symbol from SB and prove that it is equal to aij . Note that Rico
will not be able to usefully go back into the Ai,j+1 chest they just jumped out of, since there
will immediately be an untraversable VAi,j+1 gadget.

During the checking phase, Rico must take the following steps, comprising a 2-way
handshake to prove that S(Aij) and bi′j′ are equal to each other. Again, all elements are
separated by One-Ways (besides entering and exiting held jars, of course).

1. Traverse the Global-Lock gadget to prove the checking phase has been entered and a
“handshake” chest Phs, allowed in either order to save space. The Phs gadget will prove
that the handshake has been appropriately initiated (see below).

2. Traverse a Ps(Aij),b gadget corresponding to the “bottom half b version” of s(Aij).
3. Delve into the jar they should be carrying, hopefully containing B

(J)
ij with s(Aij) = s(Bij).

4. Inside the jar (refer to the full construction [10] for details), traverse a Vs(Bij),b gadget,
only possible if s(Aij) = s(Bij).

5. Traverse a Ps(Bij),a gadget corresponding to the “top half a version” of s(Aij).
6. Traverse a Vhs chest.
7. Exit the jar, thereby destroying the B

(J)
ij instance, effectively popping SB .

8. Traverse the Ps(Aij),b from Step 2 again (see below for an explanation).
9. Traverse a Vs(Aij),a gadget, again only possible if s(Aij) = s(Bij).

10. Traverse an instance of Vs(Aij),b to re-unset it from Step 8.

The Phs-Vhs handshake pair is necessary to disallow popping multiple instances of s(Aij)
off of SB. Without it, after Step 8, Rico could enter the new top jar, and traverse it
successfully, contingent on the symbol it corresponds to being equal to s(Aij). However,
the Vhs gadget prevents this, since it will become unset after having traversed the previous
intended jar.

Steps 8 and 10 are necessary because there is no way to prevent Rico from traversing the
Ps(Aij),b an extra time after exiting the jar, which could allow future unintended traversals of
a Vs(Aij),b somewhere else. Thus, we must simply assume that Rico will traverse the Ps(Aij),b

chest again and then force them to unset the Vs(Aij),b in Step 10.
As mentioned above, please refer to our full paper [10] for a complete discussion of the

DC and Bij rooms and the remaining construction details.

4 Open Problems

Although we achieve a tight result of RE-completeness, we could still ask about the complexity
of Recursed with a subset of the puzzle mechanics. We propose two conjectures and two
open problem relating to subsets of Recursed mechanics.

I Conjecture 1 (Cauldrons but no Jars). We conjecture that Recursed with Cauldrons, but
no Jars, is still undecidable.
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VBi,jVBi,j

PB(J)PB(J)

B
(C)
i,j+1B
(C)
i,j+1 VB(C)VB(C) B

(J)
i,jB
(J)
i,j

PBi,j+1PBi,j+1GLGL

(a) B
(C)
ij “call stack” rooms. When placing dom-

ino i, traversing room B
(C)
ij for each bottom sym-

bol j will force Rico to add room B
(J)
ij (right)

to the jar chain.

VB(J)VB(J)

PB(C)PB(C)

Vs(Ai,j),bVs(Ai,j),b GLGL

VhsVhsPs(Bi,j),aPs(Bi,j),a

(b) B
(J)
ij “jar chain” rooms. Rico will be forced

to traverse the second halves of these rooms dur-
ing the checking phase, again through machinery
representing the symbols on the bottom stack.

Figure 9 The Bij rooms.

This conjecture seems very likely because Cauldrons (which are intended to intuitively
represent multi-threading) allow Rico to jump between different “worlds” (up to 4, represented
visually by background color) which each have their own chest history. Thus, it should not
be difficult to build a reduction similar to ours which makes use of multiple stacks to simulate
PCP or 2-stack Push Down Automata, both of which are undecidable.

I Conjecture 2 (No Cauldrons or Jars). We conjecture that Recursed without Cauldrons or
Jars can be simulated by a Push-Down Automata, and is therefore decidable.

The main difficulty with proving this conjecture is that during a solution, rooms can
contain an unbounded number of objects (blocks, keys, or chests), and such state can not be
trivially stored in either the automata head, or on the stack. However, we conjecture that
after some bounded point, more objects of a given type cannot help towards a solution, and
can therefore be forgotten. However, this seems difficult to prove.

I Open Problem 3 (Jars or Cauldrons but no Green Glow). What is the complexity of Recursed
with Jars or Cauldrons or both, but without green glowing objects?

Green glowing objects are not required to build some form of two or more stateful stacks
with either Jars or Cauldrons, but it seems very difficult to construct reductions without
them. It’s possible that there simply is not enough interaction amongst the limited set of
objects in Recursed for this problem class to be undecidable, but it seems quite difficult to
rule out.

I Open Problem 4. What is the complexity of Recursed restricted to a polynomial-length
“room stack” (analogous to call stack)?

This problem is naturally in NPSPACE = PSPACE, but is it PSPACE-complete? This
question likely needs a different approach, as our reduction is focused on time simulation
and not on multiple uses of gadgets.
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