
A Unified Framework of FPT Approximation
Algorithms for Clustering Problems
Qilong Feng
School of Computer Science and Engineering, Central South University, Changsha, China
csufeng@csu.edu.cn

Zhen Zhang
School of Computer Science and Engineering, Central South University, Changsha, China
csuzz@foxmail.com

Ziyun Huang
Department of Computer Science and Software Engineering, Penn State Erie,
The Behrend College, PA, USA
zxh201@psu.edu

Jinhui Xu
Department of Computer Science and Engineering, State University of New York at Buffalo,
NY, USA
jinhui@cse.buffalo.edu

Jianxin Wang
School of Computer Science and Engineering, Central South University, Changsha, China
jxwang@csu.edu.cn

Abstract
In this paper, we present a framework for designing FPT approximation algorithms for many
k-clustering problems. Our results are based on a new technique for reducing search spaces. A
reduced search space is a small subset of the input data that has the guarantee of containing k
clients close to the facilities opened in an optimal solution for any clustering problem we consider.
We show, somewhat surprisingly, that greedily sampling O(k) clients yields the desired reduced
search space, based on which we obtain FPT(k)-time algorithms with improved approximation
guarantees for problems such as capacitated clustering, lower-bounded clustering, clustering with
service installation costs, fault tolerant clustering, and priority clustering.
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1 Introduction

Clustering is a frequently encountered problem in computer science and has applications
in many fields related to unsupervised learning. Different objectives have been introduced
to estimate the quality of clustering results. Among them, the k-median and k-means cost
functions are perhaps the most popular versions. In the k-median problem, we are given
a set of clients and a set of facilities located in a metric space. The goal is to open a set
of no more than k facilities, such that the sum of distance from each client to its nearest
opened facility is minimized. The k-means problem is the same as the k-median problem,
except that the clustering cost is measured by the squared distance for each client to its
corresponding facility.
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5:2 A Unified Framework of FPT Approximation Algorithms for Clustering Problems

Both the k-median and k-means problems are NP-hard [21]. This leads to considerable
efforts on obtaining approximation algorithms for the problems. The first constant factor
approximation for k-median was given by Charikar et al. [12], who showed that LP-rounding
yields a 6 2

3 -approximation. The approximation guarantee was later improved by a series
of work [26, 25, 5, 31] to the current best ratio of 2.675 + ε [11]. For the k-means problem,
Gupta and Tangwongsan [23] gave that a simple local search algorithm yields a 25 + ε

approximation. Ahmadian et al. [3] later gave a (9 + ε)-approximation algorithm using a
primal-dual method.

A commonly used way for relaxing the k-median and k-means problems is to assume
that k is a fixed parameter. It was known that both problems are W[2]-hard if parameterized
by k [21], implying that it is impossible to exactly solve the problems in FPT(k) time. However,
this negative result does not rule out the possibility of obtaining better approximation ratios
in FPT(k) time. Cohen-Addad et al. [14] showed that FPT(k)-time algorithms based on
coresets yield (1 + 2/e + ε)-approximation and (1 + 8/e + ε)-approximation for k-median
and k-means, respectively. Similar improvements have been achieved for other clustering
problems such as capacitated k-median [15, 2], capacitated k-means [15], facility location [14],
lower-bounded k-median [7, 8], and k-median with outliers [20] using FPT algorithms.

A crucial property used in the algorithms for the k-median and k-means problems is that
all clients of a cluster lie fully in the Voronoi cell of the corresponding facility. However, in
many applications involving clustering, clients are correlated and their clustering needs some
additional constraints to ensure the legitimacy of the clustering result. One such example
is the capacitated k-median problem, where the size of each cluster should be less than
the capacity of the corresponding facility. In such applications, the clusters are no longer
obtained from the Voronoi cell of the opened facilities, which means that the partition of
clients and locations of the opened facilities in an optimal solution might be quite arbitrary.
We curtly remark on the commonly used techniques to show the obstacles in obtaining FPT
approximation algorithms in such settings.

Several sampling based FPT(k)-time algorithms yield (1 + ε)-approximation for clustering
problems in Euclidean space [30, 27, 28, 17, 9, 19]. The idea behind these algorithms
is to exploit the fact that the location of the corresponding facility of a cluster can be
approximated by the centroid of a small subset sampled from the cluster. The difficulty in
extending this approach to the problems in the considered class is due to the constraints
associated with the facilities and clients. For instance, in the lower-bounded k-median
problem, the facilities have non-uniform lower bounds on the number of assigned clients.
In such settings, it is quite hard to identify the clients from a cluster and the corresponding
facility based on such approximate location. Moreover, these algorithms rely heavily
on the properties of Euclidean space and seem difficult to be applied to general metric
spaces. Indeed, assuming the Gap-Exponential Time Hypothesis, Cohen-Addad et al. [14]
showed that in general metric spaces, any (1 + 2/e − ε)-approximation algorithm for
k-median and (1 + 8/e− ε)-approximation algorithm for k-means have running time no
better than nkf(ε) .
Coreset construction is a commonly used technique for designing FPT algorithms for
clustering problems [13, 15, 14]. A coreset is a set of weighted clients such that one can
get an approximation solution by minimizing the objective function on the coreset. Space
decomposition is a frequently used approach for constructing such coresets. In [13, 15, 14],
the space partition is given by a set of rings centered at a bi-criteria constant factor
approximation to the problems. The clients located in each ring are replaced by a single
client whose weight equals the number of clients in the ring. This yields coresets of size
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poly(logn, k) for the considered problems. FPT-time approximation algorithms can then
be obtained by performing enumeration methods on such coresets. Unfortunately, it
is still unknown that whether such approach works for many widely-studied clustering
problems, such as lower-bounded clustering [36], and fault tolerant clustering [24]. The
challenge lies in the fact that the loss in the approximation ratio induced by each ring
is difficult to analysis due to the additional constraints. How to approximate the input
data by a small coreset in these problems is not clear.

1.1 Our techniques and results
We propose a reduced search space technique to design FPT approximation algorithms for
clustering problems. Let D and F denote the given sets of clients and facilities respectively,
where |D∪F| = n. For each i, j ∈ D∪F , let ∆(i, j) denote the distance and squared distance
from i to j for k-median and k-means, respectively. For each i ∈ D ∪ F and A ⊂ D ∪ F ,
define Φ(i,A) = minj∈A∆(i, j) and ∆(A, i) =

∑
j∈A∆(j, i). The reduced search space can

be formally defined as follows.

I Definition 1 ((k, ε)-reduced search space). Given a set D of clients and a set F of facilities
in a metric space, an integer k > 0, and a real number 0 < ε ≤ 1, a subset H ⊂ D is called
a (k, ε)-reduced search space if for any partition D = {D1, . . . ,Dk} of D and any subset
C = {c1, . . . , ck} of F , we have

∑k
t=1 |Dt|Φ(ct,H) ≤ (1 + ε)

∑k
t=1 ∆(Dt, ct) with constant

probability.

A reduced search space is a client set that has the guarantee of containing a set of clients
close to the facilities opened in the unknown optimal solution. We consider the uniform
capacitated k-median problem [15] for an example to illustrate the power of such a reduced
search space. Let D∗ = {D∗1 , . . . ,D∗k} denote the partition of D and C∗ = {c∗1, . . . , c∗k} be the
set of opened facilities in an optimal solution, where the clients from D∗t are assigned to c∗t
for each t ∈ [k]. Let H be a (k, ε)-reduced search space. Define ht = arg minj∈H∆(j, c∗t ) and
ct = arg mini∈F ∆(i, ht). With constant probability, we have

k∑
t=1

∆(D∗t , ct) ≤
k∑
t=1

∆(D∗t , ht) +
k∑
t=1
|D∗t |∆(c∗t , ht) ≤

k∑
t=1

∆(D∗t , c∗t ) + 2
k∑
t=1
|D∗t |∆(c∗t , ht)

≤ (3 + 2ε)
k∑
t=1

∆(D∗t , c∗t ),

where the first two steps follow from triangle inequality, and the last step is due to the
definition of reduced search space. This implies that a (3 +O(ε))-approximation solution can
be easily found by enumerating the nearest facility to each j ∈ H with constant probability,
which takes |H|knO(1) time. The success probability can be boosted to 1− λ−1 for any λ > 1
by repeatedly running the algorithm for O(log λ) times.

In this paper, we show the advantages of reduced search spaces in the task of designing
FPT algorithms, which include

We show that the reduced search space is quite universal, based on which a unified
framework for designing FPT approximation algorithms for a set of clustering problems is
given. These problems include lower-bounded clustering [36], capacitated clustering [10],
clustering with service installation costs [34], fault tolerant clustering [24], and priority
clustering [29]. Our framework combines the reduced search space with a problem-specific
selection algorithm to obtain the desired approximation solution. Note that the selection
algorithms for the problems may not be as trivial as shown in the example (e.g., k-median
with non-uniform capacities). The selection algorithms are given in Section 3.
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5:4 A Unified Framework of FPT Approximation Algorithms for Clustering Problems

The running time of our algorithms depend heavily on the size of the reduced search
space. It seems intuitively that a reduced search space should be quite large, since there
are nO(k) choices of the partition D of D and the set C of opened facilities. The main
challenge of applying reduced search space to design FPT algorithms is how to construct
a small reduced search space. In this paper, we show, somewhat surprisingly, that a set
of O(kε−3) clients greedily sampled from D is a (k, ε)-reduced search space.

We summarize our results in Table 1 and the following paragraphs. We expect that our
framework will be useful in other clustering problems and of broader interest.

1. Capacitated clustering. In this problem, each facility has a capacity, and the number
of clients assigned to each open facility should be no more than the capacity of the facility.
The current best approximation ratios for both the problems of capacitated k-median
and k-means are O(log k). Our framework yields a (3 + ε)-approximation algorithm for
capacitated k-median and a (9 + ε)-approximation algorithm for capacitated k-means that
run in FPT(k) time. The approximation ratios are the same as that of the coresets-based
FPT algorithms given by Cohen-Addad and Li [15]. However, our algorithms are simpler
and only use random sampling.

2. Lower-bounded clustering. This problem generalizes the standard clustering problem
in that each facility is associated with a lower bound, and the number of clients assigned
to each facility should be more than the corresponding lower bound. Bera et al. [7, 8]
gave a (3.736 + ε)-approximation algorithm for the k-median with uniform lower bounds
problem, which runs in FPT(k) time. The problem remains elusive for non-uniform lower
bounds. For this more general case, our framework gives a (3+ε)-approximation algorithm
for lower-bounded k-median and a (9 + ε)-approximation algorithm for lower-bounded
k-means.

3. Clustering with service installation costs. This problem is frequently encountered
in scenarios where clients require different kinds of services, and has applications in many
fields such as network design [35] and data management [6]. For this problem, we are
given a set of services. Each client is associated with a specific service, and we have a
service installation cost for each facility-service pair that indicates the cost for installing
the service at the facility (the service installation costs must satisfy a given ordering, which
is detailed in Section 3.3). The goal is to open no more than k facilities, install services at
the opened facilities, and assign each client to an opened facility where the associated
service is installed, such that the sum of the assignment cost and the service installation
cost is minimized. Shmoys et al. [34] showed that a primal-dual algorithm yields an
18-approximation for the k-median objective for the case where the cost for installing a
service at each facility is uniform. For non-uniform service installation costs, we show that
our framework gives a (4.39 + ε)-approximation algorithm and a (19.53 + ε)-approximation
algorithm that run in FPT(k) time for the k-median and k-means objectives, respectively.

4. Fault tolerant clustering. For this problem, each client j is associated with a parameter
lj ≥ 1, and counts the sum of its distances to the lj nearest opened facilities as its
assignment cost. Hajiaghayi et al. [24] gave a 93-approximation algorithm for the k-
median objective. Our framework yields a FPT(k)-time (3 + ε)-approximation algorithm
and a FPT(k)-time (9 + ε)-approximation algorithm for the k-median and k-means
objectives, respectively.

5. Priority clustering. For this problem, each client has a priority and can only be assigned
to a facility with the same or higher priority. Kumar and Sabharwal [29] introduced an
O(1)-approximation algorithm for priority k-median for the case where the clients have no
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Table 1 The results for the studied clustering problems. The results of this paper are marked
with ??.

Problems Approx. Time Constraints Ref.

Capacitated k-median
O(log k) poly(n) No constraint [2]
3 + ε (kε−1)O(k)nO(1) No constraint [15]
3 + ε (kε−1)O(k)nO(1) No constraint ??

Capacitated k-means
O(log k) poly(n) No constraint [18]
9 + ε (kε−1)O(k)nO(1) No constraint [15]
9 + ε (kε−1)O(k)nO(1) No constraint ??

Lower-bounded k-median
516 poly(n) Uniform lower bounds [22]
3.736 + ε (kε−1)O(k)nO(1) Uniform lower bounds [7, 8]
3 + ε (kε−1)O(k)nO(1) No constraint ??

Lower-bounded k-means 9 + ε (kε−1)O(k)nO(1) No constraint ??

k-median with service
installation costs

18 poly(n) Uniform installation costs [34]
4.39 + ε (kε−1)O(k)nO(1) No constraint ??

k-means with service in-
stallation costs

19.53 + ε (kε−1)O(k)nO(1) No constraint ??

Fault tolerant k-median 93 poly(n) No constraint [24]
3 + ε (kε−1)O(k)nO(1) No constraint ??

Fault tolerant k-means 9 + ε (kε−1)O(k)nO(1) No constraint ??

Priority k-median O(1) poly(n) No more than two priorities [29]
3 + ε (kε−1)O(k)nO(1) No constraint ??

Priority k-means 9 + ε (kε−1)O(k)nO(1) No constraint ??

more than two different priorities. The approximation ratio is implicit but seems to be a
very large number. We give a (3 + ε)-approximation algorithm for priority k-median and
a (9 + ε)-approximation algorithm for priority k-means that run in FPT(k) time using
our framework.

2 A reduced search space for k-median

In this section, we prove our main technical result for the k-median objective: the construction
of a reduced search space of size O(kε−3). The analysis can be easily adapted to the k-means
objective to get the desired FPT approximation algorithms. Let I = (D,F , k) denote an
instance of k-median, where D is a set of clients and and F is a set of facilities in a metric
space. Let n = |D ∪ F|. The reduced search space is constructed using D-sampling [4].
It samples a client with probability proportional to its distance to the nearest previously
sampled client, which can be defined as follows.

I Definition 2 (D-sampling [4]). Given a set D of clients and another set H ⊂ D of clients,
D-sampling is a sampling method which samples a client j ∈ D with respect to H with
probability proportional to Φ(j,H). For the case where H = ∅, D-sampling samples a client
from D uniformly at random.

Given an instance I = (D,F , k) of k-median and a real number 0 < ε ≤ 1, we sample a
set H of O(kε−3) clients from D using D-sampling, as detailed in Algorithm 1. The algorithm
runs in O(nkε−3) time. Recall that Φ(i,A) = minj∈A∆(i, j) and ∆(A, i) =

∑
j∈A∆(j, i)

for each i ∈ D ∪ F and A ⊂ D ∪ F . Given two sets A ⊂ D ∪ F and B ⊂ D ∪ F , define
∆(A,B) = mini∈B∆(A, i), and let Φ(A,B) =

∑
j∈AΦ(j,B).

ISAAC 2020



5:6 A Unified Framework of FPT Approximation Algorithms for Clustering Problems

Algorithm 1 Construct a reduced search space.

Input: An instance I = (D,F , k) of k-median and a real number 0 < ε ≤ 1;
Output: A set H ⊂ D of O(kε−3) clients;

1 sample a client j ∈ D uniformly at random, and let H1 = {j};
2 for t = 2 to 360kε−3 do
3 sample a client j ∈ D using D-sampling with respect to Ht−1;
4 Ht ⇐ Ht−1 ∪ {j};
5 t⇐ t+ 1;
6 return H ⇐ Ht.

The following result is known as Chernoff Bound [32].

I Lemma 3. Let a1, . . . , aq be q independent random variables with values of 1 or 0, where
ai takes 1 with probability at least p for i = 1, . . . , q. Let a =

∑q
i=1 ai. For any real number

0 < λ < 1, we have Pr[a < (1− λ)pq] < e−
λ2pq

2 .

We will also use the following well known algebraic fact, which is called Abel’s lemma [1].

I Lemma 4. For two arbitrary sequences {at} and {bt}, we have
∑N
t=1 atbt = SNbN −∑N−1

t=1 St(bt+1 − bt), where St =
∑t
t′=1 at′ .

2.1 A general idea
Let D = {D1, . . . ,Dk} be an arbitrary partition of D and C = {c1, . . . , ck} be an arbitrary
subset of F . Given a cluster Dt ∈ D, define bα(Dt) = {j ∈ Dt : ∆(j, ct) ≤ αrt} for α > 0,
where rt = ∆(Dt, ct)/|Dt|. This is the set of clients from Dt that lie on a closed ball centred
at ct with radius αrt. If the value of α is small enough, then any client from bα(Dt) is near
to ct. Our task is to find a client from bα(Dt) for each cluster Dt ∈ D. The challenge is
that we need to ensure that the clients from bα(Dt) can be selected from the entire input
data. By the definition of D-sampling, we know that if the clients from Dt are far from
the set of previously sampled clients, they will be sampled with a high probability, even if
|Dt| is very small compared to |D|. We are able to show that bα(Dt) contains a substantial
portion of Dt, such that the points from bα(Dt) have a good chance to be sampled. However,
using D-sampling causes yet another problem. If the clients in Dt are close to the previously
sampled clients, then the probability of picking a client from bα(Dt) with D-sampling will be
close to 0. This problem is quite obvious for the clustering problems such as lower-bounded
k-median and priority k-median, where the optimal clusters can be an arbitrary partition of
the input data, and thus the clients in Dt are not guaranteed to be far from other clusters.
Our method to deal with this problem is to use the replication of a previously sampled client
to approximate facility ct. We show that such a substitute works well if the probability of
sampling points from Dt is very small. Let H denote the set of O(kε−3) clients generated by
Algorithm 1. The ideas above lead to the proof of the following result.

I Theorem 5. H is a (k, ε)-reduced search space.

2.2 Proof of Theorem 5
Let D = {D1, . . . ,Dk} be an arbitrary partition of D. Let Hs denote the set of clients
sampled with Algorithm 1 after the s-th iteration. Let H0 = O0 = ∅. Define Os = {Dt ∈
D : Φ(ct,Hs) ≤ (1 + ε

2 )rt}, where rt = ∆(Dt, ct)/|Dt|. This is the set of the clusters whose
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corresponding facilities are close to Hs. Rather than immediately proving Theorem 5, we
first consider the following invariant V (s), which says that the size of Os+1 is larger than
that of Os with a high probability, unless Hs is a (k, ε)-reduced search space. We will show
that the invariant is maintained during each step of the algorithm. In Lemma 6, we further
argue that V (s) ensures the correctness of Theorem 5.

V (s): Either Hs is a (k, ε)-reduced search space, or Pr[|Os+1| > |Os|] > ε3

180 .

Before proving this invariant property, we first show its implication.

I Lemma 6. If invariant V (s) is maintained during each step of Algorithm 1, then there
exists a value q = O(kε−3), such that Hq is a (k, ε)-reduced search space.

Proof. At each iteration of Algorithm 1, define a variable as as follows: if |Os+1| > |Os|,
then as = 1; otherwise, as = 0. Invariant V (s) implies that p = Pr[|Os+1| > |Os|] > ε3

180 ,
unless Hs is the desired reduced search space. Let q = 360kε−3 and a =

∑q
s=1 as. We have

pq > 2k. Using Lemma 3, we get

Pr[a < k] ≤ Pr[a < 1
2pq] < e−pq/8 < e−k/4 ≤ e−1/4,

which implies that

Pr[Oq = D] = Pr[a ≥ k] = 1−Pr[a < k] > 1− e−1/4.

If Oq = D holds, then by the definition of Oq, we have Φ(ct,Hq) < (1 + ε)∆(Dt, ct)/|Dt|
for each 1 ≤ t ≤ k, and thus

∑k
t=1 |Dt|Φ(ct,Hq) < (1 + ε)

∑k
t=1 ∆(Dt, ct). By the definition

of reduced search space, Hq is a (k, ε)-reduced search space. This completes the proof of
Lemma 6. J

Lemma 6 says that V (s) is sufficient to ensure the validity of Theorem 5. It remains to
prove the correctness of V (s). Consider a cluster Dt ∈ D\Os. If a client from b1+ε/2(Dt) is
picked after the s-th iteration, then by the definitions of bα(Dt) and Os, Dt should be added
to Os+1 and thus |Os+1|−|Os| ≥ 1. By the arguments above, we know that Pr[|Os+1| > |Os|]
is no less than the probability of sampling a point from b1+ε/2(Dt) for any cluster Dt ∈ D\Os.
We now show the correctness of V (s) for the case s = 0. Since the first client added to H is
uniformly sampled from D, we have

Pr[|O1| > |O0|] ≥
∑
Dt∈D |b1+ε/2(Dt)|

|D|
. (1)

We use the following lemma to show that for any cluster Dt ∈ D, b1+ε/2(Dt) contains a
substantial part of Dt.

I Lemma 7. For any Dt ∈ D and α ≥ 1, we have |bα(Dt)| ≥ (1− 1
α )|Dt|.

Proof. Suppose that the statement in the lemma does not hold. Then, we have |Dt\bα(Dt)| >
1
α |Dt|. This implies that

∆(Dt, ct) ≥ ∆(Dt\bα(Dt), ct) > |Dt\bα(Dt)|αrt > |Dt|rt = ∆(Dt, ct),

where the second step is due to the definition of bα(Dt), and the last step follows from the
fact that ∆(Dt, ct) = |Dt|rt. This result is not valid, and thus Lemma 7 is true. J

ISAAC 2020



5:8 A Unified Framework of FPT Approximation Algorithms for Clustering Problems

Using inequality (1) and Lemma 7, we have Pr[|O1| > |O0|] ≥
∑
Dt∈D |b1+ε/2(Dt)|/|D| ≥

ε
2+ε , which implies that V (s) holds for s = 0. We now consider the case of s > 0. By the
definition of D-sampling, in the s+ 1-th iteration, Algorithm 1 samples a client from a cluster
outside of Os with probability

∑
Dt∈D\Os Φ(Dt,Hs)/Φ(D,Hs). We consider the following two

cases: (1)
∑
Dt∈D\Os Φ(Dt,Hs) ≤ ε

6 Φ(D,Hs), and (2)
∑
Dt∈D\Os Φ(Dt,Hs) > ε

6 Φ(D,Hs). In
the following, we will show how invariant V (s) is maintained in each case.

Case (1): ∑Dt∈D\Os
Φ(Dt,Hs) ≤ ε

6Φ(D,Hs)
For this case, D-sampling does not work since the probability of sampling clients from a
cluster not covered by Os is very small. For each cluster Dt ∈ D\Os, we will show that a
previously sampled client is close to facility ct. Let ht denote the nearest client to ct in Hs
for each Dt ∈ D\Os. The following lemma shows that the distance from ht to ct can be
bounded by a combination of rt and 1

|Dt|Φ(Dt,Hs).

I Lemma 8. For each Dt ∈ D\Os, we have ∆(ht, ct) ≤ 1
|Dt|Φ(Dt,Hs) + rt.

Proof. For each j ∈ Dt, let h(j) denote the nearest client to j in Hs. Consider a multi-set
D̃t = {h(j) : j ∈ Dt}. By triangle inequality, we have

∆(D̃t, ct) ≤
∑
j∈Dt

∆(h(j), j) +
∑
j∈Dt

∆(j, ct) = Φ(Dt,Hs) + ∆(Dt, ct). (2)

Consequently, we get

∆(ht, ct) ≤ min
i∈D̃t

∆(i, ct) ≤
1
|Dt|

∆(D̃t, ct) ≤
1
|Dt|

Φ(Dt,Hs) + rt,

where the first step follows from the fact that ht is the nearest client to ct in Hs, the second
step estimates the minimum by the average, and the last step is due to inequality (2). This
completes the proof of Lemma 8. J

By the definition of Os and Lemma 8, we have

k∑
t=1
|Dt|Φ(ct,Hs) =

∑
Dt∈Os

|Dt|Φ(ct,Hs) +
∑

Dt∈D\Os

|Dt|Φ(ct,Hs)

≤ (1 + ε/2)
∑
Dt∈Os

∆(Dt, ct) +
∑

Dt∈D\Os

∆(Dt, ct) +
∑

Dt∈D\Os

Φ(Dt,Hs)

≤ (1 + ε/2)
k∑
t=1

∆(Dt, ct) +
∑

Dt∈D\Os

Φ(Dt,Hs). (3)

We now show that
∑
Dt∈D\Os Φ(Dt,Hs) is much smaller than

∑k
t=1 ∆(Dt, ct).

I Lemma 9. If
∑
Dt∈D\Os Φ(Dt,Hs) ≤ ε

6 Φ(D,Hs), then we have
∑
Dt∈D\Os Φ(Dt,Hs) ≤

ε
2
∑k
t=1 ∆(Dt, ct).

Proof. By the assumption that
∑
Dt∈D\Os Φ(Dt,Hs) ≤ ε

6 Φ(D,Hs), we have

Φ(D,Hs) =
∑
Dt∈Os

Φ(Dt,Hs) +
∑

Dt∈D\Os

Φ(Dt,Hs) ≤
∑
Dt∈Os

Φ(Dt,Hs) + ε

6Φ(D,Hs),

which implies that
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Φ(D,Hs) ≤
1

1− ε/6
∑
Dt∈Os

Φ(Dt,Hs) ≤
1

1− ε/6
∑
Dt∈Os

∆(Dt,Hs)

≤ 1
1− ε/6

∑
Dt∈Os

[∆(Dt, ct) + |Dt|Φ(ct,Hs)] ≤
2 + ε/2
1− ε/6

∑
Dt∈Os

∆(Dt, ct),

where the second step follows from the definitions of ∆(Dt,Hs) and Φ(Dt,Hs), the third step
follows from triangle inequality, and the last step is due to the definition of Os. Consequently,
we get∑
Dt∈D\Os

Φ(Dt,Hs) ≤
ε

6Φ(D,Hs) ≤
ε

6 ·
2 + ε/2
1− ε/6

∑
Dt∈Os

∆(Dt, ct) ≤
ε

2
∑
Dt∈Os

∆(Dt, ct)

≤ ε

2

k∑
t=1

∆(Dt, ct),

where the third step is derived from the fact that 0 < ε ≤ 1. J

Using inequality (3) and Lemma 9, we get
∑k
t=1 |Dt|Φ(ct,Hs) ≤ (1 + ε)

∑k
t=1 ∆(Dt, ct).

By the definition of reduced search spaces, Hs is a (k, ε)-reduced search space. Thus, invariant
V (s) holds for case (1).

Case (2): ∑Dt∈D\Os
Φ(Dt,Hs) > ε

6Φ(D,Hs)
For this case, the clients from the clusters not covered by Os have a good chance to be
sampled. Given a cluster Dt ∈ D\Os, let ht denote the nearest client to ct in Hs. Define
dt = ∆(ht, ct) and βt = dt/rt. The fact that Dt ∈ D\Os implies that βt > 1+ ε

2 . As discussed
above, we will show that if α has a proper value, then any client from bα(Dt) is close to ct,
and can be sampled with a good chance. By the definitions of bα(Dt) and Os, we know that
if a client j ∈ b1+ε/2(Dt) is sampled in the s+ 1-th iteration of Algorithm 1, then cluster Dt
should be added to Os+1. We will argue that this happens with a high probability, and thus
invariant V (s) can be proven.

We now give a lower bound on Φ(bα(Dt),Hs) for each Dt ∈ D\Os, which is useful
for analyzing the probability of sampling clients from bα(Dt) in the s + 1-th iteration of
Algorithm 1.

I Lemma 10. For any Dt ∈ D\Os and 1 ≤ α ≤ 1 + ε
2 , we have Φ(bα(Dt),Hs) ≥

∆(Dt, ct)(βt − βt
α − lnα).

Proof. Given a value 0 ≤ µ ≤ α, define Gµ = {j ∈ Dt : ∆(j, ct) = µrt}. This is the set of
clients from Dt that lie on an annular region centred at ct with radius µrt. Given a client
j ∈ Dt, by h(j) we denote the nearest client to j in Hs. We have

Φ(Gµ,Hs) =
∑
j∈Gµ

∆(j, h(j)) ≥
∑
j∈Gµ

[∆(h(j), ct)−∆(ct, j)] ≥
∑
j∈Gµ

[dt −∆(ct, j)]

=
∑
j∈Gµ

[βtrt −∆(ct, j)] =
∑
j∈Gµ

(βtrt − µrt) = |Gµ|(βtrt − µrt), (4)

where the second step is due to triangle inequality, the third step is due to the fact that
dt = ∆(ht, ct) ≤ ∆(h(j), ct), and the fifth step follows from the definition of Gµ.
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Define f(µ) = βtrt − µrt and φ(µ) = |Gµ|. Let L = {µ ∈ (0, α) : φ(µ) 6= 0} ∪ {0, α}. It
can be seen that |L| ≤ n+ 2. We have

Φ(bα(Dt),Hs) =
∑
µ∈L

Φ(Gµ,Hs) ≥
∑
µ∈L

f(µ)φ(µ), (5)

where the last step is derived from inequality (4).
We will show that∑
µ∈L

f(µ)φ(µ) ≥ ∆(Dt, ct)(βt −
βt
α
− lnα). (6)

If inequality (6) is true, then combined with inequality (5), we have Φ(bα(Dt),Hs) ≥
∆(Dt, ct)(βt − βt

α − lnα), which completes the proof of Lemma 10. It remains to show
inequality (6). We sort each µ ∈ L by increasing value, and let µτ denote the τ -th number
in this order for each 1 ≤ τ ≤ |L|. Using Lemma 4, we get

|L|∑
τ=1

f(µτ )φ(µτ ) = f(µ|L|)
|L|∑
τ=1

φ(µτ )−
|L|−1∑
τ=1

[
[f(µτ+1)− f(µτ )]

τ∑
τ ′=1

φ(µτ ′)
]

= f(α)
∣∣bα(Dt)

∣∣− |L|−1∑
τ=1

[
[f(µτ+1)− f(µτ )]

∣∣bµτ (Dt)
∣∣], (7)

where the second step follows from the definition of φ(µ). Let f ′(t) denote the first derivative
of f(t). By the definition of L, for any 1 ≤ τ ≤ |L| − 1 and µ′ ∈ [µτ , µτ+1), we have
bµ′(Dt) = bµτ (Dt). Thus,

[f(µτ+1)− f(µτ )]
∣∣bµτ (Dt)

∣∣ =
∣∣bµτ (Dt)

∣∣ ∫ µτ+1

µτ

f ′(µ)dµ =
∫ µτ+1

µτ

f ′(µ)
∣∣bµ(Dt)

∣∣dµ,
which implies that

|L|−1∑
τ=1

[
[f(µτ+1)− f(µτ )]

∣∣bµτ (Dt)
∣∣] =

∫ α

0
f ′(µ)

∣∣bµ(Dt)
∣∣dµ. (8)

Define the following function that depends on µ (0 ≤ µ ≤ α):

η(µ) =


1
µ2 |Dt| µ > 1

0 0 ≤ µ ≤ 1

A primitive function of η(µ) is

G(µ) =

(1− 1
µ

)|Dt| µ > 1

0 0 ≤ µ ≤ 1

Using integration by parts, we have∫ α

0
η(µ)f(µ)dµ = G(µ)f(µ)

∣∣α
0 −

∫ α

0
f ′(µ)G(µ)dµ = G(α)f(α)−

∫ α

0
f ′(µ)G(µ)dµ. (9)
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Consequently, we get
|L|∑
τ=1

f(µτ )φ(µτ )−
∫ α

0
η(µ)f(µ)dµ

= [|bα(Dt)| −G(α)]f(α) +
∫ α

0
f ′(µ)[G(µ)− |bµ(Dt)|]dµ

≥
∫ α

0
f ′(µ)[G(µ)− |bµ(Dt)|]dµ, (10)

where the first step is derived from equalities (7), (8), and (9), and the second step follows
from the fact that |bα(Dt)| ≥ G(α) and f(α) > 0, which is due to Lemma 7 and the fact
that α ≤ 1 + ε

2 < βt.
Observe that f(µ) decreases monotonously for 0 ≤ µ ≤ α. This implies that f ′(µ) ≤ 0

for any 0 ≤ µ ≤ α. Moreover, we have G(µ) − |bµ(Dt)| ≤ 0 by Lemma 7. Thus, we
get f ′(µ)[G(µ) − |bµ(Dt)|] ≥ 0 for any 0 ≤ µ ≤ α and

∫ α
0 f ′(µ)[G(µ) − |bµ(Dt)|]dµ ≥ 0.

Consequently, inequality (10) implies that
|L|∑
τ=1

f(µτ )φ(µτ ) ≥
∫ α

0
η(µ)f(µ)dµ =

∫ α

1
η(µ)f(µ)dµ =

∫ α

1

|Dt|
µ2 (βtrt − µrt)dµ

= ∆(Dt, ct)
∫ α

1

1
µ2 (βt − µ)dµ = ∆(Dt, ct)(βt −

βt
α
− lnα),

where the second step follows from g(µ) = 0 for any 0 ≤ µ ≤ 1, and the fourth step follows
from the fact that ∆(Dt, ct) = |Dt|rt. This implies that inequality (6) holds, which in turn
implies that Lemma 10 is true. J

The following result implies that the ratio of Φ(b1+ε/2(Dt),Hs) and Φ(Dt,Hs) can be
bounded by a constant for each Dt ∈ D\Os.

I Lemma 11. For each Dt ∈ D\Os, we have Φ(b1+ε/2(Dt),Hs) > ε2

30 Φ(Dt,Hs).

Proof. Observe that

Φ(Dt,Hs) ≤ ∆(Dt, ht) ≤ ∆(Dt, ct) + |Dt|dt = ∆(Dt, ct) + ∆(Dt, ct)
dt
rt

= (1 + βt)∆(Dt, ct),

where the second step follows from triangle inequality, and the third step is due to the fact
that ∆(Dt, ct) = |Dt|rt. Thus, using Lemma 10, for any 1 ≤ α ≤ 1 + ε

2 , we have

Φ(bα(Dt),Hs)
Φ(Dt,Hs)

≥ Φ(bα(Dt),Hs)
(1 + βt)∆(Dt, ct)

≥ 1
1 + βt

(βt −
βt
α
− lnα). (11)

It can be seen that 1
1+βt (βt −

βt
α − lnα) increases monotonously with increasing value of

βt for α ≥ 1. This implies that

Φ(bα(Dt),Hs)
Φ(Dt,Hs)

>
1

1 + βt
(βt −

βt
1 + ε/2 − ln(1 + ε

2)) > 1
2 + ε/2( ε2 − ln(1 + ε

2))

= 1
2 + ε/2( ε2 − ln(1 + ε

2)) ≥ 1
2 + ε/2 ·

ε2

12 ≥
ε2

30 ,

where the first step is due to inequality (11), the second step follows from the fact that
βt > 1 + ε

2 , and the last two steps follow from the fact that 0 < ε ≤ 1. This completes the
proof of Lemma 11. J
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By the assumption that
∑
Dt∈D\Os Φ(Dt,Hs) > ε

6 Φ(D,Hs) and Lemma 11, we get

Pr[|Os+1| > |Os|] ≥
∑
Dt∈D\Os Φ(b1+ε/2(Dt),Hs)

Φ(D,Hs)

=
∑
Dt∈D\Os Φ(b1+ε/2(Dt),Hs)∑

Dt∈D\Os Φ(Dt,Hs)
·
∑
Dt∈D\Os Φ(Dt,Hs)

Φ(D,Hs)

>
ε2

30 ·
ε

6 = ε3

180 .

This implies that invariant V (s) holds for case (2). Using Lemma 6, we complete the proof
of Theorem 5.

3 The selection algorithms

Given a clustering problem, let D∗ = {D∗1 , . . . ,D∗k} denote the partition of D and C∗ =
{c∗1, . . . , c∗k} be the set of opened facilities in an optimal solution, where the clients from D∗t
are assigned to c∗t for each 1 ≤ t ≤ k. Using the standard discretization method [3, 33], we can
assume that the ratio of the maximum and minimum distances between any two points from
F∪D is upper bounded by nO(1), which induces an arbitrarily small loss in the approximation
guarantee.1 As shown in Theorem 5, greedy sampling yields a (k, ε)-reduced search space
with O(nkε−3) time. In this section, we show how to obtain the desired approximation
solution for each studied problem using such a reduced search space.

3.1 Lower-bounded k-median

Given a set D of clients and a set F of facilities in a metric space, where each facility i ∈ F is
associated with a lower bound ϕ(i), the lower-bounded k-median problem [36] is to open at
most k facilities and assign each client to an opened facility, such that the number of clients
assigned to each open facility i ∈ F is at least ϕ(i) and the assignment cost is minimized.

Since the facilities are associated with lower bounds, it may be the case that in an optimal
solution, the clients are partitioned into k′ clusters for an integer 0 < k′ < k and we need to
guess the value of k′, which multiplies the running time by a factor of k. For each integer
k′ + 1 ≤ t ≤ k, we can assume that D∗t = ∅, and let c∗t be an arbitrary facility.

We first run Algorithm 1 to obtain a reduced search space H. For each t ∈ [k], let
ht denote the nearest client to c∗t in H, and define dt = ∆(c∗t , ht). We round dt down to
the closest integer power of 1 + ε and define Qt = {i ∈ F : dt ≤ ∆(i, ht) ≤ (1 + ε)dt}.
We have c∗t ∈ Qt. The idea of our selection algorithm is to choose facilities from the
sets Q1, . . . ,Qk to open. For each t ∈ [k′], let ct = arg mini∈Qt ϕ(i) be the facility in Qt
associated with the smallest lower bound. We have ∆(D∗t , ct) ≤ ∆(D∗t , ht) + |D∗t |∆(ht, ct) ≤
∆(D∗t , ht) + (1 + ε)|D∗t |∆(ht, c∗t ) ≤ ∆(D∗t , c∗t ) + (2 + ε)|D∗t |∆(ht, c∗t ), where the first and last
steps follow from triangle inequality, and the second step is due to the fact that ct ∈ Qt.

1 For example, we can polynomially bound the ratio as follows. First, guess the cost opt of an optimal
solution. We can enumerate the distance between each client-facility pair to find a value M that
satisfies opt/n < M < opt. For each i, j ∈ D ∪ F with ∆(i, j) > Mn2, let ∆(i, j) = Mn2. No
O(1)-approximation solution will use such edges since Mn2 > nopt. Let ∆(i, j) = M/n2 for each
i, j ∈ D ∪ F with ∆(i, j) < M/n2, which loses a factor 1 + 1/n in the approximation guarantee. Now
the ratio is at most n4.
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Summing both sides of the inequality over D∗t ∈ D∗, we know that

k′∑
t=1

∆(D∗t , ct) ≤
k′∑
t=1

∆(D∗t , c∗t ) + (2 + ε)
k′∑
t=1
|D∗t |∆(ht, c∗t )

=
k∑
t=1

∆(D∗t , c∗t ) + (2 + ε)
k∑
t=1
|D∗t |∆(ht, c∗t ) ≤ (3 + 4ε)

k∑
t=1

∆(D∗t , c∗t ) (12)

holds with constant probability, where the last step follows from the definition of reduced
search space.

By the fact that c∗t ∈ Qt and ct = arg mini∈Qt ϕ(i) for each t ∈ [k′], we have ϕ(ct) ≤ ϕ(c∗t ).
Thus, assigning the clients from cluster D∗t to ct for each t ∈ [k′] is feasible for lower-bounded
k-median. Using the partition approach given by Ding and Xu [17], we can partition
D into k′ clusters {D1, . . . ,Dk′} based on facilities c1, . . . , ck′ with nO(1) time, such that
the lower bounds of the facilities are satisfied and

∑k′

t=1 ∆(Dt, ct) ≤
∑k′

t=1 ∆(D∗t , ct) ≤
(3 + 4ε)

∑k
t=1 ∆(D∗t , c∗t ) holds with constant probability, where the last step follows from

inequality (12). This implies a (3 +O(ε))-approximation for lower-bounded k-median.
It remains to show how to find the facilities c1, . . . , ck′ . We use an enumeration method

similar to that in [14]. Observe that there are at most |H|kO(ε−1 logn)k = O(kε−4 logn)k
choices for the facilities c1, . . . , ck′ (we have at most |H|k choices for clients h1, . . . , hk′ and
no more than O(ε−1 logn)k choices for distances d1, . . . , dk′). Thus, these facilities can be
guessed by paying a factor of O(kε−4 logn)k in the running time, which is upper bounded
by (kε−1)O(k)nO(1) using the trick given in [14, 15]: If k < logn/ log logn, then we have
(logn)k = nO(1). Otherwise, logn = O(k log k), which implies that (logn)k = kO(k).

I Theorem 12. There is an algorithm yielding a (3 + ε)-approximation for lower-bounded
k-median with constant probability, which runs in (kε−1)O(k)nO(1) time.

3.2 Capacitated k-median
The capacitated k-median problem [10] considers a set D of clients and a set F of facilities in
a metric space, where each facility i ∈ F has a capacity ϕ(i). The goal is to open at most k
facilities and assign each client to an opened facility, such that the number of clients assigned
to each facility i ∈ F is at most ϕ(i) and the assignment cost is minimized.

We run Algorithm 1 to obtain a reduced search space H. The selection algorithm is
similar to that of lower-bounded k-median. We replace the lower bounds of the facilities
with capacities. However, we can no longer immediately open the facility associated with the
largest capacity from Qt for each t ∈ [k], since it may be the case that the sets Qt are not
disjoint and a facility can be chosen for more than once, which might violate the capacity of
the facility.

We use a color-coding technique [15] to deal with this issue. We randomly associate each
i ∈ F with a label from {1, . . . , k}. Each facility c∗t ∈ C∗ is assigned label t with probability
k−k. The probability can be boosted to a constant by repeating the process for O(kk) times.
We now open the facility with the largest capacity among the ones from Qt that are assigned
label t for each t ∈ [k], which is denoted by ct. Using the partition algorithm given by
Adamczyk et al. [2], we can partition D into k clusters {D1, . . . ,Dk} by facilities c1, . . . , ck,
such that the capacities of the facilities are satisfied and

∑k
t=1 ∆(Dt, ct) ≤

∑k
t=1 ∆(D∗t , ct) ≤

(3 + 4ε)
∑k
t=1 ∆(D∗t , c∗t ).

I Theorem 13. There is an algorithm yielding a (3 + ε)-approximation for capacitated
k-median with constant probability, which runs in (kε−1)O(k)nO(1) time.
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3.3 k-median with service installation costs
The k-median with service installation costs problem [34] considers a set D of clients and
a set F of facilities in a metric space, and a set S of services, where each client j ∈ D is
associated with a service g(j) ∈ S, each service σ ∈ S is associated with a cost fi(σ) for
installing it at each i ∈ F , and there exists an ordering on the facilities from F satisfying
that if i comes before i′ in the ordering, then fi(σ) ≤ fi′(σ) for each i, i′ ∈ F and σ ∈ S.
The goal is to open no more than k facilities, install services at the opened facilities, and
assign each j ∈ D to a facility at which g(j) is installed, such that the sum of the assignment
cost and the service installation costs is minimized.

We use a selection algorithm similar to that of lower-bounded k-median. The only
difference is that we open the facility ct from Qt with the smallest service installation cost
for each t ∈ [k]. By the arguments above, a (3 +O(ε))-approximation for the problem can be
obtained if we install services on facilities c1, . . . , ck and assign clients in an optimal way. For
each σ ∈ S, let Dσ = {j ∈ D : g(j) = σ}. Define C = {c1, . . . , ck}. The problem of installing
services and assigning clients can be formalized as the following integer programming (IP)
for each σ ∈ S.

min
∑

i∈C,j∈Dσ

∆(j, i)xij +
∑
i∈C

fi(σ)yi IP(σ)

s.t.
∑
i∈C

xij = 1 ∀j ∈ Dσ (13)

xij ≤ yi ∀i ∈ C, j ∈ Dσ (14)
xij , yi ∈ {0, 1} ∀i ∈ C, j ∈ Dσ (15)

IP(σ) associates a variable xij with each j ∈ Dσ and i ∈ F , which indicates whether j is
assigned to i, and associates a variable yi with each i ∈ F that indicates whether service
σ is installed at i. Constraint (13) ensures that each client is assigned to a facility, and
constraint (14) ensures that the service requirements of the clients from Dσ are satisfied.

Observe that IP(σ) is a formulation of uncapacitated facility location, where each facility
i ∈ F has an opening cost fi(σ). Using the FPT approximation algorithm given by Cohen-
Addad et al. [14] to solve IP(σ) for each σ ∈ S with Dσ 6= ∅, we can install services
and partition the clients in (kε−1)O(k)nO(1) time, which loses a factor 1.463 + ε in the
approximation ratio. This implies a (4.389 + ε)-approximation for k-median with service
installation costs in time (kε−1)O(k)nO(1).

I Theorem 14. There is an algorithm yielding a (4.389 + ε)-approximation for k-median
with service installation costs, which runs in (kε−1)O(k)nO(1) time.

3.4 Fault tolerant k-median
In the fault tolerant k-median problem [24], each client j should be assigned to lj opened
facilities, and the assignment cost of j is the sum of its distances to the lj facilities, where
lj > 0 is a given integer.

A closely related problem to fault tolerant k-median is chromatic k-median [16], which
considers a set of colored clients and has the constraint that no pair of clients with the
same color can be assigned to the same facility. As shown by Ding and Xu [17], fault
tolerant k-median can be reduced to chromatic k-median: Given an instance of fault tolerant
k-median, we construct an instance of chromatic k-median by making lj mono color copies
for each j ∈ D. Thus, it suffices to give an FPT approximation algorithm for chromatic
k-median.
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We start with finding a reduced search space H for the instance of chromatic k-median
using Algorithm 1 (each client j ∈ D has lj−1 copies in this instance). For each t ∈ [k], let ht =
arg minj∈H∆(j, c∗t ) and ct = arg mini∈F ∆(i, ht). Then,

∑k
t=1 ∆(D∗t , ct) ≤

∑k
t=1 ∆(D∗t , ht)+∑k

t=1 |D∗t |∆(c∗t , ht) ≤
∑k
t=1 ∆(D∗t , c∗t ) + 2

∑k
t=1 |D∗t |∆(c∗t , ht) ≤ (3 + 2ε)

∑k
t=1 ∆(D∗t , c∗t )

holds with constant probability, where the first two steps follow from triangle inequality,
and the last step is due to the definition of reduced search space. By multiplying the
running time by a factor of |H|k = O(kε−3)k, we can assume that we have guessed the
facilities c1, . . . , ck. Using the partition algorithm given by Ding and Xu [17] and the
color-coding technique given in Section 3.2, we can partition the clients into k clusters
{D1, . . . ,Dk} by the facilities c1, . . . , ck, such that the color constrained is satisfied and∑k
t=1 ∆(Dt, ct) ≤

∑k
t=1 ∆(D∗t , ct) ≤ (3 + 4ε)

∑k
t=1 ∆(D∗t , c∗t ) holds with constant probability.

I Theorem 15. There is an algorithm yielding a (3 + ε)-approximation for fault tolerant
k-median, which runs in (kε−1)O(k)nO(1) time.

3.5 Priority k-median
In the priority k-median problem [29], we are given a set D of clients and a set F of facilities
in a metric space, a set P = {1, . . . , |P|} of priorities, and |P| integers k1, . . . , k|P|, where∑|P|
p=1 kp = k. Each i ∈ D ∪ F has a priority pi ∈ P. The goal is to open no more than kp

facilities with priority p for each p ∈ P and assign each client to an opened facility with the
same or higher priority, such that the assignment cost is minimized.

With an O(kk) multiplicative overhead in the running time, we can assume that we have
guessed the priority associated with each c∗t ∈ C∗. For each c∗t ∈ C∗, we open the facility
with priority pc∗t that is nearest to c∗t , and assign each client to its nearest facility with the
same or higher priority. By the arguments above, this induces a (3 +O(ε))-approximation
for priority k-median.

I Theorem 16. There is an algorithm yielding a (3+ε)-approximation for priority k-median,
which runs in (kε−1)O(k)nO(1) time.
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