
Multiparty Selection
Ke Chen
Department of Computer Science, University of Wisconsin–Milwaukee, WI, USA
kechen@uwm.edu

Adrian Dumitrescu
Department of Computer Science, University of Wisconsin–Milwaukee, WI, USA
dumitres@uwm.edu

Abstract
Given a sequence A of n numbers and an integer (target) parameter 1 ≤ i ≤ n, the (exact) selection
problem is that of finding the i-th smallest element in A. An element is said to be (i, j)-mediocre if
it is neither among the top i nor among the bottom j elements of S. The approximate selection
problem is that of finding an (i, j)-mediocre element for some given i, j; as such, this variant allows
the algorithm to return any element in a prescribed range. In the first part, we revisit the selection
problem in the two-party model introduced by Andrew Yao (1979) and then extend our study
of exact selection to the multiparty model. In the second part, we deduce some communication
complexity benefits that arise in approximate selection. In particular, we present a deterministic
protocol for finding an approximate median among k players.

2012 ACM Subject Classification Theory of computation

Keywords and phrases approximate selection, mediocre element, comparison algorithm, i-th order
statistic, tournaments, quantiles, communication complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.42

1 Introduction

Given a sequence A of n numbers and an integer (selection) parameter 1 ≤ i ≤ n, the
selection problem asks to find the i-th smallest element in A. If the n elements are distinct,
the i-th smallest is larger than i− 1 elements of A and smaller than the other n− i elements
of A. By symmetry, the problems of determining the i-th smallest and the i-th largest are
equivalent. Together with sorting, the selection problem is one of the most fundamental
problems in computer science. Whereas sorting trivially solves the selection problem in
O(n logn) time, Blum et al. [7] gave an O(n)-time algorithm for this problem.

The selection problem, and computing the median in particular, are in close relation with
the problem of finding the quantiles of a set. The h-th quantiles of an n-element set are the
h− 1 order statistics that divide the sorted set in h equal-sized groups (to within 1); see, e.g.,
[10, p. 223]. The h-th quantiles of a set can be computed by a recursive algorithm running
in O(n log h) time.

The selection problem, determining the median in particular, has been also considered
from the perspective of communication complexity in the two-party model introduced by
Andrew Yao [38]. Suppose that Alice and Bob hold subsets A and B of [n] = {1, 2, . . . , n},
respectively, and wish to determine the median of the multiset A ∪ B while keeping their
communication close to a minimum. Several classic protocols going back to 1980s achieve
this task by exchanging O(log2 n) bits [29, 36]. The communication complexity for this task
has been subsequently reduced to O(logn) bits [9, 29, 31, 35].

Mediocre elements. Following Frances Yao [39], an element is said to be (i, j)-mediocre if
it is neither among the top (i.e., largest) i nor among the bottom (i.e., smallest) j of a totally
ordered set S of n elements. As remarked by Yao, finding a mediocre element is closely

© Ke Chen and Adrian Dumitrescu;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5470-6621
mailto:kechen@uwm.edu
https://orcid.org/0000-0002-1118-0321
mailto:dumitres@uwm.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2020.42
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Multiparty Selection

related to finding the median, in the sense that the common goal is selecting an element that
is not too close to either extreme. In particular, (i, j)-mediocre elements where i = bn−1

2 c,
j = bn

2 c (and symmetrically exchanged), are medians of S. Previous work on approximate
selection (in this sense) includes [5, 16].

In Section 3 we provide a protocol to find a mediocre element near the median among k
players with communication complexity O(k logn). To our best knowledge, this is the first
result on the mediocre element finding problem, in terms of communication complexity. In
Section 4 we outline a scenario in which computing a mediocre element near the median in
the two-party model can be accomplished with communication complexity O(1) – which is
very attractive.

Background and related problems. Due to its primary importance, the selection problem
has been studied extensively; see for instance [2, 6, 11, 13, 14, 15, 19, 20, 21, 22, 23, 24, 25,
26, 34, 37, 40]. A comprehensive review of early developments in selection is provided by
Knuth [28]. The reader is also referred to dedicated book chapters on selection, such as those
in [1, 4, 10, 12, 27] and the more recent articles [8, 17], including experimental work [3].

In many applications (e.g., sorting), it is not important to find an exact median, or any
other precise order statistic, for that matter, and an approximate median suffices [18]. For
instance, quick-sort type algorithms aim at finding a balanced partition rather quickly; see
e.g., [22, 32, 33].

Studying the multiparty communication complexity of exact and approximate selection is
relevant in the context of distributed computing [9, 31, 36, 38].

Our results. Our main results are summarized in the three theorems stated below. We first
study the communication complexity of finding the median in the multiparty setting. In this
model we assume that every message by one of the players is seen by all the players (i.e., it
is a broadcast); as in [29, p. 83].

I Theorem 1. For i = 1, . . . , k, let player i hold a sequence (i.e., a multiset) Ai whose
support is a subset of [n] and |Ai| = O (poly(n)). There is a deterministic protocol for finding
the median of]k

i=1Ai (i.e., their multiset sum) with O(k log2 n) communication complexity.

We then study the communication complexity of finding an approximate median in the
multiparty setting (under slightly stronger assumptions on the input sets).

I Theorem 2. Let α = p/q, where p, q ∈ N, p < q/2, q is fixed and 0 < c ≤ 1 be a positive
constant. For i = 1, . . . , k, let player i hold a set Ai ⊂ [n] that is disjoint from any other
player’s set. Assume that t = | ∪k

i=1 Ai| ≥ cn. Put ` = dlog 2q
c e. Then an (αt, αt)-mediocre

element of ∪k
i=1Ai can be found with O(` · k logn) = O(k logn) communication complexity.

In particular, a (t/3, t/3)-mediocre element, or a (0.49 t, 0.49 t)-mediocre element, among
k players can be determined with O(k logn) communication complexity.

In the final part of our paper, somewhat surprisingly, we show that (under suitable
additional assumptions and a somewhat relaxed requirement) the communication complexity
of finding a mediocre element in the vicinity of the median is bounded from above by a
constant and is therefore independent of n.

I Theorem 3. Let α = p/q, where p, q ∈ N, p < q/2, q is fixed and 0 < c ≤ 1 be a
positive constant. Let Alice and Bob hold disjoint sets A and B of elements from [n], where
s = |A| ≤ |B| = m. Let t = s+m denote the total number of elements in A∪B, where t ≥ cn.
Assume that t, c, and α are known to both players. Put h = d 2q

q−2pe and ` = dlog 12h
c e.

K. Chen and A. Dumitrescu 42:3

Then an (αt, αt)-mediocre element can be found (by at least one player) with O(` log h) =
O(1) communication complexity. If both players return, each element returned is (αt, αt)-
mediocre; the elements found by the players need not be the same.

In particular, a (t/3, t/3)-mediocre element, or a (0.49 t, 0.49 t)-mediocre element, between
2 players can be determined (by at least one player) with O(1) communication complexity.
A simple example that falls under the scenario in Theorem 3 is one where A consists of
distinct odd numbers and B consists of distinct even numbers. It is worth noting that since
m/2t ≥ 1/4, if α < 1/4, the median of B is guaranteed to be an (αt, αt)-mediocre element
of A ∪B. In this case, no communication is needed.

Preliminaries. A simple but effective procedure reduces the selection problem for finding the
i-th smallest element out of n to one for finding the median in a slightly larger sequence. The
target is the i-th smallest element in an input sequence A of size n. Assume first that i < n/2;
in this case pad the input A with n− 2i elements that are less than or equal to the minimum
in the input sequence; call A′ resulting sequence. Note that |A′| = n+ (n− 2i) = 2(n− i).
It suffices to observe that the median of A′ is the i-th smallest element in A: indeed,
n− 2i+ i = n− i, as required. The case i > n/2 is symmetric; in this case pad the input A
with 2i− n elements that are larger than or equal to the maximum in the input sequence;
call A′ resulting sequence. Note that |A′| = n+ (2i− n) = 2i. Observe that the median of
A′ is the i-th smallest element in A, as required. We therefore restrict our attention to the
median selection problem.

Notation. Without affecting the results, the floor and ceiling functions are omitted in some
instances where they are not essential. For example, we frequently write the αn-th element
instead of the more precise bαnc-th element. Unless specified otherwise, all logarithms are in
base 2.

For an s-bit number x and a positive integer `, where s ≥ `, prefix`(x) denotes the `-bit
binary prefix of x, i.e., the number formed by the first (i.e., most significant) ` bits of x.

If x belongs to a sorted list and is not the minimum, pred(x) denotes its predecessor.
If x belongs to a sorted list and is not the maximum, succ(x) denotes its successor.

2 Exact selection

In this section we prove Theorem 1. First, we set up the problem in the context of two-party
communication complexity; we start with some background. In this section, each player’s
input is allowed to contain duplicates. Following the literature, we refer to these (potential)
multisets as sets, and the union operation should be understood as multiset sum [29, Example
1.6, p. 6]. (An equivalent formulation is merging of sequences.)

2.1 Two players
Alice and Bob hold multisets A and B whose supports are subsets of [n] = {1, 2, . . . , n},
respectively. It is assumed that |A|, |B| = O (poly(n)). (In a standard setup [29, Example 1.6,
p. 6], A and B are subsets of [n]; here we extend this setup for potentially larger multisets.)
The median of the multiset A∪B is denoted by ξ = Med(A,B); as usual, the median of X is
the d(|X|/2)e-th smallest element of X.

There is a simple binary-search type protocol due to M. Karchmer that takes O(log2 n)
bits of communication; see [29, Example 1.6, p. 6]. At each round Alice and Bob have an
interval [i, j], i, j ∈ N, that contains the median. They halve the interval (repeatedly) by

ISAAC 2020

42:4 Multiparty Selection

deciding whether the median is less than, equal to, or larger than m = (i + j)/2. This is
done by Alice sending to Bob the number of elements in A that are less than m, equal to m,
and larger than m, using O(logn) bits. Bob can now determine whether the median is less
than, equal to, or larger than m, and sends this information to Alice using O(1) bits. The
protocol has O(logn) rounds, each requiring O(logn) bits of communication, so the overall
communication complexity is O(log2 n).

An alternative binary-search type protocol that takes O(log2 n) bits of communication,
also due to Karchmer [29, p. 168], works as follows. Assume, without loss of generality that
|A| = |B| and that the common size is a power of 2: this can be achieved by exchanging
the sizes of their inputs (O(logn) bits) and padding them with the appropriate number
of the minimal element (1) and the maximal element (n). The protocol works in rounds.
During the protocol, Alice maintains a set A′ ⊂ A of elements that may still be the median
(initially A′ = A) and Bob maintains a set B′ ⊂ B of elements that may still be the median
(initially B′ = B). At each round, Alice sends Bob the value a, which is the median of
A′, and Bob sends Alice the value b, which is the median of B′. At this point we have
min(a, b) ≤ ξ ≤ max(a, b). If a < b, then Alice discards the lower half of A′ (note that a is
part of it) and Bob discards the upper half of B′. If b < a, then Bob discards the lower half
of B′ (note that b is part of it) and Alice discards the upper half of A′. In either case, this
operation maintains the median of A′ ∪ B′ as the desired median of A ∪ B. It should be
noted that the size of A′ ∪B′ is reduced (exactly) by a factor of 2. If a = b, this value is the
median, and if |A′| = |B′| = 1, then the smaller number is the median. The protocol has
O(logn) rounds, each requiring O(logn) bits of communication, and so the communication
complexity is O(log2 n).

The communication complexity of finding the median can be further reduced. A subtle
refinement of the above protocol, due to Karchmer [29, Example 1.7, p. 6 and p. 168], and
revised by Gasarch [30], works with O(logn) communication complexity: its key idea is
to make comparisons in a bit-by-bit manner, but this requires careful bookkeeping of the
progress and here we omit the technical details.

We next describe a different (folklore) protocol, running with O(logn) communication
complexity, that we find simpler and subsequently refine for computing a mediocre element.
The protocol implements a binary-search strategy and works in rounds. Alice maintains a
set A′ ⊂ A of elements that may still be the median (initially A′ = A) and Bob maintains
a set B′ ⊂ B of elements that may still be the median (initially B′ = B). Alice and Bob
compute the medians of their current inputs (a and b, respectively). At this point we have
min(a, b) ≤ ξ ≤ max(a, b). Alice and Bob aim to determine the order relation between a and
b in order to halve their input in an appropriate manner.

The protocol avoids sending these logn-bit numbers at each round by avoiding making a
direct comparison between a and b. The players have an interval [i, j], i, j ∈ N, that contains
the median (initially, [i, j] = [1, n]). The medians a and b are compared to the middle element
h = b(i+ j)/2c, If a = b = h, this element is the median of A∪B and the protocol terminates.
Otherwise, if a and b are split by h, i.e., a ≤ h ≤ b or b ≤ h ≤ a, then (by transitivity of ≤),
the relation between a and b is determined, and Alice and Bob halves their input accordingly
(as in the earlier O(log2 n) protocol). Otherwise, if a and b are on the same side of h, i.e.,
a, b ≤ h or h ≤ a, b. For example, in the first case, the elements in the lower half of A′ ∪B′
are ≤ h and the same holds for the median of A′ ∪B′. As such, both players shrink their
common interval [i, j] by (roughly) half: the resulting interval is [i, h] or [h, j], respectively.
The sets A′ and B′ remain unchanged. Alice and Bob communicate each of the outcomes of
the above tests in O(1) bits. Each halving operation for A′ and B′ maintains the property
that ξ = Med(A ∪B) = Med(A′ ∪B′).

K. Chen and A. Dumitrescu 42:5

Let ` = dlogne. Note that after 2` − 1 tests, either Alice and Bob hold singleton sets
(i.e., |A′| = |B′| = 1), or the common interval [i, j] consists of a single integer i = j. If
|A′| = |B′| = 1, the smaller number is the median (or either, for equality), whereas if
i = j, this number is the median. The number of bits exchanged before the last round of
the protocol is O(logn) and is O(logn) in the last round. The resulting communication
complexity is O(logn).

2.2 k players
In this subsection we show the protocol that proves Theorem 1. It is worth noting that the
number of players, k is independent of n. The protocol maintains the invariant: the median
of ∪k

i=1Ai in one round is the same for the updated sets in the next round. It is possible that
the number of sets drops from k to a lower number; the protocol remains unchanged until
the value k = 2 is reached, when the respective players apply the protocol in Subsection 2.1;
recall that padding with extra elements may be needed. If the value k = 1 is reached, the
remaining player computes the median in his/her own set and the game ends.

Initially, each player sorts his/her input set locally. The sorted order is used by each
player in the pruning process, and if such action occurs, the sorted order is locally maintained.
Each set pruning discards elements at one of the two ends of the chain (either low elements
below some threshold, or high elements above some threshold).

The protocol roughly halves the size of at least one of the current participating sets; more
precisely, for some X ∈ {A1, . . . , Ak}, we have |X ′| ≤ b|X|/2c by the end of each round.
Since the size of each set is initially O (poly(n)), the size of each of the k sets drops to 0 in
at most O(logn) iterations and consequently, the number of rounds is at most O(k logn).
(Padding with extra elements when k = 2 is reached conforms with this bound.)

Each round of the protocol works as follows. Each player (locally) finds the median of
his/her current set: xi ∈ Ai, i = 1, . . . , k. The following scheme regarding medians is used:
assume that there are x sets of even size and y sets of odd size in the current round, where
x+ y = k; for the x sets of even size the first dx/2e use the lower median and the remaining
bx/2c use the upper median (in some fixed, e.g., alphabetical, order). The idea of intermixing
upper and lower medians is also present in [8]. (A scheme that uses only lower medians
or only upper medians fails to guarantee that the median of the union is maintained after
pruning, for instance if k = 3 and all three sets have even size; the smallest example of this
kind is |A1| = |A2| = |A3| = 2.)

In the first round, each player posts his/her median and set size on the communication
board; this involves O(k logn) bits of communication. In the remaining rounds, two players
whose sets got pruned (as further explained below) need to update their median on the
communication board. Depending on the parities of the sets of these two players before
and after the pruning, at most one more player may need to update his/her median to
maintain the balanced scheme adopted earlier which requires dx/2e use the lower median and
the remaining bx/2c use the upper median. Therefore, in each round, the communication
complexity is O(logn).

All players are now able to determine the sorted order of the k medians. For simplicity,
assume that after relabeling, this order is

x1 ≤ x2 ≤ . . . ≤ xk. (1)

It is convenient to refer to the players holding the minimum and maximum of these medians
as Alice and Bob and to their corresponding sets as A and B: xA ≡ x1 and xB ≡ xk (this
relabeling is only done for the purpose of analysis).

ISAAC 2020

42:6 Multiparty Selection

Let P denote the poset made by the k chains A1, . . . , Ak, together with the relations
in (1). Write a = |A|, b = |B|, and t =

∑k
i=1 |Ai|. The player holding the smaller set between

Alice and Bob is in charge of the pruning operation in the current round: the same number
of elements is discarded by Alice and Bob as specified below. Refer to Fig 1.

If min(a, b) = a, Alice discards da/2e elements in A (all x ≤ xA when a is odd or xA is
the lower median, or all x < xA when xA is the upper median), and Bob discards the highest
da/2e elements in B. Such operation is charged to Alice. Otherwise, if min(a, b) = b, Bob
discards db/2e elements in B (all x ≥ xB when b is odd or xB is the upper median, or all
x > xB when xB is the lower median), and Alice discards the lowest db/2e elements in A.
Such operation is charged to Bob. It is worth noting that this scheme is feasible: i.e., if the
indicated player discards the specified number of elements, the other player can also discard
the same number of elements. Then the protocol continues with the next round. Each player
keeps track of the players that are still in the game and their set cardinalities, as these can
be deduced from the actions of the algorithm.

It remains to show that the same number of elements is discarded from each side of the
median in each round. Let u be the number of elements in P that are above the highest
discarded element of A, and v be the number of elements in P that are below the lowest
discarded element of B. By slightly abusing notation, let k denote the number of players in
the current round of the protocol (which may differ from the initial number). Specifically we
prove the following.

Figure 1 Pruning the poset P in the protocol for finding the median; Alice is the leftmost player
and Bob is the rightmost player. (i) k = 4, t = 8, u = 6, v = 5; operation is charged to Alice. (ii)
k = 3, t = 9, u = 6, v = 7; operation is charged to Alice. (iii) t = 11, u = 6, v = 8; operation is
charged to Alice. (iv) t = 7, u = 5, v = 4; operation is charged to Bob.

I Lemma 4. Consider a round of the protocol and assume that k ≥ 3 and t =
∑k

i=1 |Ai|.
The following inequalities for u and v hold: u ≥ d t+1

2 e and v ≥ d
t
2e.

Proof. For u, we start by including |Ai|/2 corresponding to the upper half elements in the
set Ai, for i = 1, . . . , k; this contributes t/2 to the sum. In addition we add 1/2 for each set
of odd size, thus y/2 over all odd sets. Then we add 1 for each set of even size that uses the
lower median, thus dx/2e over all even sets. This procedure overcounts by 1 if the median
xA is the highest discarded element of A. Therefore, we have

u ≥ t

2 + y

2 +
⌈x

2

⌉
− 1 ≥ t

2 + y

2 + x

2 − 1 = t+ x+ y − 2
2 = t+ k − 2

2 ≥ t+ 1
2 .

Similarly, for v, we start by including |Ai|/2 corresponding to the lower half elements
in the set Ai, for i = 1, . . . , k; this contributes t/2 to the sum. In addition we add 1/2 for
each set of odd size, thus y/2 over all odd sets. Then we add 1 for each set of even size that
uses the upper median, thus bx/2c over all even sets. This procedure overcounts by 1 if the
median xB is the lowest discarded element of B. Therefore, we have

K. Chen and A. Dumitrescu 42:7

v ≥ t

2 + y

2 +
⌊x

2

⌋
− 1 ≥ t

2 + y

2 + x− 1
2 − 1 = t+ x+ y − 3

2 = t+ k − 3
2 ≥ t

2 .

Since both u and v are integers, we have thereby proved that u ≥ d t+1
2 e and v ≥ d

t
2e, as

required. J

Proof of Theorem 1. By Lemma 4, all the elements discarded from A are below the median
(of the union), and all elements discarded from B are above the median. Thus in each round,
the protocol preserves the median and discards the same number of elements from each side
of it. This proves the invariant of the protocol. Since the protocol takes O(k logn) rounds
and the communication complexity of each round is O(logn), the overall communication
complexity is O(k log2 n), as claimed. J

3 Approximate selection with k players

In this section we consider the problem of finding an (αt, αt)-mediocre element among k
players, where α ∈ (0, 1/2) is a fixed constant. Recall that in the setting of Theorem 2, the
sets Ai, i = 1, . . . , k, are pairwise disjoint. But we do not assume that they have the same
cardinality.

Proof of Theorem 2. The protocol works in rounds. Let a1 = 1 and b1 = n; and note that
[a1, b1] contains the median m, i.e., the dt/2e-th smallest element of ∪k

i=1Ai. For round
j = 1, 2, . . ., the interval [aj+1, bj+1] is obtained from the interval [aj , bj] by halving while
maintaining the following:

Invariant: For j = 1, 2, . . ., the interval [aj , bj] contains the median m.

Equivalently, the invariant can be stated as follows. For j = 1, 2, . . .,
the number of elements in ∪k

i=1Ai that are ≤ aj is less than dt/2e, and
the number of elements in ∪k

i=1Ai that are ≤ bj is at least dt/2e.

Specifically, in round j, let

cj =
⌊
aj + bj

2

⌋
.

Each player communicates the number of elements in his/her set that are ≤ cj . Since
there are k players, this takes O(k logn) bits.1 Once this is done, each player can compute
independently (by adding the k individual counts) the total number of elements in ∪k

i=1Ai

that are ≤ ci. If the number is less than dt/2e, then we set [aj+1, bj+1] := [cj , bj], otherwise,
i.e., the number is at least dt/2e, then we set [aj+1, bj+1] := [aj , cj]. This setting maintains
the invariant.

1 It was suggested by an anonymous reviewer that using approximate counts would improve the communi-
cation complexity from O(k logn) to O(k log k+ logn). Specifically, let xi be the number of elements in
Ai that are ≤ cj . Instead of xi which needs O(logn) bits, player i posts yi = bxik/((0.5− α)t)c which
can be represented in O(log k) bits. Then each player locally computes and uses zi = dyi(0.5− α)t/ke
to approximate the actual count xi. Since 0 ≤ xi− zi < (0.5−α)t/k, the total error among all k players
is at most (0.5− α)t which seems to be within the mediocre range. However, we have a counterexample
showing that this change will make the protocol return an element that is not (αt, αt)-mediocre. So it
appears that this “improvement” is invalid. Furthermore, we note that any inaccuracy in the counts (for
example, by using even a smaller factor β < 0.5−α in the above strategy) may still result in choosing a
different half of the interval [aj , bj] which in turn can violate the invariant that the median m is always
in the current interval.

ISAAC 2020

42:8 Multiparty Selection

The protocol repeatedly halves the current interval until

bj − aj ≤
(

1
2 − α

)
t. (2)

When this occurs, since ∪k
i=1Ai consists of distinct elements, [aj , bj] contains a continuous

range of no more than
(1

2 − α
)
t elements of ∪k

i=1Ai, withm being one of them. If (0.5−α)t <
1, then the protocol stops when bj − aj = 1 and returns bj as the median.

Let z be any element of ∪k
i=1Ai contained in [aj , bj]. (The protocol will return one such

element, as explained below.) Observe that

t

2 −
(

1
2 − α

)
t ≤ rank∪Ai

(z) ≤ t

2 +
(

1
2 − α

)
t, or

αt ≤ rank∪Ai
(z) ≤ (1− α) t. (3)

The number of halving rounds needed to achieve the interval-length in (2) is at most⌈
log n(1

2 − α
)
t

⌉
≤

⌈
log n(1

2 − α
)
cn

⌉
=
⌈

log 1(1
2 − α

)
c

⌉
=
⌈

log 2q
(q − 2p)c

⌉
≤
⌈

log 2q
c

⌉
= ` = O(1).

In each round, the k players communicate their counts, O(k logn) bits in total. Each
player independently computes the total count for the midpoint of the current interval, and
all players take the same decision on how to set the next interval in the halving process (with
no further communication needed).

In the last round (i.e., when inequality (2) is satisfied), the players report in turn. If the
player does not hold any element in the interval [aj , bj], he/she outputs a zero bit and the
report continues; otherwise the player outputs such an element (from his/her set) in O(logn)
bits and the protocol ends. The output element is a valid choice, as justified by (3).

The total communication complexity is therefore O(` k logn) = O(k logn) bits, as claimed.
This concludes the proof of Theorem 2. J

4 Approximate selection with two players under special conditions

Let t = s+m denote the total number of elements in A ∪B. Here we consider the problem
of finding an (αt, αt)-mediocre element between two players, where α ∈ (0, 1/2) is a fixed
constant. The protocol described in Subsection 2.1 immediately yields the following.

I Corollary 5. The deterministic communication complexity of finding an (αt, αt)-mediocre
element in A ∪B ⊂ [n], where t = |A|+ |B| and α ∈ (0, 1/2) is a fixed constant, is O(logn).

Interestingly enough, this communication complexity can be brought down to a constant
under slightly stronger assumptions: (i) A and B have no duplicates or common elements,
and (ii) |A∪B| ≥ cn, for some constant c > 0; and a somewhat relaxed requirement: at least
one of the players returns an element to the process that has invoked his/her service; each
element returned is (αt, αt)-mediocre. Note that this is a natural relaxation – if the set of
one player does not contain any suitable element, it is impossible to communicate the final
answer to this player within O(1) complexity.

A natural protocol to consider would be to choose one of the median-finding protocols
and execute a constant number of rounds from it. However, this seemingly promising idea
does not appear to work. It is possible that one of the two sets, say A, does not contain any

K. Chen and A. Dumitrescu 42:9

desired elements, namely (αt, αt)-mediocre for the given α and so at the end of the modified
protocol only B′ contains desired elements (and not A′). More importantly, the players
apparently have no indication of which player is the lucky one. We therefore resort to a
different idea of using quantiles (more precisely, a sampling technique with a similar effect).

Proof of Theorem 3. We may assume, without loss of generality that n and 1/c are powers
of 2 (in particular, 4n is also a power of 2). For n < 8q2/c Alice and Bob use the earlier
O(logn)-protocol for finding the median; we therefore subsequently assume that n ≥ 8q2/c.
In particular, since q ≥ 3, we have n ≥ 24q/c. We further assume, without loss of generality
that |A| = |B| = m: this can be achieved by padding the smaller size set with the appropriate
numbers of small elements and large elements as described below. In particular, the padding
elements need also be distinct. (It is not assumed that the common size is a power of 2:
since our protocol does not exactly halve the current set of each player at each round, such
an assumption would be of no use.)

To illustrate the padding process for arbitrary set sizes, we may assume without loss of
generality that the given input satisfies: s = |A| ≤ |B| = m. Recall that s and m are known
to both players. We need to pad Alice’s input with m−dm+s

2 e small elements and dm+s
2 e− s

large elements. Alice and Bob replace their inputs by A+ n and B + n, respectively; as a
result, the elements they hold are now in the range {n + 1, . . . , 2n}. Then Alice pads her
input with {1, 2, . . . ,m−dm+s

2 e} ⊂ [n] and {2n+ 1, . . . , 2n+ dm+s
2 e− s} ⊂ [3n] \ [2n]. (Note

that
⌈

m+s
2
⌉
−s = m−

⌊
m+s

2
⌋
.) The resulting sets have the same size m and A∪B consists of

distinct elements in the range [3n] ⊂ [4n]. By subtracting n, the element(s) returned by the
protocol are shifted back to the original range [n] in the end (without explicitly mentioning
it there).

A and B below denote the (new) padded sets (of size m). Set h = d 2q
q−2pe (recall that

α = p/q) and ` = dlog 12h
c e. By the assumption n ≥ 24q/c we have

cn ≥ 24q ≥ 12
⌈

2q
q − 2p

⌉
= 12h.

Let QA be the set consisting of the ibm/hc-th elements of A, for i = 1, 2, . . . , h. Similarly,
let QB be the set consisting of the ibm/hc-th elements of B, for i = 1, 2, . . . , h. (These sets
resemble the h-th quantiles of A and B). Note that |QA| = |QB | = h. Since A and B consist
of pairwise distinct elements, between any two elements in QA (or QB), there are at least⌊m

h

⌋
≥ m

h
− 1 ≥ t

2h − 1 ≥ cn

2h − 1 ≥ cn

3h ≥
4n
2`

elements. Represent each element x in QA (and QB) with log(4n) = logn+ 2 bits; it follows
that the elements in {prefix`(x) : x ∈ QA} are pairwise distinct; similarly the elements in
{prefix`(y) : y ∈ QB} are pairwise distinct.

The protocol implements a binary-search strategy aimed at finding the median of QA∪QB .
Note that |QA| = |QB | ≤ h. Alice maintains a set Q′A ⊂ QA of elements that may still be
the median quantile (initially Q′A = QA) and Bob maintains a set Q′B ⊂ QB of elements that
may still be the median quantile (initially Q′B = QB). The invariant |Q′A| = |Q′B | will be
maintained. At each round, Alice and Bob compute the medians of their current sets (xA

and xB, respectively). If prefix`(xA) < prefix`(xB) or prefix`(xA) > prefix`(xB) the
protocol continues with Alice and Bob halving their input as in the median-finding protocol.
Specifically, if prefix`(xA) < prefix`(xB) the protocol discards the b|Q′A|/2c lower elements
ofQ′A and the b|Q′B |/2c upper elements ofQ′B . The equality case prefix`(xA) = prefix`(xB)
is addressed below. Observe that the above comparison can be resolved by exchanging ` bits
in each round.

ISAAC 2020

42:10 Multiparty Selection

If prefix`(xA) = prefix`(xB), and |Q′A| = |Q′B | ≥ 3, we have prefix`(pred(xA)) <
prefix`(xB), and the protocol discards the b(|Q′A| − 1)/2c lower elements of Q′A and the
b(|Q′B | − 1)/2c upper elements of Q′B . Note that this is a slight but important deviation from
the standard median-finding protocol; it is aimed at handling prefix equality by discarding
possibly one fewer element by each player. With this choice, the median of QA ∪QB remains
the median of Q′A ∪ Q′B; and the invariant |Q′A| = |Q′B | is maintained. Since the sets the
players hold are almost halved at each round, the protocol terminates in O(log h) rounds, as
specified below.

If |Q′A| = |Q′B | = 2, and prefix`(xA) 6= prefix`(xB), the protocol continues with each
player halving his/her own current set accordingly. If |Q′A| = |Q′B | = 2, and prefix`(xA) =
prefix`(xB), the protocol terminates with each player output his/her number (xA and xB ,
respectively). Observe that in this case, the median of QA ∪QB is xA or xB and it will be
shown below, see (7), that both elements are (αt, αt)-mediocre.

If |Q′A| = |Q′B | = 1 and prefix`(xA) 6= prefix`(xB), the protocol terminates with
the player that holds the smaller of xA and xB output that number. If |Q′A| = |Q′B | = 1
and prefix`(xA) = prefix`(xB), the protocol terminates with each player output his/her
number (xA and xB, respectively). It will be shown below, see (7), that both elements are
(αt, αt)-mediocre.

Recall that ` = dlog 12h
c e. If x, y ∈ [3n] and prefix`(x) = prefix`(y) then

|x− y| ≤ 3n
2`
≤ cn

4h ≤
t

4h. (4)

Recall that the median of QA ∪QB is in Q′A ∪Q′B in the last round of the protocol. Since
all elements are distinct, for xA and xB above, if prefix`(xA) = prefix`(xB), Inequality (4)
implies

|rankA∪B(xA)− rankA∪B(xB)| ≤ t

4h. (5)

Assume that the median of QA ∪QB is xA ∈ QA; then Alice returns xA. In addition, if
prefix`(xA) = prefix`(xB), Bob also returns xB ∈ QB . Since xA is the median of QA∪QB ,
it is the h-th smallest element of QA ∪QB . As such (by construction): (i) xA is ≥ than at
least

h
⌊m
h

⌋
≥ h

(m
h
− 1
)

= m− h

elements of A ∪B; and similarly, (ii) xA is ≤ than at least m− h elements of A ∪B. Note
that the median of A ∪B has rank m and is the same as the median of the original union of
the two sets. See Fig. 2.

Observe that h = d 2q
q−2pe ≤ 2q which yields 2h2 ≤ 8q2 ≤ cn ≤ t (recall that n ≥ 8q2/c).

This implies

|rankA∪B(xA)−m| ≤ h ≤ t

2h. (6)

Recall that if prefix`(xA) = prefix`(xB), Bob also returns xB ∈ QB and Inequality (5)
applies. From (5) and (6) we deduce that the rank of any output element z satisfies (recall
that t = s+m):

|rankA∪B(z)−m| ≤ t

4h + t

2h ≤
t

h
≤ (q − 2p)t

2q =
(

1
2 − α

)
t. (7)

K. Chen and A. Dumitrescu 42:11

m 2m

t︷ ︸︸ ︷m−
⌈
t
2

⌉︷ ︸︸ ︷ m−
⌊
t
2

⌋︷ ︸︸ ︷
︸ ︷︷ ︸

αt

︸ ︷︷ ︸
αt

padding padding

︸ ︷︷ ︸
t
2h

︸ ︷︷ ︸
t
2h

︸︷︷︸
t
4h

︸︷︷︸
t
4h

Figure 2 Above: Illustration of the original union of the two input sets with padding elements.
The players need to find elements from the unshaded region in the middle. Below: The median x of
QA ∪QB lies within the red region. If the other player has an element y such that prefix`(y) =
prefix`(x), then y lies in the union of the red and blue regions, therefore it is also a valid output.

As such, each output element z is an (αt, αt)-mediocre element of the original union of
the two sets. The elements returned are xA or xB (or both). Alice may return xA and Bob
may return xB to the processes that have invoked their service; the elements returned by
the players could be different. Since q = O(1), we have h, ` = O(1). The number of bits
exchanged is ` + O(1) = O(1) in each of the O(log h) rounds of the protocol. The overall
communication complexity is O(` log h) = O(1), as claimed. J

5 Conclusion

An obvious question is whether the three-party communication complexity of median com-
putation can be reduced to O(logn). A more general question is whether the k-party
communication complexity of median computation, k ≥ 3, can be reduced to O(k logn). We
believe that the answers to both questions are in the negative. Another interesting question
regarding the two-party communication complexity of approximate selection is whether the
conditions in Theorems 2 and 3 can be relaxed.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.
2 Miklós Ajtai, János Komlós, William L. Steiger, and Endre Szemerédi. Optimal parallel

selection has complexity o(log logn). Journal of Computer and System Sciences, 38(1):125–
133, 1989. doi:10.1016/0022-0000(89)90035-4.

3 Andrei Alexandrescu. Fast deterministic selection. In Costas S. Iliopoulos, Solon P. Pissis,
Simon J. Puglisi, and Rajeev Raman, editors, Proceedings of the 16th International Symposium
on Experimental Algorithms, SEA 2017, London, UK, June 21-23, 2017, volume 75 of LIPIcs,
pages 24:1–24:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/
LIPIcs.SEA.2017.24.

4 Sara Baase. Computer algorithms - introduction to design and analysis. Addison-Wesley, 1988.
5 Sebastiano Battiato, Domenico Cantone, Dario Catalano, Gianluca Cincotti, and Micha

Hofri. An efficient algorithm for the approximate median selection problem. In Gian Carlo
Bongiovanni, Giorgio Gambosi, and Rossella Petreschi, editors, Proceedings of the 4th Italian
Conference on Algorithms and Complexity, CIAC 2000, Rome, Italy, March 2000, volume
1767 of Lecture Notes in Computer Science, pages 226–238. Springer, 2000. doi:10.1007/
3-540-46521-9_19.

ISAAC 2020

https://doi.org/10.1016/0022-0000(89)90035-4
https://doi.org/10.4230/LIPIcs.SEA.2017.24
https://doi.org/10.4230/LIPIcs.SEA.2017.24
https://doi.org/10.1007/3-540-46521-9_19
https://doi.org/10.1007/3-540-46521-9_19

42:12 Multiparty Selection

6 Samuel W. Bent and John W. John. Finding the median requires 2n comparisons. In Robert
Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
STOC 1985, Providence, Rhode Island, USA, May 6-8, 1985, pages 213–216. ACM, 1985.
doi:10.1145/22145.22169.

7 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973. doi:10.1016/S0022-0000(73)80033-9.

8 Ke Chen and Adrian Dumitrescu. Selection algorithms with small groups. International Journal
of Foundations of Computer Science, 31(3):355–369, 2020. doi:10.1142/s0129054120500136.

9 Francis Y. L. Chin and Hing fung Ting. An improved algorithm for finding the median
distributively. Algorithmica, 2:235–249, 1987. doi:10.1007/BF01840361.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

11 Walter Cunto and J. Ian Munro. Average case selection. Journal of ACM, 36(2):270–279, 1989.
doi:10.1145/62044.62047.

12 Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algorithms. McGraw-
Hill, 2008.

13 Dorit Dor, Johan Håstad, Staffan Ulfberg, and Uri Zwick. On lower bounds for selecting
the median. SIAM Journal on Discrete Mathematics, 14(3):299–311, 2001. doi:10.1137/
S0895480196309481.

14 Dorit Dor and Uri Zwick. Finding the αn-th largest element. Combinatorica, 16(1):41–58,
1996. doi:10.1007/BF01300126.

15 Dorit Dor and Uri Zwick. Selecting the median. SIAM Journal on Computing, 28(5):1722–1758,
1999. doi:10.1137/S0097539795288611.

16 Adrian Dumitrescu. Finding a mediocre player. In Pinar Heggernes, editor, Proceedings of the
11th International Conference on Algorithms and Complexity, CIAC 2019, Rome, Italy, May
27-29, 2019, volume 11485 of Lecture Notes in Computer Science, pages 212–223. Springer,
2019. doi:10.1007/978-3-030-17402-6_18.

17 Adrian Dumitrescu. A selectable sloppy heap. Algorithms, special issue on efficient data
structures, 12(3):58, 2019. doi:10.3390/a12030058.

18 Stefan Edelkamp and Armin Weiß. Worst-case efficient sorting with quickmergesort. In
Stephen G. Kobourov and Henning Meyerhenke, editors, Proceedings of the 21st Workshop on
Algorithm Engineering and Experiments, ALENEX 2019, San Diego, CA, USA, January 7-8,
2019, pages 1–14. SIAM, 2019. doi:10.1137/1.9781611975499.1.

19 Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Communications
of ACM, 18(3):165–172, 1975. doi:10.1145/360680.360691.

20 Frank Fussenegger and Harold N. Gabow. A counting approach to lower bounds for selection
problems. Journal of ACM, 26(2):227–238, 1979. doi:10.1145/322123.322128.

21 Abdollah Hadian and Milton Sobel. Selecting the t-th largest using binary errorless comparisons.
Technical Report No. 121, School of Statistics, University of Minnesota, 1969. URL: http:
//hdl.handle.net/11299/199105.

22 Charles Antony Richard Hoare. Algorithm 63: Partition and algorithm 65: Find. Communi-
cations of ACM, 4(7):321–322, 1961. doi:10.1145/366622.366647.

23 Laurent Hyafil. Bounds for selection. SIAM Journal on Computing, 5(1):109–114, 1976.
doi:10.1137/0205010.

24 John W. John. A new lower bound for the set-partitioning problem. SIAM Journal on
Computing, 17(4):640–647, 1988. doi:10.1137/0217040.

25 Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick. Selection from heaps, row-sorted
matrices, and x + y using soft heaps. In Jeremy T. Fineman and Michael Mitzenmacher,
editors, Proceedings of the 2nd Symposium on Simplicity in Algorithms, SOSA 2019, San
Diego, CA, USA, January 8-9, 2019, volume 69 of OASICS, pages 5:1–5:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.5.

https://doi.org/10.1145/22145.22169
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1142/s0129054120500136
https://doi.org/10.1007/BF01840361
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/62044.62047
https://doi.org/10.1137/S0895480196309481
https://doi.org/10.1137/S0895480196309481
https://doi.org/10.1007/BF01300126
https://doi.org/10.1137/S0097539795288611
https://doi.org/10.1007/978-3-030-17402-6_18
https://doi.org/10.3390/a12030058
https://doi.org/10.1137/1.9781611975499.1
https://doi.org/10.1145/360680.360691
https://doi.org/10.1145/322123.322128
http://hdl.handle.net/11299/199105
http://hdl.handle.net/11299/199105
https://doi.org/10.1145/366622.366647
https://doi.org/10.1137/0205010
https://doi.org/10.1137/0217040
https://doi.org/10.4230/OASIcs.SOSA.2019.5

K. Chen and A. Dumitrescu 42:13

26 David G. Kirkpatrick. A unified lower bound for selection and set partitioning problems.
Journal of ACM, 28(1):150–165, 1981. doi:10.1145/322234.322245.

27 Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley, 2006.
28 Donald E. Knuth. The art of computer programming, Volume III: Sorting and Searching, 2nd

Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/oclc/312994415.
29 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,

1997.
30 Eyal Kushilevitz, Noam Nisan, and Bill Gasarch. Errata of communication complexity.

http://www.cs.technion.ac.il/~eyalk/book.html.
31 S. L. Mantzaris. On “an improved algorithm for finding the median distributively”. Algorithmica,

10(6):501–504, 1993. doi:10.1007/BF01891834.
32 Conrado Martínez and Salvador Roura. Optimal sampling strategies in quicksort and quickse-

lect. SIAM Journal on Computing, 31(3):683–705, 2001. doi:10.1137/S0097539700382108.
33 Catherine C. McGeoch and J. Doug Tygar. Optimal sampling strategies for quicksort. Random

Structures & Algorithms, 7(4):287–300, 1995. doi:10.1002/rsa.3240070403.
34 Mike Paterson. Progress in selection. In Rolf G. Karlsson and Andrzej Lingas, editors,

Proceedings of the 5th Scandinavian Workshop on Algorithm Theory SWAT 1996, Reykjavík,
Iceland, July 3-5, 1996, volume 1097 of Lecture Notes in Computer Science, pages 368–379.
Springer, 1996. doi:10.1007/3-540-61422-2_146.

35 Anup Rao and Amir Yehudayoff. Communication complexity and applications. Cambridge
University Press, 2020. doi:10.1017/9781108671644.

36 Michael Rodeh. Finding the median distributively. Journal of Computer and System Sciences,
24(2):162–166, 1982. doi:10.1016/0022-0000(82)90045-9.

37 Arnold Schönhage, Mike Paterson, and Nicholas Pippenger. Finding the median. Journal of
Computer and System Sciences, 13(2):184–199, 1976. doi:10.1016/S0022-0000(76)80029-3.

38 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11th Annual ACM Symposium on
Theory of Computing, STOC 1979, Atlanta, Georgia, USA, April 30 - May 2, 1979, pages
209–213. ACM, 1979. doi:10.1145/800135.804414.

39 Frances F. Yao. On lower bounds for selection problems. Technical Report MAC TR-121,
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1974.

40 Chee-Keng Yap. New upper bounds for selection. Communications of ACM, 19(9):501–508,
1976. doi:10.1145/360336.360339.

ISAAC 2020

https://doi.org/10.1145/322234.322245
https://www.worldcat.org/oclc/312994415
http://www.cs.technion.ac.il/~eyalk/book.html
https://doi.org/10.1007/BF01891834
https://doi.org/10.1137/S0097539700382108
https://doi.org/10.1002/rsa.3240070403
https://doi.org/10.1007/3-540-61422-2_146
https://doi.org/10.1017/9781108671644
https://doi.org/10.1016/0022-0000(82)90045-9
https://doi.org/10.1016/S0022-0000(76)80029-3
https://doi.org/10.1145/800135.804414
https://doi.org/10.1145/360336.360339

	Introduction
	Exact selection
	Two players
	k players

	Approximate selection with k players
	Approximate selection with two players under special conditions
	Conclusion

