
A Polynomial Kernel for Paw-Free Editing
Eduard Eiben
Department of Computer Science, Royal Holloway, University of London, Egham, UK
eduard.eiben@rhul.ac.uk

William Lochet
Department of Informatics, University of Bergen, Norway
william.lochet@uib.no

Saket Saurabh
Institute of Mathematical Sciences, Chennai, India
Department of Informatics, University of Bergen, Norway
saket@imsc.res.in

Abstract
For a fixed graph H, the H-free Edge Editing problem asks whether we can modify a given graph

G by adding or deleting at most k edges such that the resulting graph does not contain H as an
induced subgraph. The problem is known to be NP-complete for all fixed H with at least 3 vertices
and it admits a 2O(k)nO(1) algorithm. Cai and Cai [Algorithmica (2015) 71:731–757] showed that,
assuming coNP 6⊆ NP/poly, H-free Edge Editing does not admit a polynomial kernel whenever H

or its complement is a path or a cycle with at least 4 edges or a 3-connected graph with at least one
edge missing. Based on their result, very recently Marx and Sandeep [ESA 2020] conjectured that if
H is a graph with at least 5 vertices, then H-free Edge Editing has a polynomial kernel if and
only if H is a complete or empty graph, unless coNP ⊆ NP/poly. Furthermore they gave a list of 9
graphs, each with five vertices, such that if H-free Edge Editing for these graphs does not admit
a polynomial kernel, then the conjecture is true. Therefore, resolving the kernelization of H-free
Edge Editing for graphs H with 4 and 5 vertices plays a crucial role in obtaining a complete
dichotomy for this problem. In this paper, we positively answer the question of compressibility for
one of the last two unresolved graphs H on 4 vertices. Namely, we give the first polynomial kernel
for Paw-free Edge Editing with O

(
k6) vertices.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases Kernelization, Paw-free graph, H-free editing, graph modification problem

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.10

Funding William Lochet: Received funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme (grant agreement No 819416).
Saket Saurabh: Received funding from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant agreement No 819416), and
Swarnajayanti Fellowship (No DST/SJF/MSA01/2017-18).

Acknowledgements The authors wish to thank the anonymous referees for helping in the presentation
of the paper and pointing out some missing argument in Section 5.

1 Introduction

For a family of graphs G, the general G-Graph Modification problem asks whether
we can modify a graph G into a graph in G by performing at most k simple operations.
Typical examples of simple operations that are well-studied in the literature include vertex
deletion, edge deletion, edge addition, or combination of edge deletion and addition. We
call these problems G-Vertex Deletion, G-Edge Deletion, G-Edge Addition, and

© Eduard Eiben, William Lochet, and Saket Saurabh;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@rhul.ac.uk
mailto:william.lochet@uib.no
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.IPEC.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Polynomial Kernel for Paw-Free Editing

G-Edge Editing, respectively. While a classical result by Lewis and Yannakakis [15] shows
that G-Vertex Deletion is NP-complete for all non-trivial hereditary graph classes, the
problem seems more difficult for the Edge Modification version and to this day, no simple
classification exists.
G-Graph Modification problems have been extensively investigated for graph classes

G that can be characterized by a finite set of forbidden induced subgraphs. We say that
a graph is H-free, if it does not contain any graph in H as an induced subgraph. For this
special case, the H-free Vertex Deletion problem is well understood. If H contains
a graph on at least two vertices and the class of H-free graphs is non-trivial, then all of
these problems are NP-complete, but admit cknO(1) algorithm [3], where c is the size of the
largest graph in H (the algorithms with running time f(k)nO(1) are called fixed-parameter
tractable (FPT) algorithms [9, 11]). Finally, Flum and Grohe [12] showed the existence of
a kernel with O (kc) vertices, where c is again the size of the largest graph in H. A kernel
is a polynomial time preprocessing algorithm which outputs an equivalent instance of the
same problem such that the size of the reduced instance is bounded by some function f(k)
that depends only on k. We call the function f(k) the size of the kernel. It is well-known
that any problem that admits an FPT algorithm admits a kernel. Therefore, for problems
with FPT algorithms one is interested in polynomial kernels, i.e., kernels with the size upper
bounded by a polynomial function of the parameter.

For the edge modification problems, the situation is more complicated. While all of these
problems also admit c2knO(1) time algorithm, where c is the maximum number of vertices in
a graph in H [3], the P vs NP dichotomy is still not known. Only recently Aravind et al. [1]
gave the dichotomy for the special case when H contains precisely one graph H [1]. From the
kernelization point of view, the situation is even more difficult. The reason is that deleting or
adding an edge to a graph can introduce a new copy of H and this might further propagate.
Hence, we cannot use the sunflower lemma to reduce the size of the instance. Cai asked the
question whether H-free Edge Deletion admits a polynomial kernel for all graphs H [2].
Kratsch and Wahlström [14] showed that this is probably not the case and gave a graph H

on 7 vertices such that H-free Edge Deletion and H-free Edge Editing do not admit
a polynomial kernel unless coNP ⊆ NP/poly. Consequently, it was shown that this is not an
exception, but rather a rule [4, 13]. Indeed the result by Cai and Cai [4] shows that H-free
Edge Deletion, H-free Edge Addition, and H-free Edge Editing do not admit a
polynomial kernel whenever H or its complement is a path or a cycle with at least 4 edges
or a 3-connected graph with at least 2 edges missing (resp. at least 1 edge missing in the
case of H-free Edge Editing). This suggests that actually the H-free edge modification
problems with polynomial kernels are rather rare and only for small graphs H. Based on
these observations, very recently Marx and Sandeep [16] conjectured that if H is a graph
with at least 5 vertices, then H-free Edge Editing has a polynomial kernel if and only if
H is a complete or empty graph, unless coNP ⊆ NP/poly. Furthermore they gave a list of
9 graphs, each with 5 vertices, such that if H-free Edge Editing for all of these graphs
does not admit a polynomial kernel, then the conjecture is true. For the graphs on 4 vertices
the kernelization of H-free edge modification problems was open for last two graphs and
their complements (see Table 1), namely paw and claw, and Cao et al. [7] conjectured that
all of these problems admit polynomial kernels. In this paper, we give kernels for the first of
the two remaining graphs, namely the paw1.

1 Independent of our work Cao et al. [6] obtained polynomial kernels for Paw-free Edge Deletion and
Paw-free Edge Addition.

E. Eiben, W. Lochet, and S. Saurabh 10:3

(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

Figure 1 List of graphs on 4 vertices, excluding their complements.

Table 1 The kernelization results of H-free edge modification problems for H being 4-vertex
graphs. Note that for a complement of H, the rows with deletion and addition are swapped, but
otherwise the same results hold.

H deletion addition editing
K4 O

(
k4) [5] trivial O

(
k4) [5]

P4 O
(
k3) [13] O

(
k3) [13] O

(
k3) [13]

diamond O
(
k3) [18] trivial O

(
k8) [7]

paw O
(
k4) [this paper] O

(
k3) [this paper] O

(
k6) [this paper]

claw open open open
C4 no [13] no [13] no [13]

1.1 Brief Overview of the Algorithm

Our main result is a polynomial kernel for Paw-free Edge Editing. The key to obtain
the kernel is a structural theorem by Olariu [17] that states that every connected paw-free
graph is either triangle-free or complete multipartite. We start our kernelization algorithm
by finding greedily a maximal set of paws P1, . . . P` such that for any 1 ≤ i < j ≤ `, Pi

and Pj share at most one vertex. This clearly contains at most k paws and hence at most
4k vertices. Let us denote the set of these vertices by S. The goal now is to bound the
number of vertices in G− S. Bounding the number of vertices belonging to the complete
multipartite components of G − S is rather simple. We show that every vertex in S is
adjacent to at most 1 complete multipartite component and for each multipartite component,
we can reduce the size of each part as well as the number of these parts to O (k). The
triangle-free part is trickier. The difficulty comes from the fact that instead of keeping this
part of the graph triangle-free, the optimal solution might want to add some edges to make
it complete multipartite. However, we argue that there is always an optimal solution that
keeps the vertices at distance at least 5 from S in a triangle-free component. This structural
claim allows us to look only for solutions which are not too far away from S “in some sense”.
Moreover, after some preprocessing of the instance, we can also show that the vertices with
more than 4k + 6 neighbors inside the triangle-free components of G − S cannot end up
inside a complete multipartite component. It means that we can mark the relevant vertices
in triangle-free components as follows. Set S0 := S and for every i < 5, let Si+1 be the set
obtained by marking for each vertex of Si, 4k + 6 neighbors at distance i + 1 from S. The
size of the set of the marked vertices is then O

(
k6). Finally, we can remove the vertices of

triangle-free components which have not been marked. This is safe because these vertices
are either too far from S to belong to a complete multipartite component, or every way
to connect these vertices to S uses vertices with more than 4k + 6 neighbors inside the
triangle-free components of G− S that cannot end up in a complete multipartite component
of the reduced instance. This gives us the desired kernel.

IPEC 2020

10:4 A Polynomial Kernel for Paw-Free Editing

2 Preliminaries

We assume familiarity with the basic notations and terminologies in graph theory. We refer
the reader to the standard book by Diestel [10] for more information. Let us fix a graph G

for the sake of this paragraph. We let |G| = |V (G)| and ||G|| = |E(G)|. For a set of pairs of
vertices A ⊆

(
V (G)

2
)
, we denote by G∆A the graph whose set of vertices is V (G) and set of

edges is the symmetric difference of E(G) and A. For a set of vertices S ⊆ V (G), we denote
by G[S] the graph induced by G on S. We let NG(v) denote the neighborhood of a vertex
v ∈ V (G) and we omit the subscript G if the graph is clear from the context. For a set of
vertices S and a vertex v ∈ S, we often refer to NG(v) \S as the neighborhood of v in G−S.
A connected component of G is a maximal, w.r.t. inclusion, set of vertices such that G[C]
is connected. For the sake of exposition, when speaking about a connected component C

we, depended on the context, mean its set of vertices C or the graph G[C] induced on these
vertices. Finally, for sets A, B ⊆ V (G), let EG(A, B) = {ab | a ∈ A, b ∈ B, ab ∈ E(G)}, i.e.,
the set of edges with one endpoint in A and the other in B. We again omit the subscript G,
if the graph is clear from the context.

Parameterized Algorithms and Kernelization. For a detailed illustration of the following
facts the reader is referred to [9, 11]. A parameterized problem is a language Π ⊆ Σ∗ × N,
where Σ is a finite alphabet; the second component k of instances (I, k) ∈ Σ∗ × N is called
the parameter. A parameterized problem Π is fixed-parameter tractable if it admits a fixed-
parameter algorithm, which decides instances (I, k) of Π in time f(k) · |I|O(1) for some
computable function f .

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given
any instance (I, k) returns an instance (I ′, k′) such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π
and such that |I ′| + k′ ≤ f(k) for some computable function f . The function f is called
the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially
bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and
only if it is decidable and has a kernelization. However, the kernels implied by this fact are
usually of superpolynomial size.

A reduction rule is an algorithm that takes as input an instance (I, k) of a parameterized
problem Π and outputs an instance (I ′, k′) of the same problem. We say that the reduction
rule is safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. In order to
describe our kernelization algorithm, we present a series of reduction rules.

We will need the following result describing the structure of paw-free graphs [17].

I Theorem 1. G is a paw-free graph if and only if each connected component of G is
triangle-free or complete multipartite.

To make a clear distinction between these two cases, we will say that a graph is a complete
multipartite graph if it contains at least three parts. In particular, it contains a triangle. For
an instance (G, k) of Paw-free Edge Editing, we say that A is a solution to (G, k) if
|A| ≤ k and G∆A is paw-free.

3 Reduction Rules

From now on (G, k) will be an instance of Paw-free Edge Editing and we assume k > 0.
Let us first describe two rules which can be safely applied.

I Reduction Rule 1. If X is an independent set of k +3 vertices with the same neighborhood,
remove a vertex x ∈ X from the graph.

E. Eiben, W. Lochet, and S. Saurabh 10:5

Proof of Safeness. Suppose (G, k) is an instance of Paw-free Edge Editing and X is
an independent set of k + 3 vertices with the same neighborhood. Let G′ be the graph
obtained by removing a vertex of X. We need to show that (G′, k) has a solution if and
only if (G, k) has one. Since G′ is an induced subgraph of G, it is clear that if (G, k) has a
solution, then so does (G′, k). Let A be a solution to (G′, k) and assume G∆A contains a
paw x1, x2, x3, x4 with x1, x2, x3 being a triangle and x4 being adjacent to x3. Because A is
a solution to (G′, k), it means that one of the xi must be the vertex x that we removed from
G. Moreover, at most two of the other vertices of X belong to the paw, as x is adjacent
to at least one vertex in the paw and X is an independent set. If only one other vertex of
X belongs to it, consider the other k + 1 vertices of X which are not in the paw. They all
have the same neighborhood in the paw as x, so A must contain for each of them at least
one edge with the paw, or we could replace x with this vertex in the paw, which contradicts
the fact that A is a solution of (G′, k). However, since A is smaller than k + 1 we reach a
contradiction. If two other vertices of X belong to the paw, then it means that x = x4 and
these vertices are x1 and x2. Moreover it means that the edge x1x2 must be edited as X is
an independent set. In that case, consider the other k vertices of X which are not in the
paw. For every y ∈ X \ {x, x1, x2}, the solution must contain either the edge yx3 or at least
one of the nonedges in {yx1, yx2}, but since |A \ {x1x3}| < k, we reach a contradiction. J

If Reduction Rule 1 is applicable, then we can easily find an independent set X with at
least k + 3 vertices and the pairwise same neighborhood. This is because there are at most
|V (G)| different open neighborhoods of a vertex in G and for each neighborhood, we can
simply pass through all vertices v ∈ V (G) to find all vertices with the given neighborhood.
Therefore, we assume from now on that (G, k) is an instance where Reduction Rule 1 cannot
be applied.

Following analogous arguments for the case when X induces a complete multipartite
graph with at least k + 5 parts, we also obtain safeness of the following rule. We note that
whenever we apply Reduction Rule 2 we will always provide a suitable X and we will not
require that G is irreducible w.r.t. this rule. Hence, in particular it is not required to be
able to decide the existence of a suitable set X in polynomial time.

I Reduction Rule 2. If X is a complete multipartite subgraph with k + 5 parts having the
same neighborhood outside of X, then remove one part of X from the graph.

Proof of Safeness. Suppose (G, k) is an instance of Paw-free Edge Editing and X is a
complete multipartite subgraph with k + 5 parts having the same neighborhood outside of
X. Let P be an arbitrary part of X and let G′ be the graph obtained by removing the part
P of X. We need to show that (G′, k) has a solution if and only if (G, k) has one. Let A

be a solution to (G′, k) and assume G∆A contains a paw x1, x2, x3, x4 with x1, x2, x3 being
a triangle and x4 being adjacent to x3. Because A is a solution to (G′, k), it means that
one of the xi must belong to P . Moreover, since the vertices in P have exactly the same
neighborhood in G and they form an independent set, this paw can contain at most one
vertex from P . Let us call x this vertex. Since X consists of k + 5 parts, it means that
there exists k + 1 parts different from P and without a vertex in this paw. However we
know that every vertex in these parts has exactly the same neighborhood as x inside the
paw. This means that for every vertex y in these k + 1 parts, the solution A contains an
edge between y and a vertex in {x1, x2, x3, x4} \ {x} or G′[{y, x1, x2, x3, x4} \ {x}] is a paw
in G′∆A. Because there are at least k + 1 parts of X without a vertex in the paw, it follows
that either |A| > k or G′∆A is not paw-free, a contradiction with A being a solution to
(G, k). J

IPEC 2020

10:6 A Polynomial Kernel for Paw-Free Editing

Let H be a maximal set of paws such that any pair share at most one vertex, i.e the paws
in H are edge and non-edge disjoint, and S the set of vertices appearing in H. From now on
we will fix the set S. The following observation is immediate from the maximality of H.

I Observation 2. For every vertex v ∈ S, the graph G− (S \ {v}) is paw-free.

We will now introduce two new rules.

I Reduction Rule 3. If there is a pair of adjacent vertices s1, s2 ∈ V (G) with 4k + 6
common neighbors in the triangle-free components of G− S, then remove the edge s1s2 and
set k := k − 1.

We remark here that while for our proof we only need to apply the above reduction rule
for all the pairs s1, s2 in S, we can safely apply Reduction Rule 3 to all pairs of adjacent
vertices. The safeness of Reduction Rule 3 is implied by the following Lemma:

I Lemma 3. Suppose Reduction Rule 1 cannot be applied anymore and let s1, s2 be two
adjacent vertices in G. If there are at least 4k + 6 vertices belonging to the triangle-free
components of G−S adjacent to both s1 and s2, then either (G, k) is a no-instance, or every
solution uses the edge s1s2.

Proof. Suppose there is a solution A not using the edge s1s2 and let T be the set of the
common neighbors of s1 and s2 that are not incident to any edge in A. Because |A| ≤ k, we
know that |T | ≥ 2k + 6. Since for all t ∈ T , the vertices t, s1, s2 induce a triangle in G∆A,
all vertices in T belong to the same complete multipartite component in G∆A. Moreover,
they can only be in two different parts of this component as they belong to the triangle-free
components of G− S. This means that k + 3 of vertices in T belong to the same part of a
complete multipartite component of G∆A. Since vertices in T are not incident to any edge
in A, they have the same neighborhood in G. Therefore, Reduction Rule 1 can be applied,
which contradicts the assumptions of the lemma. J

I Reduction Rule 4. If C is a complete multipartite component of G− S and C1 is a part
of C with at least 3k + 3 vertices, then remove all the edges between the other parts of C and
decrease k by the number of edges removed. If this amount is greater than k, answer no.

The fact that Reduction Rule 4 is safe is implied by the following Lemma:

I Lemma 4. Suppose Reduction Rule 1 cannot be applied anymore and assume C is a
complete multipartite component of G− S. If one part of C has at least 3k + 3 vertices, then
either (G, k) is a no-instance, or any solution will remove all the edges between the other
parts of C.

Proof. Let C1 be a part of C of size at least 3k + 3. Recall that we consider a graph to
be a complete multipartite graph only if it contains at least three parts and let s1, s2 be
two adjacent vertices of C − C1. Let A be a solution to (G, k) which does not use the edge
s1s2. A is incident to at most 2k vertices, so it means that at least k + 3 vertices of C1
are not incident to any edge of A. Moreover, since s1s2 is not in A, these k + 3 vertices
belong to the same part of a complete multipartite component of G∆A and thus have the
same neighborhood in G. This is a contradiction, as Reduction Rule 1 cannot be applied
anymore. J

Note also that if Reduction Rules 3 and 4 can be applied, then it is possible to do it in
polynomial time. From now on assume that Reduction Rules 1, 3 and 4 can not be applied.

E. Eiben, W. Lochet, and S. Saurabh 10:7

4 Bounding the Complete Multipartite Components

The next two lemmas allow us to bound the number of vertices belonging to complete
multipartite components of G− S.

I Lemma 5. Let C denote a complete multipartite component of G − S. If |C| ≥ (3k +
3)(5k + 5), then Reduction Rule 2 can be applied in polynomial time.

Proof. Because Reduction Rule 4 cannot be applied, we have that every part of C contains
at most (3k + 2) vertices. Suppose now that C consists of at least 5k + 5 parts and recall
that, by Observation 2, for every vertex x ∈ S adjacent to C, G[C ∪ {x}] is paw-free and
hence a complete multipartite graph. Therefore, any such vertex x is adjacent to all but at
most one part of C. It follows that all but |S| ≤ 4k parts of C are adjacent to all vertices
in N(C) ∩ S and thus at least 5k + 5 − |S| parts of C are adjacent to all the vertices of
N(C)∩S and we can find the complete multipartite subgraph X of C induced on these parts
in polynomial time by checking the neighborhoods of all vertices in S. Reduction Rule 2
then applies to X and since it simply remove arbitrary part of X, it can be also executed in
polynomial time. J

I Lemma 6. For every s ∈ S, s is adjacent to at most one complete multipartite component
of G− S.

Proof. Suppose s ∈ S is adjacent to two complete multipartite components C and D. Let x

be a vertex of C adjacent to s. Since C is a complete multipartite component, it contains
at least 3 parts and, in particular, there exist vertices y and z in C such that x, y, z is a
triangle. This implies that one of y and z has to be adjacent to s or it would yield a paw
without any edge in S which is not possible by definition of H.

Suppose now that y is adjacent to s (the case z is adjacent to s is identical). Now let d

be a vertex of D adjacent to s. Because C and D are two different components of G− S, d

cannot be adjacent to either x or y, which means that s, x, d and y form a paw without any
edge or non-edge in S, a contradiction. J

The next section is devoted to proving that, if there exists a solution A, then we can
assume that any complete multipartite component of G∆A only contains vertices at distance 5
from S.

5 Bounding the Diameter of Relevant Vertices

Let A denote an optimal solution and suppose that, among all the optimal solutions, A is
chosen so that the sum of the sizes of the multipartite components in G∆A is minimized. In
this section, C will denote a complete multipartite component of G∆A, and C1, C2, . . . , Cr

the parts of C (see also Figure 2). Furthermore, we will split the vertices of C into levels
depending on their distance to S. That is we say that a vertex is in the i-th level, if it is
at distance i from S in G and we let Li denote the set of all vertices in the i-th level, i.e.,
L0 = C ∩ S, L1 = C ∩NG(S), L2 = C ∩NG(NG(S)) \ L0, and so on. For the part Ci and
the level Lj , we let Ci,j denote the subset of Ci in j-th level. That is for every i ∈ [r] and
every j such that Lj is not empty we let Ci,j = Ci ∩ Lj . Finally, throughout the section for
i ∈ [r] and some level j, we will need to consider the set of all vertices in the j-th level that
are not in Ci, we will denote this set Ci,j , i.e., Ci,j =

⋃
t6=i Ct,j = Lj \ Ci.

The goal of this section is to show that, because we chose an optimal solution that
minimizes the sum of the sizes of the multipartite components in G∆A, there is no vertex in
the j-th level for j ≥ 5. Let us first show that the result follows easily when L0 is empty.

IPEC 2020

10:8 A Polynomial Kernel for Paw-Free Editing

S = L0

L1

L2

L3

C1 C2 C3 C4 C5

Figure 2 An example of a complete multipartite component C in G∆A for some solution A whose
vertices were in a triangle-free component of G. The edges drawn are the edges in G. C1, . . . , C5 are
parts of C, that is, in G∆A, each Ci is an independent set that is complete to

⋃
j∈[5]\{i} Cj . L0, L1,

L2, and L3 are the levels in C. That is vertices in Li are at the distance i from S in G.

I Observation 7. If L0 is empty, then C contains only vertices at distance at most 3 from S.

Proof. Indeed, if L0 is empty, then C contains only vertices of G− S. In that case, since
G− S is paw-free and A is an optimal solution, it follows that A does not contain any pair
of vertices of C and thus that C is a complete multipartite component of G− S. This ends
the proof as the diameter of a complete multipartite graph is 2. J

Therefore, from now on we assume that L0 is not empty. In that case, we observe that it
suffices to show that L5 is empty. Indeed, if some level Li is empty, then all the edges between
the first i − 1 levels and the remaining levels in G∆A are not in G and hence removing
them from A gives a smaller solution that splits C into multiple paw-free components. This
however contradicts the optimality of A and we get the following observation.

I Observation 8. If for some i ∈ N is Li = ∅, then for all j > i it holds that Lj = ∅.

The first step of our proof is the following lemma that basically says that for the set of
vertices Ci,j , the number of edges between Ci,j and the rest of C that is added by A has to
be smaller than the number of such edges that already exists in G, otherwise we can isolate
Ci,j from C instead of including it in C and obtain a solution that contradicts our choice of
A, because Ci,j will not be anymore in a complete multipartite component of the solution.

I Lemma 9. For every j ≥ 2 and every i ∈ [r] such that Ci,j is not empty, if P ⊆ A

denotes the set of pairs of A of type xy where x ∈ Ci,j and y ∈ Ci,j′ with j′ ∈ N, then
|P | < |EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)|.

Proof. See Figure 3 for an illustration. In order to reach a contradiction, suppose this is not
the case and consider the set of pairs A′ obtained from A by:

removing all the pairs in P and
adding EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1).

Because |P | ≥ |EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)|, |A′| ≤ |A|. Moreover, since A′∆A are pairs
of vertices of C, it means that (G− C)∆A′ is identical to (G− C)∆A. We will show now
that G[C]∆A′ consists of one multipartite component C − Ci,j and an independent set Ci,j .
Indeed, suppose x ∈ Ci,j and y ∈ C \ Ci,j , then we can show that yx is not an edge of
G[C]∆A′. The proof can be done by checking the different cases:

If y ∈ Ci, then the set of pairs of A′ containing y is the same as the one in A, and we can
conclude since xy 6∈ G[C]∆A′.
If y ∈ Ci,j′ for some j′ such that |j′ − j| > 1, then because x can only be adjacent to
vertices at distance j, j − 1 and j + 1, we know that xy is not in E(G) and it does not
belong to A′, because it is in P .

E. Eiben, W. Lochet, and S. Saurabh 10:9

L0

L1

Lq

Lj+1

Lj

Lj−1

C1 C2 Ci Cr−1 Cr

Figure 3 Illustration of Lemma 9. A complete multipartite component C of G∆A. For simplicity,
every nonempty set Cs,t, s ∈ [r] and t ∈ [q], contains only one vertex, but this is not the case in
general. The red edges are the set P , i.e., the edges between Ci,j and all the parts of C other than
Ci added by A. The blue edges are EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1), i.e., all the edges between Ci,j

and all the parts of C other than Ci that are already in E(G). The black edge is incident to Ci,j in
G, but its other endpoint is also in Ci, so it is in both A and the solution A′ obtained from A by
replacing P by EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1) in A.

If y ∈ (Ci,j−1 ∪ Ci,j ∪ Ci,j+1), then either xy ∈ E(G) but then the pair belongs to A′, or
xy 6∈ E(G) and the pair belongs to A but has been removed in A′.

Overall, A′ is a solution to the problem and the complete multipartite components of
G∆A′ are exactly the same as those of G∆A, except for C which is strictly smaller. This
contradicts the choice of A, as |A′| ≤ |A|. J

I Lemma 10. If for some i ∈ [r] the set Ci,0 ∪ Ci,1 is not empty, then Ci,j = ∅ for every
j ≥ 4.

Proof. Suppose Ci,0 ∪ Ci,1 and Ci,j are not empty. Because j ≥ 4, we know that
EG(Ci,j , Ci,0 ∪ Ci,1 ∪ Ci,2) is empty. This implies that A contains all the pairs in Ci,j ×
(Ci,0 ∪ Ci,1 ∪ Ci,2). By applying Lemma 9 to Ci,j , we deduce that

|Ci,j | × |Ci,0 ∪ Ci,1 ∪ Ci,2| < |EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)|.

However,

|EG(Ci,j , Ci,j−1 ∪ Ci,j ∪ Ci,j+1)| ≤ |Ci,j | × |Ci,j−1 ∪ Ci,j ∪ Ci,j+1|

and by combining the two inequalities we obtain that

|Ci,j−1 ∪ Ci,j ∪ Ci,j+1| > |Ci,0 ∪ Ci,1 ∪ Ci,2|. (1)

Consider the set of pairs A′, obtained from A by:
adding EG(Ci,0 ∪ Ci,1, Ci,0 ∪ Ci,1 ∪ Ci,2) and
removing all the pairs of the form xy with x ∈ Ci,0 ∪ Ci,1 and y ∈ Cs for s 6= i.

By a very similar argument to the one of Lemma 9, we can show that A′ is a solution such
that G∆A′ differs from G∆A only in the fact that Ci,0 ∪Ci,1 has been disconnected from C.
Moreover, we know that the set of pairs of the form xy with x ∈ Ci,0 ∪ Ci,1 and y ∈ Cs for
s 6= i contains

(
(Ci,0 ∪ Ci,1)× (Ci,j−1 ∪ Ci,j ∪ Ci,j+1)

)
. However, from (1), we can deduce

that |EG(Ci,0∪Ci,1, Ci,0∪Ci,1∪Ci,2)| < |
(
(Ci,0 ∪ Ci,1)× (Ci,j−1 ∪ Ci,j ∪ Ci,j+1)

)
| and thus

|A′| < |A|, which gives us a contradiction. J

IPEC 2020

10:10 A Polynomial Kernel for Paw-Free Editing

The main implication of Lemma 10 is that, if Lj is not empty for j ≥ 4, then A contains all
the pairs Lj × (L0 ∪L1). Indeed, it shows that vertices in Lj and L0 ∪L1 belong to different
parts and thus must be adjacent in G∆A. However, just by considering the distance to S in
G, these vertices cannot be adjacent in G, and thus these pairs must be in A. This allows us
to prove the following lemma.

I Lemma 11. For every j ≥ 5, Lj is empty.

Proof. First note that by Observation 8, it is enough to show that, for some j ≤ 5, the set
Lj empty. Hence, for the sake of a contradiction, suppose none of L0, L1, . . . , L5 is empty.
Now by Lemma 10, we know that the vertices in L5 and L0 ∪ L1 belong to different parts of
the complete multipartite component. This implies that A contains L5× (L0 ∪L1). Consider
A′ the set of pairs obtained from A by:

removing all the pairs xy ∈ A where xy 6∈ E(G), x ∈ L5 and y ∈ L4,
adding all the edges of EG(L5, L4) which are not already in A, and
removing all pairs xy with x ∈ Ls and y ∈ Lf for s ≤ 3 and f ≥ 5.

By doing so, we only disconnect
⋃

s≤4 Ls from
⋃

f≥5 Lf in G∆A′ compared to G∆A. This
means that A′ is also a solution, and by minimality of A, we have that |A′| ≥ |A|. We can
then deduce that |L4| · |L5| ≥ EG(L5, L4) ≥ |L5| · |L0 ∪ L1| and thus |L4| ≥ |L0 ∪ L1|.

Now again by Lemma 10, we have that A contains L4×(L0∪L1). However, |L4| ≥ |L0∪L1|
so it means that |L0 ∪ L1|2 ≤ |L4| · |L0 ∪ L1|. Let A′′ be the solution obtained from A by:

removing all the pairs xy ∈ A where xy 6∈ E(G), x ∈ L0 and y ∈ L1,
adding all the edges of EG(L0, L1) which are not already in A,
removing all the pairs xy ∈ A where x ∈ L0 and y ∈ Li with i ≥ 2, and
removing all the pairs xy ∈ A where x, y ∈ C \ L0.

Note first that again (G−C)∆A and (G−C)∆A′′ are the same. Now consider a component D

of G[C]∆A′′. Since we removed all the edges between L0 and the rest of C, D is either subset
of S or a subset of V (G) \ S. In the case that D is a subset of S, then G[D]∆A′′ = G[D]∆A

and G[D]∆A′′ is an induced subgraph of the complete multipartite graph G[C]∆A and hence
either complete multipartite or triangle-free. In the case that D is a subset of V (G) \S, then
we removed from A all the pair that have one endpoint in D and the other anywhere in C

(including D), so G[D]∆A′′ is an induced subgraph of exactly one connected component of
G− S. Since all components of G− S are paw-free and being paw-free is a property closed
under taking induced subgraphs, it follows that G[D]∆A′′ is also paw-free. Therefore, we
conclude that G∆A′′ is paw-free and A′′. It remains to show that A′′ contradicts the choice
of A.

The set A′′\A contains only edges in EG(L0, L1), so |A′′\A| ≤ |L0∪L1|2 ≤ |L4|·|L0∪L1|.
On the other hand, by Lemma 10, the fact that G does not contain edges between Li and
Lj for |i− j| > 1, and by the construction of A′′, we have that A \A′′ contains all the pairs
xy such that x ∈ L0 ∪ L1 and y ∈ L4 ∪ L5. In particular, |A \ A′′| ≥ |L0 ∪ L1| · |L4 ∪ L5|,
but since L5 is not empty, we have

|A \A′′| ≥ |L0 ∪ L1| · |L4 ∪ L5| > |L0 ∪ L1| · |L4| ≥ |A′′ \A|,

and it follows that |A′′| < |A|, which contradicts the optimality of A. J

E. Eiben, W. Lochet, and S. Saurabh 10:11

6 Triangle-Free Components

Before proving our main result let us prove the following lemma, which will be useful in
bounding the number of vertices outside of S.

I Lemma 12. If x ∈ G has at least 4k + 6 neighbors belonging to triangle-free components of
G− S, then there is no solution A such that x belongs to a complete multipartite component
of G∆A.

Proof. Let T denote the set of neighbors of x belonging to triangle-free components of G−S.
Suppose x belongs to a complete multipartite component C of G∆A. First note that at least
2k + 6 of the vertices of T will not be adjacent to any edge of A, which means that their
neighborhood in G and G∆A are the same and they belong to C in G∆A. Now because the
vertices of T belong to triangle-free components, it means that these 2k + 6 vertices can only
belong to two different parts of this multipartite component. In particular, at least k + 3 of
those belong to the same part and thus have the exact same neighborhood in G∆A and thus
in G. This means that Reduction Rule 1 can be applied, which is a contradiction. J

I Lemma 13. Suppose (G, k) is a yes-instance. Then there exists a set S′ of at most
(4k + 6)4k vertices such that if x 6∈ S′ belongs to a triangle-free component of G− S, then x

does not belong to any triangle in G using only one vertex of S ∪ S′. Moreover, there is a
polynomial time algorithm that either finds this set or concludes that (G, k) is a no-instance.

Proof. Let x be a vertex belonging to a triangle-free component C of G− S. Suppose that
x belongs to a triangle using only one vertex s of S and another vertex y of C. Note first
that C is the only component of G− S adjacent to s or we would have a paw with only one
vertex in S (which is impossible by Observation 2). Suppose now that t ∈ C is adjacent to x.
Then t must be adjacent to either y or s or it would yield a paw with only one vertex in
S. Thus, since C is triangle free, t must be adjacent to s. The same argument would show
that any vertex adjacent to t in C must be adjacent to s and thus the whole component C is
adjacent to s (by symmetry of x and y).

Now let s ∈ S and let Cs denote a triangle-free component of G − S such that there
exist two vertices x, y ∈ Cs that induce a triangle with s. Note that if such a component
exists, then, by the above argument, it is the unique component in G−S adjacent to s, more
precisely Cs = N(s) ∩ (V (G− S)), and let us consider only the vertices in S for which such
a component exists.

LetMs be a maximal matching in Cs. IfMs consists of more than k edges, then it means
that any solution A to the instance (G, k) puts s in a complete multipartite component. In
particular if |Cs| ≥ 4k+6, as Cs ⊆ N(s) and |A| ≥ k, we have that 2k+6 of the vertices of Cs

are not adjacent to any edge of A and belong to the same complete multipartite component
of G∆A as s. Moreover, these 2k + 6 vertices can only belong to two different parts of this
complete multipartite component (or we would have a triangle in Cs), and thus k + 3 of them
belong to the same part. However, since their neighborhood in G and G∆A are identical, it
means we could have applied Reduction Rule 1. Hence, if |Cs| ≥ 4k + 6, then the solution A

cannot exist and we can conclude that (G, k) is a no-instance. Otherwise, let C ′s be the set
of the vertices ofMs and note that the vertices in Cs \ C ′s induce an independent set in G.
In particular, the vertices in Cs \ C ′s are singletons in G− (S ∪ C ′s). and hence no vertex in
Cs \ C ′s forms a triangle with another vertex in G− (S ∪ C ′s).

IPEC 2020

10:12 A Polynomial Kernel for Paw-Free Editing

Let S′ =
⋃

s∈S C ′s, where C ′s = ∅ if the component Cs does not exists, i.e., if there
is no triangle in G containing s and two vertices in a triangle-free component. By the
construction of C ′s for each s ∈ S, it follows that no vertex x in a triangle-free component
of V (G) \ (S ∪ S′) belongs to a triangle using only one vertex of S ∪ S′. Moreover, either
|S′| ≤ |S| · (4k + 6) ≤ (4k + 6)4k, or there is s ∈ S such that |Ms| > k and |Cs| ≥ 4k + 6
and we can conclude that (G, k) is no-instance. J

7 Main Result

I Theorem 14. Paw-free Edge Editing has a kernel on O
(
k6) vertices.

Proof. To ensure that the reduction rules are applied in the correct order, that is, e.g.,
that we never apply Reduction Rule 3 if Reduction Rule 1 can be applied, we restart the
algorithm from the beginning on the reduced instance whenever it is reduced according to
some reduction rule. Since every reduction rule decreases either number of vertices of G or
the parameter, this increases the running time at most by the factor of |G|+ k.

Let (G, k) be an instance of Paw-free Edge Editing. The algorithm first applies
Reduction Rule 1. If Reduction Rule 1 cannot be applied anymore, the algorithm computes
H a maximal packing of edge-disjoint paws. If H consists of more than k paws, answer no.
If this is not the case, let S be the set of vertices belonging to a paw of H. As S is the union
of at most k paws, |S| ≤ 4k. Then the algorithm applies Reduction Rules 3 and 4 until
either k < 0, in which case it answers no, or they cannot be applied anymore.

Because H is maximal, Theorem 1 implies that the components G− S are either triangle-
free or complete multipartite. Let C be a complete multipartite component. If |C| ≥
(3k + 3)(5k + 5), then Lemma 5 implies that the algorithm can apply Reduction Rule 2.
Moreover Lemma 6 implies that the number of complete multipartite components adjacent to
S is bounded by |S|. Overall this implies that the number of vertices contained in complete
multipartite components of G− S adjacent to S is bounded by 4k(3k + 3)(3k + 5), or it is
possible to apply Reduction Rule 2.

By applying Lemma 13, we either find out that (G, k) is a no-instance or find a set S′

of at most (4k + 6)4k vertices such that if x 6∈ S′ belongs to a triangle-free component of
G− S, then x does not belong to any triangle in G using only one vertex of S.

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of
adjacent vertices s1, s2 in S, the number of vertices in triangle-free components adjacent to
both s1 and s2 is bounded by 4k + 6. This means that, if S′′ denotes the set of vertices in a
triangle-free component forming a triangle with 2 vertices of S, then |S′′| ≤ |S|2(4k + 6).

Then we construct recursively sets S0, S1, . . . , S6 such that Si is a subset of vertices of G

at distance i from S as follows: We set S0 := S. Now we proceed in 6 rounds. In the i-th
round we mark, for every vertex x ∈ Si−1, arbitrary 4k + 6 neighbors of x at distance i from
S in G and belonging to a triangle-free component of G−S. Afterwards, we let Si be the set
of vertices marked in this round and proceed to the next round. Note that |

⋃
Si| = O

(
k6).

Let G′ be the graph induced on G by S, S′, S′′, all the sets Si for i ∈ [6] and all the
complete multipartite components of G − S adjancent to S. Note that, by construction
of S′ and S′′, there is no triangle in G using a vertex which is not in G′. We claim that
(G′, k) has a solution if and only if (G, k) has a solution. As G′ is a subgraph of G, it is clear
that if (G, k) has a solution, then so does (G′, k). Suppose now that (G′, k) has a solution
A, but (G, k) does not have a solution. In particular, it implies that G∆A is not paw-free.
Because of Lemma 11, we can assume that no complete multipartite component of G′∆A has
a vertex at distance 5 from S and that A is minimal. Let x1, x2, x3, x4 form a paw in G∆A,

E. Eiben, W. Lochet, and S. Saurabh 10:13

with x1, x2, x3 being the triangle. If x1, x2, x3 is a triangle of G′∆A, then x4 is a vertex of
G−G′ adjacent to one of these vertices, say x1. Since x1 is at distance less than 5 from S, it
means that during the marking process x4 was not marked for x1 and that x1 has more than
4k + 6 neighbors in triangle-free components of G′ − S. However, Lemma 12 implies that x1
cannot belong to a complete multipartite component of G′∆A, which is a contradiction. If
x1, x2, x3 is not a triangle of G′∆A, then, without loss of generality, we can assume that x1
belongs to G−G′, x2 and x3 belong to G′, and the edge x2x3 was added by A. If x2 and
x3 belong to a triangle-free component of G′∆A, then A \ {x2, x3} is a smaller solution to
(G′, k). Therefore, x2 and x3 belong to a complete multipartite component of G′∆A. This
means that they are at distance at most 5 from S and x1 was not marked for both x2 and
x3 during the marking process. Finally, this implies that both x2 and x3 already have more
than 4k + 6 neighbors in triangle-free components of G′ − S and thus cannot belong to a
multipartite component of G′ − S, a contradiction. J

8 Kernels for Deletion and Addition

In this section, we provide kernels for Paw-free Edge Deletion and Paw-free Edge
Addition. To obtain the kernel for these problems, we observe that Reduction Rules 1–4
apply even if we are only allowed to delete respectively only allowed to add edges. This
allows us to reduce the complete multipartite components. Furthermore, by deleting the
edges, we cannot change a triangle-free component to a complete multipartite one and it
actually suffice to keep the vertices that actually appear in triangle together with 4k + 6 of
each of such vertex, which can be bounded using Lemma 13. For the edge addition, we just
observe that every connected component of G that contains a paw, and hence a triangle, has
to be modified to a complete multipartite graph and we can basically conclude by Lemma 12.

I Theorem 15. Paw-free Edge Deletion admits a kernel with O
(
k4) vertices.

Proof. Let (G, k) be an instance of Paw-free Edge Deletion. First note that Reduction
Rules 1–4 are still safe in this context, and Lemma 12 still applies. Therefore the algorithm
applies Reduction Rule 1 until it cannot be applied anymore. It then computes H a maximal
packing of edge-disjoint paws. If H consists of more than k paws, answer no. If this is not
the case, let S be the set of vertices belonging to a paw of H. As S is the union of at most k

paws, |S| ≤ 4k. Then the algorithm apply Reduction Rules 3 and 4 until either k < 0, in
which case it answers no, or they cannot be applied anymore.

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in
all the multipartite components of G− S adjacent to S is smaller than 4k(3k + 3)(3k + 5).
By applying Lemma 13, we either find out that (G, k) is a no-instance or find a set S′ of at
most (4k + 6)4k vertices such that if x 6∈ S′ belongs to a triangle-free component of G− S,
then x does not belong to any triangle in G using only one vertex of S.

Because Reduction Rule 3 cannot be applied anymore, it means that for every pair of
adjacent vertices s1, s2 in S, the number of vertices in triangle-free components adjacent to
both s1 and s2 is bounded by 4k + 6. This means that, if S′′ denote the set of vertices in a
triangle-free component, forming a triangle with 2 vertices of S, then |S′′| ≤ |S|2(4k + 6).

Note also that Lemma 12 still applies, and let S1 be the set obtained by picking for every
vertex s in S ∪ S′ ∪ S′′, 4k + 6 neighbors in triangle-free components of G− S.

Let G′ be the graph induced on G by S, S′, S′′, S1, as well as all the vertices on complete
multipartite components of G − S. We want to show that (G, k) has a solution if and
only if (G′, k) has a solution. Let A be a solution of (G′, k) and suppose G∆A has a paw

IPEC 2020

10:14 A Polynomial Kernel for Paw-Free Editing

x1, x2, x3, x4, with x1, x2, x3 being a triangle and x4 being adjacent to x3. Because of the
choice of the sets S′ and S′′, all the triangles of G are contained in G′. Note also that, since
the solution can only remove edges, x1, x2, x3 is a triangle in G. In particular, x1, x2, x3 is a
triangle in G′ and x4 /∈ V (G′). This implies that x3 ∈ S ∪ S′ ∪ S′′ and x4 was not picked for
the 4k + 6 neighbors of x3. In particular, this means that x3 has 4k + 6 neighbors which
belong to a triangle-free component of G′ − S in G′ and thus, by Lemma 12, x3 cannot
belong to a complete multipartite component of G′∆A. However, since x1, x2 and x3 form a
triangle in G′∆A, we reach a contradiction. J

I Theorem 16. Paw-free Edge Addition admits a kernel with O
(
k3) vertices.

Proof. Again, Reduction Rules 1–4 are still safe in this context, with the difference for
Rules 3 and 4 that, instead of removing edges and decreasing k, we can directly conclude
that (G, k) is a no-instance. Note also that a paw-free connected component can safely be
removed from the graph.

So the algorithm starts by removing all the paw-free components of G and applying
Reduction Rule 1 until it cannot be applied anymore. It then computes H a maximal packing
of edge-disjoint paws. If H consists of more than k paws, answer no. If this is not the case,
let S be the set of vertices belonging to a paw of H. As S is the union of at most k paws,
|S| ≤ 4k. From now on we can assume that Rules 3 and 4 cannot be applied.

Again, by possibly applying Reduction Rule 2, we can assume that the set of vertices in
all the multipartite components of G− S adjacent to S is smaller than 4k(3k + 3)(3k + 5).

Consider a connected component C1 of G. This component cannot be paw-free, or the
algorithm would have removed it from the graph. So let S1 = C1 ∩ S and R1 the vertices
of C1 contained in triangle-free component of G − S. Because C1 is not triangle-free, it
means that any solution A to (G, k) leaves C1 as a complete multipartite component. In
particular, it implies that R1 is smaller than 4k + 6. Indeed, if R1 is bigger than 4k + 6,
then 2k + 6 vertices will have the same neighborhood in G∆A as in G. Moreover, since
R1 is triangle-free, it means that these vertices belong to at most 2 parts of the complete
multipartite component. This implies that at least k + 3 of these vertices belong to the same
part and Rule 1 applies. Moreover, since G has at most k connected components which
are not paw-free, it implies that the set of vertices contained in triangle-free components of
G− S is smaller than (4k + 6)k.

Overall, it implies that our reduced instance has size at most 4k(3k + 3)(3k + 5) + (4k +
6)k + 4k = O

(
k3), which ends the proof. J

9 Conclusion

In this paper we studied Paw-free Edge Editing and gave a polynomial kernel of size
O
(
k6). The only unresolved graph H on 4 vertices, for which the kernelization complexity

of H-free Edge Editing problem remains open is the claw. In fact, for this problem even
the kernelization complexity of H-Edge Deletion and H-Edge Addition remain open.
Settling the kernelization complexity might require using the power of structure theorem of
claw free graphs [8]. Thus, a natural start here could be looking at editing/deletion/addition
to basic graphs, on which structure theorem of claw free graphs is built. We leave these as
natural directions to pursue.

E. Eiben, W. Lochet, and S. Saurabh 10:15

References
1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness

of H-free edge modification problems. SIAM J. Discrete Math., 31(1):542–561, 2017. doi:
10.1137/16M1055797.

2 Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R Fellows, Jan Arne Telle, and Dániel
Marx. Open problems in parameterized and exact computation-iwpec 2006. UU-CS, 2006,
2006.

3 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

4 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica,
71(3):731–757, 2015. doi:10.1007/s00453-014-9937-x.

5 Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong SAR, China, 2012.

6 Yixin Cao, Yuping Ke, and Hanchun Yuan. Polynomial kernels for paw-free edge modification
problems. CoRR, abs/2003.11273, 2020. arXiv:2003.11273.

7 Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free
editing. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, pages 10:1–10:13, 2018. doi:10.4230/LIPIcs.ESA.2018.10.

8 Maria Chudnovsky and Paul D. Seymour. Claw-free graphs. IV. decomposition theorem. J.
Comb. Theory, Ser. B, 98(5):839–938, 2008. doi:10.1016/j.jctb.2007.06.007.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.
13 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence

of polynomial kernels for P`-free edge modification problems. Algorithmica, 65(4):900–926,
2013. doi:10.1007/s00453-012-9619-5.

14 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. Discrete Optimization, 10(3):193–199, 2013. doi:10.1016/j.disopt.2013.02.001.

15 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

16 Dániel Marx and R. B. Sandeep. Incompressibility of H-Free Edge Modification Problems:
Towards a Dichotomy. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th
Annual European Symposium on Algorithms (ESA 2020), volume 173 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 72:1–72:25, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2020.72.

17 Stephan Olariu. Paw-free graphs. Information Processing Letters, 28(1):53–54, 1988. doi:
10.1016/0020-0190(88)90143-3.

18 R. B. Sandeep and Naveen Sivadasan. Parameterized lower bound and improved kernel
for diamond-free edge deletion. In 10th International Symposium on Parameterized and
Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, pages 365–376, 2015.
doi:10.4230/LIPIcs.IPEC.2015.365.

IPEC 2020

https://doi.org/10.1137/16M1055797
https://doi.org/10.1137/16M1055797
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-014-9937-x
http://arxiv.org/abs/2003.11273
https://doi.org/10.4230/LIPIcs.ESA.2018.10
https://doi.org/10.1016/j.jctb.2007.06.007
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00453-012-9619-5
https://doi.org/10.1016/j.disopt.2013.02.001
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.4230/LIPIcs.ESA.2020.72
https://doi.org/10.1016/0020-0190(88)90143-3
https://doi.org/10.1016/0020-0190(88)90143-3
https://doi.org/10.4230/LIPIcs.IPEC.2015.365

	Introduction
	Brief Overview of the Algorithm

	Preliminaries
	Reduction Rules
	Bounding the Complete Multipartite Components
	Bounding the Diameter of Relevant Vertices
	Triangle-Free Components
	Main Result
	Kernels for Deletion and Addition
	Conclusion

