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Abstract
Given a sequence of elements, we consider the problem of indexing the sequence to support range
mode queries – given a query range, find the element with maximum frequency in the range. We give
indexing data structures for this problem; given a sequence, we construct a data structure that can
be used later to process arbitrary queries. Our algorithms are efficient for small maximum frequency
cases. We also consider a natural generalization of the problem: the range mode enumeration
problem, for which there has been no known efficient algorithms. Our algorithms have query time
complexities which are linear in the output size plus small terms.
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1 Introduction

We consider the range mode problem, defined as follows.

I Definition 1.1 (Mode). Given a non-empty multiset S, x ∈ S is said to be a mode of S if
its frequency (multiplicity) is no smaller than those of any other elements.

I Definition 1.2 (Range mode problem). For a sequence A[0...n− 1] and a range [l, r] of A
(0 ≤ l ≤ r < n), output any one of the modes of the multiset {A[l], A[l+1], . . . , A[r−1], A[r]}.

The problem has many applications in data mining and data analysis [2, 4, 15]. Moreover,
this problem is of interest to the theory community in general as it is related to the famous
Boolean matrix multiplication and set intersection problem [1, 15].
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Table 1 Complexities of data structures for the range mode problem where n is the number
of terms of a string and m is the maximum frequency of an item. The space complexities do not
include one for the input string and are measured in bits. The space complexities in the references
are measured in words, and therefore these are multiplied by logn in this table.

Data structure Space complexity (bits) Query time complexity conditions
[9, 3] O

(
n2−2ε logn

)
O(nε) 0 ≤ ε ≤ 1/2

[1] O
(
n2−2ε) O(nε) 0 ≤ ε ≤ 1/2

[10] O
(
n2 log logn

logn

)
O(1)

[6] O(nm logn) O(logm)
[3] O((n1−εm+ n) logn) O(nε + log logn) 0 ≤ ε ≤ 1/2

Theorem 3.15 O
(

4knm
(
n
m

) 1
22k

)
O(2k) k is any positive integer

Corollary 3.16 O
(
nm
(
log log n

m

)2
)

O
(
log log n

m

)
Theorem 3.19 O(nm) O(min{logm, log logn})

In this paper, we consider the indexing version of the range mode problem. That is, given
a sequence of length n, we first construct a data structure, called an index. Then given a
query range [l, r], we solve the query using the index as well as the input. The algorithm is
measured by the index size (in bits) and query time complexity. There are many existing
work [9, 1, 10, 6, 3]1 and some of them are summarized in Table 1.

Our first contribution is space-efficient indexes for the range mode problem, for the case
in which the maximum frequency m of an item in the set is small. Table 1 summarizes our
results. The data structure in Corollary 3.16 has better time and space complexities than that
of [6] and that of [3] with ε = 0, which are also specialized for small m. Also, for k = O(1), the
space complexity of Theorem 3.15 is better than that of [10] for all m ≤ n/ log2 n (while the
query time is O(1) for both). All the data structures can be constructed in time proportional
to the size.

Our second contribution is an efficient index for the range mode enumeration problem,
defined as follows.

I Definition 1.3 (Range Mode Enumeration Problem). Given a sequence A[0...n− 1] and a
query range [l, r] (0 ≤ l ≤ r < n), output all modes of the multiset {A[l], A[l + 1], . . . , A[r −
1], A[r]}.

Though the problem seems to be a natural generalization of the range mode problem,
there has been no existing work. A simple modification of an existing algorithm [3] works,
but it takes O(nε) time to output each element of the result (see Theorem 4.4). A related
and important problem, the set intersection problem [1], has been considered. However, the
set intersection problem can be reduced to the range mode enumeration problem, whereas
the converse is not true. We cannot use existing algorithms for the set intersection problem
to solve the range mode enumeration problem.

We give faster solutions whose query time complexity is linear in the output size plus
some small additive terms. Table 2 summarizes the results. The data structures can be also
constructed in time proportional to the size.

1 The papers [1] and [3] have the same title, but some of the results in [3] do not appear in [1].
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Table 2 Complexities of data structures for the range mode enumeration problem where t denotes
the number of solutions, n the length of the input sequence, m the maximum frequency of symbols,
and ε is a parameter between 0 and 1/2 users can choose. Note that the space complexities do not
include the space needed to store the input sequence S.

Data structure Space (bits) Query time
Theorem 4.4 O(n2−2ε logn) O(nεt)
Theorem 4.14 O

(
nm
(
log log n

m

)2 + n logn
)

O
(
log log n

m
+ t
)

Theorem 4.15 O(nm+ n logn) O(logm+ t)
Theorem 4.16 O(n1+ε logn+ n2−ε) O(n1−ε + t)

The paper is organized as follows. In Section 2, we review basic properties of the
range mode problem and existing algorithms for the range mode problem. We also explain
fundamental data structures for storing integer sequences. In Section 3, we give our improved
algorithms for the range mode problem. In Section 4, we give algorithms for the range mode
enumeration problem. Section 5 summarizes the paper.

2 Preliminaries

2.1 Basic properties

We define the following.
S: input string
n: the length of string S
Σ: the set of characters (alphabet) of S
f(l, r): the frequency of the modes of the substring S[l, r]
m: the frequency of a character with maximum frequency in S, that is, m = f(0, n− 1)

We assume that Σ is the set of all characters in S. Without loss of generality, we assume
that Σ = {0, 1, . . . , |Σ| − 1} and |Σ| ≤ n.

I Lemma 2.1 ([7]). If non-empty multisets M,M1 and a multiset M2 satisfies M = M1∪M2
and if x is a mode of M , at least one of the following holds.

x is a mode of M1.
x belongs to M2.

Proof. We prove by contradiction. Let x be a mode of M , and assume x is not a mode of
M1 and x /∈M2. Let y ∈M1 be a mode of M1. From the definition the frequency of y in M1
is strictly larger than that of x in M1. Because x /∈M2, the frequency of x in M is equal to
that of x in M1, and it is smaller than that of y in M . This contradicts the assumption that
x is a mode of M . J

I Lemma 2.2 ([7]). For indices l2 < l1 ≤ r1 < r2 of a string S, if f(l1, r1) = f(l2, r2),
modes of range [l1, r1] are also modes of range [l2, r2].

Proof. Let c be any mode in range [l1, r1] and m be its frequency. Because range [l2, r2]
contains range [l1, r1], the frequency of c in range [l2, r2] is at least m. On the other hand,
because f(l1, r1) = f(l2, r2) = m, the frequency of c in range [l2, r2] is at most m. Therefore
the frequency of c in range [l2, r2] becomes m and c is also a mode in range [l2, r2]. J

ISAAC 2020
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2.2 Algorithms for the range mode problem

We review the data structure with O(n2−2ε)-word space and O(nε) query time [3]. The input
string S of length n is partitioned into n/s = n1−ε blocks of length s = nε each. In addition
to S, the data structure has the following four components.
Two-dimensional array A : For each character in the alphabet, an array for storing positions

of its occurrences.
Array B : For each position i of S, B[i] stores the number of times that the character S[i]

occurs in the substring S[0, . . . , i− 1].
Two-dimensional array C : The (i, j)-th entry of C stores the frequency of modes of the

substring from the i-th block to the j-th block. That is, C[i][j] = f(i · s, (j + 1) · s− 1).
Two-dimensional array D : The (i, j)-th entry of D stores one of the modes of the substring

from the i-th block to the j-th block.
The space complexity is O(n2−2ε) words, for any fixed 0 ≤ ε ≤ 1/2. Using these arrays, any
query [l, r] is solved in O(nε) time as follows. If a query is contained inside a block, we scan
the range [l, r] and for each character in the alphabet, we count its number of occurrences.
This takes O(s) = O(nε) time. If a query range [l, r] lies on more than one block, we partition
the query range into prefix [l, (bl + 1)s− 1], span [(bl + 1)s, brs− 1], and suffix [brs, r] where
bl = bl/sc, br = br/sc. Note that the span may be empty.

From Lemma 2.1, modes of range [l, r] are either (a) modes of the span, (b) a character
in the prefix, or (c) a character in the suffix. For (b) and (c), we scan the prefix and the
suffix, and for each character in them, we compute its frequency using the arrays A and B
(for details refer to [3]). For (a), one of the modes of the span and its frequency is obtained
from D[bl][br] and C[bl][br], respectively. This also takes O(s) = O(nε) time.

There exist improved data structures which are summarized in Table 1.

2.3 Representations of integer sequences

We define IMS(n, u) (increasing monotone sequences) and DMS(n, u) (decreasing monotone
sequences) as follows.

I Definition 2.3. We define IMS(n, u) as the set of all integer sequences A of length n such
that 0 ≤ A[0] ≤ A[1] ≤ · · · ≤ A[n− 1] < u. We also define DMS(n, u) as the set of all integer
sequences A of length n such that u > A[0] ≥ A[1] ≥ · · · ≥ A[n− 1] ≥ 0.

I Theorem 2.4 ([13]). Given a sequence A ∈ IMS(n, u) (n > u) and an integer k ≥ 0, there
exists data structure Z(n, u) using O(2kn1/2k

u1−1/2k ) bits which can answer the queries
access(i, A): return A[i], and
bound(i, A): return |{j | A[j] > i}|

in O(2k) time.

I Theorem 2.5 (FID [11]). For a bit-vector B of length n which contains u ones, consider
the following operations.

access(i, B): return the i-th bit of B.
rankc(i, B): return |{j | j ≤ i, B[j] = c}|.
selectc(i, B): return min{j | rankc(j, B) = i}.

Here c ∈ {0, 1}. There exists a data structure which performs the operations in constant time
using log

(
n
u

)
+ Θ

(
n log logn

logn

)
bits of space.
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3 Improved Data Structures for the Range Mode Problem

We propose efficient data structures for the range mode problem usingm, the largest frequency
of characters, as a parameter.

Consider the data structure of Section 2.2 with ε = 0. For simplicity we define C[i][j] = 1
for any i, j with i > j. Then the n× n array C satisfies the following property.

I Property 1. For any two adjacent entries in the two-dimensional array C, it holds

C[i][j] ≤ C[i][j + 1] ≤ C[i][j] + 1 (0 ≤ i < n, 0 ≤ j < n− 1),
C[i][j] ≤ C[i− 1][j] ≤ C[i][j] + 1 (1 ≤ i < n, 0 ≤ j < n).

From the definition, C also satisfies:

I Property 2. Any entry of C is an integer between 1 and m.

We propose a data structure to store C in compressed form and support constant time access.

3.1 An efficient representation of doubly monotonic arrays
We define the set of two-dimensional arrays which have both column-wise and row-wise
monotonicity as follows.

I Definition 3.1. We define IMS2(n,m) to be the set of two-dimensional arrays A[0 . . . n−
1][0 . . . n− 1] which satisfy all the following inequalities.

A[i][j] ≤ A[i][j + 1] (0 ≤ i < n, 0 ≤ j < n− 1),
A[i][j] ≤ A[i+ 1][j] (1 ≤ i < n, 0 ≤ j < n),

0 ≤ A[i][j] < m (0 ≤ i < n, 0 ≤ j < n).

The main result of this subsection is the following.

I Lemma 3.2. Let A be a two-dimensional array in IMS2(n,m) (n ≥ m) and k be a non-
negative integer. There exists a data structure Sk(n,m) which can output an entry of A in
O
(
2k
)
time using O

(
4knm

(
n
m

) 1
22k

)
bits of space.

Its proof is given in Section 3.2.
The data structure is recursive. We partition the two-dimensional array A into u × u

blocks where u = n/t, each of which has t =
(
n
m

) 1
22k−1 columns and rows. The block

corresponding to A[it, . . . , (i+ 1)t− 1][jt, . . . , (j + 1)t− 1] is a t× t two-dimensional array
and denoted by Bi,j . We define flatness of a block as follows.

I Definition 3.3. A block is called flat if all the entries in the block are identical.

We also define the height of a block.

I Definition 3.4. The height of block Bi,j, denoted by di,j, is defined as

di,j = Bi,j [t− 1][t− 1]−Bi,j [0][0] + 1 (= A[(i+ 1)t− 1][(j + 1)t− 1]−A[it][jt] + 1).

That is, the height of a block is the difference between the maximum and the minimum values
in the block, plus one.

We prove the following:

ISAAC 2020
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0 0 0 1
1 1 1 2
1 2 2 3
2 2 3 3

(0,4)

(4,0)

Figure 1 An IMS2(4, 4) array. The second boundary of its grid graph is shown in a red bold line.
We can see that the boundary is a shortest path from vertex (0, 4) to vertex (4, 0) of the grid graph.

I Lemma 3.5. Suppose an n × n array A in IMS2(n,m) (n ≥ m) is partitioned into u2

blocks of dimension (n/u)× (n/u) each, for some parameter u < n. Then there are at most
2um non-flat blocks.

To prove it, we define the k-th boundary in a block for k = 0, 1, . . . ,m− 1 as follows.

I Definition 3.6. For a two-dimensional array A ∈ IMS2(n,m), consider the (n+1)×(n+1)
grid graph G. The k-th boundary of A is defined as the edge set of G satisfying:

{((i, j), (i+ 1, j))|A[i][j − 1] < k and A[i][j] ≥ k}
∪ {((i, j), (i, j + 1))|A[i− 1][j] < k and A[i][j] ≥ k},

where we assume A[−1][·] = A[·][−1] = −∞ and A[n][·] = A[·][n] =∞.

See Figure 1 for an example.
Then the following holds.

I Property 3. The k-th boundary is a shortest path from vertex (0, n) to vertex (n, 0) of the
grid graph G. That is, if we regard the path as a directed path from (0, n) to (n, 0), the edges
in the path are of the form of either (i, j)→ (i+ 1, j) or (i, j)→ (i, j − 1).

Proof of Lemma 3.5. A block is flat if and only if no boundary passes through the block.
For each of the m boundaries, the number of blocks through which the boundary passes is 2u.
Therefore the number of blocks containing at least one boundary in it is at most 2um. J

Based on Property 3, we use the following data structures for Sk(n,m).
E: to store IMS2(u, m)

We define E[i][j] = A[it][jt] (0 ≤ i < u, 0 ≤ j < u). It is clear that E ∈ IMS2(u,m).
Fi,j : to store differences inside block Bi,j

For non-flat block Bi,j , we define Fi,j [x][y] = Bi,j [x][y] − Bi,j [0][0]. Then it holds
Fi,j ∈ IMS2(t, di,j).

First we show how to compute an entry of A using the above data structures. For the
original array A, A[i][j] = E[i/t][j/t] + Fi/t,j/t[i%t][j%t], where / and % denotes integer
division and modulo respectively, and for flat block Bi,j , the two-dimensional array Fi,j
is the zero-value array. It is necessary to decide if a block is flat or not. Because a naive
data structure using a u× u Boolean array is space-consuming, we develop a space-efficient
solution. To do so, we define the following mapping.

I Definition 3.7 (Mapping to decide if a block is flat or not). We define a mapping from a
block number to a pair of integers Φ : {0, . . . , u− 1}2 → {0, . . . ,m− 1} × {0, . . . , 2u− 2} as

(i, j) 7→ (E[i][j], i− j + u− 1).



K. Sumigawa, S. Chakraborty, K. Sadakane, and S. R. Satti 29:7

We obtain the following.

I Lemma 3.8. Φ(i1, j1) 6= Φ(i2, j2) for any two distinct non-flat blocks Bi1,j1 and Bi2,j2 .

Proof. Let Bi1,j1 and Bi2,j2 be two distinct non-flat blocks. From the definition of Φ the
claim holds if E[i1][j1] 6= E[i2][j2]. If E[i1][j1] = E[i2][j2], the E[i2][j2]-th boundary must
pass both Bi1,j1 and Bi2,j2 . It is however not possible to pass both of them if i1− j1 = i2− j2
from Property 3. Thus it holds Φ(i1, j1) 6= Φ(i2, j2). J

We also define a mapping, which is something like an inverse of Φ.

I Definition 3.9. We define a mapping Ψ : {0, . . . ,m− 1} × {0, . . . , 2u− 2} → {0, . . . , u−
1}2 ∪ {⊥} as Ψ(x, y) = (i, j) if there exists a non-flat block Bi,j with Φ(i, j) = (x, y), and
Ψ(x, y) = ⊥ otherwise.

Then it is easy to see that block bi,j is non-flat if and only if Ψ(Φ(i, j)) = (i, j). To use this
fact, we have to compute both Ψ and Φ. We can compute Φ from Definition 3.7. To compute
Ψ, we use the following.

I Proposition 3.10. Assume that Ψ(x, y1) = (i1, j1) and Ψ(x, y2) = (i2, j2). Then y1 ≤ y2
implies i1 ≤ i2 and j1 ≥ j2.

Finally we obtain the following:

I Lemma 3.11. Ψ(x, y) is computed in constant time using a data structure of size
(2
√

2c1/3 + 2)nm
t

bits.

Proof. We use a two-dimensional Boolean array K of 2um bits storing for each member (x, y)
of {0, . . . ,m− 1}×{0, . . . , 2u− 2}, True if Ψ(x, y) 6= ⊥ and False if Ψ(x, y) = ⊥. In addition
to this, for each x we create two integer sequences Ix and Jx of length 2u− 1 each, as follows.
For each y ∈ {0, . . . , 2u− 2}, we define (Ix[y], Jx[y]) = Ψ(x, y) if Ψ(x, y) 6= ⊥. If Ψ(x, y) = ⊥,
we choose arbitrary values for Ix[y] and Jx[y] satisfying Ix[y] ∈ IMS(2u − 1, u), Jx[y] ∈
DMS(2u − 1, u). From Proposition 3.10, such sequences Ix and Jx must exist. By using
the data structure Z(2u − 1, u) of Theorem 2.4, we can store each sequence in at most√

2c1/3u bits and access in constant time. The total space for these 2m sequences is at most
2um+ 2

√
2c1/3um = (2

√
2c1/3 + 2)nm

t
bits. J

3.2 Proof of Lemma 3.2
We first analyze the size of the data structure Sk for k > 0. We prove by induction on k
that there exists a data structure Sk(n,m) using at most c4knm

(
n
m

) 1
22k bits of space, where

c ≥ 1 is some constant satisfying:
There exists data structure Z(n,m) using at most c1/3

√
nm bits of space which can read

an entry of IMS(n,m) in constant time.
Next, we show such a constant c exists, if we use the data structure of Theorem 2.4. For
k = 0, we use the data structure Z(n,m) of Theorem 2.4 for storing each column. Then
the space usage is at most c1/3n3/2m1/2 bits, which is at most cn3/2m1/2 bits and the claim
holds. For k > 0, the size of the data structure Sk satisfies the following lemma.

I Lemma 3.12. The size of the data structure Sk is c4knm
(
n
m

) 1
22k for k > 0.

ISAAC 2020
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Proof. If u > m, the space complexity of the two-dimensional array E is, from the assumption
of Sk−1(u,m),

c4k−1um
( u
m

) 1
22k−1 = c4k−1nm

(m
n

) 1
22k−1

( u
m

) 1
22k−1 = c4k−1nm

(
1
t

) 1
22k−1

= c4k−1nm
(m
n

) 1
22k−1

1
22k−1 ≤ c4k−1nm.

If u ≤ m, it can be stored in c1/3u3/2m1/2 bits by using the data structure Z(u,m) for each
row. Therefore for any case E can be stored in at most c4k−1nm bits.

Next we consider the space complexity of storing differences inside non-flat blocks. For
the summation of all di,j , it holds

∑
0≤i<u
0≤j<u

di,j ≤
2mn
t

because from the column-wise and

row-wise monotonicity, for each l = −u+ 1, . . . , u− 1, it holds
∑
i−j=l

di,j ≤ m.

Consider the space complexity of the data structure storing Fi,j ∈ IMS2(t, di,j) for non-

flat blocks Bi,j . If t > di,j , by using Sk−1(t, di,j), the space becomes c4k−1tdi,j

(
t
di,j

) 1
2(2k−1)

bits. If t ≤ di,j , we store each row of the two-dimensional array in t · c1/3
√
tdi,j bits by

using Z(t, di,j) which support constant access. For both time and space, the former case has
worse complexities. Therefore we analyze the space by assuming every block is stored in

c4k−1tdi,j

(
t
di,j

) 1
2(2k−1) bits.

∑
i,j

Bi,j not flat

c4k−1tdi,j

(
t

di,j

) 1
22k−1

≤
∑
i,j

c4k−1tdi,j

(
t

di,j

) 1
22k−1

≤
∑
i,j

c4k−1tdi,jt
1

22k−1

≤ c4k−1t
1+ 1

22k−1
∑
i,j

di,j ≤ c4k−1t
1+ 1

22k−1 · 2nm
t

= 2c · 4k−1nm
(
n

m

) 1
22k−1

1
22k−1

= 2c · 4k−1nm
(
n

m

) 1
22k

.

We also need to store pointers to the data structures Fi,j because their size varies depending
on (i, j). As a bijection between {0, . . . ,m−1}×{0, . . . , 2u−2} and {0, 1, . . . ,m(2u−1)}, we
define (i, j) 7→ i(2u− 1) + j. By using this, we can regard the pointers to the data structures
as a monotone increasing sequence P with 2um terms and range 2c · 4k−1nm

(
n
m

) 1
22k . By

representing P by the data structure Z(2um, 2c · 4k−1nm
(
n
m

) 1
22k ), it holds

c1/3
√

2um · c · 4k−1nm
( n
m

) 1
22k ≤ c5/62knm.

Therefore the space is upper-bounded by c5/62knm bits.
The total space of the data structures for Sk is:

c4k−1nm︸ ︷︷ ︸
array E

+ (c1/3 · 2
√

2 + 2)nm
t︸ ︷︷ ︸

Ψ

+ 2c · 4k−1nm
( n
m

) 1
22k︸ ︷︷ ︸

total space for F

+ c5/62knm︸ ︷︷ ︸
P

bits.
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By letting c ≥ 106, for any positive integer k, it holds

c4k−1nm+ (2
√

2c1/3 + 2)nm
t

+ 2c · 4k−1nm
( n
m

) 1
22k + c5/62knm

≤ (c4k−1 + c1/32
√

2 + 2 + 2c · 4k−1 + c5/62k)nm
( n
m

) 1
22k

≤ c4knm
( n
m

) 1
22k

.

This proves there exists a data structure of c4knm
(
n
m

) 1
22k bits for Sk(n,m). J

Next we consider the time Tk to access an entry of Sk. It holds Tk = 2Tk−1 + O(1) and
we obtain Tk = O(2k).

This completes the proof of Lemma 3.2. By setting k = log log log n
m in Lemma 3.2, we

obtain:

I Corollary 3.13. There exists a data structure of O
(
nm

(
log log n

m

)2) bits supporting an
access to IMS2(n,m) (n > m) in O

(
log log n

m

)
time.

We add an auxiliary data structure:

I Lemma 3.14. Given an n × n array A ∈ IMS2(n,m), there exists a data structure of
O(nm) bits, such that given a column number r of A ∈ IMS2(n,m) and a value h, one can
compute min{x | A[r][x] ≥ h} in constant time.

Proof. For the array A, consider the boundaries of Definition 3.6. Note that min{x | A[r][x] ≥
h} is the minimum row number of elements in r-th column which are above the h-th boundary.
Recall that boundaries are shortest paths in the grid graph from vertex (0, n) to vertex (n, 0).
We give a bit-vector representation of a boundary as follows. Initially the bit-vector is set
empty. We traverse the graph from vertex (0, n) to vertex (n, 0) along the boundary, and
append 0 when we go down, and 1 when we go right, to the end of the bit-vector. Thus the
bit-vector for a boundary has length 2n, with n zeros and n ones in it. Hence we need O(mn)
bits to store the bit-vectors for all the m boundaries. Let Bk denote the bit-vector for the
k-th boundary. From definition, it holds min{x | A[r][x] ≥ h} = n− rank0(select1(r,Bh), Bh).
This can be computed in constant time by using FID (Theorem 2.5). J

3.3 An efficient representation of the array C

By using the data structure of Lemma 3.2 for a two-dimensional array C satisfying Property 1,
we can compute the frequency c = f(l, r) of the modes of a query range [l, r].

I Theorem 3.15. In addition to the string S, by using a data structure of O
(

4knm
(
n
m

) 1
22k

)
bits, we can solve the range mode problem in O

(
2k
)
time.

Proof. We can use Algorithm 1, where the two-dimensional array C satisfies the following:

C[i][j] =
{
f(i, j) (i ≤ j),
1 (otherwise).

By permuting the columns of C in reverse order and subtracting one from all values, C
belongs to IMS2(n,m).
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A mode is obtained by computing S[min{x > l | C[l][x] = c}] where c = f(l, r) because
C[l][x − 1] = c − 1 and S[x] is a mode. To compute this, we use the data structure of
Lemma 3.14. In Algorithm 1, the data structures of Lemma 3.2 and Lemma 3.14 are used.
The space complexity includes O

(
4knm

(
n
m

) 1
22k

)
bits for Lemma 3.2 and O(nm) bits for

Lemma 3.14, and therefore the total space complexity is O
(

4knm
(
n
m

) 1
22k

)
bits. J

Algorithm 1 Algorithm for Theorem 3.15.

Require: a query range [l, r]
Ensure: a mode in range [l, r] of string S
1: f ← C[l][r] . using Lemma 3.2
2: if f = 1 then
3: i← l

4: else
5: i← min{x | C[l][x] = f} . using Lemma 3.14
6: end if
7: return S[i]

Algorithm 2 Algorithm for finding the mode index set.

Require: a query range [l, r]
Ensure: the mode index set ans
1: g ← f(l, r)
2: b← min{t | f(l, t) ≥ g}
3: x← r

4: ans← {}
5: while x ≥ b do
6: ans← ans ∪ {x} . add to the mode index set
7: x← select1(rank1(x− 1, B[l]), B[l]) . update x
8: end while
9: return ans

By letting k = log log log n
m in Theorem 3.15, we obtain:

I Corollary 3.16. In addition to the string S, using a data structure of O
(
nm

(
log log n

m

)2)
bits, we can answer range mode queries in O

(
log log n

m

)
time.

This data structure is superior to the data structure of [3] with ε = 0, which has space
complexity O(nm logn) bits and query time complexity O(log logn), in terms of both time
and space.

3.4 Efficient data structure for small m

Instead of using the two-dimensional array C storing frequencies of all the ranges, we can
compute the frequency of modes using only the bit-vector representation of the boundaries
of Lemma 3.14.

I Lemma 3.17. For a two-dimensional array A ∈ IMS2(n,m), there exists a data structure
of O(nm) bits to decide if A[i][j] ≥ k in constant time.
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Proof. We store all the bit-vectors B0, . . . , Bm−1 representing the boundaries. It is enough
to decide if the k-th boundary of A is either in the (0, 0)’s side or (n, n)’s side with respect to
(i, j). This is done by Algorithm 3, which runs in O(1) time. This is done in O(1) time. J

Algorithm 3 A function to compare A[i][j] with k.

Require: an index (i, j) of A and an index k of a boundary
Ensure: if A[i][j] ≥ k or not
1: if n− rank0(select1(i, Bk), Bk) ≤ j then
2: return YES
3: else
4: return NO
5: end if

From Lemma 3.17, we can compute C[i][j] = max{k|C[i][j] ≥ k} in O(logm) time by a
binary search on k.

I Lemma 3.18. There exists a data structure of O(nm) bits that for a given (r, c) of
A ∈ IMS2(n,m), computes the value h such that h− logn < A[r][c] ≤ h in O(log logn) time.

Proof. For every column r of A, we take the set of (at most m/ logn) row indexes c such that
A[r][c] > A[r][c− 1] and A[r][c] is a multiple of logn, and store the set using a predecessor
data structure [14]. The space usage for each column is O((m/ logn) logn) = O(m) bits, and
hence overall O(nm) bits to represent A. The query is supported by finding the predecessor
of c in the predecessor data structure corresponding to the column r. J

Now using the structure of Lemma 3.17, we can compute C[i][j] = max{k|C[i][j] ≥ k} in
O(log logn) time by a binary search on k, after narrowing down the length of the range of
k to O(logn) using the structure of Lemma 3.18. Furthermore, from Lemma 3.14, we can
compute an index for modes in constant time. Now we obtain the following theorem.

I Theorem 3.19. In addition to the input string S, by using a data structure of O(nm) bits,
the range mode problem is solved in O(min{logm, log logn}) time.

Table 1 summarizes the proposed and known data structures.

4 Range Mode Enumeration Problem

Below we consider range modes of a string S with alphabet size σ instead of a sequence A.
We evaluate algorithms with their space complexity and query time complexity using the
size of the output t as a parameter.

4.1 Algorithms using existing data structures
Data structures for the range mode problem return an arbitrary item among all range modes.
Instead here we consider a data structure for the problem which returns the leftmost index
and the frequency of range modes, where the leftmost index is defined as follows.

I Definition 4.1. For a string S and query range [l, r], the leftmost index of range modes is
defined as min{x | S[x] is an item with the largest frequency in the query range [l, r]}.
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I Lemma 4.2. Let D be a data structure which returns the leftmost index of range modes
for a query range [l, r] in time T using s space, there exists a data structure which solves the
range mode enumeration problem in time (T +O(1))t using s space.

Proof. We solve the problem using the data structure D. The algorithm narrows the query
range gradually. Because the data structure D returns the leftmost index i of range modes,
the number of range modes for the new query range [i+ 1, r] is exactly one smaller than that
of the current query range. Therefore the total time complexity is (T + O(1))t. J

I Lemma 4.3. There exists a data structure for finding the leftmost index of range modes
and their frequency in time O(nε) using a data structure with space complexity O(n2−2ε)
words in addition to the input string S.

Proof. We slightly change the data structure of [3] described in Section 2.2. Instead of the
two-dimensional array D storing modes of block ranges, we create another two-dimensional
array D′ storing leftmost indices of block ranges. Then we can find the leftmost index of span
in constant time. For items appearing in the prefix and the suffix, we can find the leftmost
index and its frequency using the same algorithm. Algorithm 4 gives a pseudo code. J

Algorithm 4 Find the leftmost index of range modes (assuming l, r belong to different blocks).

Require: a query range [l, r] (bl := bl/nεc 6= br := br/nεc)
Ensure: (leftmost indexli, frequencyf)
1: f ← C[bl][br] . obtain the frequency of modes of span
2: li← D′[bl][br]
3: for i = l, . . . , (bl + 1)s− 1 do . check symbols in the prefix
4: cnt← 0
5: while (the number of terms ofA[S[i]]) > B[i] + f− 1 and A[S[i]][B[i] + f− 1] ≤ r do
6: li← min(li, i)
7: f ← f + 1, cnt← cnt + 1
8: end while
9: if cnt > 0 then
10: f← f− 1
11: end if
12: end for
13: for i = brs, . . . , r do . check symbols in the suffix
14: cnt← 0
15: while 0 ≤ B[i]− freq + 1 and A[S[i]][B[i]− freq + 1] ≥ l do
16: f ← f + 1, cnt← cnt + 1
17: li← min(li, A[S[i]][B[i]− freq + 1])
18: end while
19: if cnt > 0 then
20: f← f− 1
21: end if
22: end for
23: return (li, f)

From Lemmas 4.2 and 4.3, we obtain the following.

I Theorem 4.4. There exists a data structure for the range mode enumeration problem
solving a query in O(nεt) time using O(n2−2ε logn) bits.
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4.2 More efficient data structures for enumeration
I Definition 4.5. The mode index set for a query range [l, r] of the range mode enumeration
problem is the set of the leftmost position of each mode in the query range.

Because the set of all range modes can be obtained from the mode index set, below we focus
on finding the mode index set.

Define n bit-vectors B[0], . . . , B[n− 1] of length n each as B[i][j] = 1⇔ i ≤ j and S[j] is
a mode of range [i, j]. Using these bit-vectors, we obtain:

I Lemma 4.6. The set of modes for a query range [l, r] is {x | f(l, x) = f(l, r)∧B[l][x] = 1}.

Proof. From the definition of B[l][x], S[x] is a mode of range [l, x]. From Lemma 2.2, S[x]
is also a mode of range [l, r]. Conversely, for any index x contained in the index set for range
[l, r], it holds f(l, x) = f(l, r) and B[l][x] = 1. Therefore these two sets coincide. J

Therefore we can enumerate items in the mode index set.
We now analyse the time and space complexities of the algorithm. For the data structure

B, which consists of n bit-vectors of length n, we use O(n2) bits. We also use O(n2) bits for
the array C storing frequencies using bit-vectors, which is used to obtain frequency of modes
of a query range. Therefore the total space is O(n2) bits. The total time complexity is O(t).
We obtain the following basic data structure.

I Lemma 4.7. There exists a data structure for the range mode enumeration problem which
computes the mode index set in O(t) time using a data structure of O(n2) bit space in addition
to the input string S.

Now we improve the space using a parameter m, the frequency of modes of the entire
range. The following lemma holds for the two-dimensional bit-array B.

I Lemma 4.8. There is the following relation between function f and bit-array B.

If f(i, j) = f(i+ 1, j) and B[i+ 1][j] = 1, then B[i][j] = 1.

Proof. Because B[i+ 1][j] = 1, S[j] is a mode of range [i+ 1, j]. Using Lemma 2.2, it holds
S[j] is also a mode of range [i, j]. From the definition of B, we obtain B[i][j] = 1. J

Using this property, we define m integer sequences H[1], . . . ,H[m] of length n each.

I Definition 4.9. Define integer sequences H[1], . . . ,H[m] as follows2.

H[i][j] = max {{k | f(k, j) = i and B[k][j] = 1} ∪ {−1}} (1 ≤ i ≤ m, 1 ≤ j ≤ n).

That is, H[i][j] is the index k of the shortest range [k, j] such that the frequency of the modes
in [k, j] is i, and S[j] is a mode.

The bit-array B and the sequences H have the following relation.

I Lemma 4.10. B[i][j] = 1⇔ H[f(i, j)][j] ≥ i.

Figure 2 shows an example of bit-array B and sequencesH for string S = “abcbfcdaacfbcgba”.
Algorithm 2 enumerates indices with bits being set in range [b, r] of bit-vector B[l]. Here

for any t with b ≤ t ≤ r, the value of f(l, t) is always g = f(l, r). Therefore this operation is
identical to enumerate all indices in range [b, r] of sequence H[g] whose value is at least l.
This problem can be regarded as the range maximum problem.

2 H[i][j] denotes the j-th entry of sequence H[i]
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S: abcbfcdaacfbcgba
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1

1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 1
0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

B[0]
B[1]
B[2]
B[3]
B[4]
B[5]
B[6]
B[7]
B[8]
B[9]
B[10]
B[11]
B[12]
B[13]
B[14]
B[15]

              index

* * * 1 * 2 * 0 7 5 4 3 9 * 8
0 1 2 3 4 5 6 7 8 9

* * * * * * * * 0 2 * 1 5 * 3 7
* * * * * * * * * * * * 2 * 1 0

11
111213141510H[1]

H[2]
H[3]
H[4]

Figure 2 Bit-vectors B[0], . . . , B[15] and sequences H[1], . . . , H[4] for string S of length n =
16. The marks * stand for −1. Colors of numbers for B represent frequencies of modes of the
corresponding ranges. Blue, red, green, and brown colors represent frequencies 1, 2, 3, and 4,
respectively.

I Definition 4.11 (Range Maximum Problem (RMQ)). Given a sequence A and query range
[l, r], the range maximum problem asks an index of the maximum value in the sub-sequence
A[l, . . . , r].

For range maximum queries, there is an efficient data structure.

I Theorem 4.12 ([5]). For the range maximum problem of size n, there exists a data
structure with space complexity 2n+ o(n) bits and query time complexity O(1).

I Theorem 4.13 ([8]). Consider the following problem: Given a sequence A, a query range
[l, r] and a threshold t, compute {l ≤ k ≤ r | A[k] ≥ t}. If there exists an oracle to check if
A[k] ≥ t for some k in constant time, then the query is answered in time proportional to the
output size using the range maximum data structure for A.

Consider a data structure to decide if H[f(l, r)][k] ≥ l or not for finding the index set.
This can be done by using the arrays A,B in Section 2.2 because it is equivalent that
H[f(l, r) = g][k] ≥ l and the frequency of S[k] in range [l, r] is at least g.

Now we obtain the main theorems.
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I Theorem 4.14. There exists a data structure with space complexity
O
(
nm

(
log log n

m

)2 + n logn
)

bits in addition to the input string S, which answers
a range mode enumeration query in time O

(
log log n

m + t
)
where t is the number of modes.

Proof. It is enough to use the following data structures to enumerate the solutions.
Two-dimensional array A storing positions of occurrences of symbols

An array to store positions of occurrences in ascending order for each symbol of the
alphabet

Array B to store ranks for strings
An array storing the rank for each index of S, that is, B[i] stores the number of times
that the symbol S[i] appears in the substring S[0, . . . , i− 1].

Two-dimensional array C storing frequencies of modes for all ranges
The (i, j) entry of the array C stores the frequency of the modes for range [i, j].

m bit-vectors D storing boundaries of the array C

The array stores m bit-vectors of Theorem 3.14.
Two-dimensional array H storing m RMQ data structures for arrays of length n each

An array storing m sequences of Definition 4.9 as RMQ data structures. The sequences
themselves are not stored.

The space complexity of the two-dimensional array C varies depending on which data
structure is used. For example, we can use ones in Corollary 3.13 and Theorem 3.19. The
space complexities of A,B,D,H are O(n logn) bits, O(n logn) bits, O(nm) bits, O(nm) bits,
respectively.

The time complexity is O(t).
To recap, the complexities of the algorithms become O(S + nm+ n logn) bit space and

O(T + t) query time, where S is the space complexity of the two-dimensional array C, and
T is the time complexity to access an entry of C. J

Using Corollary 3.13 and Theorem 3.19, we obtain the following.

I Theorem 4.15. There exists a data structure with space complexity O(nm+ n logn) bits
in addition to the input string S, which answers a range mode enumeration query in time
O(logm+ t).

By combining the data structure of [3], we can further reduce the space complexity.
Consider a string S1 which stores symbols of S whose frequencies are at least n1−ε, and
a string S2 which stores the rest of the symbols. The string S1 stores at most nε distinct
symbols. Using the data structures of [3] and Theorem 4.15 for S1 and S2 respectively, the
following holds.

I Theorem 4.16. There exists a data structure with space complexity O(n1+ε logn+ n2−ε)
bits in addition to the input string S, which answers a range mode enumeration query in
time O(n1−ε + t).

The proposed data structures for the range mode enumeration problem are summarized
in Table 2.

5 Concluding Remarks

In this paper, we have given more efficient algorithms for the indexing version of the range
mode problem. Our algorithms are more space- and time-efficient for small maximum
frequency case than existing ones. We have also considered a natural extension of the range
mode problem, called the range mode enumeration problem, and given fast algorithms for it.

There are other related problems like Boolean matrix multiplication problem. As future
work, we plan to give efficient algorithms for these problems.
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