
Recency Queries with Succinct Representation
William L. Holland
School of Computing and Information Systems, The University of Melbourne, Parkville, Australia
w.holland@student.unimelb.edu.au

Anthony Wirth
School of Computing and Information Systems, The University of Melbourne, Parkville, Australia
awirth@unimelb.edu.au

Justin Zobel
School of Computing and Information Systems, The University of Melbourne, Parkville, Australia
jzobel@unimelb.edu.au

Abstract
In the context of the sliding-window set membership problem, and caching policies that require
knowledge of item recency, we formalize the problem of Recency on a stream. Informally, the query
asks, “when was the last time I saw item x?” Existing structures, such as hash tables, can support a
recency query by augmenting item occurrences with timestamps. To support recency queries on a
window of W items, this might require Θ(W logW) bits.

We propose a succinct data structure for Recency. By combining sliding-window dictionaries
in a hierarchical structure, and careful design of the underlying hash tables, we achieve a data
structure that returns a 1 + ε approximation to the recency of every item in O(log(εW)) time, in
only (1 + o(1))(1 + ε)(B+W log(ε−1)) bits. Here, B is the information-theoretic lower bound on the
number of bits for a set of size W , in a universe of cardinality N .

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Succinct Data Structures, Data Streams, Sliding Dictionary

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.49

Funding This work was supported by the Australian Research Council, grant number DP190102078,
and an Australian Government RTP Scholarship.

Acknowledgements We acknowledge the Wurundjeri People of the Kulin Nations as traditional
owners of the land on which we live and work.

1 Introduction

In evolving data streams, applications are often interested in recent history. This is evident in
recency-sensitive applications such as in-network caching [5], web-crawling and the detection
of duplicates [7]. Data structures that provide summaries of item-histories in support of these
applications can be found in the sliding membership1 literature [2, 6, 8, 11]. The summaries
are set membership structures fused with estimates of item recency; a statistic identical to
the question “when was the last time I saw item x?”. Item recency can be supported by a
hash table by augmenting item occurrences with timestamps or some identifier of a point in
history. However, this strategy has not been fulfilled in both “small” space and with sufficient
accuracy. Thus, we look at the problem of balancing these demands in the design of a data
structure that supports a recency query.

What makes the recency and the sliding membership problems compelling, particularly
in the context of the broader dictionary literature, is decay: the data structure must forget
old items. Thus, a mechanism is required to determine the age of an item and, in turn,

1 The sliding membership problem asks: “has item x occurred among the last W items?”
© William L. Holland, Anthony Wirth, and Justin Zobel;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:w.holland@student.unimelb.edu.au
mailto:awirth@unimelb.edu.au
mailto:jzobel@unimelb.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2020.49
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Recency Queries with Succinct Representation

identify candidates for omission. If we want to keep the representation of the set of items
succinct (a representation of a set that occupies an amount of space close to the theoretic
information lower bound), the question of how to determine item recency is non-trivial.
Additional information must be associated with each item. So we may ask whether the size
of this information is dependent on the number of items present and, in turn, whether this
precludes a succinct representation. In this paper, we present a space-efficient data structure
to support recency queries with relative accuracy, maintaining succinct representations of
the occurred items.

1.1 Formalizing the problem

In the sliding membership problem, on parameters D,W ∈ Z+, a process observes a sequence
of items S(t) = 〈s1, s2, . . . , st〉, from a universe [N], we seek to answer membership queries
on item x in the length-W window of most recent items, SW (t) = 〈st−W+1, . . . , st〉:

x
?
∈ SW (t) =

yes if x ∈ SW (t),
no if x /∈ SW+D(t),
yes or no otherwise.

Including the slack parameter D allows for more efficient solutions [8].

Recency

A recency query, r(x, t), takes sliding membership a step further, and returns a measure of
the age of an item x:

r(x, t) = t−max{j | sj = x, j ≤ t} .

Trivially, sliding membership reduces to recency, as (r(x, t) ∈ [0,W)) answers x
?
∈ SW (t).

The commonly cited naïve solution for sliding membership, with slack parameter D > 0,
entails dividing the window into blocks of width D. Each block is stored in a static dictionary.
To evaluate item membership on the sliding window it suffices to query each block, in turn,
and return the logical disjunction of the results. Similarly, the recency of an item x, given
that x ∈ SW (t), can be approximated by returning the recency of the (youngest) block it
belongs to. This approach returns approximations with absolute error at most D. However,
when viewed from the perspective of relative error, estimates are less accurate for items with
low recency. Accurate estimates may be required throughout the window and are arguably
more valuable for more recent items, motivating our formalization of the Recency problem.

I Problem 1 (Recency). Given W,D ∈ Z+ and ε ∈ (0, 1), and the sequence S(t) =
〈s1, s2, . . . st〉 from universe [N], when presented with some item x ∈ [N], return an es-
timate r̂ for r(x, t) where

r̂ ∈

(1± ε)r(x, t), if x ∈ SW (t) ,
{−1} , if x /∈ SW+D(t) ,
(1± ε)r(x, t) ∪ {−1} , otherwise.

W.L. Holland, A. Wirth, and J. Zobel 49:3

To set the context of our contributions, we briefly consider approaches to Recency that
are nearly immediately at hand. The solutions in the sliding membership literature take a
general form: insert (item-signature,2 timestamp) pairs into a hash table. This approach
either incurs a large memory overhead [6] or does not admit bounded relative error [8]. As
an alternative approach, one could store items in a circular array of length O(W). However,
queries are linear in the length of the array. This cost could be reduced to the cardinality of
the window with a move-to-front list [10]. Both approaches are non-succinct in memory.

1.2 Contribution
We introduce a data structure named (HistoricalMembership) that achieves tight memory
allocation and bounded relative error in return for logarithmic update and query times.
Our solution builds on existing approaches, particularly the tactic of dividing the window
into blocks of items of equivalent age. However, to achieve both relative (1± ε) accuracy
in item recency and also space efficiency, the structure is hierarchical, comprising levels of
geometrically increasing size. Level l of HistoricalMembership is a sliding dictionary with a
window of ε−12l items and slack of 2l, divided into blocks of size 2l.

We illustrate the formal validity of our approach and conjecture whether improvements
are possible. Our main result is captured in the following theorem.

I Theorem 2. On a sequence of S = 〈s1, s2, . . .〉, where si ∈ [N], for parameters W and
ε > 0, at each timestamp t ≥ 1, HistoricalMembership solves the Recency problem in

(1 + o(1))(1 + ε)(B +W log(ε−1))

bits of memory, admitting query and update times of item x in O(log(ε · r(x, t))). This bound
is with high probability worst case for queries and expected amortized for updates. Here, B is
the information-theoretic lower bound for storing a subset of size W from the universe [N].

Importantly, HistoricalMembership achieves ε-approximation to item recency in space
asymptotically identical to the state-of-the-art data structure for sliding membership [8]. The
auxiliary information is not dependent on W and the representation of the items, including
the slack, is succinct.

2 Background

Succinct data structures

We adhere to the word RAM model of computation with word size w = Θ(logN). Elements
from the universe N can be stored in O(1) machine words and bitwise operations such as
arithmetic require constant time. There exist

(
N
m

)
distinct size-m subsets of the universe [N]

so an encoding of such a subset requires, on average, at least

B(N,m) = log
⌈(

N

m

)⌉
= m log N

m
+O(m) (1)

bits. If the information theoretic memory lower bound for a data structure that supports a
particular query is B bits, then a succinct data structure is one that requires (1 + o(1))B bits.
We refer to a data structure that solves (sliding) set membership as a (sliding) dictionary.

2 The type of item-signature depends on the context. For exact set membership the key x ∈ [N] is
sufficient. For approximate set membership, where collisions are allowed, the hash value h(x) may be
used to identify the item. Many solutions to approximate set membership are simply reductions to
exact set membership via a hash function that reduces the key space.

ISAAC 2020

49:4 Recency Queries with Succinct Representation

Table 1 Comparison of HistoricalMembership with existing art. Term B denotes the information-
theoretic lower bound for storing a set of W items from the universe [N]. ExactCuckoo solves exact
Recency. OptimalSM solves approximate Recency with bounded absolute error ≤ D− 1, with D ≤W .
HistoricalMembership solves approximate Recency with bound relative error.

Update Query Space
time time

ExactCuckoo [6] O(1) O(1) O(W (logN + logW))
OptimalSM [8] O(1) O(1) (1 + o(1))(1 +D/W)(B +W log(W/D))
HistoricalMembership O(log(εW))) O(log(εW)) (1 + o(1))(1 + ε)(B +W log(ε−1))

BackyardCuckoo

The foremost primitive in HistoricalMembership is the backyard cuckoo hash table
(BackyardCuckoo) [1], a two-level variant of cuckoo hashing [9] that achieves improved
memory utilization3 and (with high probability) worst-case constant update and query times.
The attributes of BackyardCuckoo are summarized in the following theorem.

I Theorem 3 ([1]). A dynamic set of items, drawn from the universe [N], of size at most m,
can be stored in (1 + o(1))B(N,m) bits. With probability at least 1− 1/poly(m), insert, delete
and query are performed in worst-case constant time.

In addition, backyard cuckoo hashing allows auxiliary information to be stored with each
item. When a query is lodged, via an item-signature, the auxiliary information is (also)
returned. With this extension, for auxiliary information of at most K bits, the hash table
uses (1 + o(1))(B(N,m) +mK) bits of memory.

Sliding approximate membership

Sliding dictionaries are an established class of data structure and some of them (indirectly)
solve the recency problem. We seek sliding dictionaries that can return their internal measure
of Recency. One class of solutions fails to do this [2, 7]. However, the solutions based on
hash tables [5, 8], which store items with an amount of auxiliary information indicative of
the age of the item, do provide recency estimates and are a starting point in our inquiry.

As a baseline for the exact Recency problem, Liu et al. [6] propose storing (item-signature,
timestamp) pairs in a cuckoo hash table. Expired items are identified as those with timestamps
that sit outside the window. For time efficiency, the deletion of expired items is performed
lazily. This is done in one of two ways. First, if an expired item is in encountered during an
insert or query, it is deleted. Second, at the completion of an insertion, a constant number of
cells are scanned and expired items are deleted. The process records the finishing point of
the scan and resumes at this location during the next update. These measures ensure that an
expired item is deleted within a time frame of W updates and to save space, timestamps are
assigned modulo 2W . Insertions take expected amortized constant time, while queries are
worst-case constant as per cuckoo hashing theory [9]. Memory utilization is almost 1/2, so the
table contains a large proportion of empty cells. In total, the table requires O(W (A+logW))
bits, where A is the size of the item-signature.4 Notably, as timestamps are stored, the data
structure solves the exact Recency problem. We refer to this solution as ExactCuckoo.

3 Utilization arbitrarily close to 1, as opposed to arbitrarily close to 1/2 for standard cuckoo hashing.
4 dlog 1/δe for approximate set membership and dlogNe for exact set membership.

W.L. Holland, A. Wirth, and J. Zobel 49:5

The theoretical state-of-the-art solution for absolute-error Recency is by Naor and Yogev [8].
It is the only approach that accounts for slack, and moreover measures its benefit. We refer
to the data structure as Optimal Sliding Membership (OptimalSM). The solution entails
partitioning the window into blocks of size D. Then (item-signature, block-number) pairs
are stored in a hash table. As above, block IDs are assigned on a circular field and evictions
are lazy. With this approach, and by introducing slack, OptimalSM reduces the cost of the
timestamp compared with ExactCuckoo.

Blocks that overlap with the window are called active and those that sit outside the
window as expired. During an insertion, the procedure assigns the item to the youngest
active block, which we call the contemporary block. At each timestamp, there are W/D + 1
active blocks and the circular field of block IDs is modulo 2(W/D + 1). The hash table is
BackyardCuckoo and a succinct representation of the items is obtained. A key contribution is
a lower bound on the sliding approximate membership problem.

I Theorem 4 ([8]). For parameters W,D ∈ Z+ and failure probability δ ∈ (0, 1), a data
structure that returns approximate set membership queries on the length-W sliding window,
with slack D, requires at least the following number of bits

W log 1
δ +W ·max{log W

D , log log 1
δ } − O(W) .

Naor and Yogev’s construction is tight up to the first two terms, and OptimalSM solves
Recency with bounded absolute error.

The ExactCuckoo and OptimalSM share this approach: store an item-signature with a
time indicator, such as a timestamp or block ID in a hash table. In other words, we can
think of the hash table as a black box, and so we collectively refer to these two approaches
as Hash Sliding Membership (HashSM). HistoricalMembership employs multiple instances of
HashSM to construct a Recency data structure with bounded relative error. A comparison
between ExactCuckoo, OptimalSM and HistoricalMembership is available in Table 1.

3 HistoricalMembership

With ExactCuckoo, the sliding membership literature provides a solution for exact Recency.
However, the structure does not suggest an approximate solution, nor how to trade (relative)
accuracy for space, or rather, to reduce the O(logW) bit allocation for timestamps. The
approach of Noar and Yogev [8], which involves dividing the window into blocks of fixed
length, provides an approximation of bounded absolute error. This approach is sufficient for
identifying old items, with large recency values, and is therefore ideal for sliding membership.
Through the notion of a recency equivalence class, we refine their approach towards a structure
that is sensitive to relative error.

3.1 Equivalence classes
Following OptimalSM, suppose we partition the window into blocks, and assign each item
a block ID. The most recent item in the fourth block has a recency value of 3D and we
can approximate the recency of all items in the block by assigning them the same value
of 3D. As the oldest item in the block has actual recency 3D +D − 1, the absolute error
of the estimate is at most D − 1 and hence incurs relative error approximately 1/4. To
provide a recency value with (parameterized) bounded relative error, pertinent for items with
low recency values, HistoricalMembership partitions the window into a sequence of blocks
of non-decreasing size. Every item in a block is deemed to have recency equivalent to the

ISAAC 2020

49:6 Recency Queries with Succinct Representation

s12s11s9 s10s6 s7 s8s1 s2 s3 s4 s5

+1
+2

+4

+7

“front”

Figure 1 A sequence 〈s1, . . . , s12〉 is partitioned into blocks of non-decreasing size. The timestamp
of the “front” item of each block becomes an implicit timestamp for all items in the block. For
example, the token s1 is assigned a recency estimate of 7. Since its actual recency is 11, it incurs a
relative error of (11/7 − 1). Storing each item in the set S = {s1, . . . , s12} with its corresponding
block number gives a static solution to approximate recency.

recency of the most recent item (the front item) in that block. An example is shown in
Figure 1. As a byproduct, we lose order and granularity within the blocks themselves, with
each block now a homogeneous zone of recency with a single representative timestamp. In
other words, HistoricalMembership maintains a partial order of the underlying sequence. We
want the front item to be a good representative for the block. We hence refer to a block
that is unified by a (1 + ε)-approximation as an equivalence class. To make this notion more
rigorous, a pair of timestamps, (ta, tb), satisfying the two conditions

ta < tb and (t− ta) ≤ (1 + ε)(t− tb) (2)

defines an equivalence class. The difference, tb − ta, is the width of the equivalence class.
As an equivalence class demarcates a contiguous neighbourhood of items from the

sequence, the approach of HistoricalMembership is to dynamically re-organize the sequence
into an appropriate collection of equivalence classes, as each item arrives in the stream. This
constitutes a high-level view of HistoricalMembership, but the efficiency of the structure
depends on how the classes are stored and accessed.

3.2 Coordinating the equivalence classes
To perform efficient maintenance of the dynamic collection of equivalence classes, we propose
merging adjacent classes. This tactic follows from the observation that older classes can be
wider. As a class ages, and moves further away from the present, it implicitly becomes more
(relatively) accurate. Suppose the two intervals [ta, tb) and [tb, tc) represent blocks within
the division of the window. If the pair (ta, tc) satisfies the conditions (2), the structure has
permission to merge the blocks.

Invariant

Accordingly, within the framework of merge-type equivalence class maintenance, Historic-
alMembership organizes the classes into L = blog(εW)c − 1 levels. At level l, the width of
each equivalence class is 2l. Therefore, merging two clases at level l, of width 2l, creates a
new class of width 2l+1 and a resident of level (l + 1). To maintain the equivalence class
constraints of relation (2), we insist that at least ε−1 and at most ε−1 + 1 classes at reside at
each level. This ensures that each item at level l has recency at least

ε−1
l−1∑
i=0

2i = ε−1(2l − 1) ,

W.L. Holland, A. Wirth, and J. Zobel 49:7

which, in turn, justifies the width of the classes (refer to Lemma 5 below). Consequently, we
require that ε−1 is an integer. Reducing the ε term in the approximation factor increases
the number of classes at each level. Observe that

∑L
l=0 ε

−12l ≤W ; we refer to the difference

E = W −
L∑
l=0

ε−12l (3)

as the excess. We can either extend level L to include the excess or create a new level for it.
HistoricalMembership opts for the former approach, as it is more space effective to extend the
top level than to create a new level that operates below its conceptual cardinality.

Updates

As each item arrives in the stream, it is prepended to level 0, whose items are stored in
“equivalence classes” of width 1. When level 0 becomes full, which is to say it contains
(2 + ε−1) items, the two oldest items become an equivalence class of width 2, which is
promoted to level 1. Similarly, when level l acquires 2 +ε−1 equivalence classes, its two oldest
equivalence classes are merged, and become the newest equivalence class at level l + 1. At
the top level, when an equivalence class “falls off the window”, it is (conceptually) deleted.

4 Upper bound: level = sliding dictionary

The preceding section presents an overview of the structure of HistoricalMembership. We
now turn to the question of how to store and maintain this equivalence class partition of
the window. An initial temptation would be to store each equivalence class as a (succinct)
static dictionary. Periodically, the dictionary structures can be merged, and techniques are
available to do this [3]. However, this leads to expensive worst-case queries, taking Ω(ε−1L)
time, in which every dictionary in each level is queried, level by level.

Levels as sliding windows

To reduce the number of internal queries to the dictionary primitive, we observe that every
level in fact constitutes a window partitioned into blocks of fixed length. Thus, we can
engage a HashSM sliding dictionary to store an entire level of HistoricalMembership. The
problem, for levels l ∈ {0, 1, . . . , (L− 1)}, reduces to sliding membership with window length
Wl = ε−12l and slack Dl = 2l. Following the approach of OptimalSM, it suffices to divide
the window into ε−1 blocks of width 2l and store (item-signature, block ID) pairs in a hash
table. At level L, extended to contain the excess of the level structure, reduced to sliding
membership with window length WL = E + ε−12L and slack DL = 2L, where E is defined
in relation (3). Block IDs can be assigned in a circular fashion, and, in our context, are
identical to an equivalence class ID. Items that belong to an expired equivalence class are
promoted lazily; the item may sit expired at a level l, but it is understood to conceptually
belong at level l+ 1. item-signatures must be stored under a representation that is invertible,
as is the case for BackyardCuckoo hashing.

Insertion operation

An insertion into a level proceeds according to the logic of HashSM. Following a protocol of
lazy promotions, if, in the process of allocating a free cell to an (item-signature, equivalence
class) pair,5 the procedure encounters an item with a lapsed equivalence class, that is, a class

5 Hash tables such as Cuckoo and BackyardCuckoo offer multiple choices for each item allocation.

ISAAC 2020

49:8 Recency Queries with Succinct Representation

(K, 0) (�,�) (`, 2) (�, �) (Q, 1) (N, 3) (:, 2)

(P, 4) (N, 0) (5, 5) (�, �)
S

Level 1

Level 0

Figure 2 Image of levels 0 & 1 of HistoricalMembership, for ε−1 = 2 and L ≥ 2, on the sequence
S = 〈. . ., K, Q, N, :, `, N, P, 5, N〉. The global clock is at t = 18. Each level is a hash table
that stores (item-signature, equivalence class ID) pairs and implements a sliding dictionary. Each
level has ε−1 + 1 = 3 equivalence classes. The circular field of block IDs is 2(ε−1 + 1) = 6. The
contemporary block ID at level 0 is 0 and the contemporary block ID at level 1 is 3. The equivalence
class width at level 1 is 21 = 2. Note, N occurs twice at level 1 and does not appear in block 1. The
item K has expired at level 1 and awaits (a lazy) promotion to level 2.

that has been conceptually merged and placed in the succeeding level, it evicts the expired
item and inserts it into the subsequent level. After the insertion pair has been allocated a
free cell, the process scans a constant number of cells and promotes expired items. For levels
l ∈ [L− 1] block IDs come from the range {0, 1, 2, . . . , 2(ε−1 + 1)}, treated as a circular field.
For level L, block IDs come from

2(WL/2L + 1) = 2(ε−1 + E/2L + 1) . (4)

In the HashSM approach of lazy deletions there is no control over when an expired item
is evicted from a level. Rather, this is an outcome of the randomness that distributes items
within the hash table. Therefore, care needs to be taken, during a promotion, when inserting
into the succeeding level such that the item is placed in the correct equivalence class. To
accomplish this, we make modify the approach of HashSM, specifically, installing an external
assignment of block IDs.

Block ID assignment

In HashSM, during an insertion, the procedure assigns the item to the “contemporary” block.
With the combination of the levelled structure of HistoricalMembership and lazy promotions,
an item evicted from level l may not belong to the contemporary equivalence class (block)
of level l + 1. Therefore, equivalence class IDs are assigned externally. For example, if, at
level l, an evicted item returns the (expired) equivalence class ID e from the circular field
2(ε−1 + 1), the corresponding class ID in level l + 1 can be calculated as follows. Letting ej
name the contemporary class ID at level j, the number of equivalence classes between class e
and the local (level-l) window, assuming l + 1 6= L, is

d = el − e− (ε−1 + 1) mod (2ε−1 + 2).

The difference is equal to the contemporary class ID minus the expired ID minus the number
of active classes modulo the circular field. The difference d determines the equivalence class
ID e∗ that e would be merged into in level l+ 1. Recall that adjacent equivalence classes are
(conceptually) merged prior to a promotion to a succeeding level. Therefore, the number of
classes between e∗ and el+1 is d/2, and hence e∗ = el+1 + d/2 mod (2ε−1 + 2).

Each sliding dictionary is synchronized by a global clock, thus, the contemporary class
IDs are also updated externally. For this reason, if there are no items to insert at a level,
HistoricalMembership still scans for evictions as if an item were being inserted. A formal

W.L. Holland, A. Wirth, and J. Zobel 49:9

summary of the insertion procedure is available in Algorithm 2. The initialization algorithm
is present in Algorithm 1. Together, they instruct the external assignment of block IDs for
the sliding dictionaries. An image of HistoricalMembership is in Figure 2.

Correctness/queries

To evaluate the recency of an item x, HistoricalMembership probes the levels sequentially.
Thus, assuming x is in the window, query time is proportional to the logarithm of x’s recency.
If x is (first) retrieved from level l, its recency is estimated from its equivalence class ID, e.
The level l dictionary provides a local estimate r̂l(x) with absolute error at most 2l − 1:

r̂l(x) = 2l · (e− el mod (2ε−1 + 2)) .

The local estimate can be interpreted as the recency of the item with respect to level l. To
construct a global estimate r̂(x, t), with bounded relative error, we accumulate the widths
of levels below level l and append the sum to the local estimate. Due to the effect of
slack, the width of each level varies. (The width of a level is the bound on the number of
active items. Each level has ε−1 non-contemporary active classes.) At time t in the stream,
the contemporary class at level i has at most (t mod 2i) items, so the width of level i is
(t mod 2i) + ε−12i. Summing the widths of the preceding levels, we arrive at an estimate.

r̂(x, t) = r̂l(x) +
l−1∑
i=0

(ε−12i + (t mod 2i)) . (5)

With the query algorithm in place, we can bound the relative error of the data structure.

I Lemma 5. HistoricalMembership returns a (1 + ε)-approximation to item recency.

Proof. The second summand can be interpreted as the distance between level l and the front
of the sequence. The distance is exact. Thus, the error on the global estimate is bound by
the error on the local estimate.

|r(x, t)− r̂(x, t)|
r̂(x, t) ≤ 2l − 1

r̂l(x) +
∑l−1
i=0(ε−12i + (t mod 2i))

≤ 2l − 1
ε−1∑l−1

i=0 2i
= ε . J

5 Efficiency: selecting the hash tables

The efficiency of HistoricalMembership hinges on the performance of the hash tables supporting
the HashSM sliding dictionaries. BackyardCuckoo is the state-of-the-art, combining succinct
representation with worst-case constant-time operations, except with probability proportional
to 1/poly(s), where s is the size of the set. in the size of the underlying set. Unfortunately,
this is an issue for levels with low cardinality, where the failure probability is non-negligible,
particularly across long sequences. Thus our choice tables for implementing HashSM depends
on the size of the level. We split the level structure in half and only assign the BackyardCuckoo
table to the upper dL/2e levels. As the lower dL/2e − 1 levels have an aggregated cardinality
of O((ε−1 + 1)W 1/2), there is more flexibility in the hash table construction, in the sense
that it does not need to be succinct. A number of options are available and we suggest the
dynamic hash table of Dietzfelbinger et al. [4] (DynamicTable). The latter result allows a
dynamic set of at most m items to be stored in O(m) words with constant worst-case query
times and constant expected amortized insert and delete.

ISAAC 2020

49:10 Recency Queries with Succinct Representation

I Lemma 6. In HistoricalMembership, a query can be evaluated in worst-case O(log(εW)) time
and insertions completed in expected amortized O(log(εW)) time with probability 1−O(1/W).

Proof. A query requires at most L probes to the underlying hash tables. For DynamicTable,
queries are worst-case constant. For BackyardCuckoo, when representing a set of size m,
queries are non constant with arbitrarily small probability 1/poly(m). As the width of
each level l ≥ dL/2e is Ω(W 1/2), we can initialize the BackyardCuckoo hash tables with
sufficient randomness such that failures occur with probability O(1/W 2). Taking a union
bound over the event that each level reports sliding membership in constant time, queries
are worst-case O(log(εW)) with probability 1−O(1/W). Similarly, as an insertion causes at
most O(1) item insertions at every level, the same argument follows for the insertion time for
HistoricalMembership. However, due to inheritance from the DynamicTable, insertion times
are only expected amortized. J

Further, as the levels are queried consecutively and in reverse chronological order, we can
bound the query time as a function of item recency.

I Lemma 7. In HistoricalMembership, the query cost for an item x ∈ [N], with recency
r(x, t) ≤W , can be evaluated in worst-case O(log(ε·r(x, t))) time with probability 1−O(1/W).

To bound the memory allocation, we disaggregate the level structure into three components,
and work bottom up: the lower levels, implemented by DynamicTable; the upper-middle
levels, implemented by BackyardCuckoo; and the top level, which contains the excess.

I Lemma 8. HistoricalMembership stores levels {0, 1, . . . , dL/2e − 1} in (1 + ε)
√
W · O(w)

bits.

Proof. Each lower level l has cardinality at most (ε−1 + 1)2l. Accumulated across all lower
levels the cardinality is at most (1 + ε)

√
W . The DynamicTable stores m via item-signatures

in O(mw) bits, which in total leads to a bound of (1 + ε)
√
W · O(w) bits. J

I Lemma 9. For levels l ∈ {dL/2e . . . , (L − 1)}, the memory allocation of the sliding
dictionaries accumulates to (1 + o(1))(ε−1 + 1)(2L − 1)

(
log
(
N
W

)
+ log ε−1 +O(1)

)
bits.

Proof. By Theorem 3, BackyardCuckoo stores a set of size m, from the universe [N], with
each item containing auxiliary information of K bits, in (1 + o(1))((B,m) +mK) bits. As
level l has cardinality at most (ε−1 + 1)2l and stores auxiliary information of log(2ε−1 + 2)
bits for the equivalence class ID at that level, we can accumulate the memory commitment
across the relevant levels. To set this up, we observe that

W ≤ ε−12L+2 , (6)

and that

L−1∑
l=dL/2e

2l(L− l) ≤
L−1∑
l=0

2l(L− l) =
L−1∑
l=0

2l +
L−2∑
l=0

2l + · · ·+
0∑
l=0

2l ≤ 2L+1 − 2 . (7)

W.L. Holland, A. Wirth, and J. Zobel 49:11

Hence

L−1∑
l=dL/2e

(1 + o(1))(B(N, 2l(ε−1 + 1)) + 2l(ε−1 + 1) log(2ε−1 + 2))

= (1 + o(1))
L−1∑

l=dL/2e

2l(ε−1 + 1)(log
(

N

2l(ε−1 + 1)

)
+ log ε−1 +O(1))

≤ (1 + o(1))(ε−1 + 1)
L−1∑

l=dL/2e

2l
(
(log

(
W

2lε−1

)
+ log

(
N

W

)
) + log ε−1 +O(1)

)
≤ (1 + o(1))(ε−1 + 1)

L−1∑
l=dL/2e

2l((L− l + 2) + log
(
N

W

)
+ log ε−1 +O(1)) from (6),

≤ (1 + o(1))(ε−1 + 1)(2L − 1)
(
2 + log

(
N

W

)
+ log ε−1 +O(1)

)
from (7). J

The excess of the level structure has E = W − ε−1∑L
l=0 2l items. We extend the top level

to contain the excess, becoming a sliding dictionary with WL = E + ε−12L and slack 2L.

I Lemma 10. Level L occupies (1 + o(1))(WL + 2L)(log
(
N
W

)
+ log ε−1 +O(1)) bits.

Proof. The BackyardCuckoo table that implements the level-L sliding dictionary is initialised
to contain WL + 2L items. We begin by providing a lower bound on this value.

WL + 2L = (W − ε−1(2L+1 − 1)) + ε−12L + 2L

= W − ε−12L + ε−1 + 2L

≥W − ε−12L

≥W/2 , (8)

from inequality (6). We need to account for the cost of storing a block ID, and size of the
level-L circular field is 2(ε−1 + E/2L + 1) by Equation (4). Therefore, following Theorem 3
and Equation (1), the number of bit the level-L sliding dictionary requires is

(1 + o(1))(B(N,WL + 2L) + (WL + 2L) log(2(ε−1 + E/2L + 1)))

= (1 + o(1))(WL + 2L)(log
(

N

WL + 2L

)
+ log

(
ε−1 + W − ε−1(2L+1 − 1)

2L

)
+O(1))

≤ (1 + o(1))(WL + 2L)(log
(
N

W

)
+ log

(
ε−1 + ε−12L+2 − ε−12L+1

2L

)
+O(1))

= (1 + o(1))(WL + 2L)(log
(
N

W

)
+ log ε−1 +O(1)) ,

where line three follows from inequalities (6) and (8). J

We have now bounded the space consumption of each of the three components of
HistoricalMembership. We now relate the overall space consumption to the information-
theoretic lower bound.

I Lemma 11. HistoricalMembership requires (1 + o(1))(1 + ε)(B+W log ε−1) bits of memory,
where B is the information-theoretic lower bound to store a set of size W .

ISAAC 2020

49:12 Recency Queries with Succinct Representation

Proof. The bound in Lemma 9 is at least (W/2)(O(1) + log ε−1). This absorbs the bound
of the lower levels, of Lemma 8, under the assumption w = o(

√
W (1 + log ε−1)). Therefore,

it suffices to focus our attention on the upper levels. By Lemmas 9 and 10, levels dL/2e to L
can be stored in

(
WL + 2L + (ε−1 + 1)(2L − 1)

)
(1 + o(1))(log

(
N

W

)
+ log ε−1 +O(1)) (9)

bits. It suffices to simplify the leading factor.

WL + 2L + (ε−1 + 1)(2L − 1) = W − ε−1(2L+1 − 1) + ε−12L + 2L + (ε−1 + 1)(2L − 1)
= W + 2L+1 − 1
≤W + εW .

As B = W (log(N/W)+O(1)), expression (9) simplifies to (1+o(1))(1+ε)(B+W log ε−1). J

Combining Lemmas 5, 6 and 11, we arrive at Theorem 2, in some sense, a remarkable result.
The bound of Lemma 11 matches the memory commitment of OptimalSM, for D = εW .
HistoricalMembership achieves a representation of a window of a sequence of items with
memory allocation that is tight, with respect to membership on the window, and supports
Recency queries in time logarithmic in the recency value. This evolution from OptimalSM to
HistoricalMembership represents a time-accuracy trade-off, where we refine our understanding
of where items occur in the sequence paying for a small time overhead. Further, the movement
between ExactCuckoo and HistoricalMembership represents a space-time trade-off and asks
whether constant update and query times are possible in o(W logW) space.

We finalize our theoretical development of Recency by observing that Theorem 2 can
be applied to approximate set membership. By applying a universal hash function to the
sequence of items, we can reduce the size of the universe at the expense of introducing
collisions. The result is a space bound that is proportional to W , and tight, up to the first
two terms, by Theorem 4.

I Corollary 12. For the universal hash function h : [N]→ [(1 + ε)W/δ], on input h(S(t)) =
〈h(s1), h(s2), . . . h(st)〉, HistoricalMembership returns the approximate recency on an item
with probability 1− δ. The data structure uses (1 + ε)W log(ε−1δ−1) +O(W) bits.

6 Conclusion and future work

We have investigated and defined the notion of Recency through the concept of the sliding
window. Existing work, from the sliding membership literature, realizes our definition but
cannot accommodate a combination of accuracy and small memory. Our primary innovation
is carried through the data structure HistoricalMembership, which supports Recency queries
with bounded relative error on top of a succinct representation of the occurred items. The
logic of HistoricalMembership is tied to the impression of an equivalence class, wherein items
occurring at an equivalent moment in history can be assigned the same estimate. If we
think of accuracy-space-time as a triangle, the data structures ExactCuckoo, OptimalSM and
HistoricalMembership each occupy a unique face. This leads to the question as to whether
operations for Recency data structures can be supported in constant time without sacrificing
the memory and accuracy attributes of HistoricalMembership. Alternatively, the three data
structures represent the contours and boundaries of the Recency problem.

W.L. Holland, A. Wirth, and J. Zobel 49:13

References
1 Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case

operations with a succinct representation. In FOCS, pages 787–796, 2010.
2 Eran Assaf, Ran Ben Basat, Gil Einziger, and Roy Friedman. Pay for a sliding Bloom filter

and get counting, distinct elements, and entropy for free. In INFOCOM, pages 2204–2212,
2018.

3 Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better bitmap performance
with roaring bitmaps. Software: Practice and Experience, 46(5):709–719, 2016.

4 Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans
Rohnert, and Robert E Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM
Journal on Computing, 23(4):738–761, 1994.

5 Zhe Li, Gwendal Simon, and Annie Gravey. Caching policies for in-network caching. In
ICCCN, pages 1–7, 2012.

6 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In INFOCOM, pages 1447–1455, 2013.

7 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Duplicate detection in click
streams. In WWW, pages 12–21, 2005.

8 Moni Naor and Eylon Yogev. Tight bounds for sliding Bloom filters. Algorithmica, 73(4):652–
672, 2015.

9 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In ESA, pages 121–133, 2001.
10 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.
11 Jiansheng Wei, Hong Jiang, Ke Zhou, Dan Feng, and Hua Wang. Detecting duplicates over

sliding windows with RAM-efficient detached counting Bloom filter arrays. In NAS, pages
382–391, 2011.

A Appendix

Algorithm 1 HistoricalMembership.

1 Procedure initialise(W , ε)
2 L← blog(εW)c − 1 ; // number of levels
3 for l ∈ {0, 1, . . . L} do
4 Λl ← initialise a hash table that stores at most 2l(ε−1 + 1) items ;
5 el ← 0; // contemporary equivalence class ID
6 nl ← 2(ε−1 + 1) ; // circular field of class IDs
7 E ←W − ε−1∑L−1

l=0 2l ; // the excess
8 ΛL ← initialise a hash table that stores at most 2L(ε−1 + 1) + E items;
9 eL ← 0;

10 nl ← 2(ε−1 + E/2L + 1); // circular field of class IDs at level L

11 t← 0; // the global clock
1313 return;

1 Procedure query(x)
2 c← 0;
3 for l ∈ {0, 1, . . . , L} do
4 e∗ ← retrieve x from Λl;
5 if e∗ 6= −1 then
6 return c+ 2l · (el − e∗ mod nl); // item located at level l

7 c← c+ ε−12l + (t mod 2l);
8 return −1;

ISAAC 2020

49:14 Recency Queries with Succinct Representation

Algorithm 2 HistoricalMembership.

1 Procedure insert(x)
2 t← t+ 1 ; // update global clock
3 for l ∈ {0, 1, . . . L} do
4 if t mod 2l = 0 then
5 el ← el + 1 mod nl; // synchronize block IDs
6 E ← insert (x, e0) into Λ0; // insertion returns a set of evicted items
7 for ł ∈ {0, 1, . . . , L} do
8 E′ ← ∅;
9 for (y, e) ∈ E do

10 e∗ ← el+1 + (el − e− (ε−1 + 1) mod nl)/2;
11 E′ ← E′∪ insert (y, e∗) into Λl;
12 E ← E′∪ scan Λl;
1414 return;

	 Introduction
	Formalizing the problem
	 Contribution

	 Background
	 HistoricalMembership
	 Equivalence classes
	 Coordinating the equivalence classes

	 Upper bound: level = sliding dictionary
	 Efficiency: selecting the hash tables
	 Conclusion and future work
	Appendix

