
Partial Function Extension with Applications to
Learning and Property Testing
Umang Bhaskar
Tata Institute of Fundamental Research, Mumbai, India
umang@tifr.res.in

Gunjan Kumar
Tata Institute of Fundamental Research, Mumbai, India
gunjan.kumar@tifr.res.in

Abstract
Partial function extension is a basic problem that underpins multiple research topics in optimization,
including learning, property testing, and game theory. Here, we are given a partial function consisting
of n points from a domain and a function value at each point. Our objective is to determine if this
partial function can be extended to a function defined on the domain, that additionally satisfies
a given property, such as linearity. We formally study partial function extension to fundamental
properties in combinatorial optimization – subadditivity, XOS, and matroid independence. A priori,
it is not clear if partial function extension for these properties even lies in NP (or coNP).

Our contributions are twofold. Firstly, for the properties studied, we give bounds on the
complexity of partial function extension. For subadditivity and XOS, we give tight bounds on
approximation guarantees as well. Secondly, we develop new connections between partial function
extension and learning and property testing, and use these to give new results for these problems.
In particular, for subadditive functions, we give improved lower bounds on learning, as well as the
first subexponential-query tester.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Partial function extension, subadditivity, matroid rank, approximation
algorithms, learning, property testing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.46

Funding This research was supported by the Department of Atomic Energy, Government of India,
under project no. RTI4001.
Umang Bhaskar : UB acknowledges support from a Ramanujan Fellowship (SERB – SB/S2/RJN-
055/2015) and an Early Career Research Award (SERB – ECR/2018/002766) from the Government
of India.
Gunjan Kumar : GK acknowledges support from a TCS fellowship.

1 Introduction

A partial function consists of a set D of points from a domain, and a real value at each of the
points. Given a property P , the partial function extension problem is to determine if there
exists a total function f (f is defined on the entire domain) that extends the partial function
(f equals the given value at each point in D) and satisfies P . E.g., property P could be
linearity, and we are required to determine if there exists a linear function that extends the
given partial function. In this paper, we study partial function extension when D is finite, to
fundamental properties in combinatorial optimization.

The problem of partial function extension underpins research and techniques in a number
of different areas. In learning theory, for example, the goal is to understand if functions
with a given property can be learned by random samples. That is, does there exist an
efficient algorithm that for any target function with the given property, takes as input the

© Umang Bhaskar and Gunjan Kumar;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869093?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:umang@tifr.res.in
mailto:gunjan.kumar@tifr.res.in
https://doi.org/10.4230/LIPIcs.ISAAC.2020.46
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Partial Function Extension with Applications

function values at a set of sampled points, and returns a function that is “close” to the
target function? In learning theory the partial function extension problem is also known as
the consistency problem. Pitt and Valiant [20] formally showed that the hardness of partial
function extension for a class of functions can be used to show lower bounds on proper
learning for this class, i.e., when the function returned must also belong to the same class.
We use this connection in our paper as well. Partial function extension can also be used to
give lower bounds on the learnability of various function classes beyond proper learning, and
has been used thus in previous papers, e.g., [2]. Our lower bound for subadditive functions
gives another example of this connection.

Partial function extension is used in property testing as well, where a function is given
by an oracle, and the problem is to determine with high probability by querying the oracle
whether the function satisfies a required property, or is far from it (e.g., [9, 22]). The focus in
property testing is on algorithms with optimal query-complexity. A typical testing algorithm
with one-sided error queries the values at points chosen from some distribution, and rejects
iff the partial function given by the queried points and the values at these points cannot
be extended to a function with the required property. Clearly partial function extension is
useful both in design and analysis of property testing algorithms.

Besides these, partial function extension is studied in many other applications as well.
For example, Topkis studies the problem of extending a partial function on a sublattice to
a submodular function on the lattice, and applies it to obtaining conditions under which
optimal solutions to an optimization problem are a monotone function of a parameter [24].
Extending partial functions to convex functions is widely studied in convex analysis [19, 27].

Partial function extension is thus a fundamental problem that finds many diverse ap-
plications. We focus on the complexity of deciding if a partial function can be extended to
functions widely studied in combinatorial optimization – subadditive, XOS, and independence
functions for matroids1 – defined on 2[m], the family of subsets of {1, . . . ,m}. Subadditive
functions are important because they capture the notion of “complement-freeness”, where
the value of a set is no more than the sum of the values of constituent subsets. Subadditive
functions are used, e.g., in game theory to model valuation functions of agents. XOS functions
are a subclass of subadditive functions that have a natural interpretation – an XOS function
is characterized by a number of linear functions, and the value at a point is the maximum over
these linear functions. The support of an XOS function is the number of these linear functions
over which the maximum is taken. Matroids generalize the notion of linear independence of
vectors and acyclicity in graphs, and are thus basic and widely used combinatorial objects.

Partial Function Extension

Formally, a partial function is a set H = {(T1, f1), (T2, f2), . . . , (Tn, fn)}, with Ti ∈ {0, 1}m,
and fi ∈ R the observed function value at Ti. Additionally, we are given a property P . The
P -Extension problem is to determine if there exists a total function f defined on the domain
{0, 1}m that satisfies property P and extends the given partial function H, i.e., f(Ti) = fi
for all i ∈ {1, . . . , n}. We also consider the Approximate P -Extension problem, where we
want to determine the minimum multiplicative error for a given partial function to extend
to a function that satisfies the given property. That is, in Approximate P -Extension, we
want to approximate the minimum α ≥ 1 such that a function f satisfies property P and
additionally, fi ≤ f(Ti) ≤ αfi for all i ∈ {1, . . . , n}.

1 These function classes are formally defined in the appropriate sections later.

U. Bhaskar and G. Kumar 46:3

Note that our input is H. An algorithm is efficient if it runs in time polynomial in the
size of H, which may be exponential in the dimension m.

Proper Learning and Property Testing

The PMAC (Probably Mostly Approximate Correct) model seeks to determine for a family F
of functions if it is possible to efficiently obtain a function f “close to” a target function f∗ ∈ F ,
given samples from some distribution over 2[m] and the value of f∗ at the sampled points.
The learning is proper if the output function f is also in F . Formally, let F ⊆ {f : 2[m] → R}
be a family of set functions (e.g., subadditive functions).

I Definition 1 ([4]). An algorithm A properly PMAC-learns a family of functions F with
approximation factor α, if for any distribution µ (on 2[m]) and any target function f∗ ∈ F ,
and for any sufficiently small ε, δ > 0:
A takes the sequence {(Si, f∗(Si))}1≤i≤l as input where l is poly(m, 1/δ, 1/ε) and the
sequence {Si}1≤i≤l is drawn i.i.d. from the distribution µ
A runs in poly(m, 1/δ, 1/ε) time
A returns a function f : 2[m] → R ∈ F such that

PrS1,...,Sl∼µ
[
PrS∼µ[f∗(S) ≤ f(S) ≤ αf∗(S)] ≥ 1− ε

]
≥ 1− δ

That is, with at least 1 − δ probability (over examples drawn from µ), the value of the
returned function f should be within an α factor of the target function f∗ for at least 1− ε
fraction of the probability mass according to µ.

If a family of functions is PMAC-learnable with α = 1, then the family is said to
be PAC-learnable. For Boolean functions, clearly PAC-learning and PMAC-learning are
equivalent.

The following lemma makes an explicit connection between PMAC-learning and extending
partial functions. The lemma has been implicitly used earlier to obtain lower bounds on
learning submodular functions [4]. We also use this lemma to improve the previous bound
on learning subadditive functions.

I Lemma 2. Suppose there exists a family D = {T1, . . . , Tn} of subsets of [m] such that n is
superpolynomial in m, and the partial function H = {(T1, f1), . . . , (Tn, fn)} is extensible to
a function in F for any fi ∈ [1, r] (where r ≥ 1), i ∈ [n]. Then the family of functions F
cannot be learned by any factor < r.

The lower bound given by the above lemma is information-theoretic, i.e., holds even if the
algorithm knows the distribution µ, is allowed unbounded computation and chooses samples
adaptively.

For a class of functions F , a function f : 2[m] → R+ is ε-far from F if for any function
g ∈ F , we have |{S ⊆ [m] : f(S) 6= g(S)}| ≥ ε2m, i.e., g and f differ on at least ε2m points.
A (one-sided) tester for F is a randomized algorithm that takes distance parameter ε and
oracle access to a function f : 2[m] → R+ as inputs, and accepts if f ∈ F , and rejects with
constant probability if f is ε-far from F .

We note a basic difference between partial function extension on the one hand, and
property testing and learning on the other. In partial function extension, there is no target
function f∗; we want to know if any total function that extends the given partial function
has the required property. In property testing and learning, there is a target function f∗
which we access via an oracle (in property testing) or via samples from a distribution (in
learning).

ISAAC 2020

46:4 Partial Function Extension with Applications

We will frequently use reductions from MONOTONE-NAE-3SAT. Here, we are given a
3-SAT formula φ = C1 ∧ · · · ∧ Cm′ with no negations of the variables. The problem is to
determine if there exists an assignment (called satisfying assignment) such that at least one
literal is true and at least one literal is false in each clause. The problem MONOTONE-NAE-
3SAT is NP-hard [21]. We will assume that every clause contains three distinct variables.

For notation, D := {Ti}i∈[n] is the set of points in the given partial function H. These
are called defined points, and U := 2[m] \ D are undefined points. Points on the hypercube
{0, 1}m are naturally subsets of [m], and for S ⊆ [m], χ(S) ∈ {0, 1}m is its characteristic
vector. We frequently use this correspondence.

Our Contribution

We give bounds on the complexity of partial function extension. For subadditivity and XOS,
we give tight bounds on approximation guarantees as well. We then use these results to give
bounds on the complexity of learning and testing all three function classes. Our lower bounds
are for very simple functions in each class – XOS functions with just two linear functions in
their support, and for any class of matroids that include graphic matroids.

XOS functions. We first show that in general, Approximate XOS Extension (and hence
XOS Extension) can be determined in polynomial time. However, if we restrict the number
of allowed linear functions for an XOS function, the extension problem becomes NP-hard,
even for the case of two linear functions.

I Theorem 3. Approximate XOS Extension is in P. However, for any k ≥ 2, it is NP-hard
to determine if there is an XOS function with k linear functions in its support that extends a
given partial function.

It is known that Ω̃(
√
m) is a lower bound for PMAC-learning of XOS functions [2].

However, this lower bound requires superpolynomial support size for the XOS functions. Our
hardness result for XOS extension allows us to show a lower bound for proper PAC learning
of the much simpler class of XOS functions with just two linear functions in the support
assuming RP 6= NP .2

I Theorem 4. For any k ≥ 2, the class of XOS functions with support size k cannot be
properly PAC-learned unless RP = NP.

Subadditive functions. We first show tight results for the complexity of Subadditive Ex-
tension.

I Theorem 5. Subadditive Extension is coNP-complete. There is an O(logm) approximation
algorithm for Approximate Subadditive Extension, and if P 6= NP , this is optimal.

The lower bounds in the theorem depend upon characterizations of partial functions
that can be extended to subadditive functions. The upper bound uses the fact that (a) for
XOS functions, Approximate XOS Extension (and hence XOS Extension) can be solved in
polynomial time, and (b) any subadditive function can be approximated by an XOS function
by an O(logm) factor [7, 11].

2 RP (Randomized Polynomial) is the class of problems for which a randomized algorithm runs in
polynomial time, always answers correctly if the input is a “no” instance, and answers correctly with
probability at least 1/2 if the input is “yes” instance.

U. Bhaskar and G. Kumar 46:5

The characterization for subadditive functions can be used to give the following results
for learning. Our lower bound for learning improves upon a previous lower bound of
Ω(
√
m/ logm) [2].

I Theorem 6. Subadditive functions cannot be PMAC-learned by a o(
√
m) factor.

Finally, we use the characterization for subadditive functions to give the first nontrivial
tester for general (nonmonotone) subadditive functions.

I Theorem 7. Given ε > 0, there is a tester for general subadditive functions that makes
2O(
√
m log(1/ε) logm) queries.

As a point of comparison, the square tester which is the first (and so far, the only) known
tester for general submodular functions has query complexity 2O(

√
m logm log(1/ε)) [22].

Independence functions for matroids. Given a matroid M = (E, I) with ground set E
and independent sets I, the independence function fI : 2E → {0, 1} is a binary function
on subsets of E that returns 1 if the subset is independent, and 0 otherwise. The rank
function returns the size of the largest independent set in the subset. The two functions are
polynomially equivalent, i.e., the value of one for a subset can be obtained by a polynomial
number of calls to the other.

The Matroid Extension problem is to determine if there exists a matroid (E, I) such that
the independence function fI(Ti) = fi for all i ∈ [n]. We first show that extending a partial
function to a matroid independence function is NP-hard. In fact, this is true for any class of
matroids containing graphic matroids, including linear and regular matroids.

I Theorem 8. Matroid Extension is NP-hard for any class of matroids containing graphic
matroids.

We use this result to show that the independence function for graphic matroids cannot
be PAC-learned, unless RP = NP.

I Theorem 9. Unless RP = NP, graphic matroids cannot be PAC-learned.

Earlier work gives a lower bound of Ω̃(n1/3) on PMAC-learning of general matroid rank
functions [4]. Our work on the other hand gives lower bounds for proper PAC-learning of
matroid independence functions, for the well-studied class of graphic matroids. Despite the
polynomial equivalence of independence and rank functions, due to differences inherent in the
distribution, there is no known reduction from learning matroid rank functions to learning
matroid independence functions.3

It can thus be seen that both for XOS and matroid independence functions, while our
results for learning are for the more restrictive PAC learning (as compared to bounds on
PMAC learning), we are able to show lower bounds for significantly simpler classes in
comparison to previous work – for XOS functions with just two linear functions in the
support, and for graphic matroids.

3 In particular, to use matroid independence to learn the rank of a set would require the matroid
independence learning algorithm to learn correctly the independence of particular subsets of the set,
which is not guaranteed with high probability.

ISAAC 2020

46:6 Partial Function Extension with Applications

Related Work

The complexity of partial function extension to Boolean functions is studied earlier with
various restrictions on the class of Boolean functions, such as size of formulae and occurrence
of variables [20, 8]. Pitt and Valiant formally show that lower bounds on partial function
extension can be used to show lower bounds for proper PAC learning [20]. In previous
work, we study the complexity of partial function extension for two subclasses of subadditive
functions: coverage functions and submodular functions. For coverage functions, we show
that the partial function extension problem is NP-complete, and give bounds for Approximate
Extension, and lower bounds for learning coverage functions [5]. For submodular functions,
we give a new certificate of nonextendibility, and apply it to obtain results on extending
submodular functions on lattices, and lower bounds for testing submodular functions [6].

In property testing of functions, the objective is to determine with high probability and
with a sublinear (in the size of the domain) number of queries if the function satisfies a
required property, or is ε-far from it, with distance defined appropriately. Bounds on property
testers are known for many function properties, including convexity and submodularity [18].
For testing submodularity on the hypercube (i.e, 2[m]), a “square tester” is the best known
with query complexity O((1/ε)

√
m logm) [22]. A lower bound of 1/ε4.8 is known on the number

of queries required by the square tester.
For the problem of PMAC-learning submodular functions over sets of m elements, Balcan

et al. show an upper bound of O(
√
m) and a lower bound of Ω(m1/3/ logm) [4]. The lower

bound is actually applicable to matroid rank functions, a subclass of submodular functions.
For PMAC-learning subadditive functions, upper bounds of O(

√
m logm) and lower bounds

of Ω(
√
m/ logm) are known [2]. The lower bound is shown for learning XOS functions, a

class that lies between submodular and subadditive functions. The lower bound example
requires XOS functions have superpolynomial support size. Better upper bounds are shown
for learning XOS functions with small support size. If each XOS function in the family has
support size k, then this class can be learned within a O(kε) factor in time mO(1/ε) for any
ε > 0.

2 XOS Functions

A function f : 2[m] → R+ is an XOS function if it can be expressed as the maximum of k
linear functions for some k ≥ 1, i.e., there exist vectors wi ∈ Rm+ for 1 ≤ i ≤ k such that
f(S) = max

(
wi
)T
χ(S) for every S ⊆ [m]. The vectors wi ∈ Rm+ for 1 ≤ i ≤ k are called the

support of the function f . XOS functions are subclasses of subadditive functions and are
known to be equivalent to fractionally subadditive functions [14]. XOS functions for which k
is bounded by a polynomial in m are called succinct XOS functions. Balcan et al. show that
for any ξ > 0, succinct XOS functions can be PMAC-learned with α = kξ by an algorithm
with running time m1/ξ [2]. Thus for constant k, XOS functions can be learned within a
constant approximation factor in polynomial time. They also show a lower bound of Ω̃(

√
m)

for general XOS functions. For any fixed k, we show lower bounds for proper PAC learning
of XOS functions with support size k.

We first show bounds on the complexity of partial function extension.

I Theorem 3. Approximate XOS Extension is in P. However, for any k ≥ 2, it is NP-hard
to determine if there is an XOS function with k linear functions in its support that extends a
given partial function.

U. Bhaskar and G. Kumar 46:7

Proof. The positive result follows from writing a linear program with the vectors (wi)i≤k
with wi ∈ Rm+ as variables. While in general k may be exponential, a partial function H is
extensible iff the linear program is feasible for k = n. The proof is in the appendix.

For the lower bound, we give a reduction from MONOTONE-NAE-3SAT. Given a 3-SAT
formula φ = C1 ∧ · · · ∧ Cm′ , let the variables of φ be x1, . . . , xn′ .

We show here the proof for k = 2, and generalise it for k > 2 in the appendix. Given
φ, we construct the partial function H as follows. The ground set is [n′]. Our partial
function consists of the n′ sets {1}, . . ., {n′} each with value 1. Further for all clauses
Cj = xj1 ∨ xj2 ∨ xj3 (j ∈ [m′]), the partial function is defined on {j1, j2, j3} with value 2.
Thus there are m′ + n′ defined sets in the partial function H.

Suppose φ has a satisfying assignment. We define the two vectors w1 and w2 in the
support of the XOS function as follows. For i ∈ [n′], let w1

i = xi and w2
i = 1−xi. Clearly for

any i ∈ [n′], we have max{w1
i , w

2
i } = 1. Further for any set {j1, j2, j3} ⊆ [n′] (corresponding

to Cj = xj1 ∨ xj2 ∨ xj3), since at least one variable has value 1 and at least one has value 0
in Cj , we have max{w1

j1
+ w1

j2
+ w1

j3
, w2

j1
+ w2

j2
+ w2

j3
} = 2.

Now assume there is an XOS function f with k = 2 that extends the partial function. Let
w1 and w2 be the vectors of two linear functions in the support. Let for all i ∈ [n′], xi = w1

i .
Then max{w1

i , w
2
i } = 1 for all i ∈ [n′] (since f({i}) = 1). Therefore, for any set {j1, j2, j3},

at least one of w1
j1
, w1

j2
, w1

j3
must be 1 (since otherwise w2

j1
+ w2

j2
+ w2

j3
= 3 contradicting

f({j1, j2, j3}) = 2) and similarly not all w1
j1
, w1

j2
, w1

j3
can be 1. Thus, xi = w1

i is a satisfying
assignment. J

Next we show lower bounds for proper learning of XOS functions with support size k for
any fixed k ≥ 2. In the following we write g(i) for g({i}) and g(i, j) for g({i, j}). For fixed
k ≥ 2, let F be the family of XOS functions with k supports.

I Theorem 4. For any k ≥ 2, the class of XOS functions with support size k cannot be
properly PAC-learned unless RP = NP.

Proof. Recall the reduction in Theorem 3. Given φ (an instance of MONOTONE-NAE-
3SAT), let D be the set of the defined points in the instance of the partial function, and let f
be the values at the defined points. Let ε = 1

2|D| (and hence ε < 1/|D|) and µ be a uniform
distribution over {(S, f(S))|S ∈ D}. Now suppose a (randomized) algorithm A PAC-learns
F . We will show that in this case, we can determine efficiently if f is extensible to a function
in F and by Theorem 3 determine if φ has a satisfying assignment.

We present the proof for k = 2. For larger k, as in the reduction in Theorem 3, we simply
restrict attention to the ground set [n′] and the partial function defined on its subsets. Suppose
the input to the algorithm A is given by the distribution µ and let it return a function g.
We now have oracle access to the function g. If the partial function constructed is extensible,
then g(S) must be an XOS function with two linear functions in its support, and further
g(S) = f(S) for all S ∈ D (since ε < 1/|D| and A must satisfyPrS∼µ[g(S) = f(S)] ≥ 1− ε).
If the partial function constructed is not extensible, then clearly the two conditions cannot
be satisfied (and the learning algorithm A must fail). We are thus left with the problem of
verifying these two conditions in polynomial time, given oracle access to g. If g satisfies the
two conditions, we will construct another function g′ that satisfies these two conditions.

Let v1, v2 be the two linear functions in the support of g. Note that since in D each
{i}(i ∈ [n′]) has value 1, for each i ∈ [n′], we have max{v1

i , v
2
i } = 1. We define the sets X ′,

Y ′, Z ′ as subsets of [n′] as follows. Let Y ′ = {i : v1
i = v2

i = 1}, X ′ = {i : v1
i = 1} \ Y ′, and

Z ′ = {i : v2
i = 1} \ Y ′. We will now obtain sets X, Y , Z and claim that Y ′ = Y , and either

X ′ = X, Z ′ = Z or X ′ = Z and Z ′ = X. We then define the vectors w1 = χ(X ∪ Y) and

ISAAC 2020

46:8 Partial Function Extension with Applications

w2 = χ(Y ∪ Z), and the XOS function g′(S) = max{
(
w1)T χ(S),

(
w2)T χ(S)}. It can be

verified that if g(S) = f(S) for S ∈ D then g′(S) = f(S) for S ∈ D, and hence g′(S) satisfies
the above conditions.

To obtain X, Y , and Z, we find the values of g at all sets of size at most two. Define
Y = {i ∈ [n′]|∀j ∈ [n′], g(i, j) = g(i) + g(j)}. If Y = [n′], then X = Z = ∅. Else, pick any
k 6∈ Y , and let X = {k} ∪ {i ∈ [n′]|g(i, k) = g(i) + g(k)} \ Y . Finally, let Z = [n′] \ (X ∪ Y).

We claim that Y ′ = Y , and either X ′ = X, Z ′ = Z or X ′ = Z and Z ′ = X. To see
this, note that (i) for all i, j ∈ X ′ ∪ Y ′, g(i, j) = g(i) + g(j), (ii) for all i, j ∈ Z ′ ∪ Y ′,
g(i, j) = g(i) + g(j), and (iii) for all i ∈ X ′, j ∈ Z ′, g(i, j) < g(i) + g(j). The claim follows
from the construction of X, Y , Z above. J

3 Subadditive Functions

We now consider the problem of extending a given partial function H to monotone subadditive
functions. A function f : 2[m] → R+ is subadditive if f(A) + f(B) ≥ f(A ∪ B) for all sets
A and B, and monotone if f(A) ≥ f(B) for all A ⊇ B. Subadditive functions capture the
important case of complement-free functions, for which no two subsets of the ground set
[m] “complement” each other. This is a natural assumption in many applications, and hence
these functions and various subclasses, including XOS functions, are widely used in game
theory [2, 7, 16].

We give the following characterization for subadditive functions, also implicit in Lemma 3.3
of [1].

I Lemma 10 ([1]). Partial function H is extensible to a subadditive function iff
∑r
i=1 f(Ti) ≥

f(Tr+1) for all T1, . . . , Tr, Tr+1 ∈ D such that ∪ri=1Ti ⊇ Tr+1.

We use the characterization to show that Θ(logm) is a tight bound on the approximability
of Approximate Subadditive Extension, unless P = NP (and that the Extension problem is
coNP-complete). For the lower bound, we give a reduction from Set-Cover. For the upper
bound, we use earlier results which show that any subadditive function can be O(logm)-
approximated by an XOS function [7, 11]. Since Approximate XOS Extension can be
efficiently solved, this gives us our upper bound.

I Theorem 5. Subadditive Extension is coNP-complete. There is an O(logm) approximation
algorithm for Approximate Subadditive Extension, and if P 6= NP , this is optimal.

A lower bound on learning subadditive functions

Balcan et al. [3] proved bounds of O(
√
m logm) and Ω(

√
m/ logm) lower bound for learning

subadditive functions. Using Lemmas 2, 10, and a known result for cover-free families [13, 12],
we show an improved lower bound of Ω(

√
m).

I Theorem 6. Subadditive functions cannot be PMAC-learned by a o(
√
m) factor.

A family of sets F ⊆ 2[m] is called an r-cover free family [13, 12] if for all distinct sets
A1, . . . , Ar, Ar+1 ∈ F we have Ar+1 6⊆ ∪ri=1Ai. Let fr(m) be the cardinality of the largest
r-cover free family.

I Proposition 11 ([12]). fr(m) = 2Θ(m log r

r2).

I Lemma 12. If D = {T1, . . . , Tn} is an r-cover free family then the partial function
{(T1, f1), . . . , (Tn, fn)} is extensible to a subadditive function for any values of fi ∈ [1, r +
1], i ∈ [n].

U. Bhaskar and G. Kumar 46:9

Proof. Suppose the partial function is not extensible. Therefore, by Lemma 10, there exists
sets T1, . . . , Tk, Tk+1 for some k ≥ 1 such that Tk+1 ⊆ ∪ki=1Ti and fk+1 >

∑k
i=1 fi. Therefore,

we have r + 1 ≥ fk+1 > k which is a contradiction as D is an r-cover free family. J

Proof of Theorem 6. We have fr(m) ≥ 2
cm log r

r2 = m
cm
r2 (1

2−
log(
√

m/r)
log m) for some constant c.

For r ≤ m1/4, fr(m) is clearly superpolynomial in m. Also, for r ≥ m1/4, 1
2 −

log(
√
m/r)

logm ≥ 1
4 .

Hence, 2
cm log r

r2 is superpolynomial for r = o(
√
m). Therefore, for any such r, by Proposition 11

there exists an r-cover free family D = {T1, . . . , Tn} such that n is superpolynomial. The
theorem is directly implied by Lemmas 2 and 12. J

A subexponential tester for general subadditive functions
We now describe a property testing algorithm for general (nonmonotone) subadditive functions
that makes 2O(

√
m log(1/ε) logm) queries; in this subsection, subadditive refers to nonmonotone

subadditive functions.

I Theorem 7. Given ε > 0, there is a tester for general subadditive functions that makes
2O(
√
m log(1/ε) logm) queries.

Let λ =
√

ln(4/ε), and define Mλ = {S ⊆ [m]|m/2− λ
√
m ≤ |S| ≤ m/2 + λ

√
m}. The

tester repeats the following steps 1/ε times:
Randomly pick a set T ∈Mλ and query the sets Q = {S ∈Mλ|S ⊆ T}.
If there exist T1, . . . , Tr ∈ Q for some r ≥ 1 such that T = ∪ri=1Ti and f(T) >

∑r
i=1 f(Ti)

then reject.

The tester makes |Q|/ε queries, and |Q| ≤
(m/2+λ

√
m

2λ
√
m

)
, and hence |Q| =

2O(
√
m log(1/ε) logm), which is also a bound on the number of queries by the tester. Ob-

viously if the function f is subadditive then the tester accepts. For the proof of the theorem,
we show that if f is ε-far from subadditive functions then the above tester rejects with constant
probability. This is then the required tester. To prove this, we first give a characterization
for partial function extension similar to Lemma 10 for general subadditive functions.

I Lemma 13. The partial function H is extensible to a subadditive function iff
∑r
i=1 f(Ti) ≥

f(∪ri=1Ti) for all T1, . . . , Tr ∈ D such that ∪ri=1Ti ∈ D.

A set T ∈Mλ is called bad if it causes the tester to reject. The set of bad sets B consists
of T ∈Mλ such that there exists T1, . . . , Tr ∈Mλ for some r ≥ 1 such that T = ∪ri=1Ti and
f(T) >

∑r
i=1 f(Ti).

We show that removing all sets not in Mλ, as well as the bad sets, gives us a partial
function that can be extended to subadditive function. Since the function is ε-far and Mλ is
large by our choice of λ, there must be many bad sets.

I Lemma 14. The partial function H = {(S, f(S))|S ∈Mλ and S 6∈ B} is extensible to
a subadditive function.

Proof. Suppose the partial function is not extensible. Let D = {S|S ∈Mλ and S 6∈ B}
be the defined sets in H. Then by Lemma 13, there will exist T1, . . . , Tr, T ∈ D such that
T = ∪ri=1Ti and

∑r
i=1 f(Ti) < f(T). This implies T ∈ B which is a contradiction. J

Proof of Theorem 7. Let D = {S|S ∈ Mλ and S 6∈ B} and U = 2[m] \ D. Since the
partial function {(S, f(S))|S ∈ D} is extensible, |U| ≥ ε2m (since f is ε-far). Note that
|U| = |B|+ 2

∑m/2−λ
√
m

i=1
(
m
i

)
. Hence again using Chernoff bound and the value of λ, we have

|B| ≥ ε2m/2. Therefore in a single iteration our tester will pick a bad set with ε/2 probability.
Hence after 1/ε iterations, the tester will pick a bad set with constant probability. J

ISAAC 2020

46:10 Partial Function Extension with Applications

4 Independence Functions for Matroids

Matroids are basic combinatorial structures that generalize the notion of linear independence
of vectors. In both graph theory and linear algebra, many important structures are matroids.
For example, the set of forests in a graph form a graphic matroid. The set of linearly
independent rows of a matrix form a linear matroid. Consequently, the study of matroids
is a field of its own, and matroids find various applications including in combinatorial
optimization, machine learning, and coding theory (e.g., [4, 15]).

Formally, a matroid M is a pair (E, I) where E is a finite ground set and I is a family of
subsets of E that satisfies: (1) I is non-empty, (2) if A ⊆ B and B ∈ I then A ∈ I, and (3)
if A,B ∈ I, and |A| < |B| then there exists e ∈ B \A such that A∪ e ∈ I. Members of I are
called independent sets. By Property (3), all maximal independent sets have the same size.
M = (E, I) is a graphic matroid if there is a graph G with edges E so that if I ∈ I, then
the set of edges I is acyclic. We use M(G) to refer to the graphic matroid defined by graph
G. Matroid M is a linear matroid if there exist vectors (vi)i∈E such that if I ∈ I then the
set of vectors (vi)i∈I are linearly independent. Further background on matroids is in [25].

The independent sets of a matroid naturally induce a Boolean function fI : 2E → {0, 1}
called the independence function where fI(S) = 1 iff S is an independent set. We are
given a partial function H = {(T1, f1), (T2, f2), . . . , (Tn, fn)} where Ti ⊆ E, fi ∈ {0, 1} for
all i ∈ [n]. The Matroid Extension problem is to determine if there exists a matroid (E, I)
such that fI(Ti) = fi for all i ∈ [n]. If the independence function of a matroid extends a
partial function, we say that the partial function is extensible to a matroid. We also consider
extension to restricted classes, including graphic and linear matroids.

We show the following sweeping negative result.

I Theorem 8. Matroid Extension is NP-hard for any class of matroids containing graphic
matroids.

Important classes of matroids that contain graphic matroids are linear, binary, ternary
and regular matroids [17]. By Theorem 8, the extension problem is NP-hard for all of these.

For the proof of Theorem 8, we first give some well-established properties of matroids. A
set S ⊆ E is called dependent if it is not an independent set. A minimal dependent set is
called a circuit.

I Theorem 15 ([26, 17]). Let M = (E, I) be a matroid. If I ∈ I and I ∪ e 6∈ I then I ∪ e
contains a unique circuit.

I Theorem 16 ([26, 17]). Let C be the set of circuits of a matroid. If C1, C2 ∈ C, C1 6= C2
and e ∈ C1 ∩ C2, then C1 ∪ C2 \ e contains a circuit.

Proof of Theorem 8. The proof is by reduction from MONOTONE-NAE-3SAT. Suppose we
are given an instance φ = C1 ∧ C2 ∧ · · · ∧ Cm′ of MONOTONE-1-IN-3SAT with n′ variables
and m′ clauses. We assume that the variables are x1, x2, . . . , xn′ . In our reduction, we
show that if φ is satisfiable then a graphic matroid extends the partial function and if φ is
unsatisfiable then no matroid extends the partial function. This would prove Theorem 8.
Below we give the construction of the instance of Matroid Extension from φ.

The ground set for the Matroid Extension instance consists of m = 4n′ elements, with
ai, bi, ci, di associated with each variable xi. We will denote the ground set by E. The partial
function H is defined on 4n′ + 2m′ + 1 sets, and is shown in Table 1. For each variable xi,
each of the 3 sets {ai, bi, di}, {ai, bi, ci}, and {ci, di} are independent sets (and hence the

U. Bhaskar and G. Kumar 46:11

a1

b1

c1

d1

b2

a2

c2

d2

b3

a3

c3

d3

a4

b4

c4

d4

Figure 1 The graph G for the satisfying assign-
ment x1 = x4 = 1, x2 = x3 = 0 of the instance
φ = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

Table 1 The partial function H for the in-
stance φ = C1∧· · ·∧Cm′ where Cj = (xj1∨xj2∨
xj3) (j ∈ [m′]).

T f

{a1, . . . , an′ , b1, . . . , bn′ , c1, . . . , cn′} 1
{ai, bi, ci, di} 0
{ai, bi, di}, {ai, bi, ci}, {ci, di} 1
{aj1, cj1, dj1, aj2, cj2, dj2, aj3, cj3, dj3} 0
{bj1, cj1, dj1, bj2, cj2, dj2, bj3, cj3, dj3} 0

function values are 1). The set {ai, bi, ci, di} is dependent (and hence has value 0). The
set ∪i∈[n′]{ai, bi, ci} is independent. For the clause Cj = (xj1 ∨ xj2 ∨ xj3), we include the
dependent sets ∪i∈[3]{aji, cji, dji} and ∪i∈[3]{bji, cji, dji} in the partial function. Thus, the
set D of defined sets has size 2m′ + 4n′ + 1.

First assume that there exists a satisfying assignment of φ. We construct a graphic
matroid M(G) consistent with the partial function. We construct a graph G (see Figure 1)
with n′ connected components (one for each variable) as follows: If xi = 1 then the ith
component is a graph with 4 edges ai, bi, ci, di such that ai, ci, di forms a simple cycle.
Otherwise (if xi = 0) the ith component is a graph with 4 edges ai, bi, ci, di such that
bi, ci, di forms a simple cycle. Now we show that the independence function of this matroid
is consistent with the partial function. Since for each i ∈ [n], the edges ai, bi, ci, di contains a
cycle so the sets {ai, bi, ci, di} are not independent. Also, since cycles are formed only by the
edges {ai, ci, di} or by {bi, ci, di} (and not by edges {ci, di}), the sets {a1, . . . , an, b1, . . . , bn,

c1, . . . , cn}, {ai, bi, di}, {ai, bi, ci} and {ci, di} are independent.
For all clauses Cj = {xj1 ∨ xj2 ∨ xj3}, at least one variable is true and

one variable is false, so the edge sets {aj1, cj1, dj1, aj2, cj2, dj2, aj3, cj3, dj3} and
{bj1, cj1, dj1, bj2, cj2, dj2, bj3, cj3, dj3} contain a cycle, and hence are not independent.

Suppose now that H is extensible to a matroid M = (E, I). We will show a satisfying
assignment of φ. Let C be the set of circuits of this matroid M . Since {ai, bi, di} ∈ I and
{ai, bi, ci, di} 6∈ I, by Theorem 15 {ai, bi, ci, di} contains a unique circuit. This means that
exactly one of {ai, ci, di}, {bi, ci, di}, {ai, bi, ci, di} is a circuit for all i ∈ [n′]. Consider an
assignment in which xi is set to 1 if {ai, ci, di} is a circuit in C and 0 otherwise. Our claim is
that this assignment is a satisfying assignment. Consider any clause Cj = {xj1∨xj2∨xj3}(j ∈
[m]). Recall that we assumed that the variables appearing in any clause are distinct. Thus
bj1, bj2, and bj3 are all distinct. First we show all xj1, xj2, xj3 cannot be 0. We will show this
by contradiction, that if indeed all of xj1, xj2, xj3 are 0, then there is a circuit C̄ that does
not contain dj3 (and dj1, dj2). This contradicts that {a1, . . . , an, b1, . . . , bn, c1, . . . , cn} ∈ I.

Suppose all xj1, xj2 and xj3 are 0. Since {aj1, cj1, dj1, aj2, cj2, dj2, aj3, cj3, dj3} 6∈ I, it
contains a circuit C1. If C1 does not contain dj1, dj2, or dj3, then let C̄ = C1, and we are
done. Otherwise suppose dj1 ∈ C1, and note that bj1 6∈ C1.

Since xj1 = 0, Theorem 15 implies that exactly one of {aj1, bj1, cj1, dj1} and {bj1, cj1, dj1}
is a circuit. Let {aj1, bj1, cj1, dj1} be a circuit (the proof works exactly the same way if
{bj1, cj1, dj1} is a circuit). Since circuit C1 does not contain bj1, it is distinct from the
circuit {aj1, bj1, cj1, dj1}. Then by Theorem 16, C ′ = C1 ∪ {aj1, bj1, cj1, dj1} \ dj1 contains a
circuit C2. Note that C2 is distinct from the circuit {aj2, bj2, cj2, dj2} (C2 does not contain
bj2 and bj1 6= bj2). If dj2 ∈ C2 then C2 ∪ {aj2, bj2, cj2, dj2} \ dj2 contains a circuit C3 (if
dj2 6∈ C2 then let C3 = C2). Again C3 does not contain bj3 and as before if dj3 ∈ C3,
then we can get a circuit C̄ that does not contain dj3 (and dj1, dj2). This contradicts that
{a1, . . . , an, b1, . . . , bn, c1, . . . , cn} ∈ I.

ISAAC 2020

46:12 Partial Function Extension with Applications

Thus at least one of xj1, xj2, xj3 must be 1. Now we show all of them cannot be 1.
Suppose xj1 = xj2 = xj3 = 1. Therefore, {aj1, cj1, dj1}, {aj2, cj2, dj2} and {aj3, cj3, dj3}
are circuits. Our argument for this case is very similar to the previous case. We have
{bj1, cj1, dj1, bj2, cj2, dj2, bj3, cj3, dj3} 6∈ I, and so it contains a circuit D1. The circuit D1
must contain some of dj1, dj2, dj3 otherwise D1 ∈ I (by property (2) of matroids since
{a1, . . . , an, b1, . . . , bn, c1, . . . , cn} ∈ I). Suppose dj1 ∈ D1. As noted before, {aj1, cj1, dj1}
is a circuit. Since circuit D1 does not contain aj1, it is distinct from {aj1, cj1, dj1}. Then by
Theorem 16, D′ = D1 ∪ {aj1, cj1, dj1} \ dj1 contains a circuit D2. Note that D2 is distinct
from the circuit {aj2, cj2, dj2} (D2 does not contain aj2 and aj1 6= aj2). If dj2 ∈ D2 then
D2 ∪ {aj2, cj2, dj2} \ dj2 contains a circuit D3. Again D3 does not contain aj3 and as before,
if dj3 ∈ D3, then we can get a circuit D̄ that does not contain dj3 (and dj1, dj2). This
contradicts that {a1, . . . , an, b1, . . . , bn, c1, . . . , cn} ∈ I. J

We now show that unless RP=NP, PAC learning is not possible for the independence
function of graphic matroids. We will use a reconstruction algorithm by Seymour for graphic
matroids [23]. Here, the independence function for a matroid M = (E, I) is given by an
oracle that takes a set S ⊆ [m] as input and returns 1 or 0 depending on whether S is an
independent set in M or not. Seymour shows an algorithm that terminates in time poly(|E|)
and, if M is a graphic matroid, uses the oracle to find a graph G such that M = M(G). We
call this algorithm as the graph recognizing algorithm. We use Theorem 8 and the graph
recognizing algorithm to show that graphic matroids cannot be PAC-learned.

I Theorem 9. Unless RP = NP, graphic matroids cannot be PAC-learned.

5 Conclusion

Our work is the first to study the complexity of partial function extension for fundamental
classes of functions: subadditive, XOS, and matroid independence. For subadditive and
XOS functions, the bounds we obtain are tight, and we utilise our results to obtain new and
improved bounds for learning and property testing of these function classes. Besides these
connections to learning and property testing, we consider the problem of partial function
extension interesting in its own right, and with applications to many other areas, such as
combinatorial optimization [24]. In previous work [5, 6] we study partial function extension
for coverage and submodular functions. We believe the study of partial function extension
to be a rich area, a focused study of which is likely to reveal many interesting properties of
these function classes, as well as results on many related problems. A particularly interesting
question left open by our work is the complexity of partial function extension for submodular
functions. The question is alluded to in a number of papers, e.g., [4, 22], however the
complexity of the problem remains unresolved.

References
1 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and

Tim Roughgarden. Sketching valuation functions. In SODA, pages 1025–1035, 2012.
2 Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation

functions. In COLT 2012, June 25-27, 2012, Edinburgh, Scotland, pages 4.1–4.24, 2012.
3 Maria Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation

functions. In Conference on Learning Theory, pages 4–1, 2012.
4 Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In STOC

2011, San Jose, CA, USA, 6-8 June 2011, pages 793–802, 2011.

U. Bhaskar and G. Kumar 46:13

5 Umang Bhaskar and Gunjan Kumar. The complexity of partial function extension for coverage
functions. In APPROX/RANDOM Conference, volume 145 of LIPIcs, pages 30:1–30:21, 2019.

6 Umang Bhaskar and Gunjan Kumar. A non-extendibility certificate for submodularity and
applications. In International Computing and Combinatorics Conference, pages 603–614.
Springer, 2020.

7 Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions
with item bidding. In SODA, pages 700–709, 2011.

8 Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. Error-free and best-fit extensions of
partially defined Boolean functions. Inf. Comput., 140(2):254–283, 1998.

9 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In STOC, pages 419–428, 2013.

10 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC 2014, pages
624–633. ACM, 2014.

11 Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In APPROX-
RANDOM, volume 4627 of Lecture Notes in Computer Science, pages 89–103. Springer,
2007.

12 Arkadii G D’yachkov, Il’ya Viktorovich Vorob’ev, NA Polyansky, and V Yu Shchukin. Bounds
on the rate of disjunctive codes. Problems of Information Transmission, 50(1):27–56, 2014.

13 Paul Erdös, Peter Frankl, and Zoltán Füredi. Families of finite sets in which no set is covered
by the union ofr others. Israel Journal of Mathematics, 51(1):79–89, 1985.

14 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009.

15 Navin Kashyap, Emina Soljanin, and Pascal Vontobel. Applications of matroid theory and
combinatorial optimization to information and coding theory, 2009.

16 Benny Lehmann, Daniel J. Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

17 James Oxley. What is a matroid. Cubo Matemática Educacional, 5(3):179–218, 2003.
18 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. On testing convexity and submodularity.

SIAM J. Comput., 32(5):1158–1184, 2003.
19 Hans JM Peters and Peter P Wakker. Convex functions on non-convex domains. Economics

letters, 22(2-3):251–255, 1986.
20 Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. J.

ACM, 35(4):965–984, 1988.
21 Thomas J Schaefer. The complexity of satisfiability problems. In STOC 1978, pages 216–226.

ACM, 1978.
22 C. Seshadhri and Jan Vondrák. Is submodularity testable? Algorithmica, 69(1):1–25, 2014.
23 Paul D. Seymour. Recognizing graphic matroids. Combinatorica, 1(1):75–78, 1981.
24 Donald M. Topkis. Minimizing a submodular function on a lattice. Operations Research,

26(2):305–321, 1978.
25 Dominic JA Welsh. Matroid theory. Courier Corporation, 2010.
26 Hassler Whitney. On the abstract properties of linear dependence. American Journal of

Mathematics, 57(3):509–533, 1935.
27 William K Wootters. Entanglement of formation of an arbitrary state of two qubits. Physical

Review Letters, 80(10):2245, 1998.

A Appendix

Proof of Lemma 2
Consider the distribution µ that assigns probability mass uniformly to D = {T1, . . . , Tn} and
0 elsewhere. We restrict the target function to the family F ′ = {f ∈ F|f(Ti) ∈ [1, r]∀i ∈
[n]} ⊆ F . Then for any algorithm that PMAC-learns F ′ with approximation factor < r, and

ISAAC 2020

46:14 Partial Function Extension with Applications

for S ∼ µ, if f is the function learned by the algorithm and f∗ is the target function, then
f∗(S) ≤ f(S) ≤ αf∗(S) for α < r. This is only possible if S is seen in the learning phase,
i.e., the samples must be a constant fraction of n, and hence superpolynomial. J

A.1 XOS and Subadditive functions
Proof of Theorem 3. To show the upper bound, we prove that Approximate XOS extension
is in P, and that if there is an extension then there exists an extension with support size at
most n. Let the given partial function be H = {(T1, f1), . . . , (Tn, fn)}. We claim that the
optimal value of α for Approximate XOS Extension (say α̂) is equal to the optimal value of
α in the following linear program (say α∗), with variables α and wij for all 1 ≤ i ≤ n and
1 ≤ j ≤ m. Since the linear program can be solved in polynomial time, this claim implies
that Approximate XOS Extension can be efficiently solved.

minα

fi ≤ wTi χ(Ti) ≤ αfi ∀i ∈ [n]

wTi χ(Ti) ≥ wTj χ(Ti) ∀i, j ∈ [n]

wi ∈ Rm+

α ≥ 1

To prove the claim, let the XOS function g corresponding to the optimal solution α̂ for
Approximate XOS Extension be given by linear functions v1, . . . , vk ∈ Rm+ for some k ≥ 1, and
let the linear functions be indexed so that g(Ti) = vTi χ(Ti) for i ∈ [n] (the same linear function
can appear with multiple indices, i.e., vi = vj for i 6= j). Then fi ≤ g(Ti) = vTi χ(Ti) ≤ α̂fi
for all i ∈ [n], and vTi χ(Ti) ≥ vTj χ(Ti) for all i, j ∈ [n]. It is clear that α̂, 〈vi〉i∈[n] are feasible
for the linear program, hence α∗ ≤ α̂. By definition, α̂ ≤ α∗, since the linear program
produces an XOS function that has value within α∗ factor at each Ti for all i ∈ [n]. Hence
α̂ = α∗.

To complete the proof for the lower bound, we consider the case that k > 2. Let k′ = k−2.
Then in the above reduction, we additionally include k′ additional elements n′+1, . . . , n′+k′
in the ground set. Each of these additional elements is included as a separate point in our
partial function, with a large value 100(n′ + k′). Additionally, we include the set [n′ + k′] in
the partial function with value 100(n′+k′). It is clear that these additional sets in the partial
function necessitate k′ additional linear functions in the support, each of which has a single
coefficient (corresponding to one of the sets {n′ + 1}, . . ., {n′ + k′}) equal to 100(n′ + k′),
and all other coefficients 0. The remainder of the proof follows as for the case k = 2. J

Proof of Lemma 10. For the first direction, if there exist T1, . . . , Tr, Tr+1 ∈ D such that
∪ri=1Ti ⊇ Tr+1 and

∑r
i=1 f(Ti) < f(Tr+1) then either f(Tr+1) > f(∪ri=1Ti) or f(∪ri=1Ti) >∑r

i=1 f(Ti), and hence either monotonicity or subadditivity is violated. For the other
direction, first assume that ∪ni=1Ti = [m]. Then the function f̂(S) = {min

∑
T∈T f(T)|S ⊆

∪T∈T T, T ⊆ D} is an extension, monotone and subadditive. If ∪ni=1Ti ([m] then the
function f̃ is a monotone subadditive extension, where f̃(S) is defined as: f̃(S) = f̂(S) for
all S ⊆ ∪ni=1Ti, and otherwise equal to f̂(S′) where S′ = S

⋂
∪ni=1Ti. J

Proof of Theorem 5. Recall the Set-Cover problem. An instance of Set-Cover is a universe
[m], family of sets V = {S1, . . . , Sn} such that Si ⊆ [m] and an integer k. We need to
determine if there exists a cover of universe [m] of size at most k.

U. Bhaskar and G. Kumar 46:15

First we prove that the Extension problem is coNP-hard by reduction from Set-Cover.
Construct a partial function that is defined on each set in V and [m]. The value at each set
in V is 1 and at [m] is k + 1. If this partial function can be extended then every cover of [m]
must have size at least k + 1. On the other hand, if partial function can not be extended
then there must exist a cover of size at most k. Both of the above facts easily follow from
Lemma 10.

For the lower bound of Ω(logm) for Approximate Extension, as before, the partial function
is defined on sets V ∪ [m], and the value at each set in V is 1, and at [m] is m. Suppose
we have an α-approximation algorithm for Approximate Extension, which for this instance
returns value β. Note that ε∗ ≥ β/α where ε∗ is the optimal value of ε in the Approximate
Extension problem.

Since the algorithm returns value β, so there exists an extension f such that 1 ≤ f(Si) ≤ β
for all Si ∈ V and f([m]) ≥ m. Therefore, by Lemma 10, every cover of [m] has size at least
m/β. Now we claim that there must exist a cover with size at most mα/β. Otherwise if
all covers of [m] has size at least γ > mα/β then it is easy to see that the partial function
{(S1,m/γ), . . . , (Sn,m/γ), ([m],m)} is extensible by Lemma 10. This implies m/γ ≥ ε∗ ≥
β/α which is a contradiction. This then gives an α-approximation algorithm for Set Cover,
and since Set Cover cannot be approximated by a factor better than (1− ε) logm [10], this
is true of Approximate Extension also.

We now show the upper bound for Approximate Extension. Let F and G be two classes of
functions. We say that G θ-approximates F if for all functions f in F , there exists a function
g in G such that g(S) ≤ f(S) ≤ θg(S) for all S ⊆ [m]. We first prove the following lemma.

I Lemma 17. Let F and G be two classes of functions so that G θ1-approximates F and F
θ2-approximates G. If there is a ρ-approximation algorithm for Approximate Extension for
F then there is an ρθ1θ2- approximation algorithm for Approximate Extension for G.

Proof. For a given instance of partial function extension, let α∗F and α∗G be the optimal
values of α in the Approximate Extension problem for F and G respectively. Let A be
the ρ-approximation algorithm for F . A ρθ1θ2-approximation algorithm for Approximate
Extension for G is as follows: given any partial function H, return θ1α where α is the value
returned by algorithm A on H. We have α∗F ≥ α

ρ as A is a ρ-approximation algorithm.
Since G θ1-approximates F , we have α∗G ≤ θ1α

∗
F . As α∗F ≤ α so we have α∗G ≤ θ1α. Also F

θ2-approximates G so we have α∗F ≤ θ2α
∗
G . Then α∗G ≥

α∗F
θ2
≥ α

ρθ2
. Hence α

ρθ2
≤ α∗G ≤ θ1α.

This proves our result. J

Recall that XOS functions are a subclass of subadditive functions. We will use the
following result:

I Theorem 18 ([7, 11]). For any subadditive function f , there exists an XOS function g

such g(S) ≤ f(S) ≤ O(logm)g(S) for all S ⊆ [m].

From the above results and Lemma 17, the upper bound for Theorem 5 follows, with
θ1 = 1, θ2 = O(logm) and ρ = 1. J

Proof of Lemma 13. One direction is trivial. If there exist T1, . . . , Tr,∪ri=1Ti ∈ D such that∑r
i=1 f(Ti) < f(∪ri=1Ti) then partial function is not extensible to a general subadditive

functions. Now assume this is not the case. Let Dc := {S|S = ∪ri=1Aifor someA1, . . . , Ar ∈
D} be the union-closure of D. We now define f̂ which is an extension of f to Dc. If S ∈ D
then f̂(S) = f(S). If S 6∈ D (and S ∈ Dc) then f̂(S) is minimum value of

∑k
i=1 f(Si) over

ISAAC 2020

46:16 Partial Function Extension with Applications

all partition (S1, . . . , Sk) of S (∪ki=1Si = S) such that Si ∈ D for all 1 ≤ i ≤ k. Let M be
the maximum value of f̂ on Dc. We define an extension of f̂ to 2[m] by assigning value M to
each set not in Dc. Let this extension be f̃ . We claim that f̃ is subadditive.

Note that M is the maximum value of f̃ . Let A and B be any two sets. If any of A or B
is not in Dc then f̃(A) + f̃(B) is at least M and thus f̃(A) + f̃(B) ≥ f̃(A ∪B). Therefore,
we assume both A and B are in Dc which implies A∪B is also in Dc. Let A be the union of
A1, . . . , Ar ∈ D (r ≥ 1) and B be the union of B1, . . . , Br′ ∈ D (r′ ≥ 1). Therefore, A ∪ B
is union of A1, . . . , Ar, B1, . . . , Br′ . If A ∪B is in D then by assumption and otherwise by
definition of f̂ , we have f̃(A) + f̃(B) ≥ f̃(A ∪B). J

A.2 Independence Functions for Matroids
Proof of Theorem 9. Recall the reduction from Monotone-NAE-3SAT to Matroid Extension.
Given an instance of Monotone-NAE-3SAT (formula φ with n′ variables and m′ clauses),
the instance of Matroid Extension is a set of defined points D with |D| = 4n′ + 2m′ + 1 and
a function h on D. From Theorem 8, φ has a satisfying assignment iff h is extensible to the
independence function of a graphic matroid.

Let F be the family of independence functions of graphic matroids. Let ε = 1
2|D| (and

hence ε < 1/|D|) and µ be a uniform distribution over {(S, h(S))|S ∈ D}. Now suppose a
(randomized) algorithm A PAC-learns F and returns a function g. If the partial function
constructed is extensible, then g(S) must be the independence function of a graphic matroid,
and g(S) = h(S) for all S ∈ D (since ε < 1/|D| and g must satisfy PrS∼µ[g(S) = h(S)] ≥
1− ε). If the partial function is not extensible, then clearly the two conditions cannot be
simultaneously satisfied. We are thus left with the problem of verifying these conditions in
polynomial time, given oracle access to g. Both these conditions can be checked in polynomial
time, the first by Seymour’s reconstruction algorithm, and the second by simply querying
g(S) for all S ∈ D. We can thus efficiently determine efficiently if the partial function is
extensible to a graphic matroid, and hence RP = NP. J

	Introduction
	XOS Functions
	Subadditive Functions
	Independence Functions for Matroids
	Conclusion
	Appendix
	XOS and Subadditive functions
	Independence Functions for Matroids

