
Approximation Algorithms for Steiner Tree Based
on Star Contractions: A Unified View
Radek Hušek
Computer Science Institute of Charles University, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
husek@iuuk.mff.cuni.cz

Dušan Knop
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic
dusan.knop@fit.cvut.cz

Tomáš Masařík
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Czech Republic
http://tarken.krakonos.org/
masarik@kam.mff.cuni.cz

Abstract
In the Steiner Tree problem, we are given an edge-weighted undirected graph G = (V, E) and a
set of terminals R ⊆ V . The task is to find a connected subgraph of G containing R and minimizing
the sum of weights of its edges. Steiner Tree is well known to be NP-complete and is undoubtedly
one of the most studied problems in (applied) computer science.

We observe that many approximation algorithms for Steiner Tree follow a similar scheme
(meta-algorithm) and perform (exhaustively) a similar routine which we call star contraction. Here,
by a star contraction, we mean finding a star-like subgraph in (the metric closure of) the input graph
minimizing the ratio of its weight to the number of contained terminals minus one; and contract. It is
not hard to see that the well-known MST-approximation seeks the best star to contract among those
containing two terminals only. Zelikovsky’s approximation algorithm follows a similar workflow,
finding the best star among those containing three terminals.

We perform an empirical study of star contractions with the relaxed condition on the number
of terminals in each star contraction motivated by a recent result of Dvořák et al. [Parameterized
Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices, STACS 2018].
Furthermore, we propose two improvements of Zelikovsky’s 11/6-approximation algorithm and we
empirically confirm that the quality of the solution returned by any of these is better than the one
returned by the former algorithm. However, such an improvement is exchanged for a slower running
time (up to a multiplicative factor of the number of terminals).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Steiner tree, approximation, star contractions, minimum spanning tree

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.16

Related Version A full version [19] of this paper is available at https://arxiv.org/abs/2002.03583.

Supplementary Material
https://github.com/JohnNobody-3af744f30980b7458372/star-contractions

Funding Students were supported by Charles University student grant SVV-2017-260452 and GAUK
1514217.
Dušan Knop: Supported by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics”.
Tomáš Masařík: have received funding from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme Grant Agreement 714704.

© Radek Hušek, Dušan Knop, and Tomáš Masařík;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:husek@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-2588-5709
mailto:dusan.knop@fit.cvut.cz
https://orcid.org/0000-0001-8524-4036
http://tarken.krakonos.org/
mailto:masarik@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.IPEC.2020.16
https://arxiv.org/abs/2002.03583
https://github.com/JohnNobody-3af744f30980b7458372/star-contractions
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Star Contractions for Steiner Tree

Acknowledgements We thank the authors of the Boost library [29], which we use in our code,
for their work and effective implementation of many graph algorithms. We thank Tomáš Toufar
for consultations in the early stages of preparation of the experiments in the paper as well as for
the implementation of a part [20] which was partially used in our code. We thank the PACE
challenge which was a good motivation and inspiration for the development of practical algorithms
for the Steiner Tree problem. The results of this challenge motivated us to develop the experiments
presented in this paper. We also thank anonymous referees for interesting feedback as well as for
pointing us to several interesting directions for future improvements and related results. Part of the
work was carried out while D. Knop and T. Masařík were at the University of Bergen.

1 Introduction

In the Steiner Tree problem an edge weighted graph G = (V,E) is given together with
the set of terminal vertices R ⊆ V ; the non-terminal vertices are called Steiner vertices.
The task is to find a connected subgraph of G containing all terminals and minimizing the
sum of weights of its edges. Steiner Tree was among the first problems shown to be
NP-complete [22] and is one of the most studied problems in computer science since then.

Steiner Tree
Input: A graph G = (V, E), a set of terminals R ⊆ V , and a weight function w : E → N.
Solution: A Steiner tree F ⊆ G containing a path between any two terminals s, t ∈ R.

Steiner Tree is important not only as an interesting graph-theoretic problem, but it
has many real-world applications e.g. in network design or VLSI design [21]. Thus, it
is extensively studied by both theoreticians and practitioners. Many theoretical results
are studying (approximation) algorithms for Steiner Tree; for an overview, see e.g. a
survey [21]. We now discuss a few theoretical results important for our work.

Star Contraction and Approximation Algorithms. For an edge-weighted graph G = (V,E)
the metric closure of G, denoted mc(G), is the complete graph with the vertex set V with
weight of an edge {u, v} equal to the length of a shortest path between u and v in G. The
most basic approximation algorithm for Steiner Tree is based on finding a minimum
spanning tree (MST) in the metric closure of the input graph [25]. Improvements and variants
of MST heuristics solving the Steiner tree problem were subsequently examined [9]. An
MST heuristic was later improved by Zelikovsky [33] who used the finding of augmenting
stars containing three terminals to improve the algorithm of Kou et al. [25] and was the first
to beat the barrier of 2 for the approximation ratio. Here an augmenting star consists of a
Steiner vertex and exactly three terminals such that if we contract the just defined star into a
terminal and compute the weight of an MST, the weight of the thus obtained MST together
with the weight of a contracted star is strictly smaller than the weight of the former MST.
This approach was later improved by Borchers and Du [6]. Furthermore, the current best
theoretical approximation algorithm of Byrka et al. [7] with approximation ratio ln(4) + ε is
in fact based on star contractions as well.

We observe that the above-mentioned algorithms not only use star contractions as the
main tool but, on top of this, most of these algorithms follow a very similar meta-algorithm
– see Algorithm 1 and Example 1 below. There, we argue that the simplest algorithm we
consider, the MST-approximation, can be described in the framework given in Algorithm 1.
We justify the same for (our modification of) Zelikovsky’s algorithm in Section 2, Example 2.

R. Hušek, D. Knop, and T. Masařík 16:3

Algorithm 1 A unifying high-level framework of selected approximation algorithms for Steiner
Tree. The find_best_star() function finds a star C with at most k terminals which among all
such stars achieves the lowest value under the evaluation function eval(). The contract() function
(usually) contracts the star C and assigns a partial (contracted) solution to S′ (note that C and S′

could possibly be different e.g. C can be in the metric closure of G′).
Input: G = (V,E), set of terminals R, parameters k, τ ∈ N, and functions

contract(), eval(), finish()
Output: A Steiner tree

1 G′ ← G, R′ ← R, S ← ∅
2 while |R′| > τ do
3 C ← find_best_star(G′, R′, k, eval)
4 if eval(C) <∞ then
5 G′, R′, S′ ← contract(G′, R′, C)
6 S ← S ∪ {S′}
7 else break
8 return finish(G, S, R)

I Example 1 (MST). Observe that in order to find a spanning tree of minimal weight it
suffices to find the best star with two terminals, that is, the cheapest edge (between terminals)
in the metric closure of the given graph. Furthermore, if we then contract such a path, we
reduce the size of the terminal set by one. Thus, one can set the parameter k = 2 and τ = 1
(as we perform star contractions exhaustively). The eval() function gives the length of
the shortest path (i.e., the total weight of the proposed 2-star), the contract() function
contracts, and the finish() function contracts the given collection of 2-stars.

Unbounded Size of the Best Star. A recent result of Dvořák et al. [15], which proposes a
novel algorithm in the framework of parameterized approximations, also falls in the framework
suggested in Algorithm 1. Surprisingly, their algorithm uses an unbounded value of the
parameter k, the number of terminals in the best star. Their algorithm, given a parameter
p and the desired approximation ratio ε > 0, runs in time f(p, ε) poly(|G|) and outputs a
solution of cost at most (1 + ε) ·OPT(p), where OPT(p) is the value of an optimal solution
that uses at most p Steiner vertices. Let us now discuss in more detail why the algorithm of
Dvořák et al. follows the proposed framework; we discuss further technical details later (see
Section 2). First we set the parameters k =∞ and τ = c · p2

ε4 for a suitable constant c.
eval() Let C be a connected subgraph of G′, let w(C) be the total weight of edges in C,

and let RC ⊆ R′ be the set of terminals contained in C. The function eval(C) returns
the value w(C)

|RC |−1 .

find_best_star() Since the parameter k =∞, the function returns a connected subgraph
C minimizing the value w(C)

|RC |−1 among all connected subgraphs with at least two terminals.
finish() We first contract all subgraphs C obtained so far (i.e., we construct the graph G′).

Then the algorithm of Fuchs et al. [16] is invoked on G′.
It is worth noting that the algorithm of Fuchs et al. computes an optimal solution in time
f(τ) · poly(|G′|). Note that a similar running time has been achieved already by Dreyfus
and Wagner [12]. We conclude that the best-star contraction is a popular and successful
technique in the design of approximation algorithms for Steiner Tree. We refer to the
work of Chimani and Woste 2011 [8] for an experimental comparison of contraction-based
techniques known at that time. Recently, Beyer and Chimani 2019 [4] conducted another
experimental study, where they compare approximation algorithms with approximation ratio

IPEC 2020

16:4 Star Contractions for Steiner Tree

better than 2. The underlying technique within the compared algorithms (greedy as well
as linear programming based approaches) is the contraction of k-restricted full components,
components of at most k terminals where the set of leaves and terminals coincide, for some
k ≥ 3. For most of the considered algorithms, their strongest theoretical approximation
bounds are only achieved for k →∞, but also, the running time is exponentially dependent
on k, which makes it infeasible in practice.

Interestingly, in [8] conclude that the simplest and oldest algorithm with the weakest
theoretical guarantee among the algorithms they considered has the best performance in
practice. This was the already mentioned 11/6-approximation algorithm by Zelikovky [33]
that we are considering in our study. They speculated in the conclusions that the reason
might be that the larger values of k might not be feasible to compute in practice (A large k is
also identified as the main practical obstacle in [4]). Instead, Chimani and Woste suggested
that some clever algorithmic choices might help to overcome this issue in the future. In this
light, we believe that our approach of best stars contractions might give such guidance. We
are posing the following natural questions:
1. Do the star contractions behave well in practice? Specifically, is it possible to improve the

total weight of a solution returned by well-studied heuristics (e.g. MST approximation)
significantly when we first perform a few rounds of best star contractions?

2. Is it common to find large (nearly) best stars? That is, is there a significant fraction of
all contracted stars containing more than e.g. 5 terminals?

3. Is there any point of Pareto optimality? For example, is it possible to reduce the number
of terminals by 20% using only 10% of the total work? Ideally, while also improving the
cost of the solution by 80%? Here 100% improvement is represented by performing best
star contractions until only a single terminal is left?

Our Experiment. In what follows, we refer to Algorithm 1. We run the algorithm in
steps – invocations of the while-loop – and each time we call the contract() function.
We find a solution using all of the aforementioned methods. We collect the data and,
e.g., for MST on public instances from PACE Challenge 2018 we aggregate statistics (see
Figure 2). Furthermore, we measure the sizes of contracted stars and the performance of
find_best_star(), since this is the most time-consuming step in the algorithm. It is worth
pointing out that we implement some standard heuristics (see Section 2.1) which we use to
preprocess the input, that is, all our data is collected on the already preprocessed instances.

Dataset. We evaluate the algorithm and present our results for the set of public instances of
PACE Challenge 2018 in Section 3. According to the report from PACE Challenge 2018 [5],
the set of instances in Track C consists of the hardest instances of Steinlib and from real-world
telecommunication networks by Ivana Ljubic’s group at the University of Vienna. It should
be noted that similar sources were used for the DIMACS Challenge [1]. By that time, a
majority of the selected instances cannot be solved within one hour by the state-of-the-art
program and in several cases, the actual optimum was unknown. For more discussion about
the chosen dataset, please consult the report from the PACE Challenge 2018 [5]. Furthermore,
we evaluate our experiments on rectilinear instances from ORLib [3] in the full version of the
paper.

Preliminaries. We give a brief recapitulation of graph theory terminology used in this work;
for the basic notation, we refer the reader to monographs [26, 10]. All graphs are undirected
without loops and multiple edges. If we argue about algorithmic complexity of a certain
routine or the amount of memory needed in order to store some data for a graph G, by n
we denote the number of vertices of G and by m we denote the number of edges of G. For

R. Hušek, D. Knop, and T. Masařík 16:5

a graph G = (V,E) and an edge e = {u, v} if we contract e (denoted as G/e), we create a
new graph with the vertex set (V \ {u, v}) ∪ {z}, where z is a newly introduced vertex. The
edge set of the resulting graph consists of all edges in E not incident to any end-vertex of e
together with the newly introduced edges {w, z} for every edge {w, u} as well as for every
edge {w, v}, where the weight of a newly created edge is the same as the weight of the edge
{w, u}, {w, v}, respectively. Note that if the above operation is about to create multiple
edges we simply keep the one with a lower weight. For a graph G = (V,E) and a vertex v
with exactly two neighbors in G by suppressing v we mean changing G into a new graph
as follows. The new vertex set is V \ {v} and we delete all edges incident to v. Finally, we
insert edge {x, y} if both {x, v}, {v, y} ∈ E with weight w({x, y}) = w({x, v}) + w({v, y}).

1.1 More Details on Past Implementation Challenges
Since Steiner Tree has many applications, it received attention among practitioners and
in operations research. One particular example can be e.g. the specialized module SCIP-
Jack [17] in the SCIP tool for solving (mixed) integer linear programs. In the 11th DIMACS
Implementation Challenge [1] various variants of Steiner Tree formed the central topic of
the challenge. Among others, e.g. the basic version Steiner Tree, geometrical versions
(e.g., rectilinear instances), and prize-collecting variants were tackled. One can read in the
description of the DIMACS Implementation Challenge:

DIMACS Implementation Challenges address questions of determining realistic algo-
rithm performance where worst-case analysis is overly pessimistic and probabilistic
models are too unrealistic: experimentation can provide guides to realistic algorithm
performance where analysis fails.

Last but not least, one track of the PACE Challenge 2018 [5, 2] was completely devoted
to Steiner Tree with three specialized branches. In PACE Challenge 2018 there was an
approximation branch and two exact branches – one with the additional promise of a small
number of terminals and in the other, a tree-decomposition of the input graph of small
tree-width was given.

2 Implementation Details and Heuristics

In this section, we describe our implementation and improvements of finding the Best Star
as proposed in [15] (Section 2.2), the approximate algorithms used to finish the solution after
the application of the Best Star Algorithm (Section 2.3), and also the heuristics we used to
preprocess the instances (Section 2.1). Last but not least, we discuss a few simple yet in
practice well-performing modification of Zelikovsky’s algorithm (Section 2.3).

2.1 Heuristics
All heuristics we used are deterministic and ensure that the optimal value of instance before
and after applying them is the same. Namely, we used the following well-known ones:
1. We contract all edges e with w(e) = 0 at the very beginning. Thus we assume in the rest

that all weights are positive.
2. We remove all Steiner vertices of degree 1 and suppress Steiner vertices of degree 2.
3. We contract the edges incident to terminals of degree 1.
4. Contract an edge e = {s, t} between two terminals if w(e) is minimal among the edges

incident to s or t.
5. Shortest Path Test (SPT): Delete an edge e = {u, v} if w(e) exceeds the length of the

shortest path between u and v.
6. Terminal Distance Test (TDT): see below.

IPEC 2020

16:6 Star Contractions for Steiner Tree

Algorithm 2 Pseudocode of the used preprocessing.
1 Function quick_heuristics(G):
2 run← true
3 while run do
4 run← false
5 run← contract_zero_edges(G)
6 run← run ∨ delete_degree_one_Steiner(G)
7 run← run ∨ contract_the_only_edge_incident_to_term(G)
8 run← run ∨ contract_the_cheapest_edge_between_two_terminals(G)

9 Function preprocessing(G):
10 quick_heuristics(G)
11 SPT(G)
12 quick_heuristics(G)
13 TDT(G)
14 quick_heuristics(G)
15 SPT(G)
16 quick_heuristics(G)

Heuristics (1) up to (4) are implemented using straightforward iteration over all edges
or vertices of the graph, and if any of them succeeds, we again rerun all of these. This
iteration blows up theoretical time complexity by a factor of n but in practice, only very
few iterations yield an irreducible instance. In Algorithm 2 we encapsulate these into the
quick_heuristics() function. For performance reasons, we split the SPT heuristic into
two parts: first, it checks only paths consisting of two edges which is quite efficient (O(n2)
because we store edges incident to every vertex in sorted order) and then we check paths of
all lengths which requires to run Dijkstra’s algorithm [11] from every vertex and is therefore
much slower.

It is worth noting that both SPT and TDT can benefit from rerunning but due to their
time complexity and usually lower number of improvements, we do not use these heuristics ex-
haustively. Instead, we run SPT, TDT, and SPT once more and execute quick_heuristics()
at the beginning, between them, and at the end. See the preprocessing() function in
Algorithm 2.

Terminal Distance Test. The TDT heuristic was introduced in [30]. The basic idea is the
following: Let (W,W ′) be a partition of vertices such that both W and W ′ contain some
terminal and each of them is connected, let be e and f the shortest and the second shortest
edge of the cut induced by (W,W ′). If there is a path connecting some terminal t ∈W ∩ T
and t′ ∈W ′ ∩ T which uses e and is no longer that f then there exists an optimal solution
which uses edge e. Observe that while it is easy to verify the correctness of this heuristic,
it does not give us directly an effective algorithm. Koch and Martin [23] point out that
it is possible to implement TDT in time O(|V |3). Furthermore, they claim that the time
complexity can be further improved to O(|V |2) as is described in the thesis [13]. However,
we were unable to access the thesis.1 Consequently, we describe our implementation in
Algorithm 3 for the future reference.

1 We thank to an anonymous referee for providing us with a reference [14] to an implementation of TDT
heuristic running in time O(|E|+ |V | log(|V |)). It will be a part of the planned improvements in our
experiments.

R. Hušek, D. Knop, and T. Masařík 16:7

Our implementation is based on the data structure for dynamic edge 2-connectivity of
Westbrook and Tarjan [32]. This structure has amortized time complexity O(α(m)) per
operation and supports edge addition and check whether two vertices belong to the same
(2-connected) component. The time complexity of Algorithm 3 is O(nm logn) when Dijkstra’s
algorithm is implemented with d-regular heap.

Algorithm 3 Implementation of Terminal Distance Test.
1 Function test_edge(G, e, f , X):
2 u, v ← e

3 Remove e from G

4 t1 ← terminal closest to u // Dijkstra’s algorithm

5 t2 ← terminal closest to v
6 if d(t1, u) + w(e) + d(v, t2) ≤ w(f) then
7 X ← X ∪ e
8 Add e back to G
9 Function TDT(G):

10 E′ ← sort(E(G), w(a) < w(b))
11 C ← structure for 2-connectivity
12 X ← ∅
13 foreach e ∈ E′ do
14 B ← add_edge(C, e) // returns edges which were bridges before addition

of e but no longer are

15 foreach b ∈ B do
16 test_edge(G, b, e, X)

17 Buy edges in X

2.2 Finding the Best Star
As already mentioned in Section 1, Algorithm 1 repeatedly finds and contracts a so called
best star (according to a certain ratio) in G. Here, we first give the definition used by Dvořák
et al. [15]. Later, we discuss a further additional practical extension of the former definition
and describe our implementation in detail. Let G be a graph and R the set of terminals in
G. For a vertex c and a set R′ ⊆ R we define a star (centered at c and a terminals set R′)
which we denote st(c,R′). We define a ratio of star st(c,R′) as

r (st(c,R′)) =
∑

t∈R′ dist(c, t)
|R′| − 1 ,

where |R′| ≥ 2 and dist(c, t) is the weight of the edge {c, t} in mc(G). The best ratio
achievable for a star centered at c is r(c) = minR′⊆R, |R′|≥2 r(st(c,R′)) and a best star
centered at c is any minimizer of the defining expression. The best star in the graph G is any
star st(c,R′) minimizing r(G) = minc∈V r(c).

Clearly, the smaller the ratio is the better. On the other hand, in our experiments,
there were many ties and thus we further extend this definition in the case there are more
minimizers of the best ratio in G. We introduce a second measurement taking into account
the number of terminals contained in a star. Intuitively, the more terminals it contains the
better. Thus the best star in the graph G is any star st(c,R′) with ratio minc∈V r(c) which
maximizes |R′|.

IPEC 2020

16:8 Star Contractions for Steiner Tree

Figure 1 Simple graph containing four terminals (represented by squares) and two Steiner vertices
(discs). Suppose all the edges have unit weight. When computing the weight of a star centered
at any of the two Steiner vertices using the metric closure, we count the weight of the red edge
twice. As a consequence, one gets two possible stars with ratio 2 – one containing only the two
terminals connected directly to the assumed Steiner vertex and the other containing all four terminals.
However, the second described star should better have a ratio of 5/3 (which is better than 2).

It is worth noting that if the best star with center c contains k terminals, then it contains
k terminals that are closest to c in mc(G) [15, Lemma 6]. Even though the definition of
the best star uses mc(G), in practice, we cannot afford to compute and store it due to its
size (quadratic in n). Instead, we utilize Dijkstra’s algorithm [11] to compute the best star
centered in a given vertex. In total, we obtain running time O(mn+ n2 logn) per one round,
that is, for one execution of the main loop in Algorithm 1. Furthermore, we use several
heuristics to improve the running time significantly in practice. These heuristics employ
memorization and early termination, among others; refer to Algorithm 4. Let rcur(G) denote
the best so-far computed ratio, i.e., the best ratio among all already computed stars. By
slightly overloading the notation when searching for the best star centered at c we let rcur(c)
denote the ratio of the best so far computed star centered at c. We use this notation to
describe practical heuristic improvements:
1. We stop the execution of Dijkstra’s algorithm when the current distance from the source

(center of the star) is strictly greater than rcur(c).
2. For every vertex c ∈ V we store the best star centered at c in between the rounds.
3. We (re)compute the best star at c only if the stored one could have been affected by

a star-contraction performed in the previous round. We can do this since a single
star-contraction affects only a small (local) part of the graph.

Overestimating Star Weight. It is worth noting that the best star as described in [15]
is a star in metric closure containing some number of terminals closest to its center (and
minimizes the star ratio). Note that this clearly may overestimate the weight of such a star
as well as its ratio (see Figure 1). Observe that if the best found star contains at most three
terminals, then its weight is always estimated correctly. While this estimate is sufficient
for the purpose of theoretical analysis, it may affect the overall behavior of the algorithm.
We would like to point out that in our implementation of a star-contraction (st(c,R′)) we
contract edges of an MST containing R′ instead of contracting the star itself. Clearly, this
modification can only decrease the cost of the single round. On the other hand, it is not
clear how this “greedy” improvement affects the overall performance of the whole process.
We propose a way to overcome the overcounting issue.

Improved Stars. Using Dijkstra’s algorithm, we are recursively searching for a new terminal
within the threshold distance and building the best star for each vertex. We start by setting
the given vertex as the origin of Dijkstra’s algorithm. Whenever we encounter a terminal

R. Hušek, D. Knop, and T. Masařík 16:9

such that it forms a better star together with the so-far best star originating in the given
vertex, we add it to the constructed star and start over while setting the whole star as the
new origin for Dijkstra’s algorithm.

Algorithm 4 A pseudocode for The Best Star function.
1 Function find_best_star_v(G,R,v,r):
2 weight← 0 // sum of distances

3 nter ← 0 // current number of terminals

4 while (w, d)← dijkstra_next(G,v) do
5 if nter ≥ 2 ∧ weight/(nter − 1) < d then return weight/(nter − 1)
6 if d > 2r then return lbound(d)
7 if w ∈ R then
8 weight← weight+ d

9 nter ← nter + 1

10 Function find_best_star(G,R):
11 rcur(G)←∞
12 foreach v ∈ V do ratio[v] =∞
13 foreach v ∈ V do
14 if invalid(v) ∨ (ratio[v] < rcur(G) ∧ lbound(ratio[v])) then
15 ratio[v]← find_best_star_v(G,R,v,rcur(G))
16 if rcur(G) > ratio[v] then
17 rcur(G)← ratio[v]
18 star_center ← v

19 return (star_center, rcur(G))

2.3 Finishing the partial solution
The original algorithm of Dvořák et al. [15] performs star contractions until the number of
terminals decreases under a threshold depending only on the desired approximation ratio ε
and the number of Steiner vertices in (some) optimal solution. An exact algorithm is used to
complete the solution when the number of terminals dropped below the threshold. While
this is a very natural theoretical approach, it is not suitable for practical use for the following
reasons:
1. Both discussed exact algorithms are based on the dynamic programming, which makes

them quite slow in practice (mostly intractable for instances with more than 20 terminals).
2. The threshold depends on the number of Steiner vertices in (some) optimal solution and

we, in general, have no good upper bound on it.

Instead, for the purposes of the evaluation, we choose the following algorithms which we
run after every contraction:

MST: The usual well-known minimum spanning tree approximation – we take a subgraph
of the metric closure induced by terminals and find its minimum spanning tree. Note that
the implementation does not compute whole metric closure but computes Voronoi regions
of the terminals instead [28].. Then an auxiliary graph is constructed using terminals of
the original graph as vertices and adding an edge for every edge {u, v} crossing between
Voronoi regions with length d(u) + w(u, v) + d(v), where w(·, ·) is the length of an edge
and d(·) is the distance to a closest terminal.

IPEC 2020

16:10 Star Contractions for Steiner Tree

MST+: We calculate MST and then improve its solution by taking its terminals and
branching vertices (Steiner vertices with the degree at least 3 in the solution), marking
them all as terminals and running MST on this modified instance. It is easy to see that
solution of MST on this modified instance is never worse than the solution we began with
because the original solution is a spanning tree of the modified instance. We repeat this
while the solution is improving.
Zelikovsky: Zelikovsky’s algorithm [33], which augments the MST solution using stars
with 3 terminals, was the first algorithm with a better approximation ratio than 2. The
algorithm proceeds in rounds. Each round it looks at all 3-stars, selects the star s which
maximizes the so-called “win” which is mst(G)−mst(G/s)− d(s) (where mst(G) is the
weight of MST solution of instance G, G/s denotes G after contraction of terminals in
s and d(s) is the weight of star s), and if the win of the best star is strictly positive,
it contracts it and starts another round. Otherwise, it stops, and returns MST on all
terminals and selected star centers. (Computing the MST at the end is needed to ensure
that the solution is really a tree.) The original version of the algorithm computes the
best center for every triple of terminal and weight of such a star at the very beginning
and runs in O(n(m+ n logn+ t2) + t4) time and requires O(m+ t3) extra space.
Zelikovsky−: This modification recomputes distances of triples in each round instead of
precomputing them in advance. Unlike the usual Zelikovsky’s algorithm where the triplets
are only upper bounds, here we have optimal values in each round. This algorithm is
slower (O(nt(m+ n logn+ t2))), but the memory requirement is O(m) smaller.
Zelikovsky+: This modification differs from Zelikovsky− only by the application of
MST+ instead of MST at the end.

I Example 2 (Zelikovsky-). The Zelikovsky’s algorithm also fits into the star-meta-algorithm
framework described in the introduction: The parameters are τ = 2 and k = 3, eval()
function returns −win (or ∞ for nonpositive win), the contract() just contracts the star
and adds center of the star to S, and the finish() computes MST of R ∪ S. Note that
Zelikovsky− variant is more natural as it finds the best star each round, whereas the original
Zelikovky’s algorithm precomputes values of all stars with 3 terminals.

2.4 Comparison with state-of-the-art results
To put our study in the context, we compare its behavior with other programs competing
in the PACE Challenge 2018. We describe the comparison system as was proposed for the
PACE challenge 2018 [5]: A time-limit to output a solution was set to 30 minutes – we call
this a run. Afterward, each run received points according to the fraction of the value of the
returned solution to the best solution known. The results are aggregated over all instances,
see Table 1. The implementation of best star contractions ended up at the 4th place in
this comparison. It is important to note that the algorithm was enhanced with local search
heuristics. We give a brief description of the particular implementation considered in the
comparison (see [20] for the detailed description and the implementation).

After the initial heuristics described in Section 2.1 were exhausted, the program spends
exactly 10 minutes performing the best star contraction algorithm. The rest of the available
time was spent on the local search heuristics whose description follows.

Details on Local Search Heuristics. We implemented the two following randomized local
search heuristic. Those heuristics run until the dedicated time was up. Then the best solution
was returned. As the second heuristic is much more time consuming than the first one we
run it only sparsely.

R. Hušek, D. Knop, and T. Masařík 16:11

Table 1 An aggregated comparison of the overall performance of the algorithms participating in
PACE Challenge 2018 Track C. We exchange the names of the teams with a summarizing name of
the main method they used. For more implementation details of their algorithms, see the report [5]
that also contains links to individual implementations and their comprehensive descriptions.
∗Shortest Path Heuristic: Pick one terminal as a root and repeat the following: Find the closest
terminal to the root and contract the shortest path from this terminal to the root.

Algorithm Score
Evolution Algorithm 99.91
MIP solver + Heuristics (SCIP-Jack [24]) 99.89
Iterated Local Search 99.78
Best Star Contractions with Local Search [20] 99.70
Zelikovsky [33] 98.93
Simulated Annealing 98.27
Random Generation + Local Search 97.54
Shortest Path Heuristic∗+ Local Search 97.15
Mehlhorn 2-approximation [27] +
Watel and Weisser k-Approximation for
the directed Steiner Tree Problem [31] 96.92
Shortest Path Heuristic∗ 94.57
Primal-Dual 2-approximation + Local Search 94.37
Contract Random 2-terminal Shortest Path
+ MST 82.61
Ant Colony Optimization 80.73

Local search using MST+-approximation. We randomly select a couple of additional
Steiner vertices to be added to the branching Steiner vertices of the current solution.
Then we run the MST+ algorithm on them.
Local search using Dreyfus-Wagner partition. Inspired by Dreyfus-Wagner FPT
algorithm [12] we derive a heuristic that obtains the partition of the vertices given one of
the promising solutions and then computes an optimal Steiner tree on this structure.

3 Outcomes of our Experiments

In this section, we perform our main tests that are carried out on the instances from the
PACE Challenge 2018, Track C.23 Aggregated data from the measurements are provided
in Figure 2 and the corresponding data in the full version. There, star contractions are
executed in rounds and in every round, all heuristics (from Section 2.3) are executed so

2 It is worth noting that all the data, as well as the corresponding charts for all in-
stances, are available in the repository containing our implementation code https://github.com/
JohnNobody-3af744f30980b7458372/star-contractions.

3 Due to time constraints the tests involving Zelikovski’s algorithm were performed only on 123 out of
200 instances from the PACE Challenge 2018. The list of instances used in each experiment, as well as
all the results and charts, are available in the above-mentioned git repository. The problem was that
running Zelikovsky’s algorithm after each best star contraction took too long on large instances. We
provide figures where tests (excluding Zelikovsky’s algorithm) were performed on almost all instances
(excluding instances number 193, 196, 197, and 198 only) in the full version. Those four instances were
still too large, even for the rest of the tests. We stress out that the outcomes of those tests are relatively
similar to those on the limited number of instances.

IPEC 2020

https://github.com/JohnNobody-3af744f30980b7458372/star-contractions
https://github.com/JohnNobody-3af744f30980b7458372/star-contractions

16:12 Star Contractions for Steiner Tree

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

MST

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

MST+

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

MST (Improved stars)

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

MST+ (Improved stars)

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

Zelikovsky

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

Zelikovsky-

 100

 110

 120

 130

 140

 150

 160

 170

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

Zelikovsky+

 100

 102

 104

 106

 108

 110

 112

 114

 116

 118

 120

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 w

e
ig

h
t

o
f

so
lu

ti
o
n

Processed terminals (in %)

Average solution quality

MST
MST+

MST (Improved stars)
MST+ (Improved stars)

Zelikovsky
Zelikovsky-

Zelikovsky+

Figure 2 This chart shows the performance comparison of star contractions and MST heuristics
on PACE Challenge 2018 instances. The x-axis represents the number of star contractions in percent
before MST was computed. The zero value is MST heuristics after preprocessing only. Hundred
denotes a result obtained by star contractions till one vertex remains in the graph. The y-axis
represents the quality of the solution again in percentage where the hundred is the best solution we
obtained during our experiments (not only in this comparison). As we pointed out, the best solution
we are comparing to was derived using a local search algorithm, so optima are represented by more
or less the current state-of-the-art results. The top line is the maximum in our dataset, the colored
box represents data points from the first to the third quartile with the line in the middle denoting
the median, and the line at the bottom is the minimum. The last plot shows arithmetic averages of
the same data combined into a single plot for easier comparison.

R. Hušek, D. Knop, and T. Masařík 16:13

Table 2 The total number of stars containing two to ten terminals contracted during the execution
of the algorithm on all PACE Challenge 2018 instances.

of terminals 2 3 4 5 6 7 8 9 10 > 10
of basic stars 99965 23921 1721 683 246 135 197 126 149 1158
of improved stars 91957 15346 4371 2070 969 539 410 263 218 1285

that the overall performance can be compared. Experiments are done separately for basic
stars and only some of them are repeated for improved stars. An important thing to note is
that the best solution for each input was derived out of the best of outcomes from all the
performed experiments, including additional local search heuristics described in Subsection 2.4.
Therefore, it represents more or less the current state-of-the-art. Also, “the worst” solution
was obtained using the heuristics described in Section 2.1.

The basic outcome of our experiments is the chart for MST. It shows that the best
star algorithm significantly improves the performance of an MST approximation. Here, the
star contractions help to improve the quality of some solutions for more than 57%. The
improvement is by more than 12% on average and it is worth pointing out that the number
outliers is reduced significantly as well (see Figure 2) and thus we answered Question 1
positively.

We conclude that MST+ could replace MST for all purposes where a slow-down by a
small multiplicative constant does not play a significant role. MST+ is not only better by
definition, but also our experiments suggest that it outperforms MST quite significantly.
In addition, it is still quite simple to code. Most importantly, Our measurements declare
that it is approximately only 3 times slower than MST. This means it is (most of the time)
negligible in practice since MST is computed within seconds on the current inputs. This
is also supported by the fact that the computation of MST/MST+ takes only a fraction
of the algorithms considered in this study. Moreover, star contraction combines very well
with MST+ which improves not only the overall performance but, more importantly, a
good solution is obtained much sooner. Besides, MST+ combines well with the local search
algorithm presented in Subsection 2.4.

We answer Question 2 negatively. A vast majority of the contractions performed by
Algorithm 1 on our instances are those of stars containing two or three terminals (see also
Table 2 and Figure 3. It is worth noting that the best star containing only two terminals is
found (on average) in more than 75% of all contractions performed during the execution of
the algorithm.

As we have already observed, if during the algorithm’s execution we only contract stars
containing only two terminals, then the proposed algorithm returns a minimal spanning tree
in the metric closure of the graph on terminals. Therefore, one should expect that if stars
contracting more terminals are found and contracted during the execution, then the quality
of the solution found should improve. Clearly, improved stars allow us to identify best stars
containing more terminals; see Figure 3 and Table 2. We can see that the number of best
stars containing more than 5 terminals increase from (roughly) 2% to 5%. Despite this
improvement, overall performance is not much better than using the regular star contractions.
However, the time consumption stays low (approximately three times as much, see Figure 4).
In addition, improved stars improve the final solution quite significantly. They even cooperate
well in combination with MST+. This is far the best method we studied when aiming at the
smallest solution as it differs from the “best” solution by at most 6.49% and in the median
by only 0.11%.

IPEC 2020

16:14 Star Contractions for Steiner Tree

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

#
 o

f
o
cc

u
ra

n
ce

s
(l

o
g

sc
a
le

)

Star size (# of terminals)

Star sizes

Stars
Improved Stars

Figure 3 Star sizes on PACE Challenge 2018 instances with star contractions running until the
end.

Despite our former beliefs that were supported by the results of Dvořák et al. [15], the
answer to Question 3 seems to be also negative. Figure 5 indicates that there is no apparent
threshold point for neither classical nor improved stars.

Driven by our experiments, we propose two variants of modifications of Zelikovsky’s
algorithm: Zelikovsky+, Zelikovsky-. These are based mainly on our insight that takes
advantage of reformulating known algorithms in terms of star contractions. The key idea is
to compute stars after each contraction as opposed to precomputing them. Of course, since
we recompute a star to contract, the proposed variants are slower (roughly 3 times). However,
they both achieve much better performance (i.e., the total weight of the solution found); see
Figure 2. As it follows from the paragraph above, relaxed star contractions are not helping
much since there are not so many large stars. A large improvement is achieved by combining
it with the MST+ algorithm. Consult Figures 2 and 4 where one can compare MST+ with
MST and our modification of Zelikovsky’s algortihm. Surprisingly Star Contractions improve
even the performance of the classical implementation of Zelikovsky’s algorithm. However, this
is easily outperformed by improved stars combined with the MST+ algorithm. On the other
hand, our variants Zelikovsky− and Zelikovsky+ behaves reasonably well from the beginning
and it seems that stars contractions have only a little to do with it. For example, Zelikovsky+
has a median that is only 1.04% worse even without any star contractions compared to 3.59%
(for MST+). This good performance even without any star contractions is diminished by a
slower running time which is comparable with many rounds of star contractions finished by
MST+.

R. Hušek, D. Knop, and T. Masařík 16:15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

lc
u
la

te
d
 s

ta
rs

 (
fr

a
ct

io
n
)

Processed terminals (in %)

Work: recalculated ratios

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

V
is

it
e
d
 v

e
rt

ic
e
s

(f
ra

ct
io

n
 o

f
N

2
)

Processed terminals (in %)

Work: visited vertices

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

lc
u
la

te
d
 s

ta
rs

 (
fr

a
ct

io
n
)

Processed terminals (in %)

Work: recalculated ratios (Improved stars)

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

V
is

it
e
d
 v

e
rt

ic
e
s

(f
ra

ct
io

n
 o

f
N

2
)

Processed terminals (in %)

Work: visited vertices (Improved stars)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
ca

lc
u
la

te
d
 s

ta
rs

 (
fr

a
ct

io
n
 o

f
N

)

Processed terminals (in %)

Average work: recalculated ratios

Normal stars
Improved stars

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

V
is

it
e
d
 v

e
rt

ic
e
s

(f
ra

ct
io

n
 o

f
N

2
)

Processed terminals (in %)

Average work: visited vertices

Normal stars
Improved stars

Figure 4 Work done on PACE Challenge 2018 instances.

4 Conclusions

In general, we have confirmed that contracting the best star improves the quality of the
solution returned by the MST (MST+) algorithm. It seems that if we exhaustively apply
contractions of best stars, we achieve a solution of slightly better quality than our modification
of Zelikovsky’s algorithm (i.e., Zelikovsky+ algorithm applied directly to the input). However,
the running time of such approaches is comparable in practice. Unfortunately, unlike in
classical Zelikovsky’s algorithm, star contractions do not significantly help in our modifications.
Importantly, MST+ heuristics should replace the classical MST since it outperforms it (by
definition) without being much more complicated or time-consuming. Improved stars with
MST+ do perform better when aiming for the best quality of the solution. They should be
used whenever the slight increase in the running time is not important.

Future Work. Last but not least, our experiments suggest that our methods for lessening
the time needed to compute the best star are useless when there are only a few terminals
left in the graph since in such a case the computation is only local. Yet if this happens
(according to Figure 4 this happens when about 30% of terminals are left), it is not possible
to use the algorithm of Dreyfus and Wagner, since in such cases we still usually have more

IPEC 2020

16:16 Star Contractions for Steiner Tree

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100 102 104 106 108 110 112

To
ta

l
w

o
rk

 d
o
n
e

Relative quality of solution

Quality-Work comparison

Normal stars
Improved stars

Figure 5 Work needed to get a solution of given quality using star contractions and MST+.
(Y-axis is fraction of total maximum work done and work is measured as number of visited vertices
during invocations of Dijkstra’s algorithm, the work done by MST+ is negligible and hence ignored.)

than 30 terminals left—which is clearly intractable for larger instances. This brings us to the
following question: Is it possible to use best stars to speed up (in both theory or practice)
the algorithm of Dreyfus and Wagner while loosing only a bit in its precision? If yes, we hope
that a suitable combination of the two algorithms can be used in practice. One can use recent
improvements of Dreyfus and Wagner algorithm with the same worst-case running time but
which behaves significantly well in practice on instances originated from VLSI design [18].

An interesting research direction is to augment the algorithm of Dvořák et al. [15] for
Euclidean instances, since solutions to such instances should contain fewer Steiner vertices
and thus the quality of the returned solution should increase. In a similar direction, we
performed several basic tests for rectilinear instances from ORlib (see the full version).
Interestingly, our approach works reasonably well on such specialized instances, significantly
better than on general instances. However, we leave it for future work as the comparison
with specialized heuristics for those instances is essential.

Yet another possibility is to, instead of contracting a subgraph with the best ratio,
contract a subgraph with a slightly worse ratio which contains substantially many terminals.
As our results suggest, the subgraph containing more terminals tends to improve the current
as well as the final solution better. In a broader context, the algorithm of Dvořák et al. [15]
cannot approximate Steiner Arborescence well, since even parameterized approximation
is hard from parameterized complexity view [15]. Is this still true in practice?

References
1 11th DIMACS Implementation Challenge, 2011. URL: http://dimacs11.zib.de/.
2 PACE Challenge 2018, 2018. URL: https://pacechallenge.wordpress.com/pace-2018/.
3 John E. Beasley. Or-library: Distributing test problems by electronic mail. Journal of the

Operational Research Society, 41(11):1069–1072, 1990. doi:10.1057/jors.1990.166.
4 Stephan Beyer and Markus Chimani. Strong steiner tree approximations in practice. ACM J.

Exp. Algorithmics, 24(1), January 2019. doi:10.1145/3299903.
5 Édouard Bonnet and Florian Sikora. The PACE 2018 Parameterized Algorithms and Com-

putational Experiments Challenge: The Third Iteration. In Christophe Paul and Michał
Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages

http://dimacs11.zib.de/
https://pacechallenge.wordpress.com/pace-2018/
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1145/3299903

R. Hušek, D. Knop, and T. Masařík 16:17

26:1–26:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.IPEC.2018.26.

6 Al Borchers and Ding-Zhu Du. Thek-steiner ratio in graphs. SIAM Journal on Computing,
26(3):857–869, 1997. doi:10.1137/S0097539795281086.

7 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner Tree
Approximation via Iterative Randomized Rounding. Journal of the ACM, 60(1):1–33, February
2013. doi:10.1145/2432622.2432628.

8 Markus Chimani and Matthias Woste. Contraction-based steiner tree approximations in
practice. In Algorithms and Computation, pages 40–49. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-25591-5_6.

9 Marcus Poggi de Aragão and Renato F. Werneck. On the implementation of MST-based
heuristics for the steiner problem in graphs. In Algorithm Engineering and Experiments, pages
1–15. Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45643-0_1.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, December 1959. doi:10.1007/BF01386390.

12 Stuart E. Dreyfus and Robert A. Wagner. The steiner problem in graphs. Networks, 1(3):195–
207, 1971. doi:10.1002/net.3230010302.

13 Cees Duin. Steiner’s problem in graphs. PhD thesis, University of Amsterdam, 1993.
14 Cees Duin. Preprocessing the Steiner Problem in Graphs, pages 175–233. Springer US, Boston,

MA, 2000. doi:10.1007/978-1-4757-3171-2_10.
15 Pavel Dvořák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masařík, Tomáš Toufar, and Pavel

Veselý. Parameterized approximation schemes for steiner trees with small number of steiner
vertices. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France,
volume 96 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.STACS.2018.26.

16 Bernhard Fuchs, Walter Kern, Daniel Mölle, Stefan Richter, Peter Rossmanith, and Xinhui
Wang. Dynamic programming for minimum steiner trees. Theory Comput. Syst., 41(3):493–500,
2007. doi:10.1007/s00224-007-1324-4.

17 Gerald Gamrath, Thorsten Koch, Stephen J. Maher, Daniel Rehfeldt, and Yuji Shinano.
Scip-jack – a solver for STP and variants with parallelization extensions. Math. Program.
Comput., 9(2):231–296, 2017. doi:10.1007/s12532-016-0114-x.

18 Stefan Hougardy, Jannik Silvanus, and Jens Vygen. Dijkstra meets steiner: a fast exact
goal-oriented steiner tree algorithm. Mathematical Programming Computation, 9(2):135–202,
June 2017. doi:10.1007/s12532-016-0110-1.

19 Radek Hušek, Dušan Knop, and Tomáš Masařík. Approximation algorithms for steiner tree
based on star contractions: A unified view, 2020. arXiv:2002.03583.

20 Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and Eduard Eiben. Steiner tree
heuristics for PACE 2018 Challenge track C, 2018. URL: https://github.com/goderik01/
PACE2018.

21 Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner tree problem, volume 53.
Elsevier, 1992. doi:10.1016/s0167-5060(08)x7008-6.

22 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Plenum, 1972. doi:10.1007/978-1-4684-2001-2_9.

23 Thorsten Koch and Alexander Martin. Solving steiner tree problems in graphs to opti-
mality. Networks, 32(3):207–232, 1998. doi:10.1002/(SICI)1097-0037(199810)32:3<207::
AID-NET5>3.0.CO;2-O.

24 Thorsten Koch and Daniel Rehfeldt. SCIP-jack, 2018. URL: https://github.com/dRehfeldt/
scipjack/.

IPEC 2020

https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1137/S0097539795281086
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1007/978-3-642-25591-5_6
https://doi.org/10.1007/3-540-45643-0_1
https://doi.org/10.1007/BF01386390
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1007/978-1-4757-3171-2_10
https://doi.org/10.4230/LIPIcs.STACS.2018.26
https://doi.org/10.1007/s00224-007-1324-4
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/s12532-016-0110-1
http://arxiv.org/abs/2002.03583
https://github.com/goderik01/PACE2018
https://github.com/goderik01/PACE2018
https://doi.org/10.1016/s0167-5060(08)x7008-6
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<207::AID-NET5>3.0.CO;2-O
https://github.com/dRehfeldt/scipjack/
https://github.com/dRehfeldt/scipjack/

16:18 Star Contractions for Steiner Tree

25 Lawrence Kou, George Markowsky, and Leonard Berman. A fast algorithm for steiner trees.
Acta Informatica, 15(2):141–145, June 1981. doi:10.1007/BF00288961.

26 Jiří Matoušek and Jaroslav Nešetřil. Invitation to Discrete Mathematics. Oxford University
Press, Inc., New York, NY, USA, 1998.

27 Kurt Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Infor-
mation Processing Letters, 27(3):125–128, 1988. doi:10.1016/0020-0190(88)90066-X.

28 Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual Symposium on
Foundations of Computer Science, Berkeley, California, USA, October 13-15, 1975, pages
151–162, 1975. doi:10.1109/SFCS.1975.8.

29 Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

30 Eduardo Uchoa, Marcus Poggi de Aragão, and Celso C. Ribeiro. Preprocessing Steiner
problems from VLSI layout. Networks, 40(1):38–50, 2002. doi:10.1002/net.10035.

31 Dimitri Watel and Marc-Antoine Weisser. A practical greedy approximation for the directed
steiner tree problem. Journal of Combinatorial Optimization, 32(4):1327–1370, November
2016. doi:10.1007/s10878-016-0074-0.

32 Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-connected and biconnected
components on-line. Algorithmica, 7(1):433–464, June 1992. doi:10.1007/BF01758773.

33 Alexander Z. Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5), 1993. doi:10.1007/BF01187035.

https://doi.org/10.1007/BF00288961
https://doi.org/10.1016/0020-0190(88)90066-X
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1002/net.10035
https://doi.org/10.1007/s10878-016-0074-0
https://doi.org/10.1007/BF01758773
https://doi.org/10.1007/BF01187035

	Introduction
	More Details on Past Implementation Challenges

	Implementation Details and Heuristics
	Heuristics
	Finding the Best Star
	Finishing the partial solution
	Comparison with state-of-the-art results

	Outcomes of our Experiments
	Conclusions

