
PACE Solver Description: PID?

Max Bannach
Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
bannach@tcs.uni-luebeck.de

Sebastian Berndt
Institute for IT Security, Universität zu Lübeck, Germany
s.berndt@uni-luebeck.de

Martin Schuster
Institute for Epidemiology, Kiel University, Germany
martin.schuster@epi.uni-kiel.de

Marcel Wienöbst
Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
wienoebst@tcs.uni-luebeck.de

Abstract
This document provides a short overview of our treedepth solver PID? in the version that we
submitted to the exact track of the PACE challenge 2020. The solver relies on the positive-instance
driven dynamic programming (PID) paradigm that was discovered in the light of earlier iterations
of the PACE in the context of treewidth. It was recently shown that PID can be used to solve a
general class of vertex pursuit-evasion games – which include the game theoretic characterization of
treedepth. Our solver PID? is build on top of this characterization.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases treedepth, positive-instance driven

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.28

Supplementary Material
Repository github.com/maxbannach/PID-Star
Release pace-2020
doi 10.5281/zenodo.3871800

1 Introduction to Positive-Instance Driven Dynamic Programming

Many graph decompositions have game theoretic characterizations in the form of vertex
pursuit-evasion games. Such games, which are also known as graph searching or cops and
robber, are played by two players on an undirected graph G = (V,E). In the version of
the game that corresponds to treedepth, the first player places a team of k searchers on
the vertices of the graph, while the second player controls a single fugitive that hides in a
connected component of the graph. The game is played in rounds as follows [3]: Initially, the
fugitive picks one connected component C of G. The game is continued only on G[C] and
we say that C is contaminated. In each round, both players perform one action:

1. The searchers pick a vertex v ∈ C on which they want to place the next searcher. We say
they clean the vertex v.

2. The fugitive responds by picking a component C ′ of G[C \ {v}]. The contaminated area
is reduced to C ′ and the game proceeds only on this subgraph.

The game ends when the contaminated area shrinks to the empty set, or if the searchers have
placed all k members of their team and C is still non-empty. In the first case the graph was
cleaned and the fugitive was caught, in the second case the fugitive escaped. The searchers

© Max Bannach, Sebastian Berndt, Martin Schuster, and Marcel Wienöbst;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 28; pp. 28:1–28:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6475-5512
mailto:bannach@tcs.uni-luebeck.de
https://orcid.org/0000-0003-4177-8081
mailto:s.berndt@uni-luebeck.de
mailto:martin.schuster@epi.uni-kiel.de
mailto:wienoebst@tcs.uni-luebeck.de
https://doi.org/10.4230/LIPIcs.IPEC.2020.28
https://github.com/maxbannach/PID-Star
https://github.com/maxbannach/PID-Star/releases/tag/v1.0
https://doi.org/10.5281/zenodo.3871800
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 PACE Solver Description: PID?

win if they catch the fugitive, otherwise she wins. Note that in this version of the game, the
searchers are not allowed to remove an already placed searcher from the graph. The game
is therefore monotone and always ends after at most k rounds. Further observe that the
fugitive is visible in the sense that the searchers know in which connected component she
hides – in contrast, an invisible fugitive could hide in subgraphs that are not connected.

We call the configurations of this game blocks, which are tuple (C, ρ) with ρ ∈ N and C ⊆ V
being a connected subgraph with |N(C)|+ ρ ≤ k. Informally, C is the contaminated area
(which is connected), and ρ is the number of remaining searchers. We require |N(C)|+ ρ ≤ k
as the neighborhood of C has to be cleaned in order to have C as contaminated area.
Let us denote the set of all blocks of the game played on a graph G with a team of k
searchers by B(G, k). Two blocks (C1, ρ1) and (C2, ρ2) intersect if N [C1]∩C2 6= ∅. The start
configuration of the game is the block (V, k) and the winning configurations for the searchers
are (∅, ρ ≥ 0). We say the searchers have a winning strategy on a block (C, ρ) if they can
ensure to reach a winning configuration no matter how the fugitive acts. The set of such
blocks is the winning region of the searchers, which we denote by R(G, k) ⊆ B(G, k). Every
block in R(G, k) is called positive.

It is known that a graph has treedepth at most k if, and only if, k searchers have a
winning strategy in the game defined above. In our notation we can express this fact as:

I Fact 1 ([3]). Let G = (V,E) be a graph and k ∈ N. Then (V, k) ∈ R(G, k)⇐⇒ td(G) ≤ k.

Fact 1 tells us that, in order to check whether the treedepth of a graph G is at most k, it is
sufficient to compute the set R(G, k). One way of doing so would be to first compute B(G, k),
then build an auxiliary graph on top of this set, and finally compute R(G, k) by solving
reachability queries on this auxiliary graph. We can estimate the number of configurations
with |B(G, k)| ≤ (k + 1) · nk+1, as there are nk possible ways of placing k searchers on
an n-vertex graph; at most n connected components adjacent to a separator; and since
ρ ∈ {0, . . . , k}. Therefore, the sketched algorithm achieves a run time of O

(
nc·k

)
for a

constant c, which is not feasible in practice for even moderate values of k.
In order to make the game theoretic approach feasible, we present an output-sensitive

algorithm that computes just R(G, k) – without “touching” the rest of B(G, k). Such an
algorithm is called positive-instance driven. This algorithmic technique was invented by
Hisao Tamaki in the context of treewidth computations [5] and was recently shown to be
able to solve a general class of graph searching games [1] – PID? is based on this version.

2 Description of the Core Algorithm

Before we describe the algorithm formally, let us build some intuition about how to compute
the set R(G, k). Surely, we can not start at some block, say (V, k), and just simulate the
game – we might touch a lot of blocks in B(G, k) \ R(G, k) without even noticing it. After
all, we do not know whether (V, k) ∈ R(G, k). We do know, however, that (∅, 0) is a winning
configuration. So let us start with the set R =

{
(∅, 0)

}
and then try to grow it to R(G, k).

We can first ask which configurations of the game lead to (∅, 0), i. e., what are configurations
in which the searchers immediately win in the next round? These are the configurations
({v}, 1) with |N(v)| < k, as in these the searchers can surround the fugitive and have a
searcher left to place it on top of her in the next round. Now assume that we currently have a
set R ⊆ R(G, k) that did already grow a little. How does a configuration (C, ρ) ∈ R(G, k)\R
that is “close to” R look like? The set C is connected by definition, and since the searchers
have a winning strategy from (C, ρ), there is a vertex v ∈ C such that G[C\{v}] has connected

M. Bannach, S. Berndt, M. Schuster, and M. Wienöbst 28:3

components C1, . . . , Cq (q = 1 is possible) with (Ci, ρ− 1) ∈ R for all i ∈ {1, . . . , q}. To find
these configurations, we scan through the blocks (C, ρ) in R, guess a neighbor v ∈ N(C) (the
last cleaned vertex), and guess a set X ⊆ { (C ′, ρ′) ∈ R | v ∈ N(C ′)∧N [C]∩C ′ = ∅∧ρ′ ≤ ρ }
of pairwise non-intersecting blocks – the other configurations the fugitive could choose. Then
the new block (C ∪

⋃
(C′,ρ′)∈X C

′ ∪ {v}, ρ+ 1) is positive and added to R if it has at most
k − ρ− 1 neighbors. The complete algorithm is presented in Listing 1.

Listing 1 The core positive-instance driven algorithm tailored towards treedepth. We assume
that the set R′, the priority queue, and some data structure to mark already explored subgraphs C
(for instance a hash set) are available in global memory.

1 INPUT: graph G = (V,E) and number k ∈ N
2 OUTPUT : a set R = R(G, k)
3
4 // in global memory
5 R′ ← empty set of blocks
6 queue ← priority queue of blocks (C, ρ) ordered by ρ

7
8 function pid ()
9 // configurations leading to (∅, 0)

10 for v in V do
11 if |N(v)| < k then
12 insert ({v}, 1) into queue
13 end
14 end
15 // compute the set R′ ⊆ R(G, k)
16 while queue is not empty do
17 (C, ρ) ← extract a block from the queue
18 if C was already visited then
19 skip (C, ρ) and continue the while-loop
20 end
21 mark C as visited
22 // compute predecessor configurations
23 for v in N(C) do
24 for X ⊆ { (C′, ρ′) ∈ R′ | v ∈ N(C′) ∧N [C] ∩ C′ = ∅ ∧ ρ′ ≤ ρ } do
25 // assert : blocks in X are pairwise non - intersecting
26 if |N(C ∪

⋃
(C′,ρ′)∈X C

′ ∪ {v})| ≤ k − ρ− 1 then
27 insert (C ∪

⋃
(C′,ρ′)∈X C

′ ∪ {v}, ρ+ 1) into queue
28 end
29 end
30 end
31 R′ ← R′ ∪ { (C, ρ), }
32 end
33 // compute R from R′

34 R ←
⋃

(C,ρ)∈R′{ (C, ρ′) | ρ′ ≥ ρ ∧ |N(C)|+ ρ′ ≤ k }
35 end

I Theorem 2. Let R be the output of the algorithm in Listing 1 on input of a graph
G = (V,E) and a number k ∈ N. Then R = R(G, k).

3 Preprocessing and Pruning Rules

To compute the treedepth of a graph G = (V,E), we use the algorithm from the previous
section for k = 1, 2, . . . , opt, i. e., we increase a lower bound until we reach the first positive
instance. To each such instance (G, k), we apply the following reduction rules in advance:

IPEC 2020

28:4 PACE Solver Description: PID?

I Rule 1 (Leaf Rule [2]). Let v, w,w′ ∈ V with w,w′ ∈ N(v) and |N(w)| = |N(w′)| = 1,
then delete w′.

I Rule 2 (Improvement Rule [4]). Let u, v ∈ V with {u, v} 6∈ E and |N(u) ∩N(v)| ≥ k, then
add the edge {u, v}.

I Rule 3 (Simplical Rule [4]). Let u ∈ V be simplical such that |N(v)| > k for all v ∈ N(u),
then delete u.

To increase the performance of the algorithm from Listing 1, we apply the following
pruning rules. We say a winning strategy of the searchers has a conflict if there are two
vertices u, v ∈ V with N(u) \ {v} (N(v) \ {u} such that the searchers clean u before v.

I Lemma 3. If k searchers have a winning strategy on a graph G = (V,E), then they also
have a conflict free winning strategy on G.

We can adapt the rules of our game with the lemma, without losing Fact 1. The new
game simply forbids that the searchers clean a vertex u as long as there is a contaminated
vertex v with N(u) \ {v} (N(v) \ {u}. We define the following sets for every vertex v ∈ V :

descendants(v) = {u | {u, v} ∈ E ∧N [u] (N [v] },
non-ancestors(v) = {u | {u, v} 6∈ E ∧N(u) (N(v) }.

Assume the algorithm generates a new block (C, ρ) by gluing previously discovered blocks
(C1, ρ1), . . . , (Cq, ρq) at some vertex x ∈ V , i. e., C = {x} ∪

⋃q
i=1 Ci (see line 27 in Listing 1).

We check whether we have descendants(x) ⊆ C and x 6∈
⋃
y∈C\{x} non-ancestors(y). If this

is not the case, we discard the block.
Our second pruning rule avoids the expensive glue operation in line 24. Let (C, ρ) be a

block and v ∈ N(C). We say v is covered if N(v) ⊆ N [C] and we call v an attachment if
td(G[C]) = td(G[C ∪ {v}]) and |N(C)| = |N(C ∪ {v})|. One can show that we can, in both
cases, greedily add v to C and proceed with (C ∪ {v}, ρ+ 1) without further handling (C, ρ).

References
1 Max Bannach and Sebastian Berndt. Positive-instance driven dynamic programming for

graph searching. In Proceedings of the 16th International Symposium on Algorithms and Data
Structures, 2019. doi:10.1007/978-3-030-24766-9_4.

2 Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-Encodings for
Treecut Width and Treedepth. In Proceedings of the 21th Workshop on Algorithm Engineering
and Experiments, 2019. doi:10.1137/1.9781611975499.10.

3 Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. Lifo-search: A min-
max theorem and a searching game for cycle-rank and tree-depth. Discret. Appl. Math.,
160(15):2089–2097, 2012. doi:10.1016/j.dam.2012.03.015.

4 Yasuaki Kobayashi and Hisao Tamaki. Treedepth Parameterized by Vertex Cover Number. In
Proceedings of the 11th International Symposium on Parameterized and Exact Computation,
2016. doi:10.4230/LIPIcs.IPEC.2016.18.

5 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. J. Comb. Optim.,
37(4):1283–1311, 2019.

https://doi.org/10.1007/978-3-030-24766-9_4
https://doi.org/10.1137/1.9781611975499.10
https://doi.org/10.1016/j.dam.2012.03.015
https://doi.org/10.4230/LIPIcs.IPEC.2016.18

	Introduction to Positive-Instance Driven Dynamic Programming
	Description of the Core Algorithm
	Preprocessing and Pruning Rules

