
Indexing Isodirectional Pointer Sequences
Sung-Hwan Kim
Department of Electrical and Computer Engineering, Pusan National University, South Korea
sunghwan@pusan.ac.kr

Hwan-Gue Cho
Department of Electrical and Computer Engineering, Pusan National University, South Korea
hgcho@pusan.ac.kr

Abstract
Many sequential and temporal data have dependency relationships among their elements, which
can be represented as a sequence of pointers. In this paper, we introduce a new string matching
problem with a particular type of strings, which we call isodirectional pointer sequence, in which
each entry has a pointer to another entry. The proposed problem is not only a formalization
of real-world dependency matching problems, but also a generalization of variants of the string
matching problem such as parameterized pattern matching and Cartesian tree matching. We present
a 2n lg σ + 2n + o(n)-bit index that preprocesses the text T [1 : n] so as to count the number of
occurrences of pattern P [1 : m] in O(m lg σ) where σ is the number of distinct lengths of pointers
in T . Our index is also easily implementable in practice because it consists of wavelet trees and
range maximum query index, which are widely used building blocks in many other compact data
structures. By compressing the wavelet trees, the index can also be stored into 2nH∗

0 (T) + 2n+ o(n)
bits where H∗

0 (T) is the 0-th order empirical entropy of the distribution of pointer lengths of T .

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases String Matching, Suffix Array, FM-index, Wavelet Tree, Range Minimum
Query, Parameterized String Matching, Cartesian Tree Matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.35

1 Motivation

Many sequential and temporal data have dependency relationships among their elements. For
example, a web access log may contain a list of accessed web pages in temporal order along
with their referrer from which page a user comes. Retweet network can be used to analyze
how a single message has been diffused widely, which can be represented as a sequence of
individual tweets in their posted order with links to previous tweets where they are retweeted.
Hierarchical comment tree in online discussion is a sequence of comments, each of which
has its parent comment to which the comment writer made a reply. In natural language
processing, a dependency parser generates a tree on top of a sentence. Each word has a
pointer to its parent, which represents semantic dependency between words.

In this context, we introduce a simple string matching problem for a specific class
of strings, which we call isodirectional pointer sequence. In these particular sequences,
each entry is a pointer to another entry, and the orientations are the same across all the
pointers; either all leftwards, or all rightwards. Many types of dependency sequences can be
represented as isodirectional pointer sequence, especially when they have some hierarchical
properties. Sequences representing temporal causality are likely to have pointers refer to
previously occurred events such as web access logs, retweet network and comment trees.
Dependency parse trees of head-final languages such as Korean and Japanese are likely to
have only pointers with the left-to-right orientation. Imagine we need to search on this
kind of sequences of pointers whether there exists some consecutive entries having the same

© Sung-Hwan Kim and Hwan-Gue Cho;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sunghwan@pusan.ac.kr
mailto:hgcho@pusan.ac.kr
https://doi.org/10.4230/LIPIcs.ISAAC.2020.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Indexing Isodirectional Pointer Sequences

i 1 2 3 4 5 6 7 8 9 10 11 12

T [i] 3 4 7 5 9 8 9 10 10 11 ∞ 12

P [i]

1 2 3

3 ∞
i

∞
mismatch

Figure 1 Illustration of the introduced matching problem. P matches to T at positions at 1, 2,
6, and 7. Pointers from/to outside do not count to determine the matching (indicated by green).
But P does not match at position 8 because there is a pointer (indicated by red) from the second
entry to the third entry while P does not have.

dependency relationship as a given pattern. More specifically, we want to build an index
on a (relatively) long isodirectional pointer sequence so that later, we can perform pattern
matching queries for short patterns efficiently.

To define the problem more formally, we first assume that every pointer is rightward
without loss of generality, otherwise we can reverse the sequence. By the positional index of
its target, we represent these pointers.

I Definition 1 (Isodirectional Pointer Sequence). A sequence T [1 : n] over Σ = {1, · · · , n} ∪
{∞} is an isodirectional pointer sequence if T [i] ≥ i for 1 ≤ ∀i ≤ n.

T [i] means the i-th has a pointer to the T [i]-th entry. We allow self-referencing entries;
that is those having T [i] = i. We also allow entries having no pointers, and denote by ∞.

When a pattern P of length m is given we say that it matches to the text sequence T at
position i if, when we take m consecutive entries T [i : i+m− 1] from T , the dependency
among these entries is exactly the same as that of the pattern. Because we consider the
matching of consecutive entries this problem can be said a variant of string matching. Figure
1 illustrates the matching problem.

I Definition 2 (String Matching). For isodirectional pointer sequences T [1 : n] and P [1 : m],
we say P matches to T at position i if, for 1 ≤ ∀j ≤ m,{

T [i+ j − 1] ≥ i+m if P [j] =∞,
T [i+ j − 1] = i+ P [j]− 1 otherwise.

(1)

From a graphical perspective, we can represent an isodirectional pointer sequence T a
labeled directed graphs GT = (VT , ET). Vertices are uniquely labeled with {1, · · · , |VT |},
and for any edge (u, v) ∈ ET , u ≤ v. Given a pattern GP = (VP , EP) we say P matches
at vertex u ∈ VT if the subgraph induced by consecutive vertices {u, · · · , u + |VP | − 1} is
exactly the same as GP when relabeling vertices with {1, · · · , |VP |} in order.

This matching problem can also be considered as a generalization of other string matching
variants allowing particular types of approximate matching such as parameterized string
matching [2] and Cartesian tree matching [17]. In these problems, suffixes are transformed

S.-H. Kim and H.-G. Cho 35:3

by certain encoding schemes so that an encoded suffix is represented with dependency
relationships among its entries. These problems can be viewed as special cases of the
introduced problem, which means the result of this study can also be applied to them.

In this paper, we present an indexing method for isodirectional pointer sequences, with
which we can count the number of occurrences of a length-m pattern in O(m lg σ) where σ is
the number of distinct lengths of the pointers. The proposed index occupies 2n lg σ+2n+o(n)
bits where n is the text length, in addition to the sampled suffix array.

The rest of this paper is organized as follows. In Section 2, we establish some notation
used throughout the paper, and we briefly review some data structures used for our work as
building blocks. We first describe how to organize the proposed data structure in Section 3
and 4. Section 3 is dedicated to define the suffix array of isodirectional pointer sequences,
and Section 4 describes the structural components of the proposed index with searching
algorithms. Then we show the correctness of the proposed method in Section 5. In Section 6,
we present indexes for parameterized string matching and Cartesian tree matching problem
as special cases to demonstrate how our proposed method can be applied to other string
matching problems. Finally we conclude the paper in Section 7 with giving some directions
for the future work.

2 Preliminaries

2.1 Notation
By T [1 : n], we denote a string (sequence) of length n. T [i] indicates the i-th entry and
T [i : j] is the substring T [i]T [i+ 1] · · ·T [j] starting from position i to position j of T . For
an isodirectional pointer sequence T [1 : n], we assume that T [n] = n and it is the unique
self-referencing entry as it acts like the termination symbol in the usual string matching
problem. We say that the i-th entry refers to the j-th entry if T [i] = j, and in this case, we
call the i-th entry a source entry and the j-th entry is the target entry of the i-th entry. If
T [i] = ∞, we say that the i-th entry does not have a pointer. We define a set of integers
[n] = {1, · · · , n}. For any positive integer x, we define ∞− x =∞.

2.2 Building Blocks
Wavelet tree [11] of a string T [1..n] over alphabet {1, · · · , σ} is a binary tree that a
recursive structure in which nodes at the same level has a disjoint subsequence of the
input text. At the root node, the bit vector B[i] indicates whether T [i] is less than x
where x is the median among the symbols in that node. The subsequence induced by
0’s is moved to its left child in order, and the remainder is moved to the right child. For
each child node we perform this recursively until one symbol is left in a node.
Wavelet tree can answer the following queries in O(lg σ) time with n lg σ + o(n)-bit space
[16, 10].
T [i]: the value of the entry i of T .
select(x, i): the position in which the i-th occurrence of x on T .
rank(x, i): the number of occurrences of x ∈ Σ in prefix T [1..i].
rankrange(x, [i, j]): the number of occurrences of T [k] ≥ x for i ≤ k ≤ j.

Range Maximum (Minimum) Query is also an important component of our index.
For an integer array L[1..n], a range maximum query (i, j) asks to find the index i∗ such
that L[i∗] ≥ L[i′] for any i ≤ i′ ≤ j. It can be answered in O(1) time with an index
occupying 2n+ o(n) bits [7].

ISAAC 2020

35:4 Indexing Isodirectional Pointer Sequences

3 Suffix Array for Isodirectional Pointer Sequences

In this section, we define the suffix array of isodirectional pointer sequences. More specifically,
we define how to define, compare and sort suffixes of an isodirectional pointer sequence. As
usual string matching problems [2, 17], we use an encoding scheme to define suffixes that will
be used for suffix array construction and pattern matching. Because these encoded suffixes
are not usual strings but sequences of integer sets, we define the relative order among integer
set in order to enable the comparison of suffixes in lexicographical order. Then we define the
suffix array and its related terms.

3.1 Encoding
In this subsection, we define the suffixes of an isodirectional pointer sequence T [1 : n], which
will be used to construct the suffix array. Each entry of the suffixes is encoded with its
corresponding source entries in terms of their positional distances. Note that each entry of
an encoded suffix is an integer set because more than one entries may refer to the same entry.

I Definition 3 (Encoded Suffix). For an isodirectional pointer sequence T [i : n], its encoded
suffix Ti starting at position i is a sequence of integer sets defined as: For 1 ≤ j ≤ n− i+ 1,

Ti[j] = {T [k]− k : i ≤ k ≤ i+ j − 1 and T [k] = i+ j − 1} (2)

The following lemma shows this particular encoding method corresponds to our matching
problem. We can search for a pattern by searching the encoded suffixes starting having a
particular prefix, which is an essential idea of indexing methods based on suffix trees and
suffix arrays.

I Lemma 4. For two isodirectional pointer sequence T [1 : n] and P [1 : m] (m ≤ n), let Ti

and Pi be their encoded suffixes. P matches to T at position i if and only if Ti[1 : m] = P1.

Proof. (⇒) For 1 ≤ j ≤ m,

P1[j] = {P [k]− k : 1 ≤ k ≤ j and P [k] = j}

Since we have T [i+ k − 1] = i+ P [k]− 1 for 1 ≤ k ≤ j such that P [k] = j 6=∞,

= {T [i+ k − 1]− (i+ k − 1) : 1 ≤ k ≤ j and T [i+ k − 1]− (i− 1) = j}
= {T [i+ k − 1]− (i+ k − 1) : 1 ≤ k ≤ j and T [i+ k − 1] = j + i− 1}

Letting k′ = i+ k − 1,

= {T [k′]− k′ : 1 ≤ k′ − (i− 1) ≤ j and T [k′] = j + i− 1}
= {T [k′]− k′ : i ≤ k′ ≤ j + i− 1 and T [k′] = j + i− 1}
= Ti[j]

(⇐) Assume that Ti[1 : m] = P1 but P does not match to T at position i. Then there
must be 1 ≤ j ≤ m such that T [i + j − 1] < i + m and T [i + j − 1] 6= i + P [j] − 1. Let
k = T [i+j−1]−(i+j−1). Then k ∈ Ti[k+1]. However, since T [i+j−1] = k+(i+j−1) 6=
i+ P [j]− 1, we have k 6= P [j]− j. Hence, k 6∈ P1[k + 1]. Therefore, Ti[k + 1] 6= P1[k + 1].
Note that k+ 1 = T [i+ j − 1]− (i+ j − 1) + 1 < i+m− (i+ j − 1) + 1 = m− j + 2 ≤ m+ 1.
Therefore there exist 1 ≤ k′ ≤ m such that Ti[k′] 6= P1[k′]. Contradiction. J

S.-H. Kim and H.-G. Cho 35:5

3.2 Comparison of Integer Sets
As the suffix array is defined using the lexicographical order of suffixes, we need to compare
arbitrary two encoded suffixes. In lexicographical comparison of sequences, individual entries
should be compared. Provided that an encoded suffix is a sequence of integer sets, we need
to define the relative order among integer sets.

We define the relative order of two integer sets as recursively as follows:

I Definition 5 (Order for Integer sets). For integer sets A 6= B, we define:

A < B ⇔

B = φ, or
minA < minB, or
A− {minA} < B − {minB}.

(3)

For more intuitive description, we can represent an integer set as a string by enumerating
its elements in the increasing order and append a termination symbol at the end. The
termination symbol is considered to be the greatest. For example, A = {1, 2} can be
represented as 12�, and B = {1, 2, 3} as 123�, where � is the termination symbol. We have
A > B because 12� > 123�; specifically, A[3] = � > 3 = B[3].

3.3 Suffix Array and LF-mapping
Now that we can compare arbitrary two encoded suffixes, we define the suffix array of an
isodirectional pointer sequence by sorting the encoded suffixes. Because the suffix array SA
is a one-to-one function from rank indices to position indices, we also define its inverse SA−1.

I Definition 6 (Suffix Array). Suffix array SA : [n]→ [n] is a one-to-one function such that
SA(i) = j if and only if Tj is the i-th smallest sequence among the encoded suffixes of T . Its
inverse is denoted by SA−1, and SA−1(i) = j if and only if SA(j) = i. For convenience, we
also define SA−1(0) = SA−1(n).

The encoded suffixes sharing the same common prefix are consecutive in the suffix array
because they are sorted. We define the suffix range to represent these consecutive suffixes
corresponding to a particular pattern as a single interval.

I Definition 7 (Suffix Range). For two isodirectional pointer sequences T and P , let SA be
the suffix array of T . A pair of integers (ps, pe) is the suffix range for P when, for 1 ≤ ∀i ≤ n,
P matches to T at position SA(i) if and only if ps ≤ i ≤ pe.

Backward searching indexes such as FM-index [5], LF-mapping is a one-to-one function
that connects positionally adjacent suffixes. If the rank of the suffix starting at position j on
the text sequence T is i, its LF-mapping LF(i) indicates the rank of its positionally preceding
suffix that starts at position j − 1 on T .

I Definition 8 (LF-mapping). LF-mapping LF : [n]→ [n] is a one-to-one function such that
LF(i) = SA−1(SA(i)− 1).

4 Index Structure and Search Algorithm

Now we describe the structure of our proposed method. Given an isodirectional pointer
sequence T [1 : n], we build an index on T . The main objective of this data structure is to
compute the suffix range (ps, pe) for a pattern P [1 : m] efficiently. In this section, we focus
on structural and procedural description of our method for the practical reasons, and the
detailed theoretical justification will be described in the next section.

ISAAC 2020

35:6 Indexing Isodirectional Pointer Sequences

TSA(i)

φ φ {2} {2} {1} φ {4} {2} {2, 4} {1, 2} {1} {0}

φ {2} {1} φ {4} {2} {2, 4} {1, 2} {1} {0}

{1} φ {4} {2} {2, 4} {1, 2} {1} {0}

{1} φ {2} {2, 4} {1, 2} {1} {0}

φ {2} {2, 4} {1, 2} {1} {0}

φ {2} {2} {1, 2} {1} {0}

{1, 2} {1} {0}

{1, 2} {1} {0}

{1} {0}

{1} {0}

{0}

{0}

φ

φ φ

φ

φ

φ

φ

φ

φ {2}φ

φ φ

φ {1}

φ

φ

1

2

3

4

5

6

7

8

9

10

11

121

2

3

4

5

6

7

8

9

10

11

12

SA(i)i LF(i) F [i] L[i]

0

∞

1

1

1

2

4

2

2

2

2

4

2

3

4

6

8

10

12

5

7

9

11

1

∞

1

1

2

4

2

2

2

2

4

0

1

Figure 2 Example for T = 〈3, 4, 7, 5, 9, 8, 9, 10, 10, 11,∞, 12〉 in Figure 1.

4.1 Structural Components
Our data structure consists of two wavelet trees and one range maximum query index. We
define two arrays F and L of length n on which wavelet trees will be built. And we build
the range maximum query index on an integer array M representing LF(·) values. Clearly,
the index occupies 2n lg σ + 2n+ o(n) bits where n is the text length, and σ is the number
of distinct integers in arrays F and L. Specifically, as we will describe, σ is the number of
distinct lengths of pointers of the input sequence T .

4.1.1 Wavelet Trees on F and L

We define two arrays F and L as: F [i] = T [j] − j where j = SA(i), L[i] = F [LF(i)]. F [i]
indicates which entry the first entry of the i-th smallest encoded suffix refers to. L[i]
represents the correspondence between positionally adjacent encoded suffixes.

We build wavelet trees on F and L. By WTF and WTL, we denote each of these wavelet
trees respectively. The operations we use on these wavelet trees are listed as follows:
1. WTL.access(i) = L[i]
2. WTL.rank(x, i) = |{1 ≤ k ≤ i : L[k] = x}|
3. WTL.rankrange(x, [i, j]) = |{i ≤ k ≤ j : L[k] ≥ x}|
4. WTF .select(x, i) = j if and only if F [j] is the i-th occurrence of x in F .
where i, j, x are integers.

4.1.2 Range Maximum Query on LF
Let M be an array of length n such that M [i] = LF(i). We build the range maximum query
index on M , and this index supports the following operation:

RMQ(i, j) = arg maxi≤k≤j LF(k)

This RMQ query finds the encoded suffix that will be mapped into largest encoded suffix
via LF-mapping.

S.-H. Kim and H.-G. Cho 35:7

4.2 Computing LF(i)
Now we give an algorithm to compute LF(i). The basic idea is to group encoded suffixes into
disjoint subsets. Let Lk be the encoded suffixes TSA(i) such that L[i] = k. Similarly, Fk be
the encoded suffixes TSA(i) such that F [i] = k. The underlying observation is that suffixes in
Lk are in one-to-one correspondence with suffixes Fk. More specifically, the j-th smallest
suffix in Lk corresponds to the j-th smallest suffix in Fk.

The algorithm is shown in Algorithm 1. To compute LF(i), we determine j such that
TSA(i) is the j-th smallest encoded suffix among encoded suffixes having the same L-value.
This can be done by performing rank query on the wavelet tree built on L. Then we locate
the j-th smallest encoded suffix among those having the same F -value via select query on
F ’s wavelet tree.

Algorithm 1 Compute LF(i).

1: function LF(i)
2: x←WTL.access(i)
3: j ←WTL.rank(x, i)
4: k ←WTF .select(x, j)
5: return k

6: end function

4.3 Suffix Range Computation
Algorithm 2 shows the procedure to compute the suffix range of a given pattern of length
m. Starting with the last position on the pattern, we iterate the loop m times At each
iteration, we properly update the suffix range so that the encoded suffixes yield matching
with the encoded suffix Pi of the pattern P . We apply different updating routines according
to whether the currently processing entry has a pointer or not.

Algorithm 2 Compute the suffix range [ps, pe] for a pattern P .

1: function Search(P) . P : an isodirectional pointer sequence
2: (ps, pe)← (1, n).
3: for i = |P | to 1 do . Processing the pattern backward
4: x← P [i]− i.
5: if x =∞ then . The processing entry does not have a pointer
6: c←WTL.rankrange(|P | − i+ 1, [ps, pe])
7: j ← RMQ(ps, pe)
8: pe ← LF(j)
9: ps ← pe − c+ 1
10: else . The processing entry has a valid pointer
11: js ←WTL.rank(x, ps − 1) + 1
12: je ←WTL.rank(x, pe)
13: ps ←WTF .select(x, js)
14: pe ←WTF .select(x, je)
15: end if
16: end for
17: return (ps, pe)
18: end function

ISAAC 2020

35:8 Indexing Isodirectional Pointer Sequences

5 Proofs of Correctness

In this section, we prove the correctness of the proposed algorithms described in the earlier
section.

5.1 Inducing Preceding Encoded Suffixes
First, we give an important observation from two consecutive encoded suffixes, which will be
useful for the remainder of this section. When we consider two positionally adjacent suffixes
Ti−1 and Ti, we can observe that at most one pointer is additionally established. As a result,
Ti−1 can simply be obtained from Ti by prepending φ at the beginning, and adding a single
integer to a particular entry if needed.

I Lemma 9. For an isodirectional pointer sequence T [1 : n], let {Ti} be its encoded suffixes.
For any 1 < i ≤ n,

Ti−1[j] =
{

Ti[j − 1] ∪ {j − 1} if j − 1 = T [i− 1]− (i− 1)
Ti[j − 1] otherwise.

(4)

Proof. For 1 < j ≤ n− i+ 2, we have

Ti−1[j] = {T [k]− k : i− 1 ≤ k ≤ (i− 1) + j − 1 and T [k] = (i− 1) + j − 1}
= {T [k]− k : i− 1 ≤ k ≤ i+ (j − 1)− 1 and T [k] = i+ j − 2}
= {T [i− 1]− (i− 1) : k = i− 1 and T [i− 1] = (i− 1) + (j − 1)}
∪ {T [k]− k : i ≤ k ≤ i+ (j − 1)− 1 and T [k] = i+ (j − 1)− 1}
= {j − 1 : j − 1 = T [i− 1]− (i− 1)} ∪Ti[j − 1] J

Because there is at most one entry to be changed (except prepending φ at the beginning)
we can say that there is unique entry where an integer is to be added when we compute its
preceding encoded suffix from it. We call the position of this entry the changing position.

I Definition 10 (Changing Position). For an isodirectional pointer sequence T [1 : n], let
{Ti} be its encoded suffixes. For i > 1, we say the changing position on Ti is j − 1 if
T [i− 1] = i+ j − 2. If T [i− 1] =∞ we say Ti does not have any changing position.

In particular to the text sequence where the suffix array and LF-mapping are available,
we have the following corollary from Lemma 9.

I Corollary 11. For any two consecutive encoded suffixes TSA(LF(i)) and TSA(i) of an isodir-
ectional pointer sequence T [1 : n], for 1 ≤ j ≤ |TSA(LF(i))|,

TSA(LF(i))[j] =
{
S(j) ∪ {j − 1} if j − 1 = L[i]
S(j) otherwise.

(5)

where S(j) = TSA(i)[j − 1] if j ≥ 2, S(j) = φ if j = 1.

Proof. We have SA(LF(i)) = SA(SA−1(SA(i)−1)). Thus, if SA(i) > 1, SA(LF(i)) = SA(i)−1,
we apply Lemma 9 (noting that L[i] = F [LF(i)] = F [SA−1(SA(i) − 1)] = T [SA(i) − 1] −
(SA(i)− 1)). For i such that SA(i) = 1, SA(LF(i)) = n and L[i] = 0. Thus we have |Tn| = 1,
and Tn[1] = {0}. Note that TSA(LF(i))[1] = φ unless L[i] = 0. J

S.-H. Kim and H.-G. Cho 35:9

LF(·)

k

Figure 3 Illustration of Lemma 12. Encoded suffixes are listed in sorted order. Dark rectangles
indicate L[i]’s of the encoded suffixes. For the suffixes having the same L[i]’s, the relative order is
preserved after applying LF(·).

5.2 Order Preserving Property and LF(·)
Now we prove the order preserving property LF(·) within the set of the encoded suffixes Ti

having the same L[i]-value as illustrated in Figure 3.

I Lemma 12. For any integers i and j such that 1 ≤ i < j ≤ n and L[i] = L[j], LF(i) <
LF(j).

Proof. Since L[i] = L[j], encoded suffixes TSA(i) and TSA(j) have the same changing position
L[i]. Therefore the relative order of TSA(LF(i)) and TSA(LF(j)) is determined by that of TSA(i)
and TSA(j). Since i < j, TSA(i) < TSA(j), thus we have TSA(LF(i)) < TSA(LF(j)), which leads
to LF(i) < LF(j). J

From this lemma, we can prove the correctness of Algorithm 1, which directly used this
property.

I Theorem 13. Algorithm 1 computes LF(i) correctly and runs in O(lg σ) time where σ is
the number of distinct integers in array F .

Proof. By Lemma 12, if TSA(i) is the j-th smallest encoded suffix among {TSA(k) : L[k] =
L[i]}, the j-th smallest encoded suffix among {TSA(LF(k)) : F [k] = L[i]} is TSA(LF(i)).

Noting that, L is a permutation of F , the alphabet sizes, say σ, of these two arrays are
the same. Each operation on the wavelet trees takes at O(lg σ) time, thus the algorithm runs
in O(lg σ) time. J

5.3 Correctness of Updated Suffix Range
In this section, we prove a lemma that is important to show that we correctly choose
the encoded suffixes whose LF-mapping is to be included in the updated suffix range in
Algorithm 2.

First. we introduce the notion of decoded sequence, which is interpreted as the inverse of
the encoding scheme we used in this paper.

I Definition 14 (Decoded Sequence). For an isodirectional pointer sequence P [1 : m], let
{Pi} be its encoded suffixes. By D(Pi), we denote an isodirectional pointer sequence X such
that its longest encoded suffix X1 = D(Pi).

ISAAC 2020

35:10 Indexing Isodirectional Pointer Sequences

k

lcp’s

Figure 4 Illustration of Lemma 16. Light blue indicates the longest common prefixes between
encoded suffixes and dark blue indicates a common prefix of encoded suffixes of length k, dark
rectangles indicate changing positions. We can locate encoded suffixes having its changing position
out of the current common prefix by finding the one whose LF-mapping is the largest.

The following lemma shows that, when we choose the encoded suffixes S = {ps ≤ i ≤
pe : L[i] holds some certain condition} according to their L[i]-value, and apply LF-mapping
{LF(i) : i ∈ S} to them individually, we can obtain the correctly updated suffix range.

I Lemma 15. For an isodirectional pointer sequence P [1 : m] such that P [i] 6= i for
1 ≤ ∀i ≤ m, let {Pi} be its encoded suffixes. Let (pi, qi) be the suffix range for D(Pi).
Then for 1 < i ≤ m and 1 ≤ j ≤ n, pi−1 ≤ LF(j) ≤ qi−1 if and only if pi ≤ j ≤ qi and
L[j] > m− i+ 1 if P [i− 1] =∞, L[j] = P [i− 1]− (i− 1), if P [i− 1] 6=∞.

Proof. (⇒) Provided pi−1 ≤ LF(j) ≤ qi−1, we have Pi−1 = TSA(LF(j))[1 : m − i + 2]. To
prove it by contradiction, we assume the negation of each of conditions. (i) First, let us
assume j < pi or qi < j, which means Pi[k] 6= TSA(j)[k] for some 1 ≤ k ≤ m − i + 1. Let
x be any integer in the symmetric difference of Pi[k] and TSA(j)[k]. Then x < k. Thus we
cannot have Pi−1[k + 1] = TSA(LF(j))[k + 1] only k can be added to these entry compared to
Pi[k] and TSA(j)[k] by Lemma 9 and Corollary 11. (ii) Next, let us assume L[j] ≤ m− i+ 1
and P [i − 1] = ∞. Then for some 1 < k ≤ m − i + 1, TSA(LF(j))[k + 1] = TSA(j)[k] ∪ {k}
while Pi−1[k + 1] = Pi[k] for all 1 < k ≤ m − i + 1. (iii) Finally, let us assume L[j] 6=
P [i − 1] − (i − 1) and P [i − 1] 6= ∞. Then we have Pi−1[L[j] + 1] = Pi[L[j]]. However,
TSA(j)[L[j]] ∪ {L[j]} = TSA(LF(j))[L[j] + 1] 6= Pi−1[L[j] + 1]. Contradiction.

(⇐) For 1 ≤ k ≤ m− i+ 1, Pi[k] = TSA(j)[k]. (i) If P [i− 1] =∞ and L[j] > m− i+ 1,
the changing position on TSA(j) is out of m − 1 + 1. Hence we have TSA(LF(j))[k + 1] =
TSA(j)[k] = Pi[k] = Pi−1[k + 1] for 1 < k ≤ m− i+ 1, and TSA(LF(j))[1] = Pi−1[1] = φ. (ii)
If P [i− 1] 6=∞ and L[j] = P [i− 1]− (i− 1), the changing position on TSA(j) (and Pi) is
L[j] (and P [i− 1]− (i− 1)). Since L[j] = P [i− 1]− (i− 1), the same entry is to be changed,
which leads to Pi−1 = TSA(LF(j))[1 : m− i+ 2]. J

5.4 Lefter-Smaller Property within Common Prefix
While the method in the previous subsection correctly updates the suffix range according the
given processing entry, we need to apply LF(·) simultaneously across all the target suffixes
for efficiency, rather than individually. Line 6–9 and Line 11–14 in Algorithm 2 perform this
simultaneous update of the suffix range.

S.-H. Kim and H.-G. Cho 35:11

For the correctness of Line 6–9 in Algorithm 2 lies on the following lemma, which indicates
that, when applying LF-mapping, an encoded suffix having a changing position within the
currently searched prefix will always become smaller than the encoded suffixes that does
not have a changing position within the same prefix (See Figure 4). Moreover, within the
common prefix the lefter the changing position is the smaller its LF-mapping is.

I Lemma 16. For any integers i, j, k such that L[i] ≤ k < L[j] and k ≤ lcp(TSA(i),TSA(j)),
LF(i) < LF(j).

Proof. Since position L[i] is within the longest common prefix of TSA(i) and TSA(j),
TSA(i)[L[i]] = TSA(j)[L[i]]. Note that, by Definition 3, for two integer sets X and Y = X∪{y}
such that y > maxX, we defined their relative order as X > Y . By Corollary 11,
TSA(LF(i))[L[i] + 1] = TSA(i)[L[i]] ∪ {L[i]} < TSA(i)[L[i]] = TSA(j)[L[i]] = TSA(LF(j))[L[i] + 1].
Therefore LF(i) < LF(j). J

As a result, when no additional pointer is to be established at the current iteration, we
can locate the encoded suffix that will become the greatest encoded suffix among those in
the updated suffix range by performing the range maximum query within the current suffix
range. Combining it with the order preserving property, we can efficiently update the suffix
range.

I Theorem 17. Algorithm 2 computes the suffix range of P [1 : m] correctly and runs in
O(m lg σ) where σ is the number of distinct integers in array F .

Proof. The invariant is (ps, pe) is the suffix range for D(Pi) at the end of each iteration. If
P [i] 6=∞ we can locate the encoded suffixes in the updated suffix range using Lemma 12 (Line
11–14). If P [i] = ∞, by Lemma 15, we can count the number |{TSA(LF(i)) : p′s ≤ i ≤ p′e}|
of encoded suffixes in the updated suffix range (p′s, p′e) to be c = |{TSA(i) : ps ≤ i ≤
pe and L[i] ≤ m− i+ 1}| in the current suffix range (ps, pe) (Line 6). By Lemma 16, we can
find the right end p′e of the updated suffix range (Line 7–8), then locate p′s using p′e and c
(Line 9).

It takes O(lg σ) time for each of wavelet tree queries, O(1) time for range maximum
query, and the loop iterates m times, thus the algorithm runs in O(m lg σ) time in total. J

6 Special Cases

In this section, we present indexes for parameterized string matching [2] and Cartesian tree
matching, which is a recently proposed string matching problem [17]. Although these indexes
are not optimal solutions, they provide how the proposed method can be applied to other
string matching problems.

6.1 Parameterized String Matching
In the original version of the parameterized string matching, the alphabet Σ over which
strings are defined is the union of two subsets, static alphabet Σs and parameterized alphabet
Σp. For sake of simplicity, we consider strings over only parameterized symbols; i.e. Σ = Σp.
In this problem, two strings are defined as a match if there exists a one-to-one function
f : Σ → Σ that converts one string into the other. For example X = xyzxx matches to
Y = yzxyy because when we replace x with y, y with z, and z with x, we can transform X

into Y completely.

ISAAC 2020

35:12 Indexing Isodirectional Pointer Sequences

i 1 2 3 4 5 6 7 8 9 10 11 12

T [i] 2 7 5 6 8 9 11 ∞ 10 ∞ ∞ 12

S[i] x x y z y z x y z z x

(a) Parameterized string matching

i 1 2 3 4 5 6 7 8 9 10 11 12

T [i] 7 3 7 7 6 7 ∞ 10 10 11 ∞ 12

S[i] 2 8 3 7 11 10 1 6 9 5 4

(a) Cartesian tree matching

Figure 5 Isodirectional pointer sequence representation for parameterized string matching and
Cartesian tree matching.

The traditional encoding scheme for this problem that has been used in the literature
[2, 8] is to make a chain for each parameterized symbol. Let S[1 : n] be a parameterized
string, then its corresponding isodirectional pointer sequence T [1 : n+ 1] is defined as follows.
Figure 5-(a) shows an example.

T [i] =
{

mini<j≤n{j : S[j] = S[i]} if such j exists,
∞ otherwise.

(6)

for 1 ≤ i ≤ n, and T [n+ 1] = n+ 1.
Clearly, T is an isodirectional pointer sequence because T [i] ≥ i for all 1 ≤ i ≤ n + 1.

Moreover, we can observe that taking a substring does not affect the pointers within the
taken part in its isodirectional pointer sequence representation. In other words, when we
append a character at the beginning (or at the end) of the underlying parameterized string,
at most one pointer can be added from (or to) the newly added entry compared to the
previous one, and no pointers become removed after appending. This exactly fits to matching
of isodirectional pointer sequences. As a result, we can directly apply our method and build
an 2n lg σ + 2n+ o(n)-bit index for the parameterized matching.

Note that σ here is the number of distinct lengths of pointers, not the size of the
parameterized alphabet |Σ|. In fact, we can reduce σ to |Σ| by using the relative positions
as in [8, 14]. Observe that a newly prepending pointer can refer to only one of the leftmost
occurrences of parameterized symbols; in the graphical viewpoint, it can be linked to a node
whose in-degree is 0. Thus the values of F and L are not necessarily arbitrary integers, but
we can represent them with relative positions in terms of such entries, which makes the same
index as that in [14] except cyclic shifts in the suffix enumeration.

6.2 Cartesian Tree Matching
We can also apply our method to Cartesian tree matching in a similar way. In Cartesian
tree matching, two strings are said to match if their Cartesian tree is the same. Cartesian
tree of a string is defined as: the entry with the minimum value becomes the root, and the
substring on its left (right) side becomes its left (right, resp.) child, and construct recursively.
For example, X = 51432 matches to Y = 31542 because they have the same Cartesian trees.

S.-H. Kim and H.-G. Cho 35:13

Let us rewrite the encoding scheme presented in its original work [17] in our language. In
[17], each entry refers to some entry in its left side. In this paper, we assume the pointers to
be rightwards, so we reverse the orientation. Let S[1 : n] be a string over the set of integers,
and we assume that every S[i] is distinct for simplicity. We define its corresponding pointer
sequence T [1 : n+ 1] is defined as follows (see Figure 5-(b) for example):

T [i] =
{

mini<j≤n{j : S[j] < S[i]} if such j exists,
∞ otherwise.

(7)

for 1 ≤ i ≤ n, and T [n+ 1] = n+ 1.
Similar to the case of the parameterized string matching as we discuss above, we can also

see that T is clearly an isodirectional pointer sequence, and a Cartesian tree match of integer
sequences correspond to matching of their corresponding isodirectional pointer sequences.
Therefore we can directly build an index using our method.

We can also observe the similarity between the parameterized string matching and
Cartesian tree matching in converting the input string in its corresponding isodirectional
pointer sequence. Each entry refers to its nearest (leftmost) entry that satisfies some
conditions among its right side. Perhaps we can find other string matching problems to
which our method can be applied regarding this characteristic.

7 Conclusions

In this paper, we introduced a string matching problem on a particular class of sequences,
which we call isodirectional pointer sequences. This problem may capture some patterns
describing consecutive temporal and sequential dependencies. Further, it can be considered
as a generalization of existing variants of the string matching problems such as parameterized
matching [2, 8] and Cartesian tree matching [17]. We presented a 2n lg σ + 2n + o(n)-bit
index that can count the number of occurrences of a pattern in O(m lg σ) time where n, m
and σ are the text length, the pattern length, and the number of distinct lengths of pointers.
Although we omitted the sampled suffix array part, we can directly add it as usual if we
need to locate occurrences, which would need 2n + o(n) bits to locate each occurrence in
O(lgn lg σ) time if we sample the suffix array for every lgn entries.

Our index consists of two wavelet trees and one range maximum query index. These data
structures have been widely used in many compact and succinct data structures, thus we
believe that the implementation of our index is quite simple. Because a wavelet tree over
string T [1 : n] is compressible into nH0(T) + o(n) bit without sacrificing its time complexity
[16], where H0(T) is T ’s 0-th order empirical entropy, our index can naturally be compressed
into 2nH∗0 (T) + 2n + o(n) bits where H∗0 (T) is the 0-th order empirical entropy of the
distribution of pointer lengths of T . We can also apply other compression methods to them
such as [6, 15, 12, 9].

While we did not consider any restriction about the pointer other than its orientation,
there are possibly additional constraints. For example, in the parameterized string matching
problem as we discussed in Section 6, we can observe that not only each entry can refer
to at most one entry, but also it can be referred by at most one entry. With considering
these constraints, we may be able to present tighter bounds for particular string matching
problems.

We can also observe that our method cannot be directly applied to a certain kind of
string matching problems such as order-preserving matching [13, 4]. In this problem, we can
observe that appending a character at a string boundary completely affect the character

ISAAC 2020

35:14 Indexing Isodirectional Pointer Sequences

dependencies because it considers the relative order across the whole string despite that only
the nearest character having a certain property is considered in parameterized matching or
Cartesian tree matching. If we can find sufficient conditions for matching problems under
which our method can be applied, it would be useful to give a deep understanding of the
nature of the string matching variants as other attempts such as [3, 1] to generalization of
string matching problems to pursue.

References
1 Amihood Amir and Eitan Kondratovsky. Sufficient conditions for efficient indexing under

different matchings. In Proceedings of the 30th Annual Symposium on Combinatorial Pattern
Matching (CPM), pages 6:1–12, 2019. doi:10.4230/LIPIcs.CPM.2019.6.

2 Brenda S. Baker. Parameterized pattern matching: Algorithm and applications. Journal of
Computer and System Sciences, 52:28–42, 1996. doi:10.1006/jcss.1996.0003.

3 Richard Cole and Ramesh Hariharan. Faster suffix tree construction with missing suffix links.
SIAM Journal on Computing, 33(1):26–42, 2003. doi:10.1137/S0097539701424465.

4 Maxime Crochemore, Costas S. Iliopulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Order-preserving
indexing. Theoretical Computer Science, 638:122–135, 2016. doi:10.1016/j.tcs.2015.06.
050.

5 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual Symposium on Foundation of Computer Science (FOCS), pages
390–398, 2000. doi:10.1109/SFCS.2000.892127.

6 Paolo Ferragina and Giovanni Manzini. Compression boosting in optimal linear time using
the burrows-wheeler transform. In Proceedings of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 655–663, 2004. URL: https://dl.acm.org/doi/10.
5555/982792.982892.

7 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011. doi:10.1137/
090779759.

8 Arnab Ganguly, Rahul Shah, and SharmaV. Thankachan. pbwt: Achieving succinct data
structures for parameterized pattern matching and related problems. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 397–407, 2017.
doi:10.1137/1.9781611974782.25.

9 PawełGawrychowski, Seungbum Jo, Shay Mozes, and Oren Weimann. Compressed range
minmum queries. Theoretical Computer Science, 812:39–48, 2020. doi:10.1016/j.tcs.2019.
07.002.

10 Alexander Golynski, Roberto Grossi, Ankur Gupta, Rajeev Raman, and Satti Srinivasa Rao.
On the size of succinct indices. In Proceedings of the 15th European Symposium on Algorithms
(ESA), pages 371–382, 2007. doi:10.1007/978-3-540-75520-3_34.

11 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed text
indexes. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 841–850, 2003. URL: https://dl.acm.org/doi/10.5555/644108.644250.

12 Juha Kärkkäinen and Simon J. Puglisi. Fixed block compression boosting in fm-indexes.
In Proceedings of International Symposium on String Processing and Information Retrieval
(SPIRE), pages 174–184, 2011. doi:10.1007/s00453-018-0475-9.

13 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo Park,
Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theoretical Computer
Science, 525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

14 Sung-Hwan Kim and Hwan-Gue Cho. Simpler fm-index for parameterized string matching.
Information Processing Letters, page 106026, 2020. (Online available). doi:10.1016/j.ipl.
2020.106026.

https://doi.org/10.4230/LIPIcs.CPM.2019.6
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1137/S0097539701424465
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1109/SFCS.2000.892127
https://dl.acm.org/doi/10.5555/982792.982892
https://dl.acm.org/doi/10.5555/982792.982892
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1016/j.tcs.2019.07.002
https://doi.org/10.1016/j.tcs.2019.07.002
https://doi.org/10.1007/978-3-540-75520-3_34
https://dl.acm.org/doi/10.5555/644108.644250
https://doi.org/10.1007/s00453-018-0475-9
https://doi.org/10.1016/j.tcs.2013.10.006
https://doi.org/10.1016/j.ipl.2020.106026
https://doi.org/10.1016/j.ipl.2020.106026

S.-H. Kim and H.-G. Cho 35:15

15 Veli Mäkinen and Gonzalo Navarro. Implicit compression boosting with applications to
self-indexing. In Proceedings of International Symposium on String Processing and Information
Retrieval (SPIRE), pages 229–241, 2007. doi:10.1007/978-3-540-75530-2_21.

16 Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20, 2014.
doi:10.1016/j.jda.2013.07.004.

17 Sung Gwan Park, Amihood Amir, Gad M. Landau, and Kunsoo Park. Cartesian tree matching
and indexing. In Proceedings of the 30th Annual Symposium on Combinatorial Pattern
Matching (CPM), pages 16:1–14, 2019. doi:10.4230/LIPIcs.CPM.2019.16.

ISAAC 2020

https://doi.org/10.1007/978-3-540-75530-2_21
https://doi.org/10.1016/j.jda.2013.07.004
https://doi.org/10.4230/LIPIcs.CPM.2019.16

	Motivation
	Preliminaries
	Notation
	Building Blocks

	Suffix Array for Isodirectional Pointer Sequences
	Encoding
	Comparison of Integer Sets
	Suffix Array and LF-mapping

	Index Structure and Search Algorithm
	Structural Components
	Wavelet Trees on F and L
	Range Maximum Query on LF

	Computing LF(i)
	Suffix Range Computation

	Proofs of Correctness
	Inducing Preceding Encoded Suffixes
	Order Preserving Property and LF(*)
	Correctness of Updated Suffix Range
	Lefter-Smaller Property within Common Prefix

	Special Cases
	Parameterized String Matching
	Cartesian Tree Matching

	Conclusions

