Gourds: A Sliding-Block Puzzle with Turning

Joep Hamersma'
Department of Information and Computing Sciences, Utrecht University, The Netherlands

Marc van Kreveld
Department of Information and Computing Sciences, Utrecht University, The Netherlands
m.j.vankreveld@Quu.nl

Yushi Uno

Graduate School of Engineering, Osaka Prefecture University, Japan
uno@cs.osakafu-u.ac.jp

Tom C. van der Zanden
Department of Data Analytics and Digitalisation, Maastricht University, The Netherlands
T.vanderZanden@maastrichtuniversity.nl

—— Abstract

We propose a new kind of sliding-block puzzle, called Gourds, where the objective is to rearrange
1 x 2 pieces on a hexagonal grid board of 2n + 1 cells with n pieces, using sliding, turning and
pivoting moves. This puzzle has a single empty cell on a board and forms a natural extension of the
15-puzzle to include rotational moves. We analyze the puzzle and completely characterize the cases
when the puzzle can always be solved. We also study the complexity of determining whether a given
set of colored pieces can be placed on a colored hexagonal grid board with matching colors. We show
this problem is NP-complete for arbitrarily many colors, but solvable in randomized polynomial time
if the number of colors is a fixed constant.

2012 ACM Subject Classification Theory of computation — Data structures design and analysis

Keywords and phrases computational complexity, divide-and-conquer, Hamiltonian cycle, puzzle
game, (combinatorial) reconfiguration, sliding-block puzzle

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.33
Related Version A full version of the paper is available at https://arxiv.org/abs/2011.00968.

Funding Marc van Kreveld: Partially supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 612.001.651.

Yushi Uno: Partially supported by JSPS KAKENHI Grant Number JP17K00017 and by JST CREST
Grant Number JPMJCR1402, Japan.

Acknowledgements The original idea for Gourds was formed after an invited talk by Ryuhei Uehara
at ICALP 2015.

1 Introduction

Mechanical puzzles come in many types, one of which is the sliding-block puzzle. Well-known
examples include the 15-puzzle and Rush Hour, both played on a square grid board. However,
these puzzles are quite different: the 15-puzzle has unit square movable pieces containing
the numbers from 1 to 15, and the objective is to sort the numbers on a board with a single
empty space. Rush Hour has pieces of different sizes, typically 1 x 2 and 1 x 3 rectangles, the
board has more empty spaces, and the objective is to bring a particular piece to a particular
place. Their similarities are the square grid board, and sliding pieces by translation only.

1 Research was done while at Utrecht University, but no longer affiliated with Utrecht University

© Joep Hamersma, Marc van Kreveld, Yushi Uno, and Tom C. van der Zanden;
37 licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).

Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 33; pp. 33:1-33:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:m.j.vankreveld@uu.nl
mailto:uno@cs.osakafu-u.ac.jp
mailto:T.vanderZanden@maastrichtuniversity.nl
https://doi.org/10.4230/LIPIcs.ISAAC.2020.33
https://arxiv.org/abs/2011.00968
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2

Gourds: A Sliding-Block Puzzle with Turning

o9

SO
20 &9

T

Figure 1 Gourds on a 3 x 5 square grid board. The blue piece cannot depart from the top-middle
cell, and can only be in the three positions shown on the right.

Sliding-block puzzles have attracted the interest of researchers for a long time, and they
have been investigated in both recreational mathematics and algorithms research. The
15-puzzle was introduced as a prize problem by Sam Loyd in 1878 [14]. The question
whether any configuration can be realized was soon understood using a characterization by
odd/even permutations [8]. The complexity of computing the smallest number of steps to
reach the solution turned out to be NP-complete for n x n boards [13, 4]. The other highly
popular sliding-block puzzle, Rush Hour, is much more complicated. It was shown to be
PSPACE-complete when the size of pieces is 1 x 2 and 1 x 3 [5], and later even if the size of
each piece is 1 x 2 [17], or 1 x 1 with obstacles [1, 15]. Rolling-block puzzles are a variation on
sliding-block puzzles with a 3D aspect, extensively studied by Buchin et al. [2, 3]. A general
treatment of sliding-block puzzles as non-deterministic constraint logic was given by Hearn
and Demaine [6, 7]. Many other puzzles have been shown NP-hard or PSPACE-hard [7, 9].

In this paper we introduce a new type of sliding-block puzzle which we call Gourds. The
name “gourd” refers to the shape of the pieces, which are essentially 1 x 2 pieces on a board.
Like in the 15-puzzle, only one grid cell is empty. Unlike the 15-puzzle and Rush Hour,
gourds can also change orientation: a gourd can move straight to cover the empty cell, or a
gourd may make a turn to do so. One can easily imagine such a gourd puzzle on a square
grid board. If a board is rectangular, then its two dimensions must be odd, otherwise it
cannot have exactly one empty cell. Imagine such a board, for example a 3 x 5 board as in
Figure 1. Also, imagine the objective is to bring the blue gourd to the bottom row. It is not
hard to see that this cannot be done: if we color the board in a checkerboard pattern, we will
get one more (say) white cells than black cells. Every gourd covers one black and one white
cell, so the empty cell is always white. This means that no gourd can uncover the black cell
it covers, because otherwise, that black cell would be the empty cell. Consequently, gourds
cannot travel over the board. In fact, the blue gourd can only be in one of the three positions
(shown in Figure 1, right). This argument holds true for any board based on a square grid
with an odd number of cells. This implies that square grid boards are not suitable for the
Gourds puzzle.

The puzzle we introduce is played on a hexagonal grid board. On such boards, we allow
gourds to make three different kinds of moves: slide, turn, and pivot (see Figure 2). In the
slide move, a gourd translates one unit in the direction parallel to its own orientation; the
two units of the gourd and the empty cell must align and be adjacent for this move to be
possible. In the turn move, either to the left or to the right, a gourd axis and the empty cell
use three adjacent cells that make an angle of 120°. In the pivot move, a gourd is adjacent
to the empty cell with both of its ends, that is, the three cells involved form an equilateral
triangle. The gourd rotates while one end stays stationary (where it pivots).

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

Figure 2 The three types of gourd moves: slide, turn, and pivot.

We introduce two types of the puzzle: the colored type and the numbered type. In the
colored type, each cell of the board has a color, each gourd end has a color (so a gourd has
one or two colors), and the goal of the puzzle is to get each gourd end on a cell of the same
color so that they match, by using any sequence of the three types of moves. The number of
colors can be much smaller than the number 2n of gourd ends; typically, there are two to
six colors in total. In the numbered type, the cells and the gourd ends have a number each
(usually from 1 to 2n for n gourds), and the goal is to sort the numbers of gourd ends to
match those on the board by a sequence of gourd moves, similar to the 15-puzzle. Notice
that the numbered type is a special case of the colored type, since all gourd ends could have
a distinct color.

Solving these Gourds puzzles may be done in two phases: (i) imagining a target placement
of all gourds so that the colors or numbers are correctly covered, and then (ii) reconfig-
uring a given initial configuration to the target one that is found in the first phase by a
sequence of gourd moves. We call these two phases the placement phase and the recon-
figuration phase, respectively. Combining these with two types of puzzles (colored and
numbered), we now have four problems in Gourds puzzles: COLORED/NUMBERED GOURD
PLACEMENT/RECONFIGURATION (see Figure 3 for three of them). The objective of this
paper is to analyze these Gourds puzzle problems mathematically and algorithmically.

For the placement problem, the numbered type, i.e., NUMBERED GOURD PLACEMENT,
is trivial since each number appears exactly once both on the board and on a gourd. On
the other hand, the colored type turns out to be hard: we show that the decision version
of COLORED GOURD PLACEMENT is NP-complete. Interestingly, the proof makes use of
budgets of pieces in a 3SAT reduction: there are no connector gadgets between variable and
clause gadgets. If the number of colors is constant, the problem can be solved in randomized
polynomial time. The reconfiguration problem is essentially the same for the two types once
we have matched up the initial and target configurations of the gourds. We are interested in
boards that allow any reconfiguration of the gourds, and we show a complete characterization
of such boards, provided they are hole-free. We also show that any reconfiguration is achieved
within quadratic number of moves, which is worst-case optimal.

Figure 3 An instance of COLORED GOURD PLACEMENT (left), COLORED GOURD RECONFIGURA-
TION (middle), and NUMBERED GOURD RECONFIGURATION (right pair).

33:3

ISAAC 2020

334

Gourds: A Sliding-Block Puzzle with Turning

This paper is organized as follows. In Section 2 we discuss gourds, moves, and boards
further, and make some basic observations. In Section 3 we show the hardness of COLORED
GOURD PLACEMENT. In Section 4 we characterize boards that allow any reconfiguration (in
quadratically many moves).

2 Preliminaries

In this section, we discuss gourds and their moves, and boards to give formal definitions and
related observations.

Recall that we define three kinds of moves for gourds, that is, slide, turn, and pivot. To
realize these moves physically, such a piece must have a certain shape that is somewhat
smaller than the union of two hexagons. A good choice is to use two discs and a concave
“neck” that connects these discs. The concave neck is bounded by four concave circular arcs,
two of which are also boundary parts of the gourd, and the other two coincide with parts of
the discs. The resulting piece looks like a gourd.

We have chosen to use the pivot move and not the “sharp turn”, where a gourd rotates
over 120°. This would be the alternative in the case where both ends of a gourd are adjacent
to the empty cell. There are several reasons for this choice. First, the pivot move is easier to
perform by hand in the physical situation. Second, the gourd would have to be smaller to
allow this move, unless we perform a sharp turn by two consecutive pivots, and then we do
not need the sharp turn anymore. In fact, as we can easily check by hand, the pivot move is
strictly more powerful than the sharp turn as shown in the following observation, which is
the third reason for the choice.

» Observation 1. On a 3-cell board where the cells are mutually adjacent, a two-colored
gourd can reach all siz possible positions from a starting position with a pivot move, while it
can reach three positions with the sharp turn move.

A board is any finite and connected subset of regular hexagonal tiles from their infinite
tiling of the plane, and we only focus on hole-free board. Each hexagon is a cell of a board.
To play a set of n gourds, we assume that the number of cells of a board is odd and is 2n + 1.
That is, a board always has a single empty cell, which is sometimes denoted by F.

The dual graph to such a hexagonal grid board, embedded as a straight-line graph on
the centers of the tiles, is a plane graph where every bounded face is an equilateral triangle.
We call it a board graph. Since boards and board graphs have one-to-one correspondence, we
can also say that a board is 2-connected, Hamiltonian, and so on (see Figure 7, left).

If a board is connected but not 2-connected, then it does not allow almost any reconfigur-
ation. Gourds cannot get from one side of a cut-vertex to the other side of the board. Even
if the board has a leaf cell with only one adjacent cell, then only one gourd end can ever
reach that leaf. A triangular grid graph is called the Star of David if it is the graph shown
in Figure 4. For triangular grid graphs the following fact is known [11]:

» Fact 1. For any 2-connected hole-free triangular grid graph, it is Hamiltonian unless it is
the Star of David graph.

We now consider solving the Gourds puzzle on the board whose dual graph is the Star
of David (consisting of 13 vertices, which is odd). Any gourd on the Star of David graph
board can take only three positions (see Figure 4 (middle)). This observation implies that
this board is not suitable for the Gourds puzzle. Summarizing, to make the Gourds puzzle
playable, we require a board (graph) to satisfy the following three conditions: (i) it has a

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

Figure 4 The Star of David graph (left), and three possible positions for a gourd on its corres-
ponding board (middle). A 3-coloring of the hexagons shows that one color (red) is used more often
than the other two colors together. A gourd can never depart from its non-red cell (right).

single empty cell, (ii) it is 2-connected, and (iii) it is not the Star of David, in addition to
being hole-free. We call a board satisfying these conditions proper. We remark that under
this setting a board graph always has a Hamiltonian cycle.

3 Colored Gourd Placement: Intractability

In this section, we discuss the computational complexity of COLORED GOURD PLACEMENT.

» Theorem 1. COLORED GOURD PLACEMENT is NP-complete, even on a board of four
hezxagons high.

Proof. It is trivial to show containment in NP. The problem is NP-hard by reduction from
MONOTONE 1-IN-3SAT, which is NP-complete even when considering formulas with exactly
three occurrences per variable and exactly three literals per clause [12, Lemma 5].

Given a formula with n variables and m clauses, we construct an instance with n + 2
colors: one color per variable plus two “filler” colors. The colors are labeled x4, ..., x, for
the variables, and V, F as filler. The color V is the variable filler color, and the color F
is the general-purpose filler. The latter serves to isolate the gadgets from each other on a
connected board; it does not interact with any of the gadgets in any way. We provide enough
gourds colored (F, F') to enable tiling of the filler part of the board. The board itself is the
concatenation of the variable and clause gadgets in any order from left to right.

For each variable, we create a corresponding variable-setting gadget. For each clause, we
create a corresponding clause-checking gadget. Each variable gadget can be filled with gourds
in two ways (corresponding to true/false assignments). There are no “physical” connections
between the gadgets. Instead, the gourds that are left over from tiling the variable gadgets
“communicate” the truth assignments to the clause gadgets.

The variable gadget for x; consists of a cycle on the board, with cells that alternate
in colors z;, x;, V,V,x;,x;, V.V, ..., of length 12. The cycle surrounds four cells of color F.
There are two possible ways of tiling this gadget: either with six gourds colored (x;, V)
(which corresponds to assigning false to the variable) or with three gourds colored (V,V)
and three gourds colored (z;, ;) (which corresponds to assigning true to the variable). The
variable gadget is surrounded by filler cells. An example of the variable gadget, together with
its two possible coverings, is shown in Figure 5. Note that we do not need to consider cycles
of different lengths, since in the problem we are reducing from, the number of occurrences
per variable is fixed.

In the following we will write “(a, b)-gourd” for a gourd whose two colors are a and b.

33:5

ISAAC 2020

33:6

Gourds: A Sliding-Block Puzzle with Turning

Figure 5 The variable gadget, shown with its two possible coverings. The covering shown on the
left corresponds to a false assignment, the one on the right to a true assignment.

Note that if we assign false to variable xz;, we will have three (z;,z;)-gourds and three
(V,V)-gourds left over. On the other hand, if we assign true to variable z;, we will have six
(2, V)-gourds left over.

Suppose we have a clause (X VY V Z). We will show how to construct a clause gadget
that can be covered in three ways using three different sets of gourds:

1. Two (X, V)-gourds, five (V,V)-gourds and one gourd each of: (YY), (Z,72), (X,Y),

(Y, Z), (X, Z) (corresponding to X = true, Y = Z = false).

2. Two (Y, V)-gourds, five (V,V)-gourds and one gourd each of: (X, X), (Z,2), (X,Y),

(Y,Z), (X, Z) (corresponding to Y = true, X = Z = false).

3. Two (Z,V)-gourds, five (V,V)-gourds and one gourd each of: (X, X), (YY), (X,Y),

(Y, 2), (X, Z) (corresponding to Z = true, X =Y = false).

The clause gadget consists of two triangles, a smaller one on the left and a larger one on
the right, separated by filler parts (see Figure 6). The drawing shows a possible covering
corresponding to option (1). It is easy to see the other coverings can be realized as well. Note
that covering the gadget always consumes exactly one each of (X,Y), (X, Z) and (Y, Z); one
copy of each is provided in the input.

As an example consider X = true, Y = Z = false. In this case, the gadget consumes
two (X, V)-gourds (of which six are left over from the variable gadget) and one (YY) and
one (Z,Z)-gourd (for each of which three are left over from the variable gadget). Since each
variable appears in exactly three clauses, this consumes all the left over pieces exactly. This
shows that if we cover the variable gadgets in a way corresponding to a satisfying assignment,
it is possible to find a covering for the clause gadgets using the remaining gourds (assuming
we also have sufficient (V,V')-gourds).

The total number of gourds provided to cover the board is as follows:

For every variable x;: three (z;,x;)-gourds, three (V,V)-gourds, six (z;, V)-gourds and

ten (F, F)-gourds.

For every clause (z; V x; V xy): one (z;, z;)-gourd, one (z;, zx)-gourd, one (x;,xy)-gourd

and twelve (F, F')-gourds.

Additionally, 5m — 2n (V, V)-gourds.

The other direction can be seen as follows:

Consider the smaller left triangle. It contains a single hexagon of color V; the only way
this hexagon can be covered is by using either a (X, V)-, (Y,V)- or (Z,V)-gourd. This
tells us that at least one of the variables X, Y, Z must be true, since otherwise we do not
have any suitable gourds left over from covering the variable gadgets.

Suppose (for contradiction) that more than one of XY, Z is true. Without loss of
generality, assume both XY are true. Then we have left over from covering the variable
gadgets six (X, V)-gourds and six (Y, V)-gourds. Note that in the clause gadget under

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

Figure 6 The three ways the clause gadget can be covered. From top to bottom: X = true,
Y =7 = false and Y = true, X = Z = false and Z = true, X =Y = false.

consideration, we can fit at most one (X, V)-gourd and one (Y, V)-gourd in the right
triangle, and at most one (X, V)-gourd OR one (Y, V)-gourd in the left triangle. Since
each variable appears in exactly three clauses, there are two other clause gadgets, each
of which can fit at most two (X, V')-gourds and two other clause gadgets, each of which
can fit at most two (Y, V)-gourds. Thus, in total, we can fit at most eleven (X, V')- and
(Y,V)-gourds. However, we have in total twelve such gourds left over from tiling the
variable gadgets, indicating that the rest of the construction cannot be covered with the
remaining gourds (since the total area of the gourds equals the total area of the board,
all gourds must be used).

We finalize the construction as follows: note that the gadgets are designed such that they
can be connected from left-to-right, with the left edge of each gadget fitting the right edge of
each other gadget, forming a board with a height of four hexagons. We can place the gadgets
in arbitrary order. Finally, we add one hexagon with color F' at the bottom right of the
board to serve as potential spot for the empty hexagon to make an instance of Gourds. <«

Note that the construction uses a non-constant number of colors. A natural question is
whether a reduction exists with only a constant number of colors.

» Theorem 2. For any fized k, COLORED GOURD PLACEMENT with at most k distinct
colors can be solved in randomized polynomial time.

33:7

ISAAC 2020

33:8

Gourds: A Sliding-Block Puzzle with Turning

Proof. The problem of COLORED GOURD PLACEMENT can be formulated as a colored
matching problem on a board graph. The problem is “colored” in the following way: every
edge has a color (corresponding to the two colors of the gourd that must be placed on the
two hexagons connected by it) and for every color, we have a budget of how many edges of
that color may be included in the matching.

The two-color case of this problem is known as red-blue matching, which is known to be
solvable in randomized polynomial time [10]. This algorithm, by itself, is not sufficient to
solve colored gourd placement: even if the gourds can have only two colors, we will need
to solve a trichromatic matching problem (corresponding to whether an edge will use a
bichromatic or one of two monochromatic gourds).

However, as observed by Stamoulis [16], the algorithm for red-blue matching of Nomikos
et al. [10] can easily be extended to handle an arbitrary (but constant) number of colors in
randomized polynomial time. |

Thus, it is unlikely that the problem is NP-complete for a constant number of colors.

In the NP-completeness reduction in Theorem 1, we can enlarge the board size polynomi-
ally, and the problem remains NP-complete, but the number of colors reduces to a fractional
power of the board size. It is interesting to know if the number of colors required can be
reduced to O(logn), for example, or if this case too admits a (randomized) polynomial-time
algorithm.

4 Numbered or Colored Gourd Reconfiguration: Tractability

Now for a proper board B, we denote its board graph by Gp. Recall that Gp is always
Hamiltonian for a proper board B. A Hamiltonian cycle H in G defines a polygonal region,
and we denote its triangulation by equilateral triangles by Ty . Furthermore, we denote the
dual graph of Ty by Gr, (see Figure 7). Then we have the following basic observations:

» Observation 2. The edges of H and of Gr,, do not intersect.

» Observation 3. If B has 2n + 1 cells, then G has 2n + 1 vertices, H has length 2n + 1,
Ty has 2n — 1 triangles, and G, has 2n — 1 nodes.

» Lemma 3. Gr, is a tree of maximum degree 3.

Proof. We examine B, H, and Ty to obtain properties for Gr,,. Since Ty is a subtriangula-
tion of the equilateral triangular grid and H is a simple cycle on this grid, for any triangle t of
Ty, zero, one, or two of its sides coincide with edges of H. These counts correspond directly
to the degree of the node corresponding to ¢, which will be three, two, or one, respectively.
Hence, G, has maximum degree three. Since H is a simple cycle on a triangular grid, the
interior of H is simply-connected and hence Gr,, is connected. Since B is hole-free, G,
cannot have a cycle. Hence, G, is a tree. |

In the following two subsections, we show that for any proper board of size 2n+1 (n > 1),
any two configurations of n numbered or colored gourds can be reconfigured into each other
by a sequence of moves of the three types. We first present an O(n?)-moves algorithm to
show how a sequence of moves is constructed; then we improve it to quadratic, which is
optimal, by utilizing several properties of the dual graph Gr,,.

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

B and Gp H and Ty Gry

AV

N R

Figure 7 A board B with its board graph Gp (left), a Hamiltonian cycle H in Gp and the
equilateral triangulation Ty interior to H (middle), and the dual graph Gr,, of Tx (right).

4.1 An O(n®)-move algorithm

The algorithm works in three phases. In phase 1, we make the gourds of a given configuration
aligned with a Hamiltonian cycle H by a sequence S7 of moves. In phase 2, we rearrange (sort)
the gourds along this cycle to another order and with some gourds in opposite orientation
by a sequence Ss of moves. In phase 3, we un-align the gourds from H into the target
configuration by a sequence S of moves. The final sequence is (S7, Sa, S3). Sequence S is
found similar to S, but then as a reversed sequence by aligning the gourds of the target
configuration with H. Given the Hamiltonian cycle after S7 and the one before S5 starts, we
know how to reconfigure H to compute Ss.

The following lemma shows how to handle phase 1 (and phase 3 reversed) of the algorithm.

» Lemma 4. Let B be a proper board of size 2n + 1 and let H be any Hamiltonian cycle
of Gg. Then any configuration of n gourds on B can be reconfigured using O(n?) moves so
that all gourds align with edges of H.

Proof. Let any configuration of gourds on B be given. One cell of B is the empty cell E,
corresponding to a vertex € in Gg. The vertex v counterclockwise from ¢ on H contains one
half of a gourd. Now, (i) if that gourd is not aligned with H, then we move it to make it
aligned: the gourd half on v moves to € and the other half moves to v by one slide move, one
turn move, or two pivot moves; (ii) if the gourd is aligned with H already, we move it along
H, keeping it aligned, and placing the empty cell two positions counterclockwise along H.

We repeat until all gourds are aligned. Suppose we are in case (ii) n times in sequence.

then all gourds are aligned with H. If not all gourds are aligned, we will be in case (i) after
less than n moves of case (ii), and we will align one more gourds with H. This implies that
we can align one gourd in O(n) moves, which takes O(n?) moves in total for n gourds. <

In our reconfiguration algorithms, the following observation is easy but essential.

» Observation 4. Suppose that all gourds are aligned with edges of any Hamiltonian cycle H
of Gg. Then we can move one of the two gourds adjacent (in H) to the empty cell to cover
the empty cell, and still be on an edge of H, by a single slide or turn move, or two consecutive
pivot moves (to make a sharp turn). By moving every gourd once in (counter)clockwise
direction, we move the empty cell one space (counter)clockwise.

We proceed with phase 2, assuming that all gourds are aligned with H. We examine H to
find a good place to make reconfigurations. Since G'r,, is a tree, it has a leaf and its dual is

a triangle in Ty that has two sides on H (see Figure 8). Then we have the following lemma.

» Lemma 5. Gr,, has at least one of the following two substructures: (i) a leaf adjacent to
a degree-2 node, or (ii) a degree-3 node adjacent to two leaves.

33:9

ISAAC 2020

33:10

Gourds: A Sliding-Block Puzzle with Turning

Figure 8 Substructures in the tree G, (in red), the corresponding shapes of H (in bold black),
and the hexagons (in grey) containing gourd parts.

Proof. Assume for a contradiction that every leaf is adjacent to a degree-3 node, and no
two leaves are adjacent to the same degree-3 node. Then the tree G, has as least as many
degree-3 nodes as leaves, which is not possible by an easy counting argument: Gr,, always
has exactly two more leaves than degree-3 nodes. Hence the opposite of our assumption is
true, which is that G, has a substructure of type (i) or of type (ii). <

Now we look at the implication of Lemma 5 for H. For Hamiltonian cycles H that contain
a substructure of type (i) (Figure 8, left), we have four consecutive vertices of H denoted abed
such that a and d are also adjacent. Hence, removal of bc from H yields a new Hamiltonian
cycle H' that is two vertices shorter. By moving gourds along H, we can get any gourd to lie
on be. Then, by moving gourds along H', we can place any two gourds adjacent in H' such
that one covers a and the other covers d. Now we can move along H again, intentionally
inserting the gourd on bc anywhere in the cycle defined by H’. In particular, we can swap
two adjacent gourds in H and on abed using O(n) moves. Also, when the empty cell is the
hexagon of node a, we can reverse the gourd at bc to get a desired orientation.

The substructure of type (ii) (Figure 8, right) is even simpler. In this case, we have
five consecutive vertices abcde in H, which must lie as shown in the figure. We can move
gourds along H and get any two adjacent gourds, plus the empty cell, on abede. Using just
these five hexagons, the two gourds can be reversed, and swapped with each other, so that
they get a different order along H, in O(1) moves. Hence, the substructure allows us to
perform inversions of adjacent elements in a cyclic sequence, which is sufficient to get any
sorted order.

» Theorem 6. Let B be a proper board of size 2n + 1. Then any two configurations of the
same set of n numbered/colored gourds on B can be reconfigured into each other in O(n?)
moves.

Proof. Let C; and C3 be the two configurations of the same n numbered gourds in B.
Choose a Hamiltonian cycle H in Gg. To convert C into Cs, we use three phases: align the
gourds of C with H, then reconfigure H, and then use the reversed sequence of moves of
aligning the gourds of Cy with H to get Cs.

Phases 1 and 3 are discussed in Lemma 4, so we concentrate on phase 2. We know
the gourd order and orientation after converting C into H, and we know the gourd order
and orientation before converting H into C3. So we must reconfigure these two orders and
orientations of n gourds into each other, and the discussion above showed how to do this.

If a substructure of type (i) exists, we can get any gourd at be in O(n?) moves using H,
and in another O(n?) moves we can insert it anywhere in the cyclic sequence using H'. We
need to do this at most 2n times (compare to Insertion Sort). If a substructure of type (ii)
exists, we can rearrange two gourds adjacent in H and at abede with the empty cell in O(1)
time. Bringing one gourd out of abede and an adjacent one into abede takes O(n) moves. We
need to do O(n?) inversions of adjacent gourds to get to a desired order (compare to Bubble
Sort). It is easy to see that O(n3) moves are sufficient in total. <

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

4.2 A worst-case optimal O(n?)-move algorithm

We show that any two configurations of a set of n gourds on a proper board can be transformed
into each other using only quadratically many moves by developing the framework of the
previous O(n?®)-move algorithm. Phase 1 is the same, but phase 2 is implemented more
efficiently. To this end, we break the Hamiltonian cycle into two (sub)cycles, such that both
have size a constant fraction of the original cycle: a balanced split. Then with divide-and-
conquer, the result follows.

We use several nice properties of G, to show that such a balanced split exists. These
properties are derived from the underlying hexagonal grid board, and hence it is useful to
have the reasoning from G, back to B explicit:

» Observation 5. The existence of a node s in Gr,, means that the surrounding triangle in
Ty exists and its three corners are visited by H. These corners correspond to hexagons on B
that meet in a common point of the hexagonal board, which is node s.

When H visits a vertex v of G g, it must enter and leave the hexagonal cell whose center
is v. Hence, by Observation 2 we have:

» Observation 6. For any hexagonal cell in a board B, the edges of G, overlap with at
most four of its sides.

Now we show two key lemmas (Lemmas 7 and 8) before proving our main theorem.
Figure 9 shows the idea of Lemma 7.

» Lemma 7. There exists a Hamiltonian cycle H in Gp for which G, has no (consecutive)
sequence of seven or more degree-3 nodes.

Proof. Consider a Hamiltonian cycle H' in G . Regarding that the embedding of Gr,,, lies
on the hexagon sides (see Figure 7), we call a sequence (path) of nodes in Gr,, zig-zag if
its inner nodes alternately make a left and a right turn (Figure 9, left). We first claim that
for any H', any sequence of four or more degree-3 nodes in Gy, is always zig-zag. Assume
the contrary, then there are two adjacent inner nodes that both make a left turn or both
make a right turn. Since the first and last nodes in the sequence also have degree-3, some
hexagonal cell of B has five of its sides overlapped by edges of Gr,,,, a contradiction with
Observation 6.

Let S be the longest zig-zag sequence of degree-3 nodes in Gr,,,. If its length is less than
seven, we are done. Otherwise, let S’ be a subsequence of S of length seven. The middle
five nodes of S’ are incident to a leaf, otherwise we violate Observation 6. Figure 9 shows
the only possible configuration on the left, including the edges necessarily in H'. By locally
changing H' as shown to the right, we reduce the number of degree-3 nodes and leaves by
one each, and increase the number of degree-2 nodes by two. We repeat this process as long
as there are sequences of seven degree-3 nodes, proving the existence of H. |

» Lemma 8. Let G, have m nodes. If there is no sequence of seven or more degree-3 nodes
in G, , then there exists a split of Gr,, at a degree-2 node where both parts have size at least
m/96 — 7.

Proof. Let G, have m nodes (and recall that m = 2n — 1 for a board of size 2n 4+ 1). Any
tree contains a node u whose removal disconnects the tree into subtrees of size at most half of
the size of the original tree. If u has degree two, we are done. So assume u has degree three.
From u we follow a simple path in Gr,, always entering the largest subtree (but without

33:11

ISAAC 2020

33:12

Gourds: A Sliding-Block Puzzle with Turning

Figure 9 The seven degree-3 nodes in Gr,,, (in red) and all edges necessarily in H' (in black),
given Gr,,, (left). We can always change H "locally to break this situation. The adapted Hamiltonian
cycle H and resulting tree Gr,, (right).

going back since the path must be simple). We stop as soon as we encounter a vertex of
degree two. This happens at the latest at the seventh node, since by assumption, Gr,, does
not have a sequence of seven degree-3 nodes. Let w be the degree-2 node we find. Notice
that with the first step from u we have three choices to choose a subtree; after that we have
two choices at the next up to five degree-3 nodes.

We analyze the minimum size of the subtree that remains, when w is removed. We start
the analysis at u and work our way towards w. The two smaller subtrees neighboring v have
sizes at most |m/3] each, and the third subtree, which we enter on our path, has size at
least m — 1 — 2|m/3] (the —1 is for w itself). The next smaller subtree that we do not enter
has size at most |m/6] (see Figure 10). At the seventh node, the smallest subtree has size at
least m — 7 —2|m/3] — |[m/6] — |m/12| — |[m/24] — |m/48] — [m/96] > m/96 — 7. <«

< |m/3] < |m/12] < |m/48]

>m—T7—-2m/3] — |m/6]
—|m/12] — [m/24]
—|m/48] — [m/96]

< [m/3]

< |m/6] < |m/24] < |m/96]

Figure 10 The size of the smaller subtree at a balanced split at a degree-2 node.

A degree-2 node in G, is dual to a triangle ¢ in T that has one edge in common with
H. Using t, we can split H into two cycles in two different ways (see Figure 11). Let e; be
the edge of ¢t that it shares with H, and let es and e3 be the other two edges. Then the
removal of e; from H and the insertion of es and e3 gives two cycles that have exactly one
vertex in common: the vertex vy of ¢t opposite to ey (see Figure 11, left).

Both cycles have odd length or both cycles have even length. If both have even length,
we use a different set of two odd-length cycles, where the three vertices of ¢ occur in both
cycles. The edge e; is now in both cycles (see Figure 11, right). If H has m vertices, then the
resulting cycles have at most m+3 vertices together and the smaller one has size at least m/96.
We next show that both ways of splitting can be used in a divide-and-conquer algorithm. We
denote the two cycles Hy and Hs, denote their lengths m and ma, respectively, and recall
that the empty cell is called E.

The case with three shared vertices is easier. Assume that F is in H;. We can move any
gourd in H; a bit closer to position e; in O(m4) moves, by moving the gourds along Hy. If
we wish to move a gourd over a distance k to be in position ey, this is possible in O(kmy)

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden

€2 V1 €3
§é§§§§61 %%ii

€2 (%1 €3
Zéigggel %%i;f

Figure 11 Splitting H at a degree-2 node of G, into two Hamiltonian cycles of odd length, in
one of two ways.

Figure 12 Two odd-length cycles with one vertex in common. The vertex w dual to triangle ¢ is
shown by a red dot, and in the top row, edge e; of ¢t is shown dashed. The top right case cannot
occur from the split. Cycle H; is green; cycle Hs is blue; cycle H; is the dotted extension of the
green cycle shown in the bottom row. A gourd placement from H» to be included in H; is shown by
an extra blue line along an edge of H2. The location of the empty cell F is also shown.

moves. Assume a subset of j gourds g7,. .. ,gjl- should go from H; to Hs, and an equal-size
subset of gourds g7, ..., g7 should go from Hy to H). Assume both are numbered clockwise
around their cycle, starting at e;. By moving the gourds in H; clockwise until g{ is at e,
then moving the gourds in Hs (including g1) clockwise until g7 is at e;, then switching to H;
again, integrating g7 into Hy, to get g3 at ey, and so on, we need O(m?) moves to exchange
any number of gourds between H; and Ho. With another O(m?) moves, we can get a gourd
of our choice at e; and get £ anywhere. This is sufficient to set up divide-and-conquer.
Now consider the case where H is split into two cycles H; and Hy that have only v; in
common. We distinguish possible patterns how the two split cycles touch, and in all cases
we show that we can include one gourd from the one cycle as an extra gourd into the other
cycle by extending one of the two cycles (see Figure 12). Assume without loss of generality
that H; can be extended. We rotate gourds through Hs until a gourd that should be in H;
is in a suitable position, and also the empty cell is suitably placed. Now we use the extended
cycle H;" of H; and move gourds through it until some gourd from H; (and H;") is in that
same suitable position, and also the empty cell. Then we use cycle Hs again to transfer

33:13

ISAAC 2020

33:14

Gourds: A Sliding-Block Puzzle with Turning

the next gourd to Hf and then H;. Note that in Figure 12, the cycle that is not extended,
always has an edge aligned (coinciding) with the extension of the other cycle. This shared
edge is the “suitable position”. The other new cell in the extended cycle is the place where
the empty cell should be. Since we can include any gourd of the one cycle into the other
cycle and vice versa, we have completed the merge step of the divide-and-conquer. We swap
gourds just like in the first splitting case, in the order in which they occur along the cycles
Hy and Hs. The same analysis shows that the conquer is done in O(m?) moves.

The total number of moves needed to reconfigure the gourds along a cycle of length m
now follows a standard divide-and-conquer recurrence: T'(m) < T(my) + T(mz) + O(m?),
T(0(1)) = O(1), where mq +me = m + 3, and both m; > m/96 — 7 and mg > m/96 — 7
hold. This recurrence solves to O(m?), which is O(n?) since m = 2n — 1 for a board of size
2n + 1.

For completeness we illustrate in Figure 13 that this is the best possible.

Figure 13 Exchanging the n/2 red gourds with the n/2 blue gourds takes Q(n?) moves.

» Theorem 9. Let B be a proper board of size 2n + 1 with n gourds. Then NUMBERED/-
COLORED GOURD RECONFIGURATION problems can be solved in O(n?) moves. This is
worst-case optimal.

» Remark 10. Instead of splitting H at a degree-2 node of G, , we could implement a split
of H at a degree-3 node as well. In this case we also need the split at a degree-2 node,
because it may be that all balanced splits are at degree-2 nodes. A split at a degree-3 node
has various cases to consider; the technicalities of the proof shift from finding a balanced
split at a degree-3 node to swapping gourds among three (sub)cycles.

5 Conclusion

We proposed a new sliding-block puzzle, Gourds, with the novel feature that pieces can make
turns. It consists of a board, a subset of the hexagonal grid, and gourd-shaped pieces that
cover exactly two adjacent hexagons of the board. There is just one empty hexagon on the
board, to allow limited movement at any time.

We introduced a numbered and a colored type of this puzzle, where the hexagons of
the board show a number or a color. A matching gourd end should cover each hexagon in
the solution. The authors have a physical implementation of the colored version, shown
in Figure 14. For the reconfiguration problems of both colored and numbered types, we
showed that they are always solvable in a quadratic number of moves if the board is “proper”.
However, deciding where each gourd should be for a solution according to the board coloring
is NP-complete if there are many colors. We believe that the puzzle is an entertaining puzzle
game in reality, using various board shapes and target colorings.

The main open problem is the characterization of boards with holes that allow any
reconfiguration. In this case, boards with Hamiltonian cycles do not always admit any
reconfiguration, and some boards without Hamiltonian cycles are always reconfigurable.

J. Hamersma, M. van Kreveld, Y. Uno, and T.C. van der Zanden 33:15

Figure 14 Photo of a Gourds puzzle with nine gourds on a hexagonal board. The objective is to
bring the green, red, and blue gourd ends together as shown. This paper shows that this can be
done from any starting position of the gourds.

Another interesting extension is allowing pieces that cover three hexagons, for example in
a triangular form. These pieces can be pivoted only, assuming there is still just one free cell.
An elongated gourd, covering three hexagons, cannot be rotated so it cannot leave its row.

—— References

1 Josh Brunner, Lily Chung, Erik D. Demaine, Dylan Hendrickson, Adam Hesterberg, Adam
Suhl, and Avi Zeff. 1 x 1 Rush Hour with fixed blocks is PSPACE-complete. arXiv preprint,
2020. arXiv:2003.09914.

2 Kevin Buchin and Maike Buchin. Rolling block mazes are PSPACE-complete. Information
and Media Technologies, 7(3):1025-1028, 2012.

3 Kevin Buchin, Maike Buchin, Erik D. Demaine, Martin L. Demaine, Dania El-Khechen,
Sandor P. Fekete, Christian Knauer, André Schulz, and Perouz Taslakian. On rolling cube
puzzles. In CCCG, pages 141-144, 2007.

4 Erik D. Demaine and Mikhail Rudoy. A simple proof that the (n® — 1)-puzzle is hard. Theor.
Comput. Sci., 732:80-84, 2018. doi:10.1016/j.tcs.2018.04.031.

5 Gary William Flake and Eric B. Baum. Rush Hour is PSPACE-complete, or “why you
should generously tip parking lot attendants”. Theor. Comput. Sci., 270(1-2):895-911, 2002.
do0i:10.1016/S0304-3975(01)00173-6.

6 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72-96, 2005.

7 Robert A. Hearn and Erik D. Demaine. Games, Puzzles and Computation. A K Peters, 2009.

8 Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American Journal of
Mathematics, 2(4):397-404, 1879. URL: http://www. jstor.org/stable/2369492.

9 Graham Kendall, Andrew Parkes, and Kristian Spoerer. A survey of NP-complete puzzles.
ICGA Journal, 31(1):13-34, 2008.

10 Christos Nomikos, Aris Pagourtzis, and Stathis Zachos. Randomized and approximation
algorithms for blue-red matching. In International Symposium on Mathematical Foundations
of Computer Science, pages 715-725. Springer, 2007.

11 Valentin Polishchuk, Esther M. Arkin, and Joseph S. B. Mitchell. Hamiltonian cycles in
triangular grids. In Proceedings of the 18th Annual Canadian Conference on Computational
Geometry, CCCG 2006, 2006. URL: http://www.cs.queensu.ca/cccg/papers/cccgl?.pdf.

ISAAC 2020

http://arxiv.org/abs/2003.09914
https://doi.org/10.1016/j.tcs.2018.04.031
https://doi.org/10.1016/S0304-3975(01)00173-6
http://www.jstor.org/stable/2369492
http://www.cs.queensu.ca/cccg/papers/cccg17.pdf

33:16

Gourds: A Sliding-Block Puzzle with Turning

12

13

14

15

16

17

Stefan Porschen, Tatjana Schmidt, Ewald Speckenmeyer, and Andreas Wotzlaw. XSAT
and NAE-SAT of linear CNF classes. Discrete Applied Mathematics, 167:1-14, 2014. doi:
10.1016/j.dam.2013.10.030.

Daniel Ratner and Manfred K. Warmuth. Finding a shortest solution for the N x N extension
of the 15-puzzle is intractable. In AAAI pages 168-172. Morgan Kaufmann, 1986.

Jerry Slocum and Dic Sonneveld. The 15 Puzzle. Slocum Puzzle Foundation, 2nd edition,
2005.

Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.
The International Journal of Robotics Research, 35(14):1750-1759, 2016.

Georgios Stamoulis. Approximation algorithms for bounded color matchings via convex
decompositions. In International Symposium on Mathematical Foundations of Computer
Science, pages 625—636. Springer, 2014.

John Tromp and Rudi Cilibrasi. Limits of Rush Hour logic complexity. CoRR, abs/cs/0502068,
2005. arXiv:cs/0502068.

https://doi.org/10.1016/j.dam.2013.10.030
https://doi.org/10.1016/j.dam.2013.10.030
http://arxiv.org/abs/cs/0502068

	Introduction
	Preliminaries
	Colored Gourd Placement: Intractability
	Numbered or Colored Gourd Reconfiguration: Tractability
	An O(n^3)-move algorithm
	A worst-case optimal O(n^2)-move algorithm

	Conclusion

