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Abstract
A graph G is weakly γ-closed if every induced subgraph of G contains one vertex v such that for each
non-neighbor u of v it holds that |N(u) ∩N(v)| < γ. The weak closure γ(G) of a graph, recently
introduced by Fox et al. [SIAM J. Comp. 2020], is the smallest number such that G is weakly γ-closed.
This graph parameter is never larger than the degeneracy (plus one) and can be significantly smaller.
Extending the work of Fox et al. [SIAM J. Comp. 2020] on clique enumeration, we show that several
problems related to finding dense subgraphs, such as the enumeration of bicliques and s-plexes, are
fixed-parameter tractable with respect to γ(G). Moreover, we show that the problem of determining
whether a weakly γ-closed graph G has a subgraph on at least k vertices that belongs to a graph
class G which is closed under taking subgraphs admits a kernel with at most γk2 vertices. Finally, we
provide fixed-parameter algorithms for Independent Dominating Set and Dominating Clique
when parameterized by γ + k where k is the solution size.
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1 Introduction

In the quest to design efficient algorithms for NP-hard graph problems, a very successful
approach is to exploit the sparsity of input graphs: many problems that are assumed to be hard
in general graphs turn out to be efficiently solvable in sparse graphs [1, 9, 15, 22, 24, 26, 30].
One popular sparseness measure that has been used for a variety of graph problems is the
degeneracy of the input graph G.

I Definition 1.1. For a vertex v ∈ V (G), let degG(v) := |N(v)| denote the degree of v. Then,
G is d-degenerate if there exists a vertex v with degG′(v) ≤ d in every induced subgraph G′
of G.
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20:2 Computing Dense and Sparse Subgraphs of Weakly Closed Graphs

Many graph algorithms which exploit the fact that the input graph has bounded degeneracy
have been proposed. For example, there is an algorithm that enumerates all maximal cliques
of a graph in O(3d/3 · dn) time and performs very efficiently on real-world input instances [9].
Further applications of degeneracy include FPT algorithms for Dominating Set and
related problems [1, 14, 28], for clique relaxations [22, 24], and for biclique enumeration
algorithms [8, 16].

In recent work, Fox et al. [11] proposed exploiting a different property of real-world graphs
that is motivated by the triadic closure principle. This principle postulates that people in a
social network which have many common friends are likely to be friends themselves. This
principle is an explanation for the empirical observation that in real-world social networks,
we often find no pairs of non-adjacent vertices with many common neighbors. This property
is expressed in the closure number of G, defined as follows.

I Definition 1.2 ([11]). Let clG(v) = maxv′∈V \N [v] |N(v)∩N(v′)| denote the closure number
of a vertex v in a graph G. A graph G is c-closed if clG(v) < c for all v ∈ V (G).

Fox et al. [11] showed that a c-closed graph has O(3c/3 · n2) maximal cliques. Given that all
maximal cliques can be enumerated in O(α · nm) time, where α is the number of maximal
cliques, this bound implies that all maximal cliques of a c-closed graph can be enumerated
in O∗(3c/3) time1. This means that the clique enumeration problem has an FPT algorithm
with respect to the c-closure of the input graph. In companion work, we used the c-closure of
graphs to show that several hard graph problems such as Independent Set, Dominating
Set, and Induced Matching admit polynomial kernels when parameterized by the c-closure
of the graph plus the respective solution size [20]. Very recently, Koana and Nichterlein [21]
studied the time complexity of finding and enumerating small induced subgraphs in c-closed
graphs.

Fox et al. [11] suggested a further graph parameter which combines sparseness and triadic
closure properties, the weak closure of a graph.

I Definition 1.3 ([11]). A graph G is weakly γ-closed2 if one of the following holds:
There exists a closure ordering σ := v1, . . . , vn of the vertices such that clGi

(vi) < γ for
all i ∈ [n] where Gi := G[{vi, . . . , vn}].
Every induced subgraph G′ of G has a vertex v ∈ V (G′) such that clG′(v) < γ.

We call σ a closure ordering of G. The weak closure number γ of a graph G is never
larger than d + 1 where d is the degeneracy of G and also never larger than the closure
number c of G. Consequently, fixed-parameter algorithms for γ are, in principle, preferable
to those for the closure number c or the degeneracy d. From an application point of view,
the weak closure number is also an excellent parameter in such graphs since it tends to take
on very small values in real-world social networks [11] (see also Table 2 in the arXiv-version
of this article [19]). Fox et al. [11] showed that a graph has O(3γ/3 · n2) many maximal
cliques which, again using known clique enumeration algorithms, gives an algorithm that
enumerates all maximal cliques in O∗(3γ/3) time.

Our Results. In a nutshell, we show that weak closure can be applied to a variety of graph
problems that are related to searching for sparse or dense subgraphs; our main results are
listed in Table 1. Our results improve over the state of the art in the following sense: the best

1 The O∗ notation hides polynomial factors in the input size.
2 To avoid confusion with the closure number c, we denote the weak closure by γ instead of c.



T. Koana, C. Komusiewicz, and F. Sommer 20:3

Table 1 An overview of our results.

Problem Result Reference

Independent Set O(γk2)-vertex kernel Corollary 2.4

s-Plex W[1]-hard for k even if c = 2 Theorem 3.3
O(2γn2s+1)-time algorithm for s ≥ 2 Corollary 3.2

s-Defective Clique W[1]-hard for k even if c = 2 [29]
O(2γns+3)-time algorithm Corollary 3.5
2O(γ

√
s+s log k)nO(

√
s)-time algorithm Theorem 3.8

Non-Induced (k1, k2)-Biclique O∗(2γ)-time algorithm Theorem 4.2
Induced (k, k)-Biclique O∗(γO(γ))-time algorithm Theorem 4.4
Induced (k1, k2)-Biclique O∗(1.6107c)-time algorithm if k1 ≥ 2 Theorem 4.5

NP-hard for k1 = 1 even if c = 3 and γ = 2 Theorem 4.6

Independent Dominating Set O∗(( γ−1
2 )kk2k)-time algorithm Theorem 5.1

Dominating Clique O∗((γ − 1)k−1)-time algorithm Theorem 5.2

known tractability results for these problems employ the degeneracy of the input graph as a
parameter and, as discussed above, the weak closure is essentially a smaller parameter. For
some problems, we also provide results for the c-closure parameter. There are two reasons
for this. First, for some problems we obtain better running time bounds for the parameter c.
Second, we provide some lower bounds for the problems under consideration and, whenever
possible, we provide them for the larger closure parameter c. From a practical point of view,
the most important results are, in our opinion, the enumeration algorithms for maximal
non-induced bicliques and maximal s-plexes whose running time grows moderately with γ.
Our algorithms to enumerate all maximal s-plexes and non-induced bicliques are based on the
algorithm to enumerate all maximal cliques in weakly γ-closed graphs [11]. Independently,
Husić and Roughgarden [17] obtained similar results for the enumeration of maximal s-plexes
and further dense subgraphs parameterized by the c-closure; it seems that their algorithms
for s-plex enumeration can be adapted to parameterization by weak closure as well [17].

Preliminaries. For n ∈ N, we denote by [n] the set {1, . . . , n}. For a graph G, we denote
by V (G) and E(G) its vertex set and edge set, respectively. We let n := |V (G)| denote the
number of vertices. Let X ⊆ V (G) be a vertex set. We let G[X] denote the subgraph induced
by X and G−X := G[V (G)\X] the graph obtained by removing the vertices of X. We denote
by NG(X) := {y ∈ V (G) \ X | xy ∈ E(G), x ∈ X} and NG[X] := NG(X) ∪ X, the open
and closed neighborhood of X, respectively. For all these notations, when X is a singleton
{x} we may write x instead of {x}. The maximum degree of G is ∆ := maxv∈V (G) degG(v).
We may drop the subscript ·G when it is clear from context. A parameterized problem is
fixed-parameter tractable if every instance (I, k) can be solved in f(k) · |I|O(1) time for some
computable function f . An algorithm with such a running time is an FPT algorithm. A
kernelization is a polynomial-time algorithm which transforms every instance (I, k) into an
equivalent instance (I ′, k′) such that |I ′|+ k′ ≤ g(k) for some computable function g. It is
widely believed that W[t]-hard problems (t ∈ N) do not admit an FPT algorithm. For more
details on parameterized complexity, we refer to the standard monographs [5, 7].

ISAAC 2020
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2 Variants of Independent Set

In this section we study Independent Set and related problems.

Independent Set
Input: A graph G and k ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≥ k and the vertices in S are

pairwise non-adjacent?

In companion work [20], we provided an O(ck2)-vertex kernel for Independent Set.
Here, we strengthen this result by showing that Independent Set (in fact, a generalization)
admits a polynomial kernel with respect to the parameter k + γ.

Let G be a graph class. We say that G is monotone if G is closed under vertex deletions
and edge deletions. That is, if G ∈ G, then for each subgraph H of G we have H ∈ G. Let
us define the problem of finding an induced subgraph belonging to G as follows:

G-Subgraph
Input: A graph G and k ∈ N.
Question: Is there a vertex set S ⊆ V (G) with |S| ≥ k such that G[S] ∈ G?

Note that when G is the class of edgeless graphs, then G-Subgraph corresponds to
Independent Set.

Let v1, v2, . . . , vn be a closure ordering of G and let Gi = G[Vi] for Vi = {vi, vi+1, . . . , vn}.
Our kernelization algorithm applies the following reduction rule:

I Reduction Rule 2.1. If degGi
(vi) ≥ γk, then remove vi.

I Lemma 2.2. Reduction Rule 2.1 is correct for monotone graph classes.

Proof. Let G′ := G− vi for vi ∈ V with degGi
(vi) ≥ γk be the graph obtained by applying

Reduction Rule 2.1. Clearly, if G′[S] ∈ G for some vertex set S ⊆ V (G′), then also G[S] ∈ G.
Hence, it remains to show that if there exists a vertex set S ⊆ V (G) of size at least k such

that G[S] ∈ G then there exists a vertex set S′ ⊆ V (G′) of size at least k such that G′[S′] ∈ G.
If vi /∈ S, we observe that G′[S] ∈ G. Thus, in the following we assume that vi ∈ S. We
prove that vi and any other vertex vj ∈ V (G) have less than γ common neighbors in Vi,
given that they are non-adjacent.

B Claim. Let j ∈ [n] \ {i}. If vivj /∈ E(G), then |NGi
(vi) ∩NG(vj)| < γ.

Proof. First, assume that j < i. Then we have |NGj
(vi) ∩NGj

(vj)| < γ by the definition of
closure orderings. Since Vi ⊆ Vj this implies that |NGi

(vi) ∩NG(vj)| < γ. Second, assume
that j > i. By the definition of closure orderings we have |NGi

(vi) ∩NGi
(vj)| < γ. C

Let Si := S \NG(vi) be the set of vertices in S that are not adjacent to vi. Since degGi
(vi) ≥

γk, it follows from the claim above that there exists at least one vertex u in the neighborhood
of vi in Gi that is not adjacent to any vertex from Si (in other words, u ∈ NGi

(vi) \⋃
vj∈Si

NG(vj)). Since G is monotone and NG(u) ∩ S ⊆ NG(vi) ∩ S, for the vertex set S′ :=
(S \ {vi}) ∪ {u} we have G′[S′] ∈ G. J

I Theorem 2.3. Let G be a monotone graph class. Then, G-Subgraph has a kernel with at
most γk2 vertices.
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Proof. One can exhaustively apply Reduction Rule 2.1 in polynomial time. The resulting
graph has degeneracy d < γk with the same vertex ordering. Note that any graph G on at
least (d+ 1)k vertices contains an independent set S of size k. Due to the monotonicity of G,
G[S] ∈ G for an independent set S. Thus, returning Yes is correct whenever |V (G)| ≥ γk2

and we obtain an equivalent instance with at most γk2 vertices. J

Since the class of edgeless graphs is monotone, we obtain the following corollary:

I Corollary 2.4. Independent Set has a kernel with at most γk2 vertices.

Theorem 2.3 also implies kernels for many other problems, including Acyclic Subgraph,
Bipartite Subgraph, Planar Subgraph, and Bounded Degree Subgraph. These
problems ask whether the input graph G contains a vertex set S ⊆ V (G) such that |S| ≥ k
and G[S] is acyclic, bipartite, planar, or has bounded maximum degree, respectively. All of
these problems are W[1]-hard in general graphs [18].

I Corollary 2.5. Each of Acyclic Subgraph, Bipartite Subgraph, Bounded Degree
Subgraph, and Planar Subgraph has a kernel with γk2 vertices.

Moreover, it follows from Theorem 2.3 that the problem of finding a subgraph with
exactly k vertices and at most t edges also admits a polynomial kernel in weakly γ-closed
graphs. We call the problem Sparsest-k-Subgraph.

I Corollary 2.6. Sparsest-k-Subgraph has a kernel with at most γk2 vertices.

This is in sharp contrast to Densest-k-Subgraph, which is W[1]-hard even in 2-closed
graphs [29]. In Densest-k-Subgraph one asks for a vertex subset S ⊆ V (G) of exactly k
vertices such that G[S] has at least t edges.

3 Clique Relaxations

In this section we present algorithms for problems which contain Clique as special case.

3.1 s-Plex
A clique is a vertex set C such that each vertex v ∈ S is adjacent to each other vertex in S.
One way to relax this definition is to allow each vertex v ∈ S to have at most s non-neighbors
in S. A set fulfilling this condition is said to be an s-plex and cliques are exactly the 1-plexes.
This relaxation leads to the following problem.

s-Plex
Input: A graph G and s, k ∈ N.
Question: Is there a set S ⊆ V (G) of at least k vertices such that the minimum degree

in G[S] is at least |S| − s?

It is known that s-Plex is W[1]-hard when parameterized by k for all s ∈ N [18, 23] and
a simple algorithm can enumerate all maximal s-plexes in 2dns+O(1) time [22]. The task of
enumerating s-plexes is also studied in practice [2, 3]. Here, we present an algorithm to list
all maximal s-plexes in weakly γ-closed graphs.

I Theorem 3.1. For s ≥ 2, there are O(2γn2s−1) maximal s-plexes. Moreover, all maximal
s-plexes can be enumerated in O(2γn2s+1) time.

ISAAC 2020



20:6 Computing Dense and Sparse Subgraphs of Weakly Closed Graphs

Proof. Let v ∈ V (G) be a vertex such that clG(v) < γ and let G′ := G − v be the graph
obtained by deleting v. Let S and S ′ be the collections of all maximal s-plexes (without
duplicates) in G and G′, respectively. We show that |S| ≤ |S ′|+ 2γn2s−2 and that S can be
constructed from S ′ in O(|S ′| · n+ 2γn2s+1) time. Each maximal s-plex S in G is of one of
the following four types:
1. S does not contain v. Then, S is also maximal in G′.
2. S contains v and S \ {v} is maximal in G′.
3. S contains v, S \ {v} is not maximal in G′, and S contains a non-neighbor of v (that is,

S \NG(v) 6= ∅).
4. S contains v, S \ {v} is not maximal in G′, and S is in the neighborhood of v (that is,

S ⊆ NG[v]).
It is easy to see that there are |S ′| maximal s-plexes of type 1 and type 2. Moreover,
these s-plexes can be enumerated in O(|S ′| · n) time.

Now, we enumerate maximal s-plexes of type 3. Consider such an s-plex S. We partition S
into three parts as follows: We first divide S into Sv := S ∩NG[v] and Sv := S \NG[v]. We
divide Sv further into Suv := Sv ∩NG(u) and Suv := Sv \NG(u) for some vertex u ∈ Sv. By
the definition of s-plexes, |Sv| < s and |Suv| < s. Hence, there are at most n2s−2 choices
for Sv and Suv. For Suv, there are at most 2γ−1 choices because Suv ⊆ NG(v) ∩ NG(u)
and |NG(v) ∩NG(u)| < clG(v) < γ. Overall, there are at most 2γ−1n2s−2 maximal s-plexes
of type 3.

We then enumerate maximal s-plexes of type 4. Let S be one of these s-plexes. Since S′ :=
S \ {v} is not maximal in G′, there exists a vertex u ∈ V (G) \ S such that S′ ∪ {u} is an
s-plex in G′. If u ∈ NG(v), then S ∪ {u} is also an s-plex in G, which contradicts the fact
that S is maximal in G. Hence, we can assume that u /∈ NG(v). Then, S \NG(u) contains at
most s− 1 vertices, which in turn implies that there are at most ns−1 choices for S \NG(u).
Since S ⊆ N(v) we observe that S ∩ NG(u) ⊆ NG(v) ∩ NG(u) and |NG(v) ∩ NG(u)| ≤
clG(v) < γ. Thus, we have 2γ−1 choices for S ∩NG(v). All in all, there are at most 2γ−1ns

maximal s-plexes of type 4.
By the above analysis, we obtain |S| ≤ |S ′| + 2γ−1n2s−2 + 2γ−1ns ≤ |S ′| + 2γn2s−2.

For the time complexity, recall that all maximal s-plexes of type 1 and 2 can be found
in O(|S ′| · n) time. Furthermore, maximal s-plexes of type 3 and 4 can be enumerated in
O((2γ−1n2s−2 + 2γ−1ns) · n2) time, because it takes O(n2) time to verify whether a vertex
set is a maximal s-plex or not. Finally, we remove duplicates in O((|S ′| + 2γ−1n2s−2 +
2γ−1ns) · n) = O(|S ′| · n+ 2γn2s−1) time, using radix sort. Altogether, the algorithm needs
O(|S ′| · n+ 2γn2s) time to enumerate all maximal s-plexes in G.

Let an be the number of maximal s-plexes in weakly γ-closed graphs on n vertices.
Clearly, a1 = 1. Furthermore, the above analysis showed that an−an−1 = |S|−|S ′| ≤ 2γn2s−2.
Hence, by induction we obtain an = a1 +

∑n
i=2(ai − ai−1) ≤ 2γn2s−1 + 1. Thus, all maximal

s-plexes can be enumerated in O((an · n+ 2γn2s) · n) = O(2γn2s+1) time. J

A factor of n2s−2 in Theorem 3.1 is unavoidable: Consider a graph G consisting of two
cliques C1 and C2 of equal size. Clearly, G is 1-closed. Each subset of C1 of size exactly s− 1
and each subset of C2 of size exactly s− 1 together form a maximal s-plex. Hence, there
exist 1-closed graphs with Ω((n/2)2s−2) maximal s-plexes.

From Theorem 3.1, we obtain the following.

I Corollary 3.2. For s ≥ 2, s-Plex can be solved in O(2γn2s+1) time.

We show that there is presumably no f(k) · nO(1)-time algorithm for s-Plex in 2-closed
graphs. Our reduction also shows that s-Plex is W[1]-hard for the parameter k+d, answering
an open question from the literature [22].
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I Theorem 3.3. s-Plex is W[1]-hard in 2-closed graphs when parameterized by k + d.

Proof. We reduce from Clique. Let (G, k) be an instance of Clique for k ≥ 4. First, we
subdivide each edge uv of G twice. That is, we remove the edge uv and add edges uxvu, xvuxuv ,
and xuvv, where xvu and xuv are two new vertices. For each edge uv ∈ E(G), we introduce k−3
vertices x1

uv, . . . , x
k−3
uv . Let Xuv = {xvu, xuv , x1

uv, . . . , x
k−3
uv } and let X =

⋃
uv∈E(G)Xuv. We

then add edges so that Xuv forms a clique. Lastly, we introduce a set T = {t1, . . . , tk−3}
of k − 3 vertices and add edges between xiuv and ti for each uv ∈ E(G) and each i ∈ [k − 3].
Let G′ be the resulting graph.

It is easy to verify that G′ is 2-closed. Moreover, G′ is (k − 1)-degenerate: Each vertex
x ∈ Xuv is of degree k−1 and there is no edge in G′−X. We show that G has a clique of size
k if and only if G′ has an s-plex of size k′, where k′ = 2k− 3 + (k− 1)

(
k
2
)
and s = k′− (k− 1).

Suppose that G has a clique S of size exactly k. Let S′ = S ∪ T ∪
⋃
uv∈E(G[S])Xuv.

Observe that |S′| ≥ k′. We verify that each vertex in G′[S′] has degree at least k′− s = k− 1.
Let v ∈ S. By construction, we have xuv ∈ NG′(v) for each u ∈ S \ {v}. Since xuv is
contained in S′, v has at least k − 1 neighbors in G′[S′].
We have degG′[S′](ti) ≥

(
k
2
)
≥ k − 1 for each i ∈ [k − 3], because ti is adjacent to xiuv for

all uv ∈ E(G[S]).
Consider xvu for uv ∈ E(G[S]). We have u ∈ NG′(xvu) by construction. Moreover, xvu is
adjacent to all k − 2 vertices in Xuv \ {xvu}. Thus, we have degG′[S′](xvu) ≥ k − 1.
Consider xiuv for uv ∈ E(G[S]) and i ∈ [k − 3]. We have ti ∈ NG′(xiuv) by construc-
tion. Moreover, xiuv is adjacent to all k − 2 vertices in Xuv \ {xiuv}. Thus, we have
degG′[S′](xiuv) ≥ k − 1.

Thus, every vertex has at least k − 1 = k′ − s neighbors in G′[S′].
Conversely, suppose that S′ is an s-plex of size exactly k′. We start with the following

claim.

B Claim. If S′ contains a vertex x of Xuv for some uv ∈ E(G), then S′ also contains all
vertices in NG′ [Xuv] (that is, u, v ∈ S′, Xuv ⊆ S′, and T ⊆ S′).

Proof. By construction, degG′(x) = k−1. Since each vertex inG′[S′] has degree |S′|−s ≥ k−1
by the definition of s-plexes, we have NG′ [Xuv] ⊆ S′. The claim follows because Xuv is a
clique. C

Let ` = |S′ ∩ V (G)|. By the claim above, there are at most
(
`
2
)
edges uv ∈ E(G) with

Xuv ∩ S′ 6= ∅. By construction, we have |Xuv| = k − 1 for each uv ∈ E(G). Thus, we have

|S′| = |S′ ∩ V (G)|+ |T |+ |S′ ∩X| ≤ `+ k − 3 + (k − 1)
(
`

2

)
.

Since |S′| = k′ = 2k − 3 +
(
k
2
)
, we obtain ` ≥ k.

By definition, each vertex v ∈ S′ ∩ V (G) has at least |S′| − s ≥ k − 1 neighbors in G′[S′].
So there are at least `(k− 1)/2 edges uv ∈ E(G) such that S′ ∩Xuv 6= ∅. Hence, we see from
the above claim that

|S′| ≥ |S′ ∩ V (G)|+ |T |+ |S′ ∩X| ≥ `+ k − 3 + (k − 1) · `(k − 1)/2.

Since |S′| = k′ = 2k−3+(k−1)
(
k
2
)
, we obtain ` = k and |S′∩X| = (k−1)

(
k
2
)
. Thus, S′∩V (G)

is a clique of k vertices in G by construction. J

ISAAC 2020
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3.2 s-Defective Clique
Another way to relax the clique model is to allow at most s non-edges, which leads us to the
following problem:

s-Defective Clique
Input: A graph G and k ∈ N.
Question: Is there a set S ⊆ V (G) of at least k vertices such that G[S] has at

least
(|S|

2
)
− s edges?

A clique is a 0-defective clique. One can show that s-Defective Clique is W[1]-hard
with respect to k even if c = 2 by adapting a previous hardness proof for Densest-k-
Subgraph [29, Theorem 20]. Next, we adapt the algorithm of Theorem 3.1 to obtain an
algorithm to enumerate all maximal s-defective cliques.

The only difference to the proof of Theorem 3.1 is the following: For bounding the number
of s-plexes of type 3 the sets Sv and Suv were bounded by s− 1 each. Since a maximal s-
defective clique contains at most s non-edges and uv /∈ E(G) we observe that |Sv ∪ Suv| < s.
Hence, there are at most 2γ−1ns−1 maximal s-defective cliques of type 3. Thus, we can
bound the overall number of maximal s-defective cliques by 2γns+1 + 1. Since the rest of the
proof is completely analogous, we omit it.

I Theorem 3.4. For s ≥ 2, there are O(2γns+1) maximal s-defective cliques in weakly γ-
closed graphs and they can be enumerated in O(2γns+3) time.

A factor of ns+1 in Theorem 3.4 is inevitable due to the following lower bound: Again we
consider the graph G consisting of two disjoint cliques C1 and C2, each of size n/2. Observe
that for each clique C ⊆ C1 of size s and v ∈ C2, the vertex set C ∪ {v} is a maximal
s-defective clique. Thus, G has Ω((n/2)s+1) maximal s-defective cliques.

From Theorem 3.4, we obtain the following.

I Corollary 3.5. s-Defective Clique can be solved in O(2γns+3) time.

Next, we present faster algorithms in terms of the dependence on s. First, we show that
each s-defective clique can be covered by O(

√
s) maximal cliques.

I Lemma 3.6. Let S be an s-defective clique for s ≥ 1. Then, there is a collection C of at
most O(

√
s) cliques such that S ⊆

⋃
C∈C C.

Proof. Consider the graph H obtained by taking the complement of G[S]. By definition, H
has at most s edges. It suffices to show that there is an O(

√
s)-coloring of H (that is, χ(H) =

O(
√
s)). Although this is known folklore, we describe its proof for the sake of completeness.

Consider an optimal coloring. Then, for each pair of colors, say red and blue, there is
at least one edge with one endpoint red and the other blue (otherwise we find a coloring
with fewer colors). Since H has at most s edges, we obtain s ≤

(
χ(H)

2
)
, or equivalently,

χ(H) ≤
√

2s+ 1
4 + 1

2 . J

Since all cliques (that are not necessarily maximal) can be enumerated in O(2ddn) time,
we obtain the following:

I Theorem 3.7. s-Defective Clique can be solved in 2O(d
√
s)nO(

√
s) time.

We can also use Lemma 3.6 to obtain an algorithm where the exponent on n is O(
√
s) in

its running time.



T. Koana, C. Komusiewicz, and F. Sommer 20:9

I Theorem 3.8. s-Defective Clique can be solved in 2O(γ
√
s+s log k)nO(

√
s) time.

Proof. We first enumerate all maximal cliques in O∗(3γ/3) time [11]. If there is a clique
of size at least k, then return Yes. Now we assume that there is no clique of size k. By
Lemma 3.6, it suffices to check whether there is an s-defective clique of size k in

⋃
C∈C C

for each collection C of O(
√
s) maximal cliques. Since for each fixed collection in C there

are O(k
√
s) vertices in

⋃
C∈C C, this can be done in O(2γ(

√
sk)O(s+3)) time by applying the

algorithm of Corollary 3.5. Since there are O∗(3γ/3) maximal cliques, this procedure requires
(3γ/3 · nO(1))O(

√
s) · O(2γ(

√
sk)O(s+3)) = 2O(γ

√
s+s log k)nO(

√
s) time. J

For c-closed graphs, we can obtain an algorithm whose running time does not depend
on k. This is due to the following lemma.

I Lemma 3.9. Let S ⊆ V (G) be an s-defective clique in G, in which at least one pair of
vertices are non-adjacent. Then, |S| ≤ c+ s.

Proof. Let u, v ∈ S be vertices such that uv /∈ E(G). We show that |S′| ≤ c+ s− 2 for S′ :=
S \ {u, v}. Since G is c-closed, there are at most c− 1 vertices in S′ adjacent to both u and v.
Moreover, there are at most s− 1 vertices in S′ which are non-adjacent to either u or v in S′,
by the definition of s-defective cliques. Thus, we obtain |S′| ≤ (c−1)+(s−1) = c+s−2. J

I Corollary 3.10. s-Defective Clique can be solved in 2O(c
√
s+s log(c+s))nO(

√
s) time.

4 Bicliques

4.1 Non-Induced Biclique
In this subsection, we study problems of finding non-induced maximal bicliques fulfilling
certain cardinality constraints. The main problem under consideration is defined as follows.

Non-Induced (k1, k2)-Biclique
Input: A graph G and k1, k2 ∈ N.
Question: Are there two disjoint sets S, T such that |S| ≥ k1, |T | ≥ k2, and st ∈ E(G)

for each s ∈ S and t ∈ T?

Non-Induced (k1, k2)-Biclique is W[1]-hard even if k1 = k2 [25]. We also consider Non-
Induced Max-Edge Biclique in which we demand that |S| · |T | ≥ k instead of putting
constraints on the partition sizes. Non-Induced Max-Edge Biclique can be solved by
solving

√
k instances of Non-Induced (k1, k2)-Biclique and thus the latter problem can be

considered to be more difficult in our setting. Non-Induced Max-Edge Biclique can be
solved in O(k2.5k

√
kn) time by applying the algorithm for Induced Max-Edge Biclique

on bipartite graphs [10].
Our algorithm for Non-Induced (k1, k2)-Biclique is based on an FPT algorithm for

enumerating all maximal bicliques of the graph and we use this algorithm to solve the
aforementioned biclique problems. We need to be careful, however, about what we mean by
enumerating bicliques: There is an algorithm that enumerates in O∗(2d) time all maximal
pairs of sets S and T such that each vertex of S is adjacent to each vertex of T [8].3 For
this enumeration problem, an FPT algorithm for the weak closure is impossible since any

3 Eppstein [8] describes an algorithm with running time O∗(22a) for the graph parameter arboricity a
which is linearly bounded in d by the inequality a ≤ d ≤ 2a− 1. It can be shown that this algorithm
also has running time O∗(2d).
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clique of size n is 1-closed and admits Θ(2n) bipartitions that need to be enumerated. To
circumvent this issue, we view a biclique as a vertex set that can be partitioned into such
sets S and T . Thus, in order to improve the parameterization from d to γ, we go from
an explicit listing of bicliques with bipartitions to a compact representation of bicliques as
vertex sets and this is indeed necessary. We say that a vertex set U ⊆ V (G) is a non-induced
biclique if G[U ] contains a biclique as a (not necessarily induced) subgraph. Note that it
can be decided in O(n2) time whether a vertex set U ⊆ V (G) is a non-induced biclique or
not, because U is a non-induced biclique if and only if the complement of G[U ] has multiple
connected components. We adapt the algorithm of Theorem 3.1 to obtain an O∗(2γ)-time
algorithm to enumerate all maximal non-induced bicliques.

As in the proof of Theorem 3.1, we aim to enumerate all maximal non-induced bicliques
in G, provided with the collection S ′ of all non-induced maximal bicliques in G′ := G− v.
Again we define the same four types of non-induced bicliques. First and foremost, all maximal
non-induced bicliques of type 1 and type 2 can be enumerated from S ′ in |S ′| · n2 time. We
claim that there are at most 2γ−1n maximal non-induced bicliques of type 3: Let S be such a
non-induced biclique. There are at most n choices for u ∈ S\NG[v] and there are at most 2γ−1

choices for NG(v)∩S ⊆ NG(v)∩NG(u). Note that S \NG(v) =
⋂
w∈NG(v)∩S NG(w). Finally,

there is only one maximal non-induced biclique of type 4, namely NG[v]. Thus, we obtain
the following theorem.

I Theorem 4.1. All maximal non-induced bicliques can be enumerated in O∗(2γ) time.

We show that Non-Induced (k1, k2)-Biclique can be solved in O∗(2γ) time, using this
enumeration algorithm.

I Theorem 4.2. Non-Induced (k1, k2)-Biclique can be solved in O∗(2γ) time.

Proof. For each non-induced biclique U of size at least k1 + k2, we construct an instance of
Subset Sum defined as follows:

Subset Sum
Input: A set A = {a1, . . . , an} of n positive integers and k1 ≤ k2 ∈ N.
Question: Is there a set B ⊆ A such that k1 ≤

∑
b∈B ≤ k2?

A standard dynamic programming algorithm can solve Subset Sum in O(n ·
∑
a∈A a)

time. To solve Non-Induced (k1, k2)-Biclique, we construct an instance (A′, k′1, k′2) of
Subset Sum, where k′1 := k1, k′2 := |U | − k2, and A′ := {|Ci| | i ∈ [`]} for the connected
components C1, . . . , C` ⊆ V (G) of the complement of G[U ]. It is easy to see that (G, k1, k2)
is a Yes-instance if and only if the constructed instance of Subset Sum is a Yes-instance for
some maximal non-induced biclique U . J

We obtain the following result by the abovementioned reduction.

I Corollary 4.3. Non-Induced Max-Edge Biclique can be solved in O∗(2γ) time.

4.2 Induced Biclique
In this subsection, we study problems of finding induced maximal bicliques fulfilling certain
cardinality constraints. Formally, these problems are defined as follows.

Induced (k1, k2)-Biclique
Input: A graph G and k1, k2 ∈ N such that k1 ≤ k2.
Question: Are there two disjoint vertex sets S, T such that (1) |S| = k1 and |T | = k2,

(2) ss′ /∈ E(G) for each s, s′ ∈ S, (3) tt′ /∈ E(G) for each t, t′ ∈ T , and
(4) st ∈ E(G) for each s ∈ S and t ∈ T?
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When k1 = k2, we will refer to the problem as Induced (k, k)-Biclique. Moreover, we refer
to the problem variant where we aim to maximize the number of edges in the biclique as
Induced Max-Edge Biclique. Induced (k1, k2)-Biclique is W[1]-hard even if k1 = k2 [5].
Induced Max-Edge Biclique is NP-hard [27] and W[1]-hardness can be shown by a simple
reduction from Independent Set parameterized by the solution size k. As in the non-
induced case, Induced Max-Edge Biclique can be solved by solving

√
k instances of

Induced (k1, k2)-Biclique. Thus, positive results for Induced (k1, k2)-Biclique transfer
to Induced Max-Edge Biclique. All maximal induced bicliques can be enumerated in
O∗(3(∆+d)/3) time [16] and it is impossible to obtain an FPT algorithm for the enumeration
of maximal induced bicliques for the parameter d because a graph may have too many
maximal induced bicliques [16].

First, we present an FPT algorithm for Induced (k, k)-Biclique parameterized by γ.

I Theorem 4.4. Induced (k, k)-Biclique can be solved in O∗(γO(γ)) time.

Proof. Since a bicliqueKγ,γ is not weakly γ-closed, (G, k) is a No-instance if k ≥ γ. Moreover,
Induced (k, k)-Biclique is trivially solvable in polynomial time when k ≤ 1. Hence, we
may assume that 2 ≤ k < γ. Let σ be a fixed closure ordering of G. Suppose that (S, T )
is a solution of (G, k). We consider each choice of the vertex v ∈ S ∪ T that appears in σ
before all other vertices of S ∪ T . We assume without loss of generality that v lies in S. Let
G′ be the graph obtained by removing all vertices preceding v in σ. Then, we additionally
consider each choice of a vertex v′ ∈ V (G′) \ {v} which is contained in S and an independent
set T ⊆ NG′(v) ∩NG′(v′) of at least k vertices. Since |NG′(v) ∩NG′(v′)| < γ, there are at
most 2γ possibilities for T . Now, it remains to find an independent set S ⊆

⋂
u∈T NG′(u) of

size at least k in G′. By Corollary 2.4, this can be achieved in O∗((γk2)k) time. Since k < γ,
the overall running time is O∗(2γγ3γ) = O∗(γO(γ)). J

For c-closed graphs, we show that there is a single-exponential time algorithm when k1 ≥ 2.
Our algorithm is based on a reduction to a variant of Independent Set called Bicolored
Independent Set [4].

I Theorem 4.5. Induced (k1, k2)-Biclique can be solved in O∗(1.6107c) time if k1 ≥ 2.

Proof. Our algorithm is based on reductions to the following variant of Independent Set:
Bicolored Independent Set
Input: A graph G, a partition (V1, V2) of V (G), and k1, k2 ∈ N.
Question: Is there an independent set I ⊆ V (G) with |I ∩ V1| = k1 and |I ∩ V2| = k2?

For each induced cycle (uS , uT , vS , vT ) on four vertices in G, we construct an instance
(G′, V ′1 , V ′2 , k1, k2) of Bicolored Independent Set, where V ′1 := NG(uS) ∩NG(vS), V ′2 :=
NG(uT )∩NG(vT ), and G′ = (V ′1 ∪V ′2 , E(G[V ′1 ])∪E(G[V ′2 ])∪{v′1v′2 | v′1 ∈ V ′1 , v′2 ∈ V ′2 , v′1v′2 /∈
E(G)}). By the c-closure of G, there are at most 2c− 2 vertices on G′. It is easy to verify
that there is a (k1, k2)-biclique containing uS , uT , vS , vT if and only if (G′, V ′1 , V ′2 , k1, k2) is a
Yes-instance. Since Bicolored Independent Set is O∗(1.2691n)-time solvable on n-vertex
graphs [4], we obtain an O∗(1.6107c)-time algorithm for Induced (k1, k2)-Biclique. J

Gaspers et al. [13] provided an O∗(3n/3)-time algorithm to enumerate all maximal
bicliques. By using a reduction similar to the one in the proof Theorem 4.5, we can thus
enumerate all maximal bicliques in which each part has at least two vertices in O∗(32c/3) time.
However, even 2-closed graphs may have Ω(3n/3) maximal bicliques: Consider the graph with
a single universal vertex u and (n− 1)/3 disjoint triangles. Observe that there are 3(n−1)/3

maximal bicliques where one part consists of u.
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In contrast to this positive result for k1 ≥ 2, we prove that Induced (1, k)-Biclique is
NP-hard even on graphs with constant h-index, c-closure, and weak γ-closure.

I Theorem 4.6. Induced Max-Edge Biclique remains NP-hard even on graphs with h-
index four, c-closure three and weak γ-closure two.

Proof. We will reduce from Independent Set, which is NP-hard even on cubic graphs
(graphs in which each vertex has degree at most three) [12]. We assume that k ≥ 10,
since otherwise the instance (G, k) can be solved in polynomial time. We construct an
instance (G′, k) of Induced k-Edge Biclique as follows: We begin with a copy of G. Then,
each edge uv ∈ E(G) is replaced by a path on four vertices u, uv, vu, and v. Finally, we
introduce a new universal vertex w. It is easy to see that G′ has h-index four, is 3-closed,
and weakly 2-closed. Next, we prove that G contains an independent set of size k if and only
if G′ contains an induced biclique with at least k + |E(G)| edges.

Suppose that G contains an independent set I of size at least k. Then, there is an
independent set I ′ of size k+ |E(G)| in G′−w. Thus, the set I ′ ∪ {w} is an induced biclique
with at least k + |E(G)| edges in G′.

Conversely, suppose that G′ contains a biclique (S, T ) with at least k edges. Since each
vertex in G′ − w has degree at most three and k ≥ 10, we see that vertex w is contained
in (S, T ). Without loss of generality, assume that w ∈ S. Since w is a universal vertex, we
obtain S = {w}. It follows that T is an independent set of size at least k + |E(G)| in G′.
Hence, G contains an independent set of size at least k. J

The reduction in the proof of Theorem 4.6 also implies the following.

I Theorem 4.7. Induced (k1, k2)-Biclique is NP-hard on graphs with h-index four, c-
closure three and weak γ-closure two even if k1 = 1.

To complete the dichotomy with respect to c, we prove that Induced Max-Edge
Biclique can be solved in polynomial time if c = 2. To do so, we first show that Induced
(1, k2)-Biclique can be solved in polynomial time if the input graph is diamond-free.

I Proposition 4.8. Induced (k1, k2)-Biclique can be solved in polynomial time on diamond-
free graphs if k1 = 1.

Proof. Suppose that the input graph G is diamond-free. Then, G[N(v)] is a disjoint union
of cliques for each vertex v ∈ V (G). Thus, (G, k1, k2) is a Yes-instance if and only if there is
a vertex v ∈ V (G) such that G[N(v)] has at least k2 connected components. J

Since 2-closed graphs are diamond-free, we obtain the following from Proposition 4.8 and
Theorem 4.5.

I Corollary 4.9. Induced (k1, k2)-Biclique and Induced Max-Edge Biclique can be
solved in polynomial time on 2-closed graphs.

5 Variants of Dominating Set

In companion work [20], we showed that Dominating Set admits a kernel of size kO(c). We
were not able to resolve the parameterized complexity of Dominating Set in weakly γ-closed
graphs. However, we develop FPT algorithms for the related Independent Dominating
Set and Dominating Clique problems in weakly γ-closed graphs.
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Algorithm 1 An FPT algorithm SolveIDS to solve Independent Dominating Set.

1: function SolveIDS(G, k)
2: if k = 0 and V (G) 6= ∅ then return No
3: Let I := ∅ and G′ := G. . I will be an independent set of size at most k + 1 in G
4: while V (G′) 6= ∅ and |I| ≤ k do
5: Let v be a vertex such that clG′(v) ≤ γ − 1.
6: I := I ∪ {v} and G′ := G′ −NG′ [v].
7: if |I| ≤ k then return Yes
8: else
9: P := {v | v is a common neighbor of at least two vertices in I}
10: for each u ∈ P do
11: if SolveIDS(G−NG[u], k − 1) returns Yes then return Yes
12: return No

5.1 Independent Dominating Set
We consider the Independent Dominating Set problem. The task in this problem is to
find an independent set S of size at most k dominating all vertices.

Independent Dominating Set
Input: A graph G and k ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≤ k, S induces an independent

set in G, and for each v ∈ V it holds that S ∩N [v] 6= ∅?

Independent Dominating Set is W[2]-complete [7]. There are several fixed-parameter
tractability results in restricted graph classes: Independent Dominating Set has a
kernel of O(d2kd+1) vertices computable in O∗(2d) time [28]. Moreover, when the graph
contains no cycles of length three or four, Independent Dominating Set can be solved in
O∗(kO(k)) time [29].

We present an FPT algorithm SolveIDS (Algorithm 1) with running time O∗((γ−1
2 )kk2k).

Note that our algorithm extends the O∗(kO(k)) time algorithm of Raman and Saurabh [29],
because any graph without cycles of length three or four is 2-closed. Algorithm 1 first
greedily computes an independent set I of size at most k + 1 by iteratively choosing vertices
v such that clG′(v) ≤ γ − 1 (Line 5). If I is inclusion-maximal and of size at most k, then I
constitutes a solution. Otherwise, we find a vertex set P to branch on. The choice of I will
ensure that P has at most (γ − 1)

(
k+1

2
)
vertices.

I Theorem 5.1. Independent Dominating Set can be solved in O∗((γ−1
2 )kk2k) time.

Proof. We show that Algorithm 1 solves an instance (G, k) of Independent Dominating
Set in the claimed time. First, we prove the correctness of Algorithm 1. Let I be the
independent set of size at most k + 1 of G obtained in Lines 3 to 6. Suppose that |I| ≤ k.
Since I is a maximal independent set, each vertex v ∈ V (G) is either contained in I or a
neighbor of a vertex in I. Hence, I is an independent dominating set of size at most k of G.
Thus, (G, k) is a Yes-instance. Now suppose that |I| = k + 1. Let P be the set of vertices
in G which have at least two neighbors in I (Line 9). Since |I| = k + 1, the sought solution
must contain at least one vertex of P . Thus, the branching in Line 11 is correct.

Now, we analyze the time complexity of Algorithm 1. To do so, we prove that |P | ≤
(γ−1)

(
k+1

2
)
. Let vi be the ith vertex added to I in Line 6 and let Gi := G−NG[{v1, . . . , vi−1}]

for each i ∈ [k + 1]. Since P ⊆
⋃
i∈[k+1]NGi(vi), we see that |P | ≤

∑
i∈[k+1] |NGi(vi) ∩ P |.
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Algorithm 2 An algorithm for finding a dominating clique S. Vertex vi is the first vertex of the
dominating clique S in the fixed closure ordering σ of G. Initially we have T := {vi}.

1: function SolveDC(G, k, T ) . T ⊆ {vi, . . . , vn} and vi ∈ T
2: if k = 0 and V (G) 6= N [T ] then return No
3: if V (G) = N [T ] then return Yes
4: Compute a vertex w such that viw /∈ E(G)
5: for each u ∈

⋂
x∈T N(x) ∩N(w) ∩ V (Gi) do . Gi := G[vi, . . . , vn]

6: if SolveDC (G− (N(u) \N [vi]), k − 1, T ∪ {u}) returns Yes then return Yes
7: return No

Moreover, we have |NGi
(vi)∩P | ≤

∑
j∈[i+1,k+1] |NGi

(vi)∩NGi
(vj)| for each i ∈ [k]. Therefore,

|P | ≤
∑

i<j∈[k+1]

|NGi
(vi) ∩NGi

(vj)| ≤ (γ − 1)
(
k + 1

2

)
.

Here, the last inequality is due to the fact that clGi
(vi) ≤ γ − 1 for each i ∈ [k].

It is easy to see that finding an independent set I in Lines 3 to 6 only requires polynomial
time. Since each node has at most (γ− 1)

(
k+1

2
)
children in the search tree and its depth is at

most k, the overall running time of Algorithm 1 is O∗((γ− 1 ·
(
k+1

2
)
)k) = O∗((γ−1

2 )kk2k). J

5.2 An FPT algorithm for Dominating Clique
We now consider the Dominating Clique problem. The task in this problem is to find a
clique S of size at most k dominating all vertices.

Dominating Clique
Input: A graph G and a parameter k ∈ N.
Question: Is there a vertex set S ⊆ V (G) such that |S| ≤ k, S induces a clique in G,

and for each v ∈ V it holds that S ∩N [v] 6= ∅?

It is known that Dominating Clique is W[2]-hard even on graphs which do not contain
a 4-claw (a K1,4) as an induced subgraph [6].

Note that there is a straightforward O∗(dk)-time algorithm: Choose a vertex v with
minimum degree and consider the case that the dominating clique contains v. Since G
is d-degenerate, there are O(dk−1) choices for the remaining vertices of the dominating clique.
If there is no dominating clique that contains v, then continue to search the dominating
clique in the graph G− v. Eventually, we find either a dominating clique of size at most k or
arrive at an empty graph.

In this subsection, we describe an FPT algorithm for weakly γ-closed graphs, resulting
in an O∗((γ − 1)k−1)-time algorithm. Note that a maximal clique of a weakly γ-closed
graph may be arbitrarily large. Thus, a simple brute-force search on maximal cliques may
require Ω(nk) time. Moreover, we want to avoid enumerating all maximal cliques since this
alone incurs a running time of Ω(3γ/3). Instead, we will use Algorithm 2 for each vertex vi
in a fixed closure ordering σ. The key idea is that we assume that vi is the first vertex
in the dominating clique with respect to σ. As we shall see in the proof of Theorem 5.2
this guarantees that for each vertex w which is not adjacent to vi, we may branch into at
most γ − 1 cases to determine a vertex that dominates w.

I Theorem 5.2. Dominating Clique can be solved in O∗((γ − 1)k−1) time.
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Proof. To solve an instance (G, k) of Dominating Clique, we first compute a closure
ordering σ. Afterwards, we invoke SolveDC on input (G, k − 1, {vi}) for each vertex vi ∈ V .
In the call SolveDC (G, k − 1, {vi}), we assume that vi is the first vertex in the dominating
clique S with respect to the closure ordering σ.

We first show that SolveDC (G, k, T ) is correct in the following sense: it returns Yes
if and only if there is a dominating clique S of size at most k which contains all vertices
of T , and vertex vi is the first vertex in S with respect to σ (where vi is the minimal vertex
of T with respect to σ). It is easy to see that the terminal conditions in Lines 2 and 3 are
correct. Let w be the vertex computed in Line 4. Since we want to compute a dominating
clique S which contains T , where vertex vi is the first vertex in S with respect to the closure
ordering σ and since viw /∈ E(G), any dominating clique must contain at least one vertex u
of
⋂
x∈T N(x) ∩ N(w) ∩ V (Gi). Thus, the branching in Lines 5 and 6 is correct. Since

each vertex u chosen in Line 5 is a common neighbor of all vertices in T , we conclude that
the set T is a clique and thus Line 3 returns Yes if and only if G contains a dominating
clique of size at most k. Furthermore, each vertex u chosen in Line 5 is contained in Gi.
Hence vi <σ u. In other words, vertex vi is the smallest vertex in T with respect to σ.

Let us analyze the time complexity of SolveDC. It is easy to see that Lines 2 to 4 can be
performed in polynomial time. Consider the search tree where each node corresponds to an
invocation of SolveDC. We show that each node in the search tree has at most γ − 1 children.
To this end, we bound the size of |N(vi) ∩N(w) ∩ V (Gi)| which is an upper bound on the
number of branches created in Line 5. If vi <σ w, then |N(vi) ∩N(w) ∩ V (Gi)| ≤ γ − 1 by
Definition 1.3. Otherwise, if w <σ vi, then vi and w have at most γ − 1 common neighbors
in {v′ | w <σ v

′} and thus also in V (Gi). Hence, each node has at most γ − 1 children.
Moreover, the depth of the search tree is at most k− 1. Thus, we spend O∗((γ − 1)k−1) time
for each vertex vi ∈ V (G) and the claimed running time bound follows. J

In companion work [20], we provided a reduction from λ-Hitting Set to Dominat-
ing Set that implies that kernels of size O(kc−1−ε) are impossible under some standard
complexity-theoretic assumptions. We obtain the following from the same reduction.

I Proposition 5.3. For c ≥ 3, Dominating Clique has no kernel of size O(kc−1−ε) unless
coNP ⊆ NP/poly.

I Proposition 5.4. Unless the ETH fails, there is no no(k)-time algorithm for Dominating
Clique.

Hence, it is unlikely that the running time of Theorem 5.2 can be substantially improved.

6 Conclusion

We have provided further applications of the weak closure parameter γ which was introduced
for clique enumeration [11]. Given the usefulness of the class of weakly closed graphs, it
seems important to further study their properties. For example, it would be nice to obtain a
forbidden subgraph characterization. We note that the weakly-1-closed graphs are exactly the
graphs that do not contain a C4 or a P4 as an induced subgraph. These graphs are also known
as quasi-threshold graphs. Can we obtain a similar characterization for weakly 2-closed
graphs? Further FPT algorithms for the parameter γ would also be very interesting from
a theoretical and practical point of view. For example, it is open whether Dominating
Set has an FPT algorithm for the parameter γ + k; so far it is known only to have FPT
algorithms for d+ k [1] and c+ k [20].
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