
Fixed-Parameter Tractability of
the Weighted Edge Clique Partition Problem
Andreas Emil Feldmann
Department of Applied Mathematics, Charles University, Prague, Czech Republic

Davis Issac
Hasso Plattner Institute, Potsdam, Germany

Ashutosh Rai
Department of Applied Mathematics, Charles University, Prague, Czech Republic

Abstract
We develop an FPT algorithm and a compression for the Weighted Edge Clique Partition (WECP)
problem, where a graph with n vertices and integer edge weights is given together with an integer
k, and the aim is to find k cliques, such that every edge appears in exactly as many cliques as its
weight. The problem has been previously only studied in the unweighted version called Edge Clique
Partition (ECP), where the edges need to be partitioned into k cliques. It was shown that ECP
admits a kernel with k2 vertices [Mujuni and Rosamond, 2008], but this kernel does not extend to
WECP. The previously fastest algorithm known for ECP has a runtime of 2O(k2)nO(1) [Issac, 2019].
For WECP we develop a compression (to a slightly more general problem) with 4k vertices, and an
algorithm with runtime 2O(k3/2w1/2 log(k/w))nO(1), where w is the maximum edge weight. The latter
in particular improves the runtime for ECP to 2O(k3/2 log k)nO(1).

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Edge Clique Partition, fixed-parameter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.17

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.07761.

Funding All the three authors were supported by Center for Foundations of Modern Computer
Science (Charles Univ. project UNCE/SCI/004).

1 Introduction

Problems that aim to cover a graph by a small number of cliques have a long history and
have been studied extensively in the past (see e.g. [2, 3, 5, 10, 16, 18, 7, 8]). For these
types of problems we are given a graph G and an integer k, and the tasks include to either
cover or partition the edges or the vertices of G using at most k cliques or bicliques (i.e.,
complete bipartite graphs). Plenty of applications exist in both theory [22] and practice,
e.g., in computational biology [1, 6], compiler optimization [21], language theory [11], and
database tiling [9]. In this paper, we study the variant called the Edge Clique Partition
(ECP) problem, defined as follows.

ECP (Edge Clique Partition)
Input: a graph G on n vertices, a positive integer k
Output: a partition of the edges of G into k cliques (if it exists, otherwise output NO)

ECP is known to be NP-hard even in K4-free graphs and chordal graphs [16], and
together with [14], the reductions of [16] imply APX-hardness. To circumvent these hardness
results, we focus on parameterized algorithms (see [4] for the basics). More specifically, we
focus on FPT algorithms for the natural parameter k, i.e., the number of cliques. Fleischer
et al. [7] show that on planar graphs, ECP can be solved in O∗(296

√
k) time1. They also

1 The O∗-notation hides polynomial factors in input size.
© Andreas Emil Feldmann, Davis Issac, and Ashutosh Rai;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-6229-5332
https://orcid.org/0000-0001-5559-7471
https://orcid.org/0000-0003-2429-750X
https://doi.org/10.4230/LIPIcs.IPEC.2020.17
https://arxiv.org/abs/2002.07761
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

generalized the result to d-degenerate graphs, giving an algorithm with O∗(2dk) runtime,
which has a linear exponent for bounded-degeneracy graphs. For K4-free graphs, Mujuni and
Rosamond [18] gave an algorithm with a runtime2 of O∗((k+3

2)k) = O∗(2O(k log k)), which
was improved by Fleischer et al. [7] to O∗((

√
k/3)k) and even O∗((64c)k) for some large

(unspecified) constant c. Hence, also for these graphs an exponent linear in k is possible,
albeit with a very large base. On the other hand, the algorithm of Mujuni and Rosamond [18]
for K4-free graphs has been empirically shown [24] to be rather efficient, even though it
“only” comes with a near-linear exponent of O(k log k).

Mujuni and Rosamond [18] showed that ECP is FPT in k for general graphs, by giving a
kernel (see [4] for definition) of size k2. However, no algorithms with (near-)linear dependence
on k in the exponent are known for ECP. The fastest algorithm so far is given by Issac [12,
Theorem 3.10] and runs in O∗(22k2+k log2 k+k) time, i.e., the exponent is quadratic in k. This
algorithm is an adaptation of an algorithm by Chandran et al. [3] for the Biclique Partition
problem (where we want to partition the edges into k bicliques) in bipartite graphs. In
contrast, the best runtime lower bound known for ECP only excludes a sub-linear dependence
on k in the exponent: if n denotes the number of vertices of the input graph, there is no
2o(k)nO(1) time algorithm for ECP assuming the Exponential Time Hypothesis (ETH). This
follows due to a 2o(n) lower bound for 3-Dimensional Matching [13] under ETH, and a
reduction from Exact 3-Cover (which is a generalization of 3-Dimensional Matching) to ECP
by Ma et al. [16]. An obvious open problem arising here is to close the gap between the
upper and lower bounds on the runtime for ECP. Our main contribution is to show that for
general graphs the exponent of the runtime for ECP can be significantly lowered from O(k2)
to O(k3/2 log k).

I Theorem 1. ECP has an algorithm running in O
(

(2e
√
k)k3/2+k · k225k + n2 logn

)
time.

In fact, our algorithm solves a more general problem that we call the Weighted Edge
Clique Partition (WECP) problem defined as follows:

WECP (Weighted Edge Clique Partition)
Input: a graph G on n vertices, edge weights we : E(G)→ N, and a positive integer k
Output: a multiset of at most k cliques such that each edge appears in exactly as many
cliques as its weight (if it exists, otherwise output NO)

Note that WECP is equivalent to ECP on a multigraph, by taking the weights as the
edge multiplicities, which however increases the encoding length.

WECP can be thought of as a clustering of vertices where the clusters are allowed to
overlap and the weight of an edge denotes the number of clusters in which the endpoints appear
together. Such clustering problems appear naturally in computational biology, e.g., in the
inference of gene pathways from gene co-expression data [20], where the clusters correspond
to pathways and vertices correspond to genes. Thus developing efficient algorithms for WECP
is of practical relevance.

WECP has not been studied previously and the known FPT algorithms for ECP do not
extend to WECP. In particular, the techniques from the k2-kernel for ECP by Mujuni and
Rosamond [18] does not extend to WECP. Also, a 3k-kernel for the very similar Biclique
Partition problem by Fleischer et al. [8] just uses twin-reduction rule but this does not work
for WECP. We first show a compression (see preliminaries for definition) with 4k vertices
for WECP that can be computed in polynomial time. The compression is into an even
more general (auxiliary) problem that we call the Annotated Weighted Edge Clique Partition
(AWECP) problem, defined as follows.

2 In [18] the runtime was mistakenly reported as O∗(k(k+3)/2)), cf. [7].

A. E. Feldmann, D. Issac, and A. Rai 17:3

AWECP (Annotated Weighted Edge Clique Partition)
Input: a graph G on n vertices, edge-weights we : E(G)→ N, a special set of vertices
W ⊆ V (G), vertex weights wv : W → N, and a positive integer k
Output: a multiset of at most k cliques such that each edge e appears in exactly as
many cliques as its edge-weight, and each vertex in W appears in exactly as many cliques
as its vertex-weight (if such k cliques exist, otherwise output NO)

Note that WECP is exactly the special case of AWECP when W is empty. We give a
kernel for AWECP that implies the compression for WECP into AWECP.

I Theorem 2. AWECP has a kernelization algorithm that runs in O(n2 logn) time and
outputs a kernel having at most 4k vertices and encoding length O(16k log k) bits.

I Corollary 3. WECP has a compression into an AWECP instance having at most 4k vertices
and encoding length O(16k log k) bits. The compression can be found in O(n2 logn) time.

Then we proceed to give the first FPT algorithm for WECP, which also implies the
improved algorithm for ECP.

I Theorem 4. WECP with the edge weights upper bounded by some value w has an algorithm
running in O

(
(2e
√
k/w)k3/2w1/2+k · k225k + n2 logn

)
time.

Note that Theorem 4 implies an FPT algorithm for WECP when parameterized by k as
w ≤ k for any YES-instance. Also, Theorem 1 follows from Theorem 4 by setting w = 1.

1.1 Our techniques
Our approach is based on the work of Chandran et al. [3], who solve the Bipartite Biclique
Partition problem using linear algebraic techniques: we express AWECP as a low-rank matrix
decomposition problem. For this we allow matrices to have wildcard entries in the diagonal
that will be denoted by ?. We define Z? := (Z≥0 ∪ {?}). For x, y ∈ Z?, we write x ?= y if and
only if either x = y, or at least one of x and y is ?. For two matrices X and Y in (Z?)m×n,
we write X ?= Y if and only if Xi,j

?= Yi,j for all i, j. We say that a binary matrix B (not
containing wildcards) is a Binary Symmetric Decomposition (BSD) of a matrix A ∈ (Z?)n×n

if BBT ?= A. The matrix B is called a width-k BSD of A if it is a BSD of A and has at
most k columns. We define the Binary Symmetric Decomposition with Diagonal Wildcards
(BSD-DW) problem as follows

BSD-DW (Binary Symmetric Decomposition with Diagonal Wildcards)
Input: an integer non-negative symmetric matrix A ∈ (Z?)n×n such that the wildcards
? appear only in the diagonal, and an integer k
Output: a width-k BSD of A (if it exists, otherwise output NO)

We prove (in Lemma 6) that AWECP and BSD-DW are equivalent. Moreover, each
column of B (solution to BSD-DW) corresponds to a clique (in the solution to AWECP),
i.e. the rows that have a 1 in the j-th column correspond to the vertices that are in the
j-th clique. Due to this, we will index the rows and columns of A with vertices, the rows
of B with vertices and the columns of B with integers from [k], that correspond to the k
cliques. Moreover, we will be fluently switching between the contexts of edge partition of
graphs (AWECP), and matrix decomposition (BSD-DW).

In Section 2 we prove that there is a kernel for AWECP with 4k vertices. For this, we
define the notion of ?-twins where two vertices u and v are said to be ?-twins, if the rows
Au and Av are equal under ?=. We group the vertices into equivalence classes (that we call

IPEC 2020

17:4 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

blocks) of ?-twins. If a block has size more than 2k, we show that they can be reduced
and represented by one vertex. For this reduction rule, we need to specify how often the
representative vertex needs to be covered by cliques. Thus, even if the input is an instance
of WECP, the kernel we compute will be annotated, i.e., it will be an instance of AWECP.
The 4k bound on the kernel size follows then by giving a 2k upper bound on the number
of blocks for a YES instance. Since the edge weights and vertex weights for vertices in W
cannot exceed k if there is a solution with at most k cliques, a kernel with at most 4k vertices
can be encoded using O(

(4k

2
)

log k) bits, and so Theorem 2 follows.
To obtain Theorem 4, we first compute a kernel using Theorem 2 as the first step of the

algorithm. Our algorithm will solve the more general AWECP problem. As in the algorithm
of Chandran et al. [3] (where a different low-rank matrix decomposition problem is solved),
the main idea of our algorithm is to guess a row basis for a width-k BSD B, and then
fill the remaining rows of B one by one independent of each other. However we need to
refine the techniques of Chandran et al. [3] in order to obtain our runtime improvement. In
particular, there are two reasons why the algorithm in [3] has a quadratic dependence on
k in the exponent: first, to guess a basis of rank k, they need to guess k binary vectors of
length k each, which takes O(2k2) time. But also, they need to guess the k row basis indices
of B, for which there are

(
m
k

)
possibilities if the matrix has m rows. Since for Bipartite

Biclique Partition there is a kernel where m ≤ 2k [8], this adds another factor of O(2k2) to
the runtime.

To circumvent these two runtime bottlenecks, in Section 3 we devise an algorithm that
gets around guessing the row indices of the basis of the solution matrix B. Instead of guessing
the whole basis, we add a row to the basis only when the current basis cannot take care of
that row. While this makes our algorithm more involved than the one by Chandran et al. [3],
it means that the only bottleneck left is guessing the basis entries. For BSD-DW we can
show that a basis with only k3/2w1/2 + k ones exists, which follows from the well-studied
Zarankiewicz problem [19]. This bound on the structure of the basis then implies Theorem 4.

Since the only bottleneck, which prevents our algorithm from having near-linear depend-
ence on k in the exponent of the runtime, is the step that guesses the entries of the basis for
the solution matrix B, a natural question is whether our upper bound of k3/2w1/2 + k of the
number of ones is (asymptotically) tight. In Section 4 we show that this is indeed tight (at
least for the unweighted case) by proving the following theorem:

I Theorem 5. For every prime power N and k = N2 + N , there is a matrix A ∈
{0, 1}(k+1)×(k+1) such that there is a width-k BSD for A and every row basis of every width-k
BSD of A has Θ(k3/2) ones.

While this does not give a runtime lower bound in general, it implies that in order to speed
up our algorithm for ECP using a better enumeration of the potential basis matrices, one
needs to use some property other than a bound on the number of ones. The tight instances
are obtained via the well-known Finite Projective Planes.

1.2 Related results
We now survey some results for ECP and related problems, apart from those mentioned
above. For ECP, it is also known that the problem is solvable in polynomial time on cubic
graphs [7]. The problem of partitioning the vertices instead of the edges into k cliques is
equivalent to k-coloring on the complement graph, which is well-known to be NP-hard even
for k = 3. Similarly, when the vertices need to be partitioned into bicliques or covered by
bicliques, Fleischer et al. [8] proved NP-hardness for any constant k ≥ 3.

A. E. Feldmann, D. Issac, and A. Rai 17:5

Covering the edges of a graph by cliques or bicliques turns out to be generally harder
than partitioning the edges. For the Edge Clique Cover problem, a kernel with 2k vertices
was shown by Gramm et al. [10], which results in a double-exponential time FPT algorithm
when solving the kernel by brute-force. Cygan et al. [5] showed that this is essentially best
possible, as under ETH no 22o(k)

nO(1) time algorithm exists for Edge Clique Cover and
no kernel of size 2o(k) exists unless P = NP. Similarly, for the Biclique Cover problem,
where edges of a general graph need to be covered by bicliques, Fleischner et al. [8] gave
a kernel with 3k vertices, and for the Bipartite Biclique Cover problem they gave a kernel
with 2k vertices in each bipartition. These kernels naturally imply double-exponential time
algorithms. Chandran et al. [3] proved that for Bipartite Biclique Cover, under ETH no
22o(k)

nO(1) time algorithm exists, and unless P = NP no kernel of size 2o(k) exists.
Chalermsook et al. [2] showed that for the Biclique Cover problem, it is NP-hard to

compute an n1−ε-approximation for any ε > 0 3. Edge Clique Cover is hard to approximate
within n0.5−ε due to a reduction by Kou et al. [15]. In contrast, a PTAS exists for Edge
Clique Cover on planar graphs [1].

1.3 Preliminaries
A problem P1 parameterized by k is said to admit a compression into problem P2 if there
is an algorithm that takes as input an instance I1 of P1, runs in time polynomial in the
encoding length of I1, and outputs an instance I2 of P2 that is equivalent to I1 such that the
encoding length of I2 is at most f(k) for some computable function f : N→ N. In particular,
the size of I2 depends only on the parameter k and not on the size of I1.

For an m× n matrix A, we use Ai,j to denote the entry of A at row i and column j. We
use Ai to denote the row-vector given by the i-th row of A. For some I ⊆ [m] and J ⊆ [n],
we use AI,J to denote the sub-matrix of A when restricted to rows with indices in I and
columns with indices in J . Also, we use AI to denote a sub-matrix of A when restricted
to rows with indices in I. We call such a sub-matrix where only rows are restricted as row
sub-matrix. A row-basis (or just basis for brevity) B of A is any row sub-matrix of A such
that every row of A can be expressed as a linear combination of rows of B, and the rows of
B are linearly independent with each other.

I Lemma 6. Given an instance (G,we,W,wv, k) of AWECP we can find an equivalent
instance (A, k) of BSD-DW in O(|V (G)|2) time. Similarly given an instance (A, k) of BSD-
DW, we can find an equivalent instance of AWECP in O(n2) time, where n is the number of
rows (or columns) in A.

Proof. Given an instance (G,we,W,wv, k) of AWECP, we can construct an instance of (A, k)
of BSD-DW as follows. Let V (G) = {1, . . . , n}; take the non-diagonal entries of A as the
corresponding entries of the weighted adjacency matrix of G, i.e., if there is an edge between
two vertices u and v, the entry Au,v is equal to we(uv) and if u and v do not have an edge
between them then Au,v = 0; for every vertex v ∈W , take Av,v as the vertex weight of v; for
every vertex v ∈ V (G) \W , take Av,v as the wildcard ?. Note that the mapping is invertible,
i.e., given a BSD-DW instance (A, k) we get an AWECP instance (G,we,W,wv, k) as follows.
Take V (G) := {1, 2, . . . , n} where n is the number of rows (and columns) of A. For distinct
u, v ∈ [n], if Au,v is non-zero, put an edge between u and v in G with weight Au,v. For each

3 The paper wrongly claims the same result also for Biclique Partition. The bug is acknowledged here:
https://sites.google.com/site/parinyachalermsook/research?authuser=0.

IPEC 2020

https://sites.google.com/site/parinyachalermsook/research?authuser=0

17:6 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

v ∈ [n] such that Av,v is not a wildcard, put v in W and set its vertex weight to Av,v. It is
clear that this mapping is a bijective mapping between AWECP and BSD-DW instances and
can be calculated in both directions in O(n2) time. It remains to prove that the instances
are equivalent.

Now, we define a bijective mapping between candidate solutions of the two problems.
Naturally, a candidate solution of AWECP is a multiset of k cliques and a candidate solution
of BSD-DW is an n× k matrix. Consider a candidate solution C := {C1, C2, . . . Ck} of an
AWECP instance (G,we,W,wv, k). We map it to a candidate solution B ∈ {0, 1}n×k of a
BSD-DW instance (A, k) as follows. Take the row Bu as the characteristic vector of u in the
k cliques, i.e., Bu,j := 1 if u ∈ Cj , and Bu,j := 0 otherwise. The inverse mapping then turns
out to be as follows. Given a candidate solution B ∈ {0, 1}n×k of instance (A, k) construct
k cliques where the j-th clique is Cj := {u | Bu,j = 1}. To see that Cj is indeed a clique,
consider any two vertices u, v ∈ Cj : since Bu,j = Bv,j = 1, we know that Au,v = BuB

T
v ≥ 1,

which implies that there is an edge between u and v in G.
First, we prove that if C is a solution of AWECP(G,we,W,wv, k), then B is a solution of

BSD-DW(A, k). It is clear that B has only k columns by construction. So, it only remains
to prove that for all pairs u, v ∈ [n], BuB

T
v

?= Au,v. First consider the case when u and v are
distinct. Let J denote the set of all j such that both u and v appear together in Cj . Since C
is a solution of AWECP(G,we,W,wv, k), we have that |J | = Au,v. By construction of B, we
have that J is exactly the set of indices j where Bu,j = Bv,j = 1. Thus BuB

T
v = |J | = Au,v.

Now consider the case when u = v. If Au,u is a ? then clearly BuB
T
u

?= ? = Au,u. So, suppose
Au,u 6= ?. This means u ∈ W implying that u appears in exactly Au,u many cliques in C.
Thus BuB

T
u = Au,u.

We now prove the reverse direction, i.e., we prove that if B is a solution of BSD-DW(A, k),
then C is a solution of AWECP(G,we,W,wv, k). By construction, C has at most k cliques.
Thus, it is sufficient to prove the following two statements: (1) every pair u, v ∈ V (G) appears
together in exactly Au,v many cliques in C (2) each vertex v ∈ W appears in Av,v many
cliques in C. First we prove (1). We know BuB

T
v = Au,v. Since B is binary, this means that

there are exactly Au,v many indices j such that Bu,j and Bv,j are both 1. Let J be the set
of those indices. Observe that the set of cliques where both u and v appear together are
exactly {Cj : j ∈ J}. Thus, the edge uv is in |J | = Au,v many cliques. Now we prove (2).
Consider a vertex v ∈W . We know BvB

T
v = Av,v. Since B is binary, this means that there

are exactly Av,v many ones in Bv. Thus, the vertex v is in Av,v many cliques. J

2 Kernel

We will now give a kernel for AWECP and BSD-DW, thereby proving Theorem 2. Let
(G,we,W,wv, k) be an instance of AWECP and (A, k) be the corresponding instance of
BSD-DW obtained by the transformation as in the proof of Lemma 6. We may move
seamlessly between the graph and matrix terminologies as both problems are equivalent.
Whenever we say a solution in this section, we mean the solution to the BSD-DW instance
i.e., a width-k BSD of A. We say two distinct vertices u and v in G are ?-twins if they are
adjacent and satisfy Au

?= Av. We now prove the following easy property of ?-twins.

I Lemma 7. For distinct vertices u, v and w in G, suppose u and v are ?-twins and v and
w are ?-twins. Then:
1. u and w are ?-twins, and
2. all the entries of the submatrix A{u,v,w},{u,v,w} are the same except for wildcards.

A. E. Feldmann, D. Issac, and A. Rai 17:7

Proof. First, let us prove the second statement. Let Au,v = α. Then we know Au,w = α

as v and w are ?-twins. Then Av,w = α as u and v are ?-twins. Thus all the non-diagonal
elements of A{u,v,w}{u,v,w} are equal to α. If Au,u 6= ? then Au,u = Av,u = α as u and v
are ?-twins. Similarly, if Av,v 6= ? then Av,v = Av,u = α as u and v are ?-twins. And, if
Aw,w 6= ? then Aw,w = Av,w = α as v and w are ?-twins.

Now, for the first statement to hold, we only need to show that Au,z = Aw,z for all
z /∈ {u, v, w}. Indeed, Au,z = Av,z = Aw,z where the first equality is because u and v are
?-twins and the second is because v and w are ?-twins. J

Thus we have that the relation ?-twins is transitive. It is also symmetric, as easily seen
from the definition. Note that ?-twins are required to be adjacent, and thus the relation
is not reflexive. But to make it reflexive, we simply define a vertex to be a ?-twin of itself.
Thus, we can group the vertices into equivalence classes of ?-twins. We call each equivalence
class a block. Note that there can be blocks containing only a single vertex. The following
lemma is a direct consequence of Lemma 7.

I Lemma 8. For a block D, the entries of the sub-matrix AD,D are all same except for
wildcards.

I Fact 9. For values a, b and c, if a ?= b and b ?= c, and b 6= ? then a ?= c.

I Lemma 10. Suppose we have a YES instance of AWECP without isolated vertices. Then
there can be at most 2k blocks.

Proof. Let B be a width-k BSD of A. Note that B exists as we have a YES instance. In
order to prove the lemma, it is sufficient to show that if u and v are in different blocks, then
Bu and Bv are distinct, because then there can only be 2k distinct rows of B, as there are
only k columns in B and B is binary. Assume for the sake of contradiction that Bu = Bv and
u and v are in different blocks, i.e., they are not ?-twins. Let b := BuB

T = BvB
T . We have

Au
?= BuB

T = b and Av
?= BvB

T = b. This implies Au
?= Av using Fact 9, as the vector b

contains no wildcards. Then, for u and v to be not ?-twins, it should be the case that u
and v are not adjacent, i.e, Au,v = 0. But then, BuB

T
v = 0. Since Bu = Bv by assumption,

we have that Bu = Bv = 0 and hence Au = Av = 0. This means that u and v are isolated
vertices, which is a contradiction. J

The above lemma shows the soundness of our first reduction rule that is as follows.

I Reduction rule 1. If the number of blocks is more than 2k, output that the instance is a
NO instance.

Next, we prove the following lemma about ?-twins that helps us to come up with a
reduction rule that bounds the size of each block.

I Lemma 11. Let D := {v1, v2, . . . , vt} be a block of ?-twins. For a YES instance, there
exists a solution B such that the rows Bv1 , Bv2 , . . . , Bvt

are either all pairwise distinct, or
all same.

Proof. It is sufficient to prove the following statement: if there is a solution B such that
Bv1 = Bv2 , then there is also a solution C such that Cv1 = Cv2 = · · · = Cvt

. So, assume that
Bv1 = Bv2 . Let C be the matrix defined as Cv := Bv for all v /∈ D, and Cv := Bv1 = Bv2

for all v ∈ D. We will prove that C is also a solution. For this, it is sufficient to prove
that CuC

T
v = Au,v for all u, v ∈ V such that Au,v 6= ?. If both u and v are not in D, then

CuC
T
v = BuB

T
v = Au,v. So, without loss of generality assume that u ∈ D. We distinguish

the following cases.

IPEC 2020

17:8 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

1. If v ∈ V \D, then CuC
T
v = Bv1B

T
v = Av1,v = Au,v, where the last equality follows as v1

and u are ?-twins.
2. If v ∈ D \ {u}, then CuC

T
v = Bv1B

T
v2

= Av1,v2 = Au,v, where the last equality follows
from Lemma 8.

3. If v = u: if Au,u = ? then there is nothing to prove, so assume Au,u 6= ?. Then
Au,u = Av1,v2 by Lemma 8. Hence we get CuC

T
u = Bv1B

T
v2

= Av1,v2 = Au,u. J

Since there are only 2k possible distinct rows for a solution B, Lemma 11 has the following
consequence.

I Lemma 12. Let D := {v1, v2, . . . , vt} be a block of ?-twins such that t > 2k. For a YES
instance, there exists a solution B such that the rows Bv1 , Bv2 , . . . Bvt are all same.

The above lemma suggests that for a block D of size more than 2k, we only need to keep
one representative vertex for all the vertices in D. This leads us to our second reduction rule.

I Reduction rule 2. Suppose there is a block D with more than 2k vertices. Pick any
two arbitrary vertices u, v ∈ D. We reduce our instance to an instance A′ of AWECP
(simultaneously to an instance G′ of BSD-DW) as follows: let G′ := G \ (D \ {v}); for every
pair (v1, v2) 6= (v, v) in V (G′)× V (G′), let A′v1,v2

:= Av1,v2 ; let A′v,v := Au,v.
Once we have a solution B′ to the reduced instance A′ then we construct a solution B

to the original instance A as follows: for all x ∈ D, let Bx := B′v; for all x ∈ V (G) \D, let
Bx := B′x.

Now, we prove that the above reduction rule is safe.

I Lemma 13. Let A′, G′, B′, B be as defined in Reduction rule 2.
1. If B′ is a width-k BSD of A′, then B is a width-k BSD of A.
2. Conversely, if A has a width-k BSD then so does A′.

Proof. 1. It is clear that B has only k columns. So, it only remains to prove that B is a
BSD of A, for which it is sufficient to prove that Bv1B

T
v2

?= Av1,v2 for all v1, v2 ∈ V (G).
For v1, v2 ∈ V (G) \D, we have

Bv1B
T
v2

= B′v1
B′Tv2

?= A′v1,v2
= Av1,v2 .

For v1 ∈ V (G) \D and v2 ∈ D, we have

Bv1B
T
v2

= B′v1
B′Tv = A′v1,v = Av1,v = Av1v2 ,

where the last equality follows as v and v2 are ?-twins.
For v1, v2 ∈ D, we have

Bv1B
T
v2

= B′vB
′T
v = A′v,v = Au,v = Av1,v2 ,

where the last equality follows from Lemma 8.
2. By Lemma 12 we know that there exists a width-k BSD of A such that Bv1 = Bv2 for all

v1, v2 ∈ D. In particular Bu = Bv. Let B′ be defined as B′x := Bx for all x ∈ V (G′). We
show that B′ is a width-k BSD of A′. Since B′ has only k columns, it only remains to prove
that B′ is a BSD of A′, which we do as follows. For (v1, v2) ∈ (V (G′)× V (G′)) \ (v, v),
we have

B′v1
B′Tv2

= Bv1B
T
v2

?= Av1,v2 = A′v1,v2
,

and

B′vB
′T
v = BvB

T
v = BuB

T
v = Au,v = A′v,v. J

A. E. Feldmann, D. Issac, and A. Rai 17:9

After the above rules are exhaustively applied, each block has size at most 2k and the
number of blocks is at most 2k. Thus we have the required kernel of size 4k.

The time required for computing the kernel can be shown to be O(n2 logn). This is
because the blocks of ?-twins can be found by sorting the rows in lexicographic order. Since
each comparison takes O(n) time the sorting can be done in O(n2 logn) time. Also, we need
to compute the blocks only once as the reduction rules does not change the blocks.

Since the edge weights and vertex weights for vertices in W cannot exceed k if there is
a solution with at most k cliques, a kernel with at most 4k vertices can be encoded using
O(
(4k

2
)

log k) bits, and so Theorem 2 follows.

3 Algorithm

Here we give an algorithm for the BSD-DW problem. The algorithm also solves AWECP due
to the equivalence from Lemma 6. In particular, it solves WECP thereby proving Theorem 4.

We now give a description of the algorithm. Pseudocode is given in Algorithm 1. Our
input is a symmetric matrix A ∈ (Z≥0 ∪ {?})n×n where wildcards ? appear only on the
diagonal. First we guess a matrix P ∈ {0, 1}k×k such that for some r ≤ k, P[r],[k] is a row
basis of solution B. We show that for this, it is sufficient to enumerate k× k binary matrices
that satisfy a specific property defined as follows. Let w be the largest integer entry of A.
We call a matrix w-limited if the dot-product of each distinct pair of its rows is at most w.
The following fact shows that we only need to enumerate w-limited matrices in {0, 1}k×k to
guess P .

I Fact 14. If B is a BSD of matrix A and w is the largest integer entry of A, then any
submatrix of B (including B) is w-limited.

Proof. Since B only has non-negative entries, if B is w-limited, then so are all the sub-
matrices. Suppose the property does not hold for B. Then there exist two rows Bu and Bv

such that BuB
T
v > w. But BuB

T
v

?= Auv and hence Auv > w (note that Auv is not ? as it is
not a diagonal-entry). Thus we have a contradiction. J

Note that guessing P is done in Loop 1 of Algorithm 1. We will later give a bound on the
number of w-limited matrices in {0, 1}k×k during the runtime analysis in Section 3.2, thereby
bounding the number of iterations of Loop 1.

We maintain partially filled matrices during the algorithm, i.e., we allow matrices to have
null rows (this is different from wildcards). Think of the null rows as the rows that have not
been filled yet. If each row of a matrix is either a binary row or a null row, we call it a binary
matrix with possibly null rows. We denote by Bn×k, the set of all n× k binary matrices with
possibly null rows.

We maintain a matrix B̃ ∈ Bn×k as a potential basis for our solution B. In Line 8, we call
CompleteBasis that checks whether the current B̃ can be extended to a full solution B. Note
that CompleteBasis does not try all possibilities to fill the remaining rows. It fills a row with
the first binary vector that is compatible with the rows so far, where compatibility is defined
as follows. For a matrix B ∈ Bn×k, we say that a vector v ∈ {0, 1}k is i-compatible for B if
vT v

?= Ai,i and for all j 6= i such that Bj is not a null row, vTBT
j = Ai,j . If CompleteBasis

is able to fill all the rows with i-compatible binary vectors, then we are done and we return
the resulting matrix (in Line 9). If not, we claim that the row for which we are not able to
fill can be added to the basis (in Claim 16). So we add one more row to the basis by copying
the next row from P (in Line 7). Thus we increase the number of non-null rows in the basis
B̃ by one and repeat. Since the basis can be at most of size k, we need to repeat this at most
k times.

IPEC 2020

17:10 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

Algorithm 1 Algorithm for BSD-DW.

Input :An n× n symmetric integer diagonal-wildcard matrix A
Output : If A has a width-k BSD then output a width-k BSD B of A;

otherwise report that A has no width-k BSD

1 w ← largest integer weight in A
2 foreach w-limited P ∈ {0, 1}k×k do // Loop 1
3 Initialize B̃ to be an n× k matrix with all null rows
4 b← 1
5 i← 1
6 while b ≤ k and Pb is i-compatible with B̃ do // Loop 2
7 B̃i ← Pb

8 (B, i)← CompleteBasis(A, B̃)
9 if i = n+ 1 then output B and terminate the algorithm

10 b← b+ 1

11 output that A has no width-k BSD and terminate the algorithm

Function CompleteBasis(A,B̃):
12 B ← B̃

13 for each null row i in B in increasing order do // Loop 3
14 if there is a v ∈ {0, 1}k such that v is i-compatible with B then
15 Bi ← v

16 else return (B, i)
17 return (B,n+ 1)

3.1 Correctness of the algorithm
The algorithm outputs either through Line 9 or through Line 11. In the former case, we
prove the following claim.

B Claim 15. If output occurs through Line 9, then the matrix B that is output, is a width-k
BSD of A.

Proof. If Line 9 is executed, then this means that the preceding CompleteBasis call on Line 8
returned i = n+ 1. This implies that the return from CompleteBasis happened on Line 17.
This in turn means that Loop 3 was exited after completing all iterations, implying that the
matrix B did not have any null rows at the time of return. Thus B ∈ {0, 1}n×k. The rows of
B were each filled either in Line 7 (when it was B̃ before being passed to CompleteBasis)
or in Line 15. In both places, we filled each row i with a vector that was i-compatible at the
time of filling. From the definition of i-compatibility, it follows that BBT ?= A, and hence B
is a width-k BSD of A. C

Consider a NO instance first. From Claim 15 it follows that the output does not occur
through Line 9. Thus the output has to occur through Line 11 and hence we correctly output
that A does not have a width-k BSD. So it only remains to prove the correctness when A
is a YES instance, i.e., when A has a width-k BSD, which is the case we consider for the
remainder of the proof. Let B∗ be any fixed width-k BSD of A.

A. E. Feldmann, D. Issac, and A. Rai 17:11

Observe that B̃ changes as follows during each iteration of Loop 1: it is initialized to all
null rows and each time the algorithm encounters Line 7 a null row is replaced with a binary
row vector. We say that a matrix B is consistent with B∗ if Bj = B∗j for each j such that
Bj is a non-null row.

B Claim 16. Consider a matrix B̃ ∈ Bn×k that is consistent with B∗. If CompleteBasis(A, B̃)
returns i ∈ [n] then B∗i is linearly independent from the non-null rows of B̃.

Proof. For a matrix M ∈ Bn×k, we denote by R(M) the set of indices of the non-null rows
of M . Suppose for the sake of contradiction that CompleteBasis(A, B̃) returns i ∈ [n] and
B∗i is linearly dependent on the non-null rows of B̃. Then, we have B∗i = Σ`∈R(B̃)λ`B̃` for
some λ1, λ2, · · · , λ` ∈ R. Since B̃ is consistent with B∗, we can write B∗i = Σ`∈R(B̃)λ`B

∗
` .

As CompleteBasis returned i, we know that during that iteration of Loop 3 in which
row i was considered, no vector v ∈ {0, 1}k was i-compatible with B (here B is the matrix
maintained by CompleteBasis that was initialized to B̃ on Line 12). In particular, B∗i ∈
{0, 1}k was not i-compatible with B. Therefore either there was some j ∈ R(B) such that
B∗i B

T
j 6= Ai,j , or B∗i (B∗i)T 6 ?= Ai,i. The latter cannot be true as B∗ is a width-k BSD of A.

So there was a j ∈ R(B) such that B∗i BT
j 6= Ai,j .

We branch into two cases: case 1 when j ∈ R(B̃) and case 2 when j ∈ R(B) \R(B̃). In
case 1, we have Bj = B̃j = B∗j where the second equality is because B̃ and B∗ are consistent.
Thus B∗i BT

j = B∗i (B∗j)T = Ai,j , giving a contradiction.
In case 2, Bj was added in Line 15 and hence Bj was j-compatible with B at this time,

implying that B`B
T
j = A`,j for all ` ∈ R(B̃). Since B` = B̃` = B∗` for ` ∈ R(B̃), we have

that B∗`BT
j = A`,j for all ` ∈ R(B̃). Then, we have a contradiction as follows:

B∗i B
T
j = Σ`∈R(B̃)λ`B

∗
`B

T
j

= Σ`∈R(B̃)λ`A`,j

= Σ`∈R(B̃)λ`B
∗
` (B∗j)T

= B∗i (B∗j)T

= Ai,j C

For a matrix X ∈ {0, 1}k×k, we say we are in iteration (X, t) of the algorithm if we are in
the iteration of Loop 1 with P = X and the iteration of Loop 2 with b = t. We use B̃(X, t)
to denote the value of B̃ after the execution of Line 7 during iteration (X, t).

B Claim 17. At any step of the algorithm, if B̃ is consistent with B∗ then the non-null rows
of B̃ are linearly independent.

Proof. Consider the first time this is violated during the algorithm. This has to be during the
addition of a new non-null row at Line 7. Let (X, t) be the iteration in which this happens.
Let p be the index of the row that was added. Observe that B̃(X, t) has only one additional
non-null row compared to B̃(X, t− 1). Also, this additional non-null row is equal to B∗p as
B̃(X, t) is consistent with B∗. We know the rows of B̃(X, t − 1) are linearly independent
as we assumed that the first violation of lemma happens in iteration (X, t). Also, during
iteration (X, t−1), i was returned with value p (as the insertion happens in Line 7 in iteration
(X, t)). This implies that B∗p is linearly independent from the non-null rows of B̃(X, t− 1)
due to Claim 16. Hence the rows of B̃(X, t) are linearly independent. C

B Claim 18. If the iteration (X, k) occurs during the algorithm for some X ∈ {0, 1}k×k

such that B̃(X, k) is consistent with B∗ then the algorithm outputs through Line 9 in
iteration (X, k).

IPEC 2020

17:12 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

Proof. Consider the i returned by CompleteBasis(A, B̃(X, k)). It is sufficient to prove that
the condition i = n + 1 in Line 9 is satisfied. Suppose otherwise. Then i ∈ [n] and by
Claim 16, B∗i is linearly independent from the non-null rows of B̃(X, k). But by Claim 17,
we have that the non-null rows of B̃(X, k) are linearly independent and hence span the whole
space, thus giving a contradiction. C

B Claim 19. Assume that the output of the algorithm does not occur through Line 9. If for
some Y ∈ {0, 1}k×k and t ≤ k − 1, iteration (Y, t) occurs and B̃(Y, t) is consistent with B∗,
then there exists some Z ∈ {0, 1}k×k such that iteration (Z, t+ 1) occurs and B̃(Z, t+ 1) is
consistent with B∗.

Proof. Since B̃(Y, t) is consistent with B∗, we know that Y[t] is a sub-matrix of B∗. As the
condition in Line 9 is false, we know that an i ∈ [n] was returned in Line 8 in iteration (Y, t).
It is clear from the algorithm that i is a null-row in B̃(Y, t). Let Z ∈ {0, 1}k×k be such
that Z[t] := Y[t], Zt+1 := B∗i , and Zq := 0 for all q ≥ t + 1. Observe that Z[t+1] is a
submatrix of B∗ and hence is w-limited by Fact 14. Since adding zeroes does not destroy
w-limitedness, we have that Z is a w-limited n × k matrix. Thus there is some iteration
of Loop 1 with P = Z. In this iteration the algorithm behaves similarly to the iteration
with P = Y for the first t iterations of Loop 2 as the algorithm has seen only the first t
rows of P up to then. Thus B̃(Z, t) = B̃(Y, t) and i is returned by Line 8 in iteration (Z, t).
Now in Line 7 of iteration (Z, t + 1), B̃i is assigned Zt+1. Note that Zt+1 = B∗i is indeed
i-compatible with B̃(Z, t) (as B̃(Z, t) = B̃(Y, t) and B̃(Y, t) is consistent with B∗) and that
t+ 1 ≤ k. Hence the loop condition of Loop 2 is true in iteration (Z, t+ 1). Thus, we have
(B̃(Z, t + 1))i = Zt+1 = B∗i and for all j 6= i, we have (B̃(Z, t + 1))j = (B̃(Y, t))j . Since
B̃(Y, t) is consistent with B∗, it follows that B̃(Z, t+ 1) is consistent with B∗. C

Let t be the largest number for which there exists a P ∈ {0, 1}k×k such that iteration (P, t)
happens and B̃(P, t) is consistent with B∗. Due to Claim 19, we know that t = k. Then
the algorithm outputs through Line 9 according to Claim 18. Thus the algorithm outputs a
correct solution B due to Claim 15.

3.2 Runtime analysis
First, let us bound the number of iterations of Loop 1. For this it is sufficient to bound the
number of w-limited matrices in {0, 1}k×k.

I Lemma 20. The number of binary w-limited k×k matrices is at most (2e
√
k/w)k3/2w1/2+k.

Proof. Note that no w-limited matrix can have a 2× (w+1)-sub-matrix having all ones. The
number of ones in such a matrix is a special case of the well-studied Zarankiewicz problem
and is known [19] to be at most k3/2w1/2 + k. Hence it follows that the number of binary
w-limited k × k matrices is at most 2k3/2w1/2+k ·

(
k2

k3/2w1/2+k

)
by choosing the positions of

the at most k3/2w1/2 + k potential ones in the matrix and then choosing which of them are
actually ones. The bound follows easily by using that

(
n
k

)
≤
(

ne
k

)k. J

Next, let us analyze the runtime of the function CompleteBasis. Loop 3 has at most n
iterations. In Line 14, we need to check at most 2k vectors v ∈ {0, 1}k. The checking for
i-compatibility of each vector takes O(nk) time. Hence CompleteBasis takes O(k2kn2) time.

Now, we are ready to calculate the total run time. Due to Lemma 20, Loop 1 has
at most (2e

√
k/w)k3/2w1/2+k iterations. Line 3 takes O(nk) time. Loop 2 has at most k

iterations. Line 7 takes at most O(k) time. The call to CompleteBasis in Line 8 takes at

A. E. Feldmann, D. Issac, and A. Rai 17:13

most O(k2kn2) time as we already calculated. Any other step takes only constant time. Thus
the total running time is bounded by O

((
(2e
√
k/w)k3/2w1/2+k

) (
nk + k(k + k2kn2)

))
=

O
(

(2e
√
k/w)k3/2w1/2+k · k22kn2

)
. We may run our algorithm on the kernel provided by

Theorem 2, which means we may set n = 4k in the above expression. Thus the total running
time is O

(
(2e
√
k/w)k3/2w1/2+k · k225k + n2 logn

)
. This proves Theorem 4.

4 Lower bound for number of ones in the basis matrix

In this section we construct binary matrices for which there is a width-k BSD and every
basis of every width-k BSD has Ω(k3/2) ones, thereby proving Theorem 5. We obtain such
instances via Finite Projective Planes (FPPs), which are defined as a set system S over a
universe U of elements such that:
1. for each e, e′ ∈ U there is exactly one S ∈ S containing both of them,
2. for each S, S′ ∈ S there is exactly one e ∈ U such that e ∈ S ∩ S′, and
3. there is a set of 4 elements in U such that no three of them are in any S ∈ S.

It is known [17] that for any FPP, both the number of elements and the number of sets
are equal to N2 + N + 1 for some N ≥ 2. Here N is called the order of the FPP. It also
follows that for an FPP of order N , each set has exactly N + 1 elements and each element is
contained in exactly N + 1 sets. It is also known that FPPs of order N exist for every prime
power N [17]. Given an FPP of order N , in the following we will denote the characteristic
incidence matrix of elements and sets by F ∈ {0, 1}(N2+N+1)×(N2+N+1), where rows are
elements and columns are sets.

We now give a reduction from FPPs to ECP. For this, consider a vertex set V with
N2 +N + 1 vertices. Let I be a subset of N + 1 vertices in V . Let GN be the graph defined
as the clique over V minus the clique over I, i.e., every pair of vertices in V is adjacent
except when both are from I. In other words, if X := V \ I, then GN is a split graph with
X as the clique and I as the independent set, where all the adjacencies are present between
X and I. In Lemmas 21 and 23, we show that GN has a small ECP if and only if an FPP of
order N exists.

I Lemma 21. If a finite projective plane S of order N exists, then GN has a clique partition C
into |C| ≤ N2 +N cliques.

Proof. Let S be an FPP of order N over a universe U , and fix one of its sets S ∈ S. We
identify this set with the independent set of GN , i.e., S = I. After fixing the elements of S, all
other elements in U \ S are arbitrarily identified with the other vertices in X. We claim that
the remaining sets in S \ {S} form a clique partition, i.e., if CS′ = {uv ∈ E(GN) | u, v ∈ S′}
then the set C = {CS′ | S′ ∈ S \ {S}} partitions the edge set of GN into cliques. From
Property 1 of an FPP, for any edge uv (i.e., at least one of u and v is in X) there is exactly
one set S′ ∈ S \ {S} such that u, v ∈ S′. This means that the subgraphs in C partition the
edge set. Furthermore, by Property 2 no S′ ∈ S \ {S} intersects in more than one vertex
with the independent set I. Thus every subgraph of C is a clique. Moreover, any FPP of
order N has exactly N2 +N + 1 sets, and so there are N2 +N cliques in C. J

I Lemma 22. If C is a set of cliques that partition the edges of GN and |C| ≤ N2 +N , then
for each C ∈ C, |V (C)| = N + 1.

IPEC 2020

17:14 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

Proof. First let us prove that |V (C)| ≤ N + 1. Suppose for the sake of contradiction that
|V (C)| ≥ N+2. Note that C contains at most one vertex from I, as a clique and independent
set can intersect on at most one vertex. Let C ′ := V (C) \ I and I ′ := I \ V (C). Clearly
|C ′| ≥ N + 1 and |I ′| ≥ N (recall that |I| = N + 1). Note that every edge in C ′ × I ′ has
to be covered by a distinct clique in C \ {C}: any two edges that have different endpoints
in I cannot be in the same clique, since there is no edge between these endpoints, while
any two edges with different endpoints in C cannot be in the same clique, since the only
edge between these endpoints is already covered by C. But there are |C ′||I ′| ≥ N2 +N such
edges whereas there are only N2 +N − 1 cliques in C \ {C}. Thus we have a contradiction.

Hence we established |V (C)| ≤ N + 1. Now suppose for the sake of contradiction
|V (C)| < N + 1. Using the fact that every clique of C has size at most N + 1, the total
number of edges covered by C is strictly less than |C|

(
N+1

2
)
≤ (N2 +N)

(
N+1

2
)

= N2(N+1)2/2.
However, since |I| = N + 1 and consequently |X| = N2, the total number of edges of GN is(

N2

2
)

+N2 · (N + 1) = N2(N + 1)2/2. Thus, we have a contradiction. J

I Lemma 23. Let N ≥ 2. If C is a set of cliques that partition the edges of GN such that
|C| ≤ N2 +N , then S = {V (C) | C ∈ C} ∪ {I} is an FPP of order N over V . Moreover, the
incidence matrix F of S with the column for I removed from it, is the BSD of the adjacency
matrix of GN that corresponds to C.

Proof. We will prove that S = {V (C) | C ∈ C} ∪ {I} satisfies the three properties in the
definition of an FPP, which then has order N by Lemma 22 above. Property 1 follows easily
from the definition of an edge clique partition: for each pair of adjacent vertices there is
exactly one clique covering their edge, while any pair of non-adjacent vertices only appear
in I.

Let us now prove Property 2. For any S, S′ ∈ S, it follows easily from the definition of an
edge clique partition that |S∩S′| ≤ 1 (otherwise some edge is contained in two cliques). Also,
for any S ∈ S, it is true that |S ∩ I| ≤ 1 (otherwise some clique would contain a non-edge).
Assume there are S, S′ ∈ S with S ∩ S′ = ∅. By Lemma 22, we have |S| = |S′| = N + 1,
and so all the (N + 1)2 edges of S × S′ have to be covered by distinct cliques (otherwise
some clique would contain an edge already covered by one of the cliques induced by S or S′).
But we do not have so many cliques as |C| ≤ N2 + N . Thus we have |S ∩ S′| = 1 for any
S, S′ ∈ S, and so Property 2 is satisfied.

Let us now prove Property 3. Consider any arbitrary clique C ∈ C. Pick two vertices from
V (C)\I and two vertices from I\V (C). Note that |V (C)\I| = |I\V (C)| ≥ N+1−1 = N ≥ 2,
and hence two vertices can be picked from the sets. It is easy to see that out of these four
vertices at most two are in any set in S.

It is easy to see that the incidence matrix F of S minus the column for I is the BSD of
the adjacency matrix of GN that corresponds to the clique partition C. J

By using Lemmas 21 and 23 and the fact that the element-set incidence matrix of an
FPP has full rank [23], we prove Theorem 5, thereby giving the required lower bound on the
number of ones in the basis matrix.

I Fact 24. The element-set incidence matrix of any FPP has full rank [23].

Proof of Theorem 5. Let N be a prime power and k := N2 + N . We will show that the
adjacency matrix A of GN has a width-k BSD and every basis of every width-k BSD of A
has Θ(k3/2) ones. Note that A is a (k + 1)× (k + 1) binary matrix as stated in the theorem.

A. E. Feldmann, D. Issac, and A. Rai 17:15

Since N is prime, there is an FPP of order N [17]. Then by Lemma 21, there is an edge
clique partition of GN with at most k = N2 +N cliques. Thus, the adjacency matrix A of
GN has a width-k BSD, by using the equivalence in Lemma 6.

Now, consider any width-k BSD B of A and B̃ be any basis of B. Then, by Lemma 6,
there is an edge clique partition of GN with at most k cliques. By Lemma 23, S = {V (C) |
C ∈ C} ∪ {I} is an FPP of order N . Let F be the element-set incidence matrix of S. By
Lemma 23, B is equal to F minus the column in F corresponding to I. By Fact 24, F has
full rank, i.e. it has rank N2 +N + 1 = k + 1. This implies B has rank k, and hence has at
least k columns. Since B is a width-k BSD, this means it has exactly k columns, and hence
is a (k+ 1)× k matrix. Since B has rank k, we have that B̃ has k rows and k columns. Thus,
B̃ is B minus some row of B. Since each column of B corresponds to a clique of C containing
N + 1 vertices by Lemma 22, we have that B has k(N + 1) ones. Hence the number of ones
in B̃ is at least k(N + 1)− k = Θ(k

√
k). J

5 Conclusion and Open Problems

We showed that AWECP admits a kernel with 4k vertices, and an algorithm with a runtime
of 2O(k3/2w1/2 log(k/w))nO(1), which implies that ECP can be solved in 2O(k3/2 log k)nO(1) time.
We think the following are the most interesting related open questions.

Close the gap further between the upper and lower bounds on the running time for ECP
that are currently 2O(k3/2 log k)nO(1) and 2Ω(k)nO(1) respectively.
Does WECP admit a polynomial-sized kernel like ECP?
Can we show a tightness of analysis of our algorithm for WECP as we showed for ECP
in Section 4, i.e., can we construct positive integer matrices with largest weight w that
has a width-k BSD and every basis of every width-k BSD have Ω(k3/2w1/2) ones?
The algorithm of Chandran et al. [3] for Bipartite Biclique Partition with runtime
2O(k2)nO(1) is also based on guessing the basis of a binary decomposition A = BC, and is
currently the fastest FPT algorithm for the problem. If we can show that in any solution
at least one of B and C has a row basis (column basis in case of C) with at most g(k)
ones, then we get a running time 2O(g(k) log k)nO(1) using a similar algorithm as we gave
for ECP. What is the minimum value of g(k) possible?

References
1 Mathieu Blanchette, Ethan Kim, and Adrian Vetta. Clique cover on sparse networks. In

Proceedings of the Fourteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 93–102, 2012.

2 Parinya Chalermsook, Sandy Heydrich, Eugenia Holm, and Andreas Karrenbauer. Nearly tight
approximability results for minimum biclique cover and partition. In European Symposium on
Algorithms, pages 235–246. Springer, 2014.

3 L Sunil Chandran, Davis Issac, and Andreas Karrenbauer. On the parameterized complexity
of biclique cover and partition. In 11th International Symposium on Parameterized and Exact
Computation, pages 1–13. Schloss Dagstuhl, 2017.

4 Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 4 (8).
Springer, 2015.

5 Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM Journal on Computing, 45(1):67–83, 2016.

IPEC 2020

17:16 Fixed-Parameter Tractability of the Weighted Edge Clique Partition Problem

6 Andres Figueroa, James Borneman, and Tao Jiang. Clustering binary fingerprint vectors with
missing values for dna array data analysis. Journal of Computational biology, 11(5):887–901,
2004.

7 Rudolf Fleischer and Xiaotian Wu. Edge Clique Partition of K4-Free and Planar Graphs. In
International Conference on Computational Geometry, Graphs and Applications, pages 84–95.
Springer, 2010.

8 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–2053,
2009.

9 Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling databases. In International
conference on discovery science, pages 278–289. Springer, 2004.

10 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction, exact, and
heuristic algorithms for clique cover. In 2006 Proceedings of the Eighth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 86–94. SIAM, 2006.

11 Hermann Gruber and Markus Holzer. Inapproximability of nondeterministic state and trans-
ition complexity assuming p6= np. In International Conference on Developments in Language
Theory, pages 205–216. Springer, 2007.

12 Davis Issac. On some covering, partition and connectivity problems in graphs. PhD thesis,
Saarland University, Saarbrücken, Germany, 2019. doi:10.22028/D291-29620.

13 Klaus Jansen, Felix Land, and Kati Land. Bounding the running time of algorithms for
scheduling and packing problems. SIAM Journal on Discrete Mathematics, 30(1):343–366,
2016.

14 Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

15 L. T. Kou, L. J. Stockmeyer, and C. K. Wong. Covering edges by cliques with regard
to keyword conflicts and intersection graphs. Commun. ACM, 21(2):135–139, 1978. doi:
10.1145/359340.359346.

16 SH Ma, WD Wallis, and JL Wu. The complexity of the clique partition number problem.
Congr. Numer, 67:59–66, 1988.

17 J Matoušek and J Nešetřil. Invitation to Discrete Mathematics. Oxford University Press, 2009.
18 Egbert Mujuni and Frances Rosamond. Parameterized complexity of the clique partition

problem. In Proceedings of the fourteenth symposium on Computing: the Australasian theory-
Volume 77, pages 75–78. Australian Computer Society, Inc., 2008.

19 Vladimir Nikiforov. A contribution to the zarankiewicz problem. Linear algebra and its
applications, 432(6):1405–1411, 2010.

20 Blair Sullivan (University of Utah). Personal communication.
21 Subramanian Rajagopalan, Manish Vachharajani, and Sharad Malik. Handling irregular ilp

within conventional vliw schedulers using artificial resource constraints. In Proceedings of the
2000 international conference on Compilers, architecture, and synthesis for embedded systems,
pages 157–164, 2000.

22 Fred S Roberts. Applications of edge coverings by cliques. Discrete applied mathematics,
10(1):93–109, 1985.

23 Howard Sachar. The fp span of the incidence matrix of a finite projective plane. Geometriae
Dedicata, 8(4):407–415, 1979.

24 Xiao-tian Wu, Yu-Hao Lin, and R Fleischer. Research of fixed parameter algorithm for clique
partition problem. Computer Engineering, 37(11):92–93, 2011.

https://doi.org/10.22028/D291-29620
https://doi.org/10.1145/359340.359346
https://doi.org/10.1145/359340.359346

	Introduction
	Our techniques
	Related results
	Preliminaries

	Kernel
	Algorithm
	Correctness of the algorithm
	Runtime analysis

	Lower bound for number of ones in the basis matrix
	Conclusion and Open Problems

