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Abstract
A directed graph G = (V, E) is twinless strongly connected if it contains a strongly connected
spanning subgraph without any pair of antiparallel (or twin) edges. The twinless strongly connected
components (TSCCs) of a directed graph G are its maximal twinless strongly connected subgraphs.
These concepts have several diverse applications, such as the design of telecommunication networks
and the structural stability of buildings. A vertex v ∈ V is a twinless strong articulation point of G,
if the deletion of v increases the number of TSCCs of G. Here, we present the first linear-time
algorithm that finds all the twinless strong articulation points of a directed graph. We show that the
computation of twinless strong articulation points reduces to the following problem in undirected
graphs, which may be of independent interest: Given a 2-vertex-connected undirected graph H, find
all vertices v for which there exists an edge e such that H \ {v, e} is not connected. We develop a
linear-time algorithm that not only finds all such vertices v, but also computes the number of edges
e such that H \ {v, e} is not connected. This also implies that for each twinless strong articulation
point v which is not a strong articulation point in a strongly connected digraph G, we can compute
the number of TSCCs in G \ v.
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1 Introduction

Let G = (V, E) be a directed graph (digraph), with m edges and n vertices. Digraph G is
strongly connected if there is a directed path from each vertex to every other vertex. The
strongly connected components (SCCs) of G are its maximal strongly connected subgraphs.
Two vertices u, v ∈ V are strongly connected if they belong to the same strongly connected
component of G. We refer to a pair of antiparallel edges, (x, y) and (y, x), of G as twin
edges. A digraph G = (V, E) is twinless strongly connected if it contains a strongly connected
spanning subgraph (V, E′) without any pair of twin edges. The twinless strongly connected
components (TSCCs) of G are its maximal twinless strongly connected subgraphs. Two
vertices u, v ∈ V are twinless strongly connected if they belong to the same twinless strongly
connected component of G. Twinless strong connectivity is motivated by several diverse
applications, such as the design of telecommunication networks and the structural stability
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Figure 1 A 2-vertex-connected digraph G that is not twinless 2-vertex-connected. Vertices b, c,
g and f are twinless strong articulation points but not strong articulation points; for instance, G \ b

is strongly connected but not twinless strongly connected.

of buildings [17]. Raghavan [17] provided a characterization of twinless strongly connected
digraphs, and, based on this characterization, provided a linear-time algorithm for computing
the TSCCs of a digraph.

In this paper, we further explore the notion of twinless strong connectivity, with respect
to 2-connectivity in digraphs. An edge (resp., a vertex) of a digraph G is a strong bridge
(resp., a strong articulation point) if its removal increases the number of strongly connected
components. Thus, strong bridges (resp., strong articulation points) are 1-edge (resp., 1-
vertex) cuts for digraphs. A strongly connected digraph G is 2-edge-connected if it has no
strong bridges, and it is 2-vertex-connected if it has at least three vertices and no strong
articulation points. Let C ⊆ V . The induced subgraph of C, denoted by G[C], is the
subgraph of G with vertex set C and edge set E∩ (C×C). If G[C] is 2-edge-connected (resp.,
2-vertex-connected), and there is no set of vertices C ′ with C ( C ′ ⊆ V such that G[C ′] is also
2-edge-connected (resp., 2-vertex-connected), then G[C] is a maximal 2-edge-connected (resp.,
2-vertex-connected) subgraph of G. Two vertices u, v ∈ V are said to be 2-edge-connected
(resp., 2-vertex-connected) if there are two edge-disjoint (resp., two internally vertex-disjoint)
directed paths from u to v and two edge-disjoint (resp., two internally vertex-disjoint)
directed paths from v to u (note that a path from u to v and a path from v to u need
not be edge- or vertex-disjoint). A 2-edge-connected component (resp., 2-vertex-connected
component) of a digraph G = (V, E) is defined as a maximal subset B ⊆ V such that
every two vertices u, v ∈ B are 2-edge-connected (resp., 2-vertex-connected). We note that
connectivity-related problems for digraphs are known to be much more difficult than for
undirected graphs, and indeed many notions for undirected connectivity do not translate
to the directed case. See, e.g., [3, 8, 11]. Indeed, it has only recently been shown that all
strong bridges and strong articulation points of a digraph can be computed in linear time [13].
Additionally, it was shown very recently how to compute the 2-edge- and 2-vertex-connected
components of digraphs in linear time [6, 7], while the best current bound for computing the
maximal 2-edge- and the 2-vertex-connected subgraphs in digraphs is not even linear, but it
is O(min{m3/2, n2}) [3, 11].

The above notions extend naturally to the case of twinless strong connectivity. An edge
e ∈ E is a twinless strong bridge of G if the deletion of e increases the number of TSCCs of
G. Similarly, a vertex v ∈ V is a twinless strong articulation point of G, if the deletion of
v increases the number of TSCCs of G. A linear-time algorithm for detecting all twinless
strong bridges can be derived by combining the linear-time algorithm of Italiano et al. [13]
for computing all the strong bridges of a digraph and a linear-time algorithm for computing
all the edges which belong to a cut-pair in a 2-edge-connected undirected graph. (See [9]
for details.) Previously, Jaberi [16] studied the properties of twinless strong articulation
points and some related concepts, and presented an O(m(n− s))-time algorithm for their
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computation, where s is the number of strong articulation points of G. Hence, this bound
is O(mn) in the worst case. Here, we present a linear-time algorithm that identifies all the
twinless strong articulation points. Specifically, we show that the computation of twinless
strong articulation points reduces to the following problem in undirected graphs, which may
be of independent interest: Given a 2-vertex-connected (biconnected) undirected graph H,
find all vertices v that belong to a vertex-edge cut-pair, i.e., for which there exists an edge
e such that H \ {v, e} is not connected. We develop a linear-time algorithm that not only
finds all such vertices v, but also computes the number of vertex-edge cut-pairs of v (i.e., the
number of edges e such that H \ {v, e} is not connected). This implies that for each twinless
strong articulation point v, that is not a strong articulation point in a digraph G, we can also
compute the number of twinless strongly connected components of G\v. After the submission
of this paper we noticed that it is possible to compute the vertices that form a vertex-edge
cut-pair by exploiting the structure of the triconnected components of H, represented by an
SPQR tree [1, 2] of H. We refer to the full version [9] for the details. In order to construct
an SPQR tree, however, we need to know the triconnected components of the graph [10],
and efficient algorithms that compute triconnected components are considered conceptually
complicated (see, e.g., [4, 10, 12]). Our approach, on the other hand, is conceptually simple
and thus likely to be more amenable to practical implementations. Also, we believe that our
results and techniques will be useful for the design of faster algorithms for related connectivity
problems, such as computing twinless 2-connected components [14, 15].

2 Preliminaries

Let G be a (directed or undirected) graph. We denote by V (G) and E(G), respectively, the
vertex set and edge set of G. For a set of edges (resp., vertices) S, we let G \ S denote the
graph that results from G after deleting the edges in S (resp., the vertices in S and their
adjacent edges). We extend this notation for mixed sets S, that may contain both vertices
and edges of G, in the obvious way. Also, if S has only one element x, we abbreviate G \ S

by G \ x. Let C ⊆ V (G). The induced subgraph of C, denoted by G[C], is the subgraph of
G with vertex set C and edge set {e ∈ E(G) | both ends of e lie in C}.

For any digraph G, the associated undirected graph Gu is the graph with vertices
V (Gu) = V (G) and edges E(Gu) = {{u, v} | (u, v) ∈ E(G) ∨ (v, u) ∈ E(G)}. Let H be
an undirected graph. An edge e ∈ E(H) is a bridge if its removal increases the number of
connected components of H. A connected graph H is 2-edge-connected if it contains no
bridges. Raghavan [17] proved the following characterization of twinless strongly connected
digraphs.

I Theorem 1 ([17]). Let G be a strongly connected digraph. Then G is twinless strongly
connected if and only if its underlying undirected graph Gu is 2-edge-connected.

Theorem 1 implies a linear-time algorithm to compute the twinless strongly connected
components (TSCCs) of a digraph G. It suffices to compute the strongly connected com-
ponents, C1, . . . , Ck, of G, and then the 2-edge-connected components of each underlying
undirected graph Gu[Ci], 1 ≤ i ≤ k. All these computations take linear time [18].

Another immediate consequence of Theorem 1 is that a twinless strong bridge in a twinless
strongly connected graph is either (1) a strong bridge or (2) an edge whose removal destroys
the 2-edge connectivity in the underlying graph. All strong bridges can be found in linear
time [13]. To compute the edges of type (2), we only have to find all the edges of the
underlying graph whose removal destroys the 2-edge connectivity (i.e., all edges which belong
to a cut-pair in the underlying graph), which can be done in linear-time by the algorithm of
Tsin [20] or the one described in the Appendix of [9]. (We refer to [9] for the details.)

ISAAC 2020
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3 Computing twinless strong articulation points

It is an immediate consequence of Theorem 1 that a twinless strong articulation point in
a twinless strongly connected digraph G is either (1) a strong articulation point or (2) a
vertex whose removal destroys the 2-edge connectivity in the underlying undirected graph Gu.
Since all strong articulation points can be computed in linear time [13], it remains to find all
vertices of type (2). Note that such a vertex x either (a) entirely destroys the connectivity of
the underlying graph Gu with its removal, or (b), upon removal, it leaves us with a graph
Gu \ x that is connected but not 2-edge-connected. Clearly, the set of vertices with property
(a) are a subset of the set of strong articulation points. Therefore, it suffices to find all
vertices with property (b). To that end, we process each 2-vertex-connected component of
Gu separately, as the following Lemma suggests.

I Lemma 2 ([9]). Let H be a 2-edge-connected undirected graph. Let v be a vertex that is
not an articulation point, and let C be its 2-vertex-connected component. For any edge e,
H \ {v, e} is not connected if and only if e belongs to C and C \ {v, e} is not connected.

So, in order to find all twinless strong articulation points, it is sufficient to solve the
following problem: Given a 2-vertex-connected undirected graph G, find all vertices v for
which there exists an edge e such that G \ {v, e} is not connected. In Section 4 we describe a
linear-time algorithm for this problem. Our algorithm utilizes properties of depth-first search
(DFS), which are reminiscent of the seminal algorithm of Hopcroft and Tarjan for computing
the triconnected components of a graph [12].

Formally, our main technical contribution is summarized in the following theorem:

I Theorem 3. Let G be a biconnected undirected graph. There is a linear time algorithm
that computes, for every vertex v, the number of edges e such that G \ {v, e} is not connected.

Then, Theorem 3 implies the following results:

I Corollary 4. Let G be a twinless strongly connected digraph. There is a linear time
algorithm that finds all the twinless strong articulation points of G. Moreover, for every
twinless strong articulation point v that is not strong a articulation point of G, the algorithm
computes the number of TSCCs in G \ v, in total linear time.

I Corollary 5 ([9]). Let G be a biconnected undirected graph. After linear-time preprocessing,
we can answer queries of the form: Given a vertex v of G, report all the edges in the set
C(v) = {e ∈ E(G) | G \ {v, e} is not connected}, in O(|C(v)|) time.

3.1 Depth-first search, low and high points
Let G be a 2-vertex-connected graph. We consider a DFS traversal of G, starting from an
arbitrarily selected vertex r, and let T be the resulting DFS tree [18]. A vertex u is an
ancestor of a vertex v (v is a descendant of u) if the tree path from r to v contains u. Thus,
we consider a vertex to be an ancestor (and, consequently, a descendant) of itself. We let
p(v) denote the parent of a vertex v in T . If u is a descendant of v in T , we denote the
set of vertices of the simple tree path from u to v as T [u, v]. The expressions T [u, v) and
T (u, v] have the obvious meaning (i.e., the vertex on the side of the parenthesis is excluded).
Furthermore, we let T (v) denote the subtree of T rooted at vertex v. We identify vertices in
G by their DFS number, i.e., the order in which they were discovered by the search. Hence,
u < v means that u was discovered before v. The edges in E(T ) are called tree-edges; the
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Figure 2 Concepts defined on the structure of the DFS tree that are essential to our algorithm.
Dashed lines correspond to DFS tree paths. Back-edges are shown directed from descendant to
ancestor.

edges in E(G) \ E(T ) are called back-edges, as their endpoints have ancestor-descendant
relation in T . When we write (u, v) to denote a back-edge, we always mean that v ≤ u, i.e.,
u is an descendant of v in T .

Now we describe some concepts that are defined on the structure given by the DFS
and are essential to our algorithm. For an illustration, see Figure 2. Let us note before-
hand, that, since G is biconnected, all these concepts are well-defined. Define the “low
point”, low(v), of a vertex v 6= r, as the minimum vertex (w.r.t. the DFS numbering)
that is connected via a back-edge to a descendant of v, i.e., the minimum vertex in the set
{u | there is a back-edge (w, u) such that w is a descendant of v}. Define the “high point”,
high(v), of v 6= r, as the maximum proper ancestor of v which is connected with a back-edge
to a descendant of v. The notion of low points plays central role in classic algorithms for
computing the biconnected components [18] and the triconnected components [12] of a graph.
The low points of all vertices can be computed in linear time. (Hopcroft and Tarjan [12] also
use a concept of high points, which, however, is different from ours.) Since G is biconnected,
r has a unique child vertex c in T . For any vertex v /∈ {r, c}, define highp(v) to be the
maximum proper ancestor of p(v) which is connected with a back-edge to a descendant of v.
Finally, for any vertex v 6= r, define M (v) as the nearest common ancestor of all descendants
of v that are connected with a back-edge to a proper ancestor of v, and, for any vertex
v /∈ {r, c}, define Mp(v) as the nearest common ancestor of all descendants of v that are
connected with a back-edge to a proper ancestor of p(v).

The following two Lemmata, which combine properties of M , Mp, high, and highp, will
be useful in analyzing Algorithms 3 and 5 in Sections 4.2.2 and 4.3.2, respectively. Their
proof is essentially the same.

I Lemma 6 ([9]). Let v and v′ be two vertices such that v is a descendant of v′ with
M(v) = M(v′) and high(v) < v′. Then high(v) = high(v′).

I Lemma 7. Let v and v′ be two vertices such that v is a descendant of v′ with Mp(v) =
Mp(v′) and highp(v) < p(v′). Then highp(v) = highp(v′).

Next, we show how to compute high(v), highp(v), M(v) and Mp(v), for all vertices v, in
total linear time.

ISAAC 2020
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3.2 Finding all high(v) and highp(v) in linear time

The basic idea to compute all high(v) (for v 6= r) is to do the following: We process the
back-edges (u, v) in decreasing order with respect to their lower end v. When we process
(u, v), we ascend the path T [u, v), and for each visited vertex x such that high[x] is still
undefined, we set high[x]← v. It should be clear that this process, which forms the basis of
our linear-time algorithm, computes all high(v), for v 6= r, correctly.

In order to achieve linear running time, we have to be able, when we consider a back-edge
(u, v), to bypass all vertices on the path T [u, v) whose high value has been computed. To that
end, it suffices to know, for every vertex x in T [u, v), the nearest ancestor of x whose high
value is still null. We can achieve this by applying a disjoint-set-union (DSU) structure [19].
Algorithm 1 gives a fast algorithm for computing all high(v) (for v 6= r).

The DSU structure is implemented by a dynamic forest F , which is a subgraph of T ,
subject to the following operations:
link(x, y): Adds the edge (x, y) into the forest F .
find(x): Return the root of the tree in F that contains x.

Let Fx denote the tree of F that contains a vertex x. Initially, F contains no edges, so x is
the unique vertex in Fx. In our algorithm, the link operation always adds some tree edge
(u, p(u)) to F , so the invariant that F is a subgraph of T is maintained. This is implemented
by uniting the corresponding sets of u and p(u) in the underlying DSU structure, and setting
the root of Fp(u) as the representative of the resulting set. Then, find(u) returns the root of
Fu, which will be the nearest ancestor of u in T whose high value is still null.

Algorithm 1 FastHigh.

1 initialize a forest F with V (F ) = V (T ) and E(F ) = ∅
2 foreach vertex v 6= r do set high[v]← null
3 sort the back-edges (u, v) in decreasing order w.r.t. to their lower end v

4 foreach back-edge (u, v) do
5 u← find(u)
6 while u > v do
7 high[u]← v

8 next← find(p(u))
9 link(u, p(u))

10 u← next

11 end
12 end

The next lemma summarizes the properties of Algorithm 1.

I Lemma 8 ([9]). Algorithm 1 is correct. Furthermore, it will perform n − 1 link and
2m− n + 1 find operations on a 2-vertex-connected graph with n vertices and m edges.

Since all the link operations we perform are of the type link(u, p(u)), and the total number
of link and find operations performed is O(m + n), we may use the static tree DSU data
structure of Gabow and Tarjan [5] to achieve linear running time.

Finally, we note that the algorithm for computing all highp(v) is almost identical to
Algorithm 1. The only difference is in line 6, where we have to replace “while u > v” with
“while p(u) > v”. The proof of correctness and linearity is essentially the same.
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3.3 Finding all M (v) and Mp(v) in linear time
Recall that M (v), for v 6= r, is the nearest common ancestor of all descendants of v that are
connected with a back-edge to a proper ancestor of v.

Our algorithm for the computation of M (v) works recursively on the children of v. So, let
v be a vertex 6= r. We define l(v) = min{{v} ∪ {u | there exists a back-edge (v, u)}}. Now,
if l(v) < v, we have M (v) = v. (This is always the case when v is a leaf, since the graph is
biconnected.) Furthermore, if there exist two children c, c′ of v such that low(c) < v and
low(c′) < v, then, again, M (v) = v. The difficulty arises when l(v) = v and there is only one
child c of v with the property low(c) < v (one such child of v must of necessity exist, since
the graph is biconnected), in which case M (v) is a descendant of c, and therefore M (v) is a
descendant of M (c). (See [9] for a proof of this property of M .) In this case, we repeat the
same process in M (c): we test whether l(M (c)) < v or whether there exists only one child d

of M (c) such that low(d) < v, in which case we repeat the same process in M (d), and so on,
until M(v) is finally computed.

Now, we claim that a careful implementation of the above procedure yields a linear-time
algorithm for the computation of M (v), for all vertices v 6= r. To that end, it suffices to
store, for every vertex v that is not a leaf of T , two pointers, L(v) and R(v), on the list
of the children of v. Initially, L(v) points to the first child c of v that has low(c) < v,
and R(v) points to the last child c′ of v that has low(c′) < v. Our algorithm works in
a bottom-up fashion. Provided we have computed M (u) for every descendant u of v, we
execute Procedure FindM(v).

Procedure FindM(v).

1 if l(v) < v then return v

2 if L[v] 6= R[v] then return v

3 m←M [L[v]]
4 while M(v) = null do
5 if l(m) < v then return m

6 while low(L[m]) ≥ v do L[m]← next child of m

7 while low(R[m]) ≥ v do R[m]← previous child of m

8 if L[m] 6= R[m] then return m

9 m←M [L[m]]
10 end

I Lemma 9 ([9]). By executing Procedure FindM(v), for all vertices v 6= r, in bottom-up
fashion of T , we can compute all M (v) in linear-time.

We use a similar algorithm in order to compute all Mp(v). The only change we have to
make in Procedure FindM, is to replace every comparison to v with a comparison to p(v).

4 Finding all vertices that belong to a vertex-edge cut-pair

Let H = (V, E) be a 2-vertex-connected undirected graph. For every v in V , we define
count(v) := #{e ∈ E | {v, e} is a cut-pair}. We will find all vertices which belong to a vertex-
edge cut-pair of H by computing all count(v). We notice that the parameter count(v) is also
useful for counting TSCCs, as suggested by the following Lemma (from which Corollary 4
follows).

ISAAC 2020
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I Lemma 10 ([9]). Let G be a twinless strongly connected digraph, and let v be a twinless
strong articulation point of G which is not a strong articulation point. Then count(v) + 1
(computed in the 2-vertex-connected component of v in Gu) is the number of the TSCCs
of G \ v.

Now, to compute all count(v), we will work on the tree structure T , with root r, provided
by a DFS on H. Then, if {v, e} is a vertex-edge cut-pair, e can either be a back-edge, or a
tree-edge. Furthemore, in the case that e is a tree-edge, we have the following:

I Lemma 11 ([9]). If {v, e} is a cut-pair such that e is a tree-edge, then e either lies in T (v)
or on the simple tree path T [v, r].

Thus we have three distinct cases in total, and we will compute count(v) by counting the
cut-pairs {v, e} in each case. We will handle these cases separately, by providing a specific
algorithm for each one of them, based on some simple observations like Lemma 11. The
linearity of these algorithms will be clear.

Now, we shall begin with the case where e is a back-edge, since this is the easiest to
handle. We suppose that all count(v) have been initialized to zero.

4.1 The case where e is a back-edge
I Proposition 12 ([9]). If {v, e} is a cut-pair such that e is a back-edge, then e starts from
the subtree T (c) of a child c of v, ends in a proper ancestor of v, and is the only back-edge
that starts from T (c) and ends in a proper ancestor of v. Conversely, if e is such a back-edge,
then {v, e} is a cut-pair.

This immediately suggests an algorithm for counting all such cut-pairs. We only have
to count, for every vertex c ( 6= r or the child of r), the number b_count(c) := #{back-
edges that start from T (c) and end in a proper ancestor of p(c)}. To do this efficiently, we
define, for every vertex v, up(v) := #{back-edges that start from v and end in a proper
ancestor of p(v)}, and, for every child c of v (if it has any), down(v, c) := #{back-edges
that start from T (c) and end in v}. All up(v) and down(v, c) can be computed easily in
linear time. Now, b_count(c) can be computed recursively: if d1, . . . , dk are the children of
c, then b_count(c) = up(c) + b_count(d1) + . . . + b_count(dk) − down(p(c), c); and if c is
childless, b_count(c) = up(c). Finally, the number of vertex-edge cut-pairs {v, e} where e is
a back-edge, equals the number of children c of v that have b_count(c) = 1.

4.2 The case where e is part of the simple tree path T [v, r]
Let {v, e} be a vertex-edge cut-pair such that e is part of the simple tree path T [v, r]. Then
there exists a vertex u which is a proper ancestor of v and such that e = (u, p(u)). We
observe that all back-edges that start from T(u) and end in a proper ancestor of u must
necessarily start from T(v). In other words, M (u) is a descendant of v. Here we further
distinguish two cases, depending on whether M (u) is a proper descendant of v.

4.2.1 The case M (u) = v

Our algorithm for this case is based on the following observation:

I Proposition 13 ([9]). Let c1, . . . , ck be the children of v (if it has any), and let {v, (u, p(u))}
be a cut-pair such that u is an ancestor of v with M (u) = v. Then u does not belong to any
set of the form T [highp(ci), low(ci)), for i = 1, . . . , k. Conversely, given that u is a proper
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ancestor of v such that M (u) = v, and given also that u does not belong to any set of the
form T [highp(ci), low(ci)), for i = 1, . . . , k, we may conclude that the pair {v, (u, p(u))} is a
cut-pair. (See Figure 3.)

v
rhighp(c) low(c)

u1 p(u1) u2 p(u2) u3 p(u3) u4 p(u4)c

Figure 3 In this DFS-tree structure we have M(u1) = M(u2) = M(u3) = M(u4) = v, and
{v, (u1, p(u1))}, {v, (u3, p(u3))}, {v, (u4, p(u4))} are cut-pairs. (u2, p(u2)) does not form a cut-pair
with v, since u2 ∈ T [highp(c), low(c)).

Now, let c1, . . . , ck be the children of v (if it has any). According to Proposition 13, in
order to count all cut-pairs of the form {v, (u, p(u))}, with M(u) = v, it is sufficient to find all
u ∈M−1(v) such that u a proper ancestor of v which does not belong to any set of the form
T [highp(ci), low(ci)), for any i ∈ {1, . . . , k}. (Of course, if v is a leaf, every u ∈M−1(v) \ {v}
satisfies this property.) Now, suppose that c1, . . . , ck are sorted in decreasing order with
respect to their highp point, and let S = T [highp(c1), low(c1)) ∪ . . . ∪ T [highp(ck), low(ck)).
The idea is to find all pairs (x, y) such that T [x, y) is a subset of S maximal with respect to
the property of having the form T [z, w) and being a subset of S. If (x1, y1), . . . , (xt, yt), with
x1 > . . . > xt, is the collection of all these pairs, then T [x1, y1) ∪ . . . ∪ T [xt, yt) = S, and thus
we only have to find all u ∈M−1(m)\{v} which do not belong to any set of the form T [xi, yi),
for any i ∈ {1, . . . , t}. It is easy to see that, for every i ∈ {1, . . . , t}, there exist j ∈ {1, . . . , k}
and j′ ∈ {j, . . . , k}, such that xi = highp(cj) and yi = min{low(cj), . . . , low(cj′)}. Thus we
can efficiently compute all (x1, y1), . . . , (xt, yt) (in this order), provided that c1, . . . , ck are
sorted in decreasing order with respect to their highp point. Moreover, provided that M−1(v)
is also sorted in decreasing order (all these sortings take linear time with bucket-sort), we can
easily find all u ∈M−1(m)\{v} which do not belong to any T [xi, yi), during the computation
of the pairs (xi, yi), i ∈ {1, . . . , t}.

Algorithm 2 is an implementation of this idea. It essentialy finds, for every vertex v, all cut-
pairs of the form {v, (u, p(u))}, with M(u) = v, in total linear time. Let (x1, y1),. . . , (xt, yt)
be as above, and let y0 = p(v). The while loop in Line 10 counts all u ∈ T [yi, xi+1)∩M−1(v),
for i ∈ {0, . . . , t− 1}. Lines 14-19 calculate the next yi, and Line 20 sets u to be the greatest
element of M−1(v) which is lower than yi. Finally, the while loop in Line 22 counts all
u ∈M−1(v) \ {v} such that u ≤ min{low(c1), . . . , low(ck)}.

4.2.2 The case where M (u) is a proper descendant of v

In this case, M (u) belongs to T (c), for a child c of v, and so we have that {p(c), (u, p(u))} is
a cut-pair. We base our algorithm for this case on the following observation:
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Algorithm 2 M(u) = v.

1 calculate all lists M−1(v), for all vertices v, and have their elements sorted in
decreasing order

2 sort the list of the children of every vertex in decreasing order w.r.t. the highp value
of its elements

3 foreach vertex v do
4 if M−1(v) = ∅ then continue
5 u←second element of M−1(v) // the first element of M−1(v) is v

6 c←first child of v

7 min ← v

8 while u 6= ∅ and c 6= ∅ do
9 min ← highp(c)

10 while u 6= ∅ and u > min do
11 count[v]← count[v] + 1
12 u←next element of M−1(v)
13 end
14 min ← low(c)
15 c←next child of v

16 while c 6= ∅ and highp(c) ≥ min do
17 if low(c) < min then min ← low(c)
18 c←next child of v

19 end
20 while u 6= ∅ and u > min do u←next element of M−1(v)
21 end
22 while u 6= ∅ do
23 if u ≤ min then count[v]← count[v] + 1
24 u←next element of M−1(v)
25 end
26 end

I Proposition 14 ([9]). Let {p(c), (u, p(u))} be a cut-pair, such that u is an ancestor of p(c)
and M (u) is in T(c). Then Mp(c) = M (u) and highp(c) < u. Conversely, if u is a proper
ancestor of p(c) such that Mp(c) = M (u) and highp(c) < u, then the pair {p(c), (u, p(u))} is
a cut-pair. (See Figure 4.)

Algorithm 3 shows how we can compute, for every vertex v, the number of cut-pairs of
the form {v, (u, p(u))}, where u is a proper ancestor of v with M(u) in T (c) for a child c of v,
in total linear time. To see how and why it works, notice that in order to find the number of
these cut-pairs, it is sufficient, according to Proposition 14, to focus our attention on the lists
M−1

p (m) and M−1(m), for every vertex m, and count, for every c ∈M−1
p (m), the number

of u ∈ M−1(m) which are proper ancestors of p(c) and such that highp(c) < u. Let U(c)
denote the collection of those u. Assuming that the lists M−1

p (m) and M−1(m) are sorted in
decreasing order, a simple idea to find #U(c) is to traverse the list M−1(m) from the greatest
vertex which is lower than p(c), to the lowest vertex which is greater than highp(c), and
count the number of all elements encountered. Although this is not a linear-time procedure
to compute all #U(c) (since, for some c, c′ ∈M−1

p (m), we may have that the sets U(c) and
U(c′) overlap, and so the total number of elements of M−1(m) traversed can be quadratic
to the number of vertices), it is the basis for the linear-time algorithm, which is derived by
taking advantage of the nested structure of the sets U(c), described in the following Lemma.
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c

p(c)

m

r

c’

p(c’)

u1 p(u1) u2 p(u2) u3 p(u3) highp(c)
=

highp(c’)

Figure 4 In this DFS-tree structure we have Mp(c) = Mp(c′) = m and M(u1) = M(u2) =
M(u3) = m. The vertex-edge pairs {p(c), (u1, p(u1))}, {p(c), (u2, p(u2))}, {p(c), (u3, p(u3))},
{p(c′), (u2, p(u2))}, and {p(c′), (u3, p(u3))}, are cut-pairs. Following the notation in Lemma 15,
U(c) = {u1, u2, u3} and U(c′) = {u2, u3}.

I Lemma 15. Let m be a vertex, c and c′ two elements of M−1
p (m) such that U(c)∩U(c′) 6= ∅,

and assume, without loss of generality, that c is a descendant of c′. Then U(c′) = U(c) ∩
T (p(c′), highp(c)). (See Figure 4.)

Proof. Let u be an element of both U(c) and U(c′). Then u is an ancestor of c′ and
highp(c) is a proper ancestor of u (by the definitions of U(c′) and U(c), respectively).
Thus highp(c) is a proper ancestor of c′, and therefore, since c is a descendant of c′ with
Mp(c) = Mp(c′), it follows from Lemma 7 that highp(c) = highp(c′). Now we see why
U(c) ∩ T (p(c′), highp(c)) ⊆ U(c′): every u in U(c) ∩ T (p(c′), highp(c)) is a proper ancestor
of p(c′) with M(u) = Mp(c) = Mp(c′) and highp(c′) = highp(c) < u. To prove the reverse
inclusion, notice first that, since highp(c) = highp(c′), by the definition of U(c′) we have
U(c′) ⊆ T (p(c′), highp(c)). Now, if u is in U(c′), then u is a proper ancestor of p(c′), and
therefore a proper ancestor of p(c); furthermore, it satisfies M(u) = Mp(c′) = Mp(c) and
highp(c) = highp(c′) < u, and therefore it is also in U(c). This shows that U(c′) ⊆ U(c). We
conclude that U(c′) ⊆ U(c) ∩ T (p(c′), highp(c)), and the proof is complete. J

Thus, if we have established that U(c) and U(c′) overlap (Line 8 checks whether U(c) is
not empty, and Line 18 checks whether U(c′) overlaps with U(c), where c′ is a successor of c

in M−1
p (m)), in order to calculate #U(c′) it is sufficient that we have calculated #U(c) and

the greatest and lowest elements of U(c) - call them firstc and lastc, respectively. Then we
traverse the list M−1(m) from firstc, until we reach the greatest element u of M−1(m) such
that u < p(c), and let k be the number of the elements encountered (excluding u). Now we
set firstc′ ← u and lastc′ ← lastc, and we have #U(c′) = #U(c)− k.

4.3 The case where e lies in T(v)

Let {v, (u, p(u))} be a cut-pair where u is a descendant of v. Then u is a proper descendant
of a child c of v, and we observe that every back-edge that starts from T (u) and ends in a
proper ancestor of u must necessarily end in an ancestor of p(c). In other words, high(u) ≤ v.
Here we distinguish two cases, depending on whether high(u) is a proper ancestor of v.
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Algorithm 3 M(u) > v.

1 calculate all lists M−1(m) and M−1
p (m), for all vertices m, and have their elements

sorted in decreasing order
2 foreach vertex m do
3 c← first element of M−1

p (m)
4 u← first element of M−1(m)
5 while c 6= ∅ and u 6= ∅ do
6 while u 6= ∅ and u ≥ p(c) do u← next element of M−1(m)
7 if u = ∅ then break
8 if highp(c) < u then
9 n_edges ← 0

10 first ← u

11 while u 6= ∅ and highp(c) < u do
12 n_edges ← n_edges + 1
13 u← next element of M−1(m)
14 end
15 last ← predecessor of u in M−1(m)
16 count[p(c)]← count[p(c)] + n_edges
17 c← next element of M−1

p (m)
18 while c 6= ∅ and p(c) > last do
19 while first ≥ p(c) do
20 n_edges ← n_edges − 1
21 first ← next element of M−1(m)
22 end
23 count[p(c)]← count[p(c)] + n_edges
24 c← next element of M−1

p (m)
25 end
26 end
27 else
28 c← next element of M−1

p (m)
29 end
30 end
31 end

4.3.1 The case high(u) = v

Our algorithm for this case is based on the following observation:

I Proposition 16 ([9]). Let {v, (u, p(u))} be a cut-pair such that v is a proper ancestor of
u with high(u) = v, and let c be the child of v of which u is a descendant. Then, either (1)
low(u) = p(c), or (2) low(u) < p(c) and u ≤ Mp(c). Conversely, if c is a proper ancestor of
u such that high(u) = p(c) and either (1) or (2) holds, then the pair {p(c), (u, p(u))} is a
cut-pair.

It is an immediate application of Proposition 16 that Algorithm 4 correctly computes, for
every vertex v, the number of cut-pairs {v, (u, p(u))} with the property that u is a descendant
of v with high(u) = v (and it essentially finds all of them), in total linear time. Due to the
ordering of high−1(v) and of the list of the children of v, we can easily check the ancestry
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relation in Line 7 by testing whether c is the last child of v, or whether c ≤ u and c′ > u,
where c′ is the successor of c in the list of the children of v. Notice that, in Line 8, it is
sufficient to check whether low(u) = v or u ≤ Mp(c), since low(u) ≤ high(u) = v.

Algorithm 4 high(u) = v.

1 calculate all lists high−1(v), for all vertices v, and have their elements sorted in
increasing order

2 sort the list of the children of every vertex in increasing order
3 foreach vertex v do
4 u← first element of high−1(v)
5 c← first child of v

6 while u 6= ∅ do
7 while c is not an ancestor of u do c← next child of v

8 if u 6= c and (low(u) = v or u ≤ Mp(c)) then count(v)← count(v) + 1
9 u← next element of high−1(v)

10 end
11 end

4.3.2 The case high(u) < v

Our algorithm for this case is based on the following observation:

I Proposition 17 ([9]). Let {p(c), (u, p(u))} be a cut-pair such that u is a descendant of c

with high(u) < p(c). Then M (u) = Mp(c). Conversely, if u is a proper descendant of c such
that M (u) = Mp(c) and high(u) < p(c), then the pair {p(c), (u, p(u))} is a cut-pair. (See
Figure 5.)

m

r

high(ui)c’

p(c’)

u1 p(u1) c

p(c)

u2 p(u2) u3 p(u3)

Figure 5 In this DFS-tree structure we have Mp(c) = Mp(c′) = m and M(u1) = M(u2) =
M(u3) = m. The vertex-edge pairs {p(c), (u1, p(u1))}, {p(c′), (u1, p(u1))}, {p(c′), (u2, p(u2))}, and
{p(c′), (u3, p(u3))}, are cut-pairs. Following the notation in Lemma 18, Ũ(c) = {u1} and Ũ(c′) =
{u1, u2, u3}.

Algorithm 5 shows how we can compute, for every vertex v, the number of cut-pairs of the
form {v, (u, p(u))}, where u is a descendant of v with high(u) < v, in total linear time. The
explanation of how and why it works is similar to that given in Section 4.2.2 for Algorithm 3
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Algorithm 5 high(u) < v.

1 calculate all lists M−1(m) and M−1
p (m), for all vertices m, and have their elements

sorted in decreasing order
2 foreach vertex m do
3 u← first element of M−1(m)
4 c← first element of M−1

p (m)
5 while u 6= ∅ and c 6= ∅ do
6 while c 6= ∅ and c ≥ u do c← next element of M−1

p (m)
7 if c = ∅ then break
8 if high(u) < p(c) then
9 n_edges ← 0

10 h← high(u)
11 while c 6= ∅ and h < p(c) do
12 while u 6= ∅ and c < u do
13 n_edges ← n_edges + 1
14 u← next element of M−1(m)
15 end
16 count[p(c)]← count[p(c)] + n_edges
17 c← next element of M−1

p (m)
18 end
19 end
20 else
21 u← next element of M−1(m)
22 end
23 end
24 end

(in both cases the counting is done in an indirect manner, i.e. without finding all cut-pairs
explicitly, since their number can be quadratic to the number of vertices). Firstly, we notice
that in order to find the number of these cut-pairs, it is sufficient, according to Proposition
17, to focus our attention on the lists M−1(m) and M−1

p (m), for every vertex m, and count,
for every c ∈M−1

p (m), the number of u ∈M−1(m) which are proper descendants of c and
such that high(u) < p(c). Let Ũ(c) denote the collection of those u, and assume that the
lists M−1(m) and M−1

p (m) are sorted in decreasing order. The next Lemma will be useful in
analyzing Algorithm 5. It shows that the sets Ũ(c) which overlap, have a nested structure.

I Lemma 18. Let m be a vertex, c and c′ two elements of M−1
p (m) such that there exists a

w in Ũ(c) ∩ Ũ(c′), and assume, without loss of generality, that c is a descendant of c′. Then
Ũ(c′) = Ũ(c) ∪ (T [c, c′) ∩M−1(m)). (See Figure 5.)

Proof. Let u, u′ be two vertices in Ũ(c), and assume, without loss of generality, that u is a
proper descendant of u′. By the definition of Ũ(c), we have that u′ is a proper descendant
of c, M(u) = Mp(c), M(u′) = Mp(c), and high(u) < p(c). Since, then, M(u) = M(u′)
and high(u) < p(c) < c < u′, it follows from Lemma 6 that high(u) = high(u′). This
shows that all vertices in Ũ(c) have the same high point. In particular, every u ∈ Ũ(c) has
high(u) = high(w). Now, since w is in Ũ(c′), it satisfies high(w) < p(c′), and so every u in
Ũ(c) has high(u) < p(c′). Furthermore, every u in Ũ(c) is a proper descendant of c′ (since u

is a proper descendant of c and c is a descendant of c′) and has M(u) = Mp(c) = Mp(c′).
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Thus we have demonstrated that Ũ(c) ⊆ Ũ(c′). Now let u ∈ T [c, c′)∩M−1(m). Then u is an
ancestor of c and a proper descendant of c′. Furthermore, since M(u) = m = Mp(c) = M(w)
and u is an ancestor of w and high(w) < p(c′) < c′ < u, it follows from Lemma 6 that
high(u) = high(w), and therefore high(u) < p(c′). We conclude that u is in Ũ(c′), and thus far
we have established that Ũ(c) ∪ (T [c, c′) ∩M−1(m)) ⊆ Ũ(c′). To prove the reverse inclusion,
let u be a vertex in Ũ(c′), but not in Ũ(c). By the definition of Ũ(c′), we have M(u) = Mp(c′)
and high(u) < p(c′). Since, then, M(u) = Mp(c′) = Mp(c) and high(u) < p(c′) ≤ p(c), it
cannot be the case that u is a proper descendant of c (for otherwise u /∈ Ũ(c) is violated).
This shows that u is an ancestor of c (since u and c have a common descendant). By the
definition of Ũ(c′) we have that u is a proper descendant of c′ and has M(u) = Mp(c′) = m.
We conclude that u is in T [c, c′) ∩M−1(m), and the proof is complete. J

Now, the idea to find all #Ũ(c) is the following. Firstly, we traverse the list M−1(m)
in order to find the greatest u ∈ M−1(m) with the property that u belongs to a set of
the form Ũ(c), for a c ∈ M−1

p (m), and let c be the greatest vertex in M−1
p (m) such that

u ∈ Ũ(c). (Of course, such a u may not exist, in which case there is not much to do.) Lines
6, 8, and 21, of Algorithm 5, form a routine for this search. If the condition in Line 8 is
satisfied, u has the above property. Otherwise, we move to the next element of M−1(m),
and we continue the search from the current element of M−1

p (m). (It is easy to see why
this works: if the greatest c in M−1

p (m) which is a proper ancestor of u does not satisfy
high(u) < p(c), then neither does any ancestor of c, and then, if u′ is a successor of u in
M−1(m), no c′ in M−1

p (m) which is a proper descendant of c is a proper ancestor of u′.)
Then we find #Ũ(c) by traversing the list M−1(m) from u, until we reach an ancestor of c.
(By Lemma 6, every u′ that we encounter in this traversal satisfies high(u′) = high(u), since
u′ > c > p(c) > high(u); therefore, Ũ(c) consists precisely of those vertices u′.) Now let c′

be a successor of c in M−1
p (m). If high(u) < p(c′), then u ∈ Ũ(c) ∩ Ũ(c′), and therefore, by

Lemma 18, we have Ũ(c′) = Ũ(c)∪(T [c, c′)∩M−1(m)). This explains the counting procedure
of Algorithm 5, in Lines 11-18. When we reach a c′ ∈M−1

p (m) such that high(u) ≥ p(c′), we
have Ũ(c′) ∩ Ũ(c) = ∅ (by Lemma 18), and so we need to find the next u with the property
that u belongs to a set of the form Ũ(c), for some c ∈ M−1

p (m), (if such a u exists), and
repeat the same process again.
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