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Abstract
Permutation σ appears in permutation π if there exists a subsequence of π that is order-isomorphic
to σ. The natural algorithmic question is to check if σ appears in π, and if so count the number
of occurrences. Only since very recently we know that for any fixed length k, we can check if a
given pattern of length k appears in a permutation of length n in time linear in n, but being able to
count all such occurrences in f(k) · no(k/ log k) time would refute the exponential time hypothesis
(ETH). Together with practical applications in statistics, this motivates a systematic study of the
complexity of counting occurrences for different patterns of fixed small length k. We investigate
this question for k = 4. Very recently, Even-Zohar and Leng [arXiv 2019] identified two types of
4-patterns. For the first type they designed an Õ(n) time algorithm1, while for the second they were
able to provide an Õ(n1.5) time algorithm. This brings up the question whether the permutations of
the second type are inherently harder than the first type.

We establish a connection between counting 4-patterns of the second type and counting 4-cycles
(not necessarily induced) in a sparse undirected graph. By designing two-way reductions we show
that the complexities of both problems are the same, up to polylogarithmic factors. This allows
us to leverage the work done on the latter to provide a reasonable argument for why there is a
difference in the complexities for counting 4-patterns of the first and the second type. In particular,
even for the seemingly simpler problem of detecting a 4-cycle in a graph on m edges, the best known
algorithm works in O(m4/3) time. Our reductions imply that an O(n4/3−ε) time algorithm for
counting occurrences of any 4-pattern of the second type in a permutation of length n would imply
an exciting breakthrough for counting (and hence also detecting) 4-cycles. In the other direction, by
plugging in the fastest known algorithm for counting 4-cycles, we obtain an algorithm for counting
occurrences of any 4-pattern of the second type in O(n1.48) time.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques

Keywords and phrases Permutations, pattern avoidance, counting cycles

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.23

Funding Bartłomiej Dudek: partially supported by the National Science Centre, Poland, grant
number 2017/27/N/ST6/02719.

1 Introduction

Permutations are arguably the most basic combinatorial objects. A natural question in
discrete mathematics is to count permutations with certain properties, like consisting of a
given number of cycles or having no fixed points. A whole class of such questions is obtained
by fixing a permutation σ, called the pattern, and defining a permutation π to avoid σ if σ
is not a sub-permutation of π, or in other words if π does not contain a subsequence that is

1 Õ(.) hides factors polylogarithmic in n.
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order-isomorphic to σ. For example, 21 is avoided only by 12 . . . n. Otherwise, we say that π
contains σ. One of the first results concerning pattern avoidance is by Erdős and Szekeres [23],
who proved that every permutation of at least (k − 1)(`− 1) + 1 elements contains either
12 · · · k or ` · · · 21. Another classical result in pattern avoidance is due to Knuth [37], who
showed that π can be sorted by a stack if and only if π avoids 231. Together with the
systematic study of patterns in permutations by Simion and Schmidt [40], this sparked an
interest in counting and characterising permutations that avoid a given pattern (or multiple
patterns). A remarkable result in this area is by Marcus and Tardos [39], who showed that
the number of permutations of length n avoiding σ is bounded by c(σ)n, where c(σ) is a
function independent of n. This was conjectured in early 1990s independently by Stanley
and Wilf. For further discussion we refer the reader to surveys and textbooks [41, 10, 36].

We approach pattern avoidance from an algorithmic perspective. We cannot hope for
an efficient algorithm for arbitrary patterns, as in general it is NP-hard to check if π
contains σ [12] when σ is part of the input. However, if we restrict our attention to patterns
of length k, we might hope to check if a given permutation on n elements avoids such pattern
faster than using the trivial algorithm in O(nk) time. Indeed, Albert et al. [3] and Ahal and
Rabinovich [2] improved this complexity to O(n2k/3+1) and n0.47k+o(k), respectively. In a
recent breakthrough result, Guillemot and Marx [27] developed a fixed-parameter tractable
(FPT) algorithm that runs in 2O(k2 log k) · n time. Later, by refining the proof of Marcus
and Tardos [39], Fox [25] removed the log k factor in the exponent to arrive at 2O(k2) · n
complexity. For k ≥ n/ logn, O(1.79n) and O(1.618n) time algorithms are known [16, 8].
Hence even though the problem is NP-hard, by now we have a range of efficient algorithms
for different special cases of checking pattern avoidance.

However, some applications bring the need to not only detect but also count occurrences of
the pattern. A basic example is calculating the so-called Kendall’s τ correlation coefficient [35],
which requires counting inversions. Generalizations of Kendall’s test used in statistics require
counting occurrences of larger patterns. Bergsma-Dassios [9] and Yanagimoto [48] used
patterns of length 4 in their tests. Finally, patterns of length 5 appear in the Hoeffding’s
dependence coefficient [31]. Also see Heller et al. [29] for a general family of such tests. We
refer the reader to [24] for a more detailed description of the viewpoint of permutations in
nonparametric statistics of bivariate data. Unfortunately, hardly any of the aforementioned
algorithms for detecting patterns generalize to counting. A recent result by Berendsohn et
al. [8] shows that this is, in fact, inevitable, as if patterns of length k can be counted in
f(k)no(k/ log k) time then the exponential-time hypothesis fails. This shows that we cannot
hope for a general FPT algorithm, and considering the applications in statistics we should
focus on understanding the best possible exponent for small values of k.

Patterns of length k can be trivially counted in O(nk) time, which was improved by
Albert et al. [3] to O(n2k/3+1) and then by Berendsohn et al. [8] to O(nk/4+o(k)) time.
However, it is clear that among all patterns of the same length k some are easier to count
than the others. For example, occurrences of 12 · · · k can be easily counted in Õ(nk) time
using dynamic programming and range queries. This motivates a systematic study of the
complexity of counting occurrences of different patterns of fixed small length. For k = 2, this
is exactly the well-known exercise of counting inversions (or in other words, the pattern 21)
in a permutation (or its reverse), which can be solved in O(n logn) time with merge sort
or in O(n

√
logn) in the Word RAM model [17]. For k = 3, all patterns can be counted in

Õ(n) time by using appropriate range counting structures. For k = 4, various algorithms
were designed to compute efficiently the Bergsma-Dassios test, which asks about the value
τ∗ = (#1234+#1243+#2134+#2143+#3412+#3421+#4312+#4321)/

(
n
4
)
− 1

3 [9]. First approaches
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brought the complexity down to O(n2) [43, 42, 30] and finally, very recently, Even-Zohar and
Leng [24] observed that the patterns counted in this test possess some structural property
that allows to design an Õ(n) time algorithm. For the remaining patterns of size 4, they
obtained an algorithm working in Õ(n1.5) time. Defining the k-profile of a permutation π to
be the sequence of k! numbers with the number of occurrences for every possible pattern σ
of length k, this brings us to the following natural open question:

I Question 1 (Even-Zohar and Leng [24]). What is the computational complexity of finding
the full 4-profile of a given permutation of length n?

In fact, Even-Zohar and Leng [24] showed that among all the twenty-four 4-patterns,
there are eight that can be counted in Õ(n) time, while the remaining ones can be counted in
Õ(n1.5) time. Additionally, they showed that all patterns of the second type are equivalent
in terms of computational complexity, that is after counting one of them, we can retrieve
all the other in Õ(n) time. These two types in fact coincide with the notion of concordant
and discordant patterns as defined by Bergsma and Dassios [9]. Using the notation of Fox
[25], the permutation matrix of patterns of the second type contains J2 as an interval minor.
This raises the challenge of finding a reason why some 4-patterns seem harder to count than
the others.

I Question 2. Why some 4-patterns seem more difficult to count than the others?

Related work. Many efforts have been devoted to understand which patterns are more
difficult to detect [4, 12, 3, 32, 49, 28]. Recently Jelínek and Kynčl [34] established that it is
possible to detect σ in polynomial time if σ avoids α, for α ∈ {1, 12, 21, 132, 213, 231, 312} and
NP-complete otherwise. This was later strengthened by Berendsohn et al. [8] by considering
treewidth of the incidence graph of σ. Even though the problem is NP-hard in general,
more efficient algorithms are known for many families of patterns, such as vincular [7],
bivincular [13], mesh [14], boxed mesh [6] and consecutive [22]. See the survey by Bruner
and Lackner [15] for a more detailed description of these variants.

Fine-grained complexity. Although the traditional notion of “easy” and “hard” problems is
defined with respect to the polynomial time solvability, in the last two decades commenced the
study on “fine-grained” theory which tries to understand relationships between polynomial-
time solvable problems. They can be employed to state conditional lower bounds based on
one of a few believable conjectures on complexities of some basic problems, such as SETH,
APSP, or 3SUM. See a recent survey by Vassilevska Williams [45] for a summary.

Counting short cycles in graphs. Similarly as for permutation patterns, a natural question
is to detect or count small substructures of a graph, with perhaps the most fundamental
example being counting cycles of particular length. Already the smallest case, triangle,
is highly non-trivial to count, as the fastest known approach for a n-node graph runs in
O(nω) = O(n2.38) using fast matrix multiplication algorithm [26, 44].

Surprisingly, Vassilevska Williams and Williams [47] proved that this is essentially
inevitable, as the two problems are, in a certain sense, equivalent: a practical advance for
detecting triangles would imply a practical algorithm for Boolean matrix multiplication. As in
many applications the graphs are sparse, it is desirable to design algorithm with running time
depending on the number of edges m. Alon et al. [5] developed an O(m2ω/(ω+1)) = O(m1.41)
time algorithm for counting triangles (in fact their algorithm is stated for finding a single
triangle, but can be easily extended). Going one step further, 4-cycles can also be counted in

ISAAC 2020



23:4 Counting 4-Patterns in Permutations Is Equivalent to Counting 4-Cycles in Graphs

O(nω) time [5], but the fastest known counting algorithm for sparse graphs runs in O(m1.48)
time [46]. Interestingly, one can find a 2k-cycle, for any constant k ≥ 2, in O(n2) time [50].
If the graph is given as an adjacency matrix, this is clearly optimal, but it seems plausible to
conjecture that this is also the case if the graph is given as adjacency lists.

I Conjecture 1 (Yuster and Zwick [50]). For every ε > 0, there is no algorithm that detects
4-cycles in a graph on n nodes in O(n2−ε) time.

The best known algorithm for finding a 4-cycle in a sparse graph runs in O(m4/3) time [5].
This was recently extended by Dahlgaard et al. [19] who showed how to find a 2k-cycle
in O(m2k/(k+1)) time. Furthermore, they showed that this is in fact optimal, assuming
Conjecture 1 and using a general combinatorial result of Bondy and Simonovits that a graph
with m = 100kn1+1/k edges must contain a 2k-cycle [11]. See also Abboud and Vassilevska
Williams [1] for a similar conjecture on the complexity of detecting a 3-cycle.

I Conjecture 2 (Dahlgaard, Knudsen and Stöckel [19]). For every ε > 0, there is no algorithm
that detects a 4-cycle in a graph with m edges in O(m4/3−ε) time.

Dudek and Gawrychowski [20] recently used this conjecture to provide an explanation for
why there is no Õ(n) time algorithm for computing the so-called quartet distance between
two trees on n nodes. Very recently Duraj et al. developed an equivalence class between
range query problems and detecting triangles in sparse graphs [21].

Our contribution. As in the previous works we divide the patterns into two types and we
call them trivial and non-trivial respectively. Our main contribution is a two-way reduction
between counting occurrences of a non-trivial pattern and counting 4-cycles in an undirected
sparse graph. This provides a reasonable answer for Question 2, as any Õ(n) time algorithm
for such patterns would imply an exciting breakthrough for counting 4-cycles, and confirms
that the two types of 4-patterns identified in the previous work are inherently different.

We partially answer Question 1 about the exact complexity of computing 4-profile of
permutation of length n. Our two-way reductions imply that, by plugging in the asymp-
totically faster known algorithm for counting 4-cycles in a sparse graph [46], we are able
to compute the full 4-profile of a permutation of length n in O(n1.48) time. In the other
direction, we argue that an O(n4/3−ε) time algorithm is unlikely, as long as one is willing to
believe Conjecture 2.

Our reductions are summarised in Figure 1. A corollary from these reductions is an
alternative proof for the equivalence between the non-trivial patterns, which avoids using the
notion of corner tree formulas and a computer-aided argument used in [24].

I Theorem 1. An algorithm for counting 4-cycles in a graph on m edges in Õ(mγ) time
implies an algorithm for counting non-trivial patterns in a permutation of length n in Õ(nγ)
time and vice versa.

We can plug in the fastest known algorithm for counting 4-cycles that runs in time
O(m

4ω−1
2ω+1 ) = O(m2− 3

2ω+1 ) [46]. As ω < 2.373 [26, 44], we obtain a more efficient algorithm
for computing the full 4-profile in O(n1.48) time.

I Corollary 2. For every ε > 0, there exists no algorithm that can count non-trivial 4-patterns
in permutation of length n in O(n4/3−ε) time unless Conjecture 2 is false.

We stress that even though we use Conjecture 2 about detecting 4-cycles, the reduction
proceeds by creating multiple instances and subtracting some of the obtained result. Hence,
it does not imply anything about the complexity of detecting 4-patterns, and in fact for this
problem Guillemot and Marx [27] showed an O(n) time algorithm.
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Overview of the methods. Most of our reductions exploit the additional structure of
pattern occurrences in the plane which is divided by a horizontal and a vertical line. We
group the occurrences by shapes corresponding to the number of points in each quadrant
and count them separately. It turns out that the hard case is when the four points are all in
distinct quadrants. This is the heart of our main reductions between counting patterns and
4-cycles. All other shapes can be counted in almost linear time with a careful application of
range queries. To simplify the presentation, we split the reductions into many steps, between
different classes of graphs and patterns so as to work with 4-partite patterns and graphs
which have more structure for our application. Our reductions are based on the divide and
conquer paradigm, applied to each of the four half-planes separately. We present them using
Minimum Base Ranges corresponding to nodes of the full binary tree on n leaves.

Our reduction from counting 4-cycles to counting 4-patterns uses somewhat similar
techniques to Berendsohn et al. [8]. However, their approach works for arbitrary subgraphs
on k nodes, which comes at a cost of increasing the size of permutation pattern and in our
case would result in a pattern of 29 elements. This would not give us the desired connection
between counting 4-cycles and 4-patterns, so we need a new argument tailored for 4-cycles.

2 Preliminaries

Permutation π of length n is a bijective mapping π : [n]→ [n], where [n] = {1, . . . , n} and a
k-pattern σ is a permutation of length k. A permutation π contains a k-pattern σ if there
exist indices 1 ≤ i1 < i2 < . . . < ik ≤ n such that σ(j) < σ(j′) iff π(ij) < π(ij′) for distinct
j, j′ ∈ [k]. A sequence of k increasing indices with the above properties is called an occurrence
of σ in π. For example, in permutation 5246173 the underlined positions 4, 5 and 7 form
an occurrence of pattern 312. By counting a k-pattern in a permutation we mean counting
occurrences of the pattern. Unless stated otherwise, a pattern refers to a 4-pattern.

Shapes. We represent permutation π as a set of points in the plane: Sπ = {(i, π(i)) : i ∈ [n]}
and we interchangeably use points and their corresponding elements from the permutation.
For instance, four points {(ij , π(ij)) : j ∈ [4]} are an occurrence of pattern σ iff positions
i1 < . . . < i4 are an occurrence of σ in π. We say that a horizontal line divides a plane into
top and bottom part and vertical line divides into left and right part. Division of a plane
with both horizontal and vertical line splits the points from Sπ into four regions and we
abbreviately denote each of them by capital letters denoting horizontal and vertical location
of the region: TL,TR,BL or BR. Slightly abusing the notation, by a region we mean either
the region or the set of points from Sπ that belong to the region, with the appropriate order

pattern 4-partite
pattern

4-circle-layered
graph

undirected
graph

4-circle-layered
multigraph

directed
graph

Lemma 7

Lemma 11

Lemma 9

Lemma 14 Lemma 8

Lemma 15

Figure 1 Sequence of reductions used to prove the equivalence between counting non-trivial
4-patterns and 4-cycles. The right part of the figure describes different kinds of graphs in which we
count 4-cycles.
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between them. Returning to the correspondence between the elements of π and Sπ, notice
that the division of the plane with horizontal line y = h and vertical line x = v also partitions
elements from π into four groups, for instance (i, π(i)) ∈ TL iff i < v ∧ π(i) > h. We will
only consider such divisions of the plane that the dividing lines never pass through a point
from Sπ.

Given a division of the plane, we say that an occurrence of pattern σ forms shape a|b
c|d if

among the 4 points, there are respectively a, b, c and d points in top-left, top-right, bottom-left
and bottom-right region of the plane. By counting a particular shape for a division we mean
counting the number of quadruples of points forming the shape with appropriate number of
points in each of the regions. Note that one pattern may form multiple shapes, i.e. 1|1

0|2 ,
1|2
0|1 ,

2|0
2|0

or 1|1
1|1 , depending on the pattern and the position of the dividing lines. However, some shapes

cannot be formed by all patterns, no matter how we divide the plane, i.e. 1|1
1|1 can be formed

by 2314, but not by 2134, and similarly (but the opposite) for 0|2
2|0 . As we can always reflect

points in the plane over a dividing line, while discussing a shape we will not mention other
shapes obtained by a sequence of such operations, because all such shapes can be counted
in exactly the same way. For instance 3|0

0|1 ,
0|3
1|0 ,

1|0
0|3 and 0|1

3|0 are all rotations of the same shape,
but 3|0

1|0 is not. To sum up, there are the following possible shapes: 4|0
0|0 ,

3|0
0|1 ,

3|0
1|0 ,

2|0
0|2 ,

2|0
2|0 ,

1|1
0|2 ,

1|2
0|1 ,

1|1
1|1

and all their rotations. We call shapes 4|0
0|0 ,

3|1
0|0 ,

2|0
2|0 and their rotations non-proper, because

the division does not split the pattern both horizontally and vertically. All other shapes are
called proper. Now we are ready to state the crucial property that distinguishes two main
groups of patterns:

I Definition 3. A pattern that can form the shape 1|1
1|1 is called non-trivial, and all other

patterns are called trivial.

Notice that there are 8 trivial patterns: 1234, 1243, 2134, 2143, 4321, 4312, 3421, 3412, all
other patterns are non-trivial. All trivial patterns can form 0|2

2|0 (or its reflection 2|0
0|2 ), which

cannot be formed by non-trivial patterns. For a particular division of the plane, we say that
an occurrence of a 4-pattern σ is 4-partite if all its points belong to pairwise distinct regions,
that is they form the shape 1|1

1|1 . To simplify notation, by counting 4-partite pattern σ4 we
mean counting 4-partite occurrences of the pattern σ. Clearly, only non-trivial 4-patterns
can be 4-partite. We denote #σ(P ) as the number of occurrences of pattern σ among the
points from P . For a 4-partite pattern σ4, we slightly abuse the notation and by #σ4

(
T L|T R
BL|BR

)
we denote the number of 4-partite occurrences of the pattern σ4 in the plane divided into 4
regions: TL, TR,BL,BR.

MBRs. Let Tn be a full binary tree with n′ = 2dlogne leaves numbered from 1 to n′ and
with internal nodes corresponding to the range of indices of leaves from their subtrees. We
call the ranges corresponding to the nodes in the tree base ranges. Clearly, any number
from [n′] is contained in logn′ = O(logn) base ranges. For a subset S ⊆ [n], we define its
minimum base range MBR(S) as the smallest base range from Tn containing all elements
from S. Notice that it is the lowest common ancestor (LCA) of all leaves corresponding to
the elements from S.

We construct the full binary tree Tn separately for x- and y-coordinates of points from Sπ
and consider the Cartesian product Tn×Tn of the trees. For every pair (Rx, Ry) ∈ Tn×Tn of
ranges, let PRx,Ry

= {(i, π(i)) ∈ Sπ : i ∈ Rx ∧ π(i) ∈ Ry} be the set of points from Sπ with
their coordinates in appropriate ranges. We call a pair (Rx, Ry) relevant if its set PRx,Ry

is non-empty. As every number belongs to O(logn) base ranges, every point belongs to
O(log2 n) sets PRx,Ry

and hence we have:
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I Observation 4. There are O(n log2 n) relevant pairs of ranges.

General remarks. All the reductions we show in this paper are split into several intermediate
steps. Unless stated otherwise, each presented reduction runs in time linear in the total size
of the input and the sum of sizes of the created instances of the other problem we reduce to.

2.1 Range Queries and Short Patterns
Some of our algorithms use range queries for counting points in rectilinear (aligned with
the x- and the y-axis) rectangles efficiently. Below we provide the precise interface for such
queries.

I Lemma 5 ([18, 33]). There exists a deterministic data structure that preprocesses a set of
n weighted points in O(n logn) time and answers queries about the number or the sum of
weights of points inside rectilinear rectangles in O(logn) time.

The following theorem about counting patterns with less than 4 elements is folklore.

I Theorem 6 (cf. [24, Corollary 2]). For any pattern σ, |σ| < 4 there exists an algorithm
counting σ in permutations of length n in Õ(n) time.

2.2 Counting 4-Cycles
Whenever we talk about counting 4-cycles in a graph we mean simple cycles (with all nodes
distinct) of length 4, but not necessarily induced. For counting 4-cycles self-loops and
isolated nodes are irrelevant, but there might be multiple edges, and then we count the cycle
multiple times: the product of the multiplicities of the relevant edges. Following the naming
convention from [38], we define a 4-circle-layered graph to be a 4-partite directed graph with
four disjoint groups of nodes V0, . . . , V3 such that every edge in the graph is from the group
Vi to V(i+1) mod 4 for some 0 ≤ i ≤ 3.

First, we show that, informally, counting 4-cycles in undirected graphs is equivalent
to counting 4-cycles in 4-circle-layered graphs. More precisely, we provide a sequence of
reductions for counting 4-cycles in different graphs, starting from undirected graphs, through
directed graphs to 4-circle-layered graphs and then back to undirected graphs. We show that
counting 4-cycles in a graph of each type can be reduced in O(m) time to a constant number
of instances of counting 4-cycles in graphs of the next type.

undirected

directed

4-circle-layered

(a) (b) (c)

(i)
(ii)

(iii)

graph graph

graph

Figure 2 (a) Sequence of reductions showing equivalence between counting 4-cycles in undirected,
directed and 4-circle-layered graphs. (b) Non-simple cycles from G′ to subtract in reduction (ii). (c)
Cycles to subtract (top) and add (bottom) in reduction (iii).

I Lemma 7. Counting 4-cycles in undirected graphs on m edges can be reduced to a constant
number of instances of counting 4-cycles in 4-circle-layered graphs on O(m) edges and vice
versa.
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Proof. We consider three types of graphs, first undirected graphs, then directed graphs and
finally 4-circle-layered graphs. For each of them we show that counting 4-cycles in graphs
of this type can be reduced in O(m) time to a constant number of instances of counting
4-cycles in the graphs of the next type, as presented in Figure 2(a). We describe each of the
reductions separately:
(i) undirected → directed. Given an undirected graph G we construct a directed graph

G′ replacing every undirected edge with two directed edges. Then the number of
4-cycles in G′ is twice the number of 4-cycles in G, as every cycle can be traversed in
both directions. Then we have: #C4(G) = 1

2 #C4(G′).
(ii) directed → 4-circle-layered. Given a directed graph G′ we construct a 4-circle-

layered graph G′′ by copying nodes of G′ four times and adding edges between cor-
responding nodes from two consecutive groups. More precisely, let v′′i ∈ V ′′i in G′′

be the copy of node v′ from G′ in the i-th group. For every directed edge (u′, v′) in
G′ we add the edge (u′′i , v′′(i+1) mod 4) to G′′ for all 0 ≤ i ≤ 3. Then the number of
4-cycles in G′′ is 4 times the number of 4-cycles in G′ plus some additional cycles
which do not correspond to simple cycles in G′. More precisely, all the additional
4-cycles in G′′ correspond to non-simple (on 2 or 3 distinct nodes) 4-cycles in G′,
which are shown in Figure 2(b) and can be counted in linear time. Formally, let
b(u′) = |{v′ ∈ V ′ : (u′, v′) ∈ E′∧ (v′, u′) ∈ E′}| be the number of neighbors of a node u′
connected to v′ in both directions, which can be obtained by sorting the adjacency lists
in linear time. Then we have: #C4(G′) = 1

4

(
#C4(G′′)−

∑
u′∈V ′

(
4
(
b(u′)

2
)

+ b(u′)
))

.
(iii) 4-circle-layered → undirected. Given a 4-circle-layered graph G′′ we create an

undirected graph G by undirecting all edges from G′′. Then we can no longer ensure
that the 4-cycles pass through 4 different groups of nodes, so we need to subtract
4-cycles fully contained in three groups of nodes and add 4-cycles fully contained in
two groups, as shown in Figure 2(c). The number of such cycles can be obtained by
counting 4-cycles in the graph G restricted only to the particular groups of nodes.
Formally, let Vi be the group of nodes corresponding to V ′′i in G′′ and G[W ] be the
subgraph of G restricted to the nodes from W and edges between them. Then we have:
#C4(G′′) = #C4(G) +

∑
0≤i≤3 #C4(G[Vi ∪ Vi+1])−#C4(G[Vi ∪ Vi+1 ∪ Vi+2]) where the

indices i+ 1 and i+ 2 are taken modulo 4. J

A multigraph is a triple (V,E,mult), where E is a set of m edges and the function
mult : E → {1, . . . , U} denotes multiplicity of an edge. For simple graphs it holds that
mult(e) = 1 for all edges e ∈ E and the function is omitted. Throughout this paper we focus
mainly on simple graphs, but in one of the provided reductions we obtain a 4-circle-layered
graph with multiplicities on every edge (or in other words, a 4-circle-layered multigraph), so
in the following lemma we show how to reduce counting 4-cycles in such graphs to counting
4-cycles in 4-circle-layered simple graphs.

I Lemma 8. Counting 4-cycles in a 4-circle-layered multigraph with edge multiplicities
bounded by U can be reduced to O(log4 U) instances of counting 4-cycles in 4-circle-layered
simple graphs of the same size as the original graph.

Proof. Intuitively, we split every edge of the graph into edges with multiplicities being
powers of two and iterate over all possible combinations of powers of two forming the cycle.

More precisely, we iterate over all quadruples (p0, p1, p2, p3) ∈ {0, . . . , blogUc}4 and for
each of them create a simple, unweighted 4-circle-layered graph on the same set of nodes
as the original graph and a subset of its edges. For all 0 ≤ i ≤ 3 we keep only the edges
between groups Vi and V(i+1) mod 4 such that their multiplicity contains 2pi in its binary
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representation. Then we count the number of 4-cycles in the obtained graph and multiply
it by 2

∑
i
pi . Finally, the total number of 4-cycles in the original multigraph is the sum of

results obtained for each quadruple. J

3 Counting Patterns

In this section we show that counting 4-partite patterns is equivalent, up to logarithmic
factors, to counting 4-patterns. The flavor of our arguments is similar to the ones used
in [24], but we avoid the notion of corner tree formulas and explicitly state two technical
lemmas that are required for our main result. First we show that counting 4-partite patterns
can be reduced to counting 4-patterns by omitting the division of the plane and using
inclusion-exclusion principle.

I Lemma 9. Counting 4-partite pattern σ4 on n elements can be reduced to a constant
number of instances of counting 4-pattern σ in permutations of total size O(n).

Proof. When we omit the division of the plane and count the pattern σ in the plane, we
additionally count also the quadruples of points forming the pattern but coming from not
all of the 4 regions of the plane. To address this, we use inclusion-exclusion principle and
add or subtract patterns on points from all possible subsets of regions. Then the number of
4-partite patterns is:

#σ4

(
TL|TR
BL|BR

)
=

∑
S⊆{TL,TR,BL,BR}

(−1)|S| ·#σ

⋃
Q∈S

Q


where the union over regions chooses the specific subset of points preserving the relative
order between them, as in the original setting. J

For the reduction in the other direction, first we need a technical lemma showing that all
proper shapes but 1|1

1|1 can be counted in Õ(n) time. Recall that we do not have to consider
rotations of shapes separately, as they are equivalent under linear-time transformations of
the input.

I Lemma 10. For any 4-pattern σ and division of the plane with n points, the shapes
3|0
0|1 ,

2|0
0|2 ,

1|1
0|2 ,

1|2
0|1 can be counted in Õ(n) time.

Proof. To simplify the presentation, we use the graphical symbols to denote particular regions
of the plane: �|�

�|�
, �|�

�|�
, �|�

�|�
and �|�

�|�
that denote TL, TR,BL and BR respectively. Notice the

difference between the notion for 4-partite patterns σ4 where #σ4

(
T L|T R
BL|BR

)
= #σ4

(
�|�
�|� |

�|�
�|�

�|�
�|� |

�|�
�|�

)
and non-4-partite patterns σ, for which we use division of the plane only to specify the subset
of points in which we count patterns, e.g. #σ(�|�

�|�
) = #σ(TL). In order to count shapes

3|0
0|1 and 2|0

0|2 it suffices to count appropriate 3-, 2- or 1-patterns on points in �|�
�|�

or �|�
�|�

and
multiply the two numbers. By Theorem 6, this approach runs in Õ(n) time.

Now we show how to count the shape 1|1
0|2 . Suppose that in the pattern σ, the two points in

�|�
�|�

form the pattern 21, see Figure 3(a) for an example. For the other case of the pattern 12
we can apply horizontal reflection for points in both the bottom regions. First we preprocess
�|�
�|�

and for every point there we count points from �|�
�|�

“to the right and down” of it and
“to the left and up” using range queries. The precise interface for range queries used in this
proof is provided in Lemma 5. Next, we iterate over all points p in �|�

�|�
and for each of them
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(a) (b) (c)

q
a

b

r

p

Figure 3 (a) A quadruple of points forming 1|1
0|2 , where the two bottom points alone form the

pattern 21. (b) Naming of points in 1|2
0|1 . (c) 3412 is the most difficult pattern to count.

need to count points in �|�
�|�

and pairs of pairs of points in �|�
�|�

that together form the pattern
σ. The former number is computed with a range query about the number of points from �|�

�|�

that are below or above p, depending on σ. To compute the latter number, notice that the
point p can be in three positions with respect to the two points from �|�

�|�
: either to the left

of both of them, to the right or in-between (as in Figure 3(a)). Each of the cases can be
retrieved by either:
(a) counting points “to the right and down” for all points from �|�

�|�
to the right of p, or

(b) counting points “to the left and up” for all points from �|�
�|�

to the left of p, or

(c) subtracting the values obtained in (a) and (b) from #21(�|�
�|�

), the total number of pairs
of points from �|�

�|�
, such that one of them is “to the right and down” from the other.

All the above values can be obtained in O(logn) = Õ(1) time with range queries about the
sum of weights of points in a rectangle.

Counting the shape 1|2
0|1 is slightly more involved as now we do not have a single “central”

region in which we can iterate over points and obtain the answer, as it was the case with
points p ∈ �|�

�|�
for the shape 1|1

0|2 . In order to refer to the points more easily, we use the
naming of points as in Figure 3(b), that is q is the point from �|�

�|�
, r from �|�

�|�
and a and b

from �|�
�|�

, where a is to the left of b. Again we focus only on the case when points from �|�
�|�

form the pattern 21, that is a is “to the left and up” of b. For the other case of the pattern
12 we can horizontally reflect points in both the top regions. Consider the case when the
last element in the pattern σ is the smallest (equals 1), so is the point r, in �|�

�|�
. Then the

allowed location of r depends only on the point b, as r must be to the right of b, so for every
point b in �|�

�|�
we can count points from �|�

�|�
that are to the right of b. Next we proceed

similarly as while counting the shape 1|1
0|2 , that is we iterate through points q from �|�

�|�
and

count pairs of points a and b in the appropriate order with respect to q, where additionally
points b have weights.

The above approach can be also applied to all shapes in which r is to the left of both
points a and b, or q is below both a and b, or q is above both a and b. In other words, this
covers all patterns in which q is not between a and b or r is not between a and b. Hence it
remains to consider the patterns in which both q and r are between a and b. Notice that for
the fixed relation between points a and b (21 in our case) there is exactly one such pattern σ:
3412, see Figure 3(c). To sum up, there are 9 possible patterns (3 locations for points r and q
are possible independently) forming the considered shape 1|2

0|1 and 8 of them we can count in
Õ(n) time. Moreover, the sum of counts of all the 9 patterns is exactly |�|�

�|�
| · |�|�

�|�
| ·#21(�|�

�|�
).

Subtracting from the total count the 8 values that we can compute efficiently gives us the
number of occurrences of the last pattern. Thus, all patterns forming the shape 1|2

0|1 can be
counted in Õ(n) time. J
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Recall that, given a division of the plane into 4 regions, an occurrence of a 4-pattern σ
is 4-partite if all its elements are in pairwise distinct regions. In the following lemma we
show that we can count 4-patterns by counting 4-partite patterns. At a high level, every
occurrence of the pattern is counted while considering the division of the plane aligned with
the division of minimum base ranges containing all coordinates of the four points.

I Lemma 11. Counting a 4-pattern σ on n elements can be reduced in Õ(n) time to multiple
instances of counting 4-partite patterns σ4 of total size Õ(n).

Proof. Recall that MBR(S), the minimum base range of a set S ⊆ [n] is the minimum base
range containing all elements of S in the full binary tree Tn on n′ = 2dlogne leaves and R ∈ Tn
is a set of consecutive elements from [n]. By Observation 4 we have that there are Õ(n) pairs
(Rx, Ry) ∈ Tn × Tn for which there exists an i ∈ [n] such that i ∈ Rx and π(i) ∈ Ry. We can
retrieve all such pairs in Õ(n) time by iterating through all points from Sπ and generating the
set of all relevant pairs of ranges. Recall that PRx,Ry

= {(i, π(i)) ∈ Sπ : i ∈ Rx ∧ π(i) ∈ Ry}.
In terms of the permutation π, Rx corresponds to its substring and Ry restricts its values.

For every relevant pair of ranges (Rx, Ry) with PRx,Ry of at least 4 points inserted, we
consider the plane restricted only to points from PRx,Ry

and divided in the following way.
As all points from Sπ have distinct coordinates and |PRx,Ry

| ≥ 4, the range Rx contains at
least 4 elements, so is not a leaf in Tx and has two children RLx , RRx in Tx. The two ranges
RLx and RRx are disjoint so we can find a vertical line that separates them, i.e. that passes
through the middle of segment between the rightmost element from RLx and the leftmost
element from RRx . Notice that this line does not pass through a point from PRx,Ry

as RLx
and RRx are two consecutive ranges in Tn. We find a horizontal line separating the range Ry
in the same way. For the set of points PRx,Ry

and the above division of the plane, we count
all shapes 3|0

0|1 ,
2|0
0|2 ,

1|1
0|2 ,

1|2
0|1 and all their possible rotations in Õ(|PRx,Ry

|) time, by Lemma 10.
Finally, we need to count the shape 1|1

1|1 , the 4-partite pattern σ4 on the set PRx,Ry
and sum

up all the obtained results.
Now we show that the above procedure counts every occurrence of the pattern σ exactly

once, while considering the pair of minimum base ranges for both coordinates of the points
from the occurrence. Formally, an occurrence g of σ on positions i1 < i2 < i3 < i4 is
counted only for the pair of ranges (Rx, Ry) where Rx = MBR({i1, i2, i3, i4}) and Ry =
MBR({π(i1), π(i2), π(i3), π(i4)}) and the appropriate shape, depending on the position of
points from {(ij , π(ij)) : j ∈ [4]} with respect to the division. Suppose the contrary, that g
is counted for another pair of ranges (R′x, R′y) where R′x 6= Rx, for R′y 6= Ry the reasoning
is similar. If {i1, i2, i3, i4} 6⊆ R′x, then for some j the point (ij , π(ij)) will not be present
in the considered instance. Otherwise, from the structure of base ranges we have that
MBR({i1, i2, i3, i4}) is fully contained in one half of R′x. In this case g also will not be
counted, because it forms a non-proper shape for the considered division ( 2|0

2|0 , 3|1
0|0 or 4|0

0|0 or
their rotations) and we do not count such shapes.

As every point from Sπ is included in O(log2 n) sets PRx,Ry , the total size of all the
considered sets is Õ(n) and hence counting shapes different than 1|1

1|1 takes Õ(n) time.
Similarly, the total size of the instances of counting 4-partite pattern σ4 is Õ(n). J

By definition, trivial patterns do not form the 1|1
1|1 shape, so the reduced instances have

always 0 occurrences of the 4-partite pattern, which can be returned in constant time. Hence:

I Corollary 12 (cf. [24, Corollary 3]). All trivial 4-patterns (1234, 1243, 2134, 2143, 4321, 4312,
3421, 3412) in permutations of length n can be counted in Õ(n) time.
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4 Equivalence of Counting 4-Partite Patterns and Cycles

First we show that in fact all (non-trivial) 4-partite patterns are equivalent by a linear-time
transformation of the considered set of points. At a high level, we will show that reversing
the order of points in any of the four parts of the plane (left, top, ...) allows us to slightly
modify the pattern.

I Lemma 13. Counting any non-trivial 4-partite pattern σ4 can be reduced to counting any
other non-trivial 4-partite pattern σ′4.

Proof. We start with showing that by reversing the points in the left part of the plane we
can swap the first two elements of the pattern:

#abcd4

(
TL|TR
BL|BR

)
= #bacd4

(
rev

(
TL

BL

)
|TR
|BR

)
.

Formally, suppose that we need to count the 4-partite pattern abcd in the plane divided as
follows: T L|T R

BL|BR
and the leftmost and rightmost points from the left part (TL ∪BL) have the

x-coordinate respectively x1 and x2. We replace every point (x, y) from the left part with
(x1 + x2 − x, y). Then, only the horizontal order of points from the left part is reversed and
any 4-partite occurrence of the pattern abcd in the original instance corresponds to a 4-partite
occurrence of the pattern bacd in the transformed instance. Similarly, after reversing the
right part we obtain the pattern abdc from abcd. When we reverse the (vertical) order of the
top or bottom part, we swap respectively elements 3 and 4 or 1 and 2 in the pattern. For
example, by reversing the top part, from the pattern 1324 we obtain the pattern 1423.

Observe that operations in any two parts of the plane are independent, we can apply any
subset of them and obtain either of the 16 possible non-trivial 4-partite patterns. See Figure 4
with the precise description of operations between the patterns. Thus, we can transform
in linear time any instance of counting non-trivial 4-partite pattern σ4 to an instance of
counting either of the 16 possible non-trivial 4-partite patterns. J

1432

1342

2341

2431

1423

1324

2314

2413

4123

3124

3214

4213

4132

3142

3241

4231

3 ↔ 4

1 ↔ 2

3 ↔ 4

1 ↔ 2

c ↔ d a ↔ b c ↔ d a ↔ b

Figure 4 Reductions between non-trivial patterns described in Lemma 13. Operation a ↔ b

(c↔ d) swaps the first (second) pair of elements in the pattern and corresponds to reversing left
(right) part of the plane. Operation 1↔ 2 (3↔ 4) swaps elements 1 and 2 (3 and 4) in the pattern
and corresponds to reversing bottom (top) part of the plane.
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Hence in the following claims it suffices to consider only one non-trivial 4-partite pattern
and we will focus on counting the pattern 13244. Notice that in Õ(n) time we can shift any
set of n points in such a way that the division lines are aligned with x- and y- axes and
all points have integer coordinates from N = {−n, . . . ,−1, 1, . . . , n}, preserving the relative
order between the parts. In the following lemma we show that counting non-trivial 4-partite
patterns can be reduced to counting 4-cycles in 4-circle-layered multigraphs. At a high level,
we will group all occurrences of the pattern by the minimum base ranges of coordinates of
points in each of the parts of the plane.

I Lemma 14. Counting a non-trivial 4-partite pattern on n points can be reduced to an
instance of counting 4-cycles in a 4-circle-layered multigraph on Õ(n) edges with multiplicities
bounded by n.

Proof. For a permutation π and division of the plane with points Sπ we need to construct a
4-circle-layered multigraph in such a way that the number of 4-cycles in the graph gives us
the number of occurrences of the pattern. Recall that we can operate on points from N 2

and the division of the plane along the x- and y-axes. We consider four full binary trees
T Ln , T Rn , T Bn , T Tn for each part of the plane separately. For each base range in the trees we
create a separate node in the new 4-partite graph.

︸ ︷︷ ︸

︸
︷︷

︸

RT

RR

RT RR

The two full points

add 2 edges

from RT to RR.

T R
n :T L

n :

T T
n :

T B
n :

Figure 5 We consider four full binary trees T L
n , T R

n , T B
n , T T

n for each part of the plane separately
and group occurrences of patterns by the MBRs of coordinates in each part of the plane. Points
from appropriate halves of MBRs from each two consecutive parts add a new edge to the multigraph.

Now we process all points from Sπ grouped by their region. Suppose we process a point
(x, y) ∈ Sπ from the top-right region. We iterate over all pairs (RR, RT ) ∈ T Rn × T Tn of base
ranges such that x ∈ RR and y ∈ RT and the ranges are not singletons (leaves in Tn), so
contain at least two elements from [n]. Recall that we focus on the pattern 1324, because
now the choice of the particular pattern is crucial in the following condition. We add edge
(RT , RR) to the 4-circle-layered multigraph if x is in the right half of RR and y is in the
top half of RT . This means that the point (x, y) can be a part of an occurrence of the 1324
pattern in which RT is the MBR of y-coordinates of the top points and RR is the MBR
of x-coordinates of the right points. See Figure 5. We proceed similarly for the remaining
three regions, modifying only the condition for including an edge, based on the position of
elements of the pattern 1324 inside the considered region.
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If an edge is inserted more than once, we simply increment its multiplicity, which can be
stored e.g. in a balanced binary search tree. As every point from Sπ adds at most O(log2 n)
edges, in total there are O(n log2 n) = Õ(n) edges in the graph. Clearly, the constructed
directed multigraph is 4-partite as we connect nodes from T Tn to the nodes from T Rn , from T Rn
to T Bn etc. Finally, observe that the multiplicity of an edge connecting nodes corresponding
to ranges R and R′ is the number of points in the intersection of their appropriate halves.
Hence multiplicities of edges in the graph are bounded by n. J

The reduction from 4-circle-layered multigraphs to 4-circle-layered simple graphs was
shown in Lemma 8. Finally, to conclude the equivalence between counting 4-partite patterns
and cycles in 4-circle-layered graphs, we describe the reduction from counting 4-cycles in
4-circle-layered graphs to counting non-trivial patterns. The idea is to first embed the graph
in the plane so that every group Vi of nodes corresponds to a half-plane and edges to points
in the plane. Then every 4-cycle corresponds to a rectangle with all corners in distinct
quadrants. Now we appropriately tilt each quadrant, so that every rectangle corresponds to
an occurrence of the pattern 13244. However, this change introduces many more occurrences
of the pattern as now we have slightly weaker constraints on the relative position of points.
This is corrected by subtracting the surplus by applying the inclusion-exclusion principle for
different ways of tilting the quadrants.

We remark that our approach is similar to that of Berendsohn et al. [8, Section 5]. They
showed a reduction from Partitioned Subgraph Isomorphism to counting short patterns
in permutations by embedding the input graph in the plane with appropriate tilting and
using the inclusion-exclusion principle. However, while their reduction works for arbitrary
subgraphs of size k, this comes at the cost of increasing the size of the permutation pattern
to 7k+ 1, which in our case would result in a permutation pattern on 29 elements, hence not
giving us the desired tight connection between counting 4-cycles and 4-patterns.

I Lemma 15. Counting 4-cycles in a 4-circle-layered simple graph on m edges can be reduced
in Õ(m) time to a constant number of instances of counting a non-trivial pattern in a
permutation of length m.

Proof. Given a 4-circle-layered graph G = (V0∪̇V1∪̇V2∪̇V3, E), where E ⊆
⋃
i Vi×Vi+1 mod 4,

we will embed it in the plane and construct a constant number of instances of counting a
non-trivial 4-partite pattern. As Lemma 13 guarantees that all such patterns are equivalent,
we can focus only on the pattern 1324.

Every half-plane corresponds to a part of the graph in the clockwise order: negative
x-coordinates correspond to nodes from V0, positive y-coordinates correspond to nodes from
V1, positive x-coordinates correspond to nodes from V2 and negative y-coordinates correspond
to nodes from V3. The order of points in every half-plane projected on the appropriate axis
is arbitrary, so we can use any injective mapping from V0 and V3 to {−n, . . . ,−1} and from
V1 and V2 to {1, . . . , n}. Next, every edge in the graph corresponds to a point in the plane,
so we get a subset of m points from N 2. Then every 4-cycle in G corresponds to a rectangle
with corners in points in distinct quadrants.

Now we would like to transform the constructed set of points into a number of point
sets Sπ for some permutations π. Intuitively, every 4-cycle from G will correspond to an
occurrence of the pattern 13244. Notice that there might be many edges incident to a node, so
in the beginning some points have equal x- or y-coordinate, which we need to avoid. At first
we will guarantee that no two points from distinct quadrants have equal x- or y-coordinates,
which is already sufficient to be able to define an occurrence of the 4-partite pattern 13244.
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In the end we will show that we can slightly shift all points preserving relationships between
points from distinct quadrants and additionally ensuring uniqueness of coordinates inside
each quadrant. Consider the following transformation of the plane:

TL|TR
BL|BR

→
TL+ ( 1

5 , 0)|TR+ (0, 1
5 )

BL+ (0,− 1
5 )|BR+ (− 1

5 , 0)

where by adding a vector to the region we denote shifting all points from the region by the
vector. Informally, we shift TL slightly right, TR slightly up etc, see Figure 6(a). Observe
that now every 4-cycle from G corresponds to an occurrence of 13244 (see Figure 6(b) and its
explanation in the caption), but there are also many more other occurrences of the pattern,
which do not correspond to a cycle from G. More precisely, every occurrence of the pattern
13244 corresponds to 4 edges from G, but we cannot ensure that they form a cycle, or
equivalently, that every two consecutive edges share an endpoint, see Figure 6(c).

(a) (b) (c)

` r ` r` r

b

t

(`, b)
(r, b)b

t t2

t1

b

(`, t1)

(r, t2)

(`, b)

Figure 6 (a) Slightly shifting all points guarantees that points from distinct quadrants do not
share a coordinate. (b) Every cycle from the graph corresponds to an occurrence of 13244. We
mark the area of the “small shifts” between the dashed lines, so i.e. all points that initially had
y-coordinate equal to t now are between the two horizonatal dashed lines surrounding t. (c) Some
occurrences of 13244 do not correspond to a cycle in G, as the consecutive edges do not share
endpoints. Points corresponding to consecutive edges that share an endpoint are connected with a
solid line (i.e. (`, b) and (`, t1)) and with a dashed line if they do not share (i.e. (`, t1) and (r, t2)).

In particular, after the above transformation, in every occurrence of 13244 the two points
from the left half-plane: (x, y − 1

5 ) ∈ BL and (x′ + 1
5 , y
′) ∈ TL satisfy that x′ + 1

5 ≥ x, but
the two edges corresponding to these points share an endpoint only when x′ = x. On the
other hand, if we slightly modify the above transformation and set TL→ TL+ (− 1

5 , 0), we
obtain that x′ − 1

5 ≥ x, so x′ > x and certainly the two edges cannot share an endpoint.
Now we use this property for all half-planes and plug the modified transformations into the
inclusion-exclusion principle:

#C4(G) =
∑

S⊆{L,R,T,B}

(−1)|S|#13244

(
TL+ (δL(S), 0)|TR+ (0, δT (S))

BL+ (0,−δB(S))|BR+ (−δR(S), 0)

)
where δX(S) = 1

5 if X ∈ S or − 1
5 otherwise. Finally, to ensure that no two points in a

single quadrant have equal x- or y-coordinate we first transform every point (x, y) into
(x+ y

10n , y+ x
10n ) and then shift accordingly. For instance, a point (x, y) ∈ TL is transformed

to (x + y
10n + δL(S), y + x

10n ). Notice that the choice of lengths of the shifts guarantees
that no two points have the same x- or y- coordinate and the new coordinates are within
[− 3

10 ,
3

10 ] × [− 3
10 ,

3
10 ] square comparing to the original location of points. In the obtained

instances all points have non-integer coordinates, but we can normalize them into N 2

preserving the relative order between the points. J
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