
Recognizing Proper Tree-Graphs
Steven Chaplick
Maastricht University, The Netherlands
s.chaplick@maastrichtuniversity.nl

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
petr.golovach@uib.no

Tim A. Hartmann
RWTH Aachen, Germany
hartmann@algo.rwth-aachen.de

Dušan Knop
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic
dusan.knop@fit.cvut.cz

Abstract
We investigate the parameterized complexity of the recognition problem for the proper H-graphs.
The H-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph
H, and the properness means that the containment relationship between the representations of
the vertices is forbidden. The class of H-graphs was introduced as a natural (parameterized)
generalization of interval and circular-arc graphs by Biró, Hujter, and Tuza in 1992, and the proper
H-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval
and circular-arc graphs. For these graph classes, H may be seen as a structural parameter reflecting
the distance of a graph to a (proper) interval graph, and as such gained attention as a structural
parameter in the design of efficient algorithms. We show the following results.

For a tree T with t nodes, it can be decided in 2O(t2 log t) · n3 time, whether an n-vertex graph G
is a proper T -graph. For yes-instances, our algorithm outputs a proper T -representation. This
proves that the recognition problem for proper H-graphs, where H required to be a tree, is
fixed-parameter tractable when parameterized by the size of T . Previously only NP-completeness
was known.
Contrasting to the first result, we prove that if H is not constrained to be a tree, then the
recognition problem becomes much harder. Namely, we show that there is a multigraph H with
4 vertices and 5 edges such that it is NP-complete to decide whether G is a proper H-graph.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Fixed parameter tractability

Keywords and phrases intersection graphs, H-graphs, recognition, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.8

Related Version https://arxiv.org/abs/2011.11670

Funding Petr A. Golovach: Author supported by the project MULTIVAL of the Research Council
of Norway.
Dušan Knop: Supported by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765
“Research Center for Informatics”.

Acknowledgements We thank Peter Zeman for initial discussions on this work, particularly relating
to the NP-completeness of proper H-graph recognition. We also thank an anonymous reviewer to
point to a mistake in an earlier version.

© Steven Chaplick, Petr A. Golovach, Tim A. Hartmann, and Dušan Knop;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-3501-4608
mailto:s.chaplick@maastrichtuniversity.nl
https://orcid.org/0000-0002-2619-2990
mailto:petr.golovach@uib.no
https://orcid.org/0000-0002-1028-6351
mailto:hartmann@algo.rwth-aachen.de
https://orcid.org/0000-0003-2588-5709
mailto:dusan.knop@fit.cvut.cz
https://doi.org/10.4230/LIPIcs.IPEC.2020.8
https://arxiv.org/abs/2011.11670
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Recognizing Proper Tree-Graphs

1 Introduction

An intersection representation of a graph G = (V,E) is a collection of nonempty sets
{Mv | v ∈ V (G)} over a given universe such that {u, v} is an edge of G if and only if
Mu ∩Mv 6= ∅. A large area of research in graph algorithms is the study of restricted families
of graphs arising from specialized intersection representations, e.g., the interval graphs are
the graphs with an intersection representation where the sets are intervals of R, and the
circular-arc graphs are intersection graphs of families of arcs of the circle. The interval graphs
and similarly defined graph classes are often motivated from application areas such as circuit
layout problems [24, 4], scheduling problems [22], biological problems [19], or the study of
wireless networks [16]. We refer to the books [5, 15] for an introduction and survey of the
known results on the related graph classes.

A key feature of these specialized intersection representations is that they can often be
used to obtain efficient algorithms for standard combinatorial optimization problems, e.g., it is
well-known [5] that the Clique and Independent Set problems, as well as various coloring
and Hamiltonicity problems are all efficiently solvable on interval graphs, and the algorithms
often leverage on the intersection representation. This led Biró et al. [2] to introduce an
elegant family of intersection graph classes, called H-graphs, over universes that may be seen
as (multi) graphs. Formally, the parameter H is a multigraph, and a graph G is an H-graph
when there is a subdivision Hsub of H1 and a collectionM = {Mv ⊆ V (Hsub) | v ∈ V (G)}
of sets, where we refer to Mv as the model of v, such that

for every v ∈ V (G), its model Mv induces a connected subgraph of Hsub, and
{u, v} ∈ E(G) if and only if Mu ∩Mv 6= ∅.

In this context, Hsub represents G. Observe that, for any interval graph G, there is a path P
(i.e., a subdivision of K2) such that P represents G meaning that the interval graphs are
precisely the K2-graphs. Similarly, the circular-arc graphs are C-graphs for any cycle C,
and every chordal graph is a T -graph for some tree T , i.e., indeed, H-graphs can be seen as
a parameterized generalization of several important families of intersection graphs, where
H is a parameter reflecting the distance of a graph to an interval graph. Biró et al. [2]
provided polynomial-time algorithms (via treewidth-based techniques) for coloring problems
on H-graphs for fixed H, but left many interesting problems open.

The classes of H-graphs have seen renewed interest in recent years concerning their
structure and recognition [8], relation to other graph parameters [8, 12], and primarily
regarding the computational complexity of standard algorithmic problems when parameterized
by the size of H [1, 7, 8, 9, 12, 17, 18]. Of particular relevance to our paper is the work on
Hamiltonicity problems [7] as it introduces proper H-graphs, which are to proper interval
graphs as H-graphs are to interval graphs. Namely, for a graph G, a subdivision Hsub of H
properly represents G when Hsub represents G using models {Mv ⊆ V (Hsub) | v ∈ V (G)}
such that for each u, v ∈ V (G), neither Mu ⊆ Mv nor Mv ⊆ Mu. In particular, on proper
H-graphs polynomial size kernels (in the size of H) were developed for various Hamiltonicity
problems [7], but the recognition problems were left open.

The cornerstone problem for every graph class is recognizability, and we focus on the
recognition problem for proper H-graphs both when H is part of the input and when H
is fixed. It is important to note that the problem of testing whether for a given graph
G and given tree T , the graph G is a T -graph is NP-complete [20, Theorem 4]. In fact,
the reduction [20, Theorem 4] also implies that testing whether G is a proper T -graph

1 Hsub is obtained from H by iteratively replacing an edge {u, v} by a path uwv, where w is a new vertex.

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:3

is NP-complete. In contrast to this, it is known that when T is fixed, testing whether a
given graph is a T -graph can be done in polynomial-time [8], i.e., XP in the size of T ; but
it is not known whether the problem is FPT in the size of T . When going beyond trees
the recognition problem becomes much harder. Namely, for each fixed non-cactus graph
H, H-graph recognition is NP-complete [8]. However, for fixed H, it seems that only two
cases of proper H-graph recognition have been studied: The proper interval graphs (proper
K2-graphs) [10, 11] and the proper circular-arc graphs (proper C-graphs, for any cycle C) [11]
can each be recognized in linear-time.

Our Contribution. In our main result, we show that the recognition of proper T -graphs is
fixed-parameter tractable (FPT) with respect to the size of T by proving the following.

I Theorem 1. There is an algorithm that, given an n-vertex graph G and a tree T with t
nodes, decides whether G is a proper T -graph, and if yes, outputs a proper T -representation,
in 2O(t2 log t) · n3 time.

To obtain our FPT algorithm for proper T -graph recognition, we first observe that the
problem can be reduced to the case when the input graph G is connected and chordal. We
proceed in the following three key steps.

In Section 3, we introduce compact representations which are an analog to the clique-trees
of chordal graphs that incorporates the properness condition. We characterize the proper
T -graphs via these compact representations. This allows us to work with maximal cliques of
the input graph that can be listed in linear-time due to the chordalilty of G.

In Subsections 4.1 and 4.2, independent of the tree T , we partition the maximal cliques
into a collection of the so-called chains each one necessarily forming a path in any proper
T -representation, and the remaining singleton cliques that are marked and treated separately.
We show that having a compact T -representation means there are, in terms of the size of T ,
at most quadratically many of these marked cliques and chains altogether.

In Subsections 4.3 and 4.4, we combine these ideas to form our FPT algorithm for proper
T -graph recognition. First, our algorithm guesses a layout of the chains and the marked
maximal cliques. The remaining non-trivial task is to decide whether there is a compact
representation corresponding to the guessed layout. We select a root of the tree and show
a combinatorial result that if any compact representation realizes some layout, it can be
assumed to have some special properties concerning the usage of the nodes of degree at least
three of the tree by the models with respect to the root. We call representations satisfying
these properties normalized. Our algorithm follows the layout bottom-up and constructs a
normalized representation if it exists.

We complement our algorithmic result from Theorem 1 by proving that if H is not
constrained to be a tree, the recognition problem for proper H-graphs becomes NP-complete
even if H has bounded size. This negative result employs a reduction quite similar to the
one used for (non-proper) H-graphs in [8], and as such is discussed and proven in the full
version.

I Theorem 2 (?). There is a 4-vertex, 5-edge multigraph D (defined by V (D) = {a, b, c, d}
and E(D) = {ab, bc, bc, bc, cd}) such that proper D-graph recognition is NP-complete.

Note that this and further statements proven in the full version are marked with (?).

IPEC 2020

8:4 Recognizing Proper Tree-Graphs

2 Preliminaries

General Notation. We consider undirected graphs G with vertex set V (G) and edge set
E(G). Usually we denote an edge as a set {u, v}. However, when needed, we also denote an
edge an ordered pair (u, v). For any subset W of V (G), we use N(W) to denote the open
neighborhood of W , i.e., N(W) := {u ∈ V (G) \W | {u,w} ∈ E(G), w ∈W}, and for a single
vertex w ∈ V (G), N(w) := N({w}). We denote the set of maximal cliques of a graph as
C(G). The shorthand [n] denotes the set {1, . . . , n} of integers.

A subdivision H ′ of a graph H at an edge {u,w} is the graph resulting from replacing
edge {u,w} with a path u, v, w where v is new vertex. A contraction of a graph H at an edge
{u,w} is the graph resulting from removing edge {u, v} and identifying the two vertices u
and w. Then Hsub is a re-subdivision of H if it can be obtained by a series of contractions of
H (possibly none) followed by a series of subdivisions. In particular a graph G is a (proper)
H-graph if and only if there is a re-subdivision that (properly) represents G.

Let T be a tree. For any pair x, y of nodes of T , we denote by T [x, y] the set of nodes
of the unique path from x to y in T . Note that T [x, y] = T [y, x]. We similarly define
T (x, y] := T [x, y] \ {x} and T (x, y) := T [x, y] \ {x, y}. A tuple of nodes (x1, . . . , xs) is
T -ordered if there exists a path in the graph T from x1 to xs where the nodes x1, . . . , xs
occur in this order, i.e., T [x1, xs] is the path x1, . . . , xs.

H-graphs. Consider a re-subdivision Hsub of a graph H that (properly) represents a graph
G using models {Mv ⊆ V (Hsub) | v ∈ V (G)}. For clarity, we refer to each x ∈ V (Hsub) as a
node and to each v ∈ V (G) as a vertex. We further refer to each node x ∈ V (Hsub) as:

a subdivision node when it has degree two,
a branching node when it has degree more than two, and
a leaf node if it has degree one.

For a set of nodes X ⊆ V (Hsub), let VX := {v ∈ V (G) |Mv ∩X 6= ∅}. When X = {x}, we
also write Vx to mean V{x}. For a subset of vertices Γ ⊆ V (G), let MΓ :=

⋃
v∈ΓMv. We say

that a set Γ of vertices (or nodes) is connected if the graph induced by Γ is connected.

I Observation 3. Let Hsub (properly) represent a graph G. For any connected subset Γ of
V (G), the model MΓ of Γ is connected in Hsub.

Chordal Graphs and Clique Trees. A graph is chordal when it does not contain an induced
k-vertex cycle for any k ≥ 4. The chordal graphs are well known to be characterized as the
intersection graphs of subtrees of a tree, i.e., for every chordal graph G, there is a tree T that
represents G (G is a T -graph) [6, 14, 25]. In fact, G is chordal if and only if there is a tree
T with models {Mv ⊆ V (T) | v ∈ V (G)} where, for each node x ∈ V (T), Vx is a maximal
clique of G and for every node y ∈ V (T) with y 6= x, Vy 6= Vx [6, 14, 25]. These special
representations of G are called clique trees, and one can be constructed in linear-time [3, 13].
Note that chordal graphs have a simpler linear-time recognition algorithm [23]. Finally, every
chordal graph G has at most n maximal cliques where n = |V (G)| and the sum of the sizes
of the maximal cliques of G is O(n+m) [15]. In particular, the total size of a clique tree of
G is O(n+m). Clearly, the latter two properties of chordal graphs also apply to (proper)
T -graphs independently of T , and we will use them implicitly throughout our discussions.

Each chordal graph G is also a proper T -graph for a tree T . Namely, if a tree T represents
G via models {Mv | v ∈ V (G)}, any tree T ′ built from T as follows properly represents G:
Extend each model Mv by a new node xv and add {x, xv} to E(T) for some x ∈Mv.

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:5

3 Compact Representations of Proper T-Graphs

In this section we introduce an analogue of clique trees for proper T -graphs. Ideally, G
being a proper T -graph would imply a clique tree with the topology of T representing G
which satisfies properness; in other words: a re-subdivision Tsub of T with models satisfying
properness (i.e., forbidding Mu ⊆ Mv for every pair u, v ∈ V (G)) such that every node x
represents a unique maximal clique Vx. However, a proper tree-representation of a graph G
may use a lot of nodes just to ensure that the models Mu and Mv obey properness; which is
already the case for K2 and its interval representation. Fortunately we may guarantee that
almost all nodes represent a unique maximal clique by relaxing the properness condition.
Instead of forbidding containment, we require that when Mu intersects Mv, there is a place
where Mu may be extended (as needed) to break containment. That place is an edge {x, y}
in the tree Tsub where u strongly escapes v, that is, u, v ∈ Vx and v /∈ Vy. Actually, a weaker
version of escape suffices. A vertex u escapes v if u ∈ Vx and v /∈ Vy.

I Definition 4. Let a tree Tsub with models {Mu | u ∈ V (G)} represent a connected graph G.
We say that Tsub is a compact representation of G if
(C1) for every leaf node x ∈ V (Tsub), Vx = ∅,
(C2) there is a bijection between the non leaves of V (Tsub) and the maximal cliques C(G),

and
(C3) for every ordered pair (u, v) with u, v ∈ V (G), there is an edge {x, y} ∈ E(Tsub) where

u escapes v.

I Observation 5 (?). Let a tree Tsub with models {Mu | u ∈ V (G)} represent a connected
graph G and satisfy condition (C1). For any vertices u, v of G, u and v satisfy the condi-
tion (C3) if and only if u and v satisfy condition
(C3’) if Mu ∩Mv 6= ∅, then u strongly escapes v.

Note that, the non-leaves of a compact representation are in one-to-one correspondence
with the maximal cliques C(G). Namely, we identify the non-leaves with the maximal cliques,
which implicitly defines the models. Thus, we often omit the explicit statement of the models.

I Observation 6. Let G be a connected graph. For any compact representation Tsub of G,
1. for every distinct non-leaves x, y ∈ V (Tsub) there is a vertex u ∈ Vx \ Vy, and
2. for every edge {x, y} ∈ E(Tsub) of non-leaves x, y, there is a vertex u ∈ Vx ∩ Vy.

We (constructively) show that properness and compactness are essentially equivalent. To
obtain compactness from properness, we carefully contract edges where a node was used
solely to assure properness. This can involve contracting edges of T when the vertex sets of
the nodes of an edge are comparable, e.g., if they are the same maximal clique. To obtain
properness from compactness, we subdivide the tree and appropriately extend the models.

I Theorem 7 (?). For any connected graph G and tree T 6= K1, the graph G is a proper
T -graph if and only if there is re-subdivision Tsub of T that is a compact representation of G.

Thus, instead of finding a proper representation, we search for a compact representation.
The actual “properness” is hidden in the condition (C3), and we may refer to this condition
as properness. See also examples in Figure 1.

Our algorithm further relies on the following property of the modelsMΓ of the (connected)
components of G− Vy for some non-leaf y; see also Figure 2(a). Let Γ(y) (w.r.t. graph G)
be the vertex sets of the components of G− Vy. We note that N(Γ) ⊆ Vy for every Γ ∈ Γ(y).
Let a node y be an eye if it is a neighbor of a leaf or if it is a branching node.

IPEC 2020

8:6 Recognizing Proper Tree-Graphs

` y r

z(a)

` y r

(b)

` y r

(c)

Figure 1 (a) A proper K1,3-graph. Triple (`, y, r) is surrounding. Any representation positions y
between ` and r. Component Vz \ V` complies with condition (2B). Further, edge {z, y} may be
replaced by edge {z, `} or {z, r}. (b) A proper K1,3-graph. Triple (`, y, r) is not surrounding. A
“private” vertex in Vy \N(Γ`) ∪N(Γr) contradicts condition (2A). Indeed, any of `, y, r may realize
the branching node. (c) Triple (`, y, r) is surrounding. For {Γ`,Γr} = Γ(y) condition (1) allows
private vertices in Vy; otherwise, this proper interval graph would have no surrounded nodes.

I Lemma 8 (?). Let G be a connected graph. For any compact representation Tsub of G and
any non-leaf node y ∈ V (Tsub),
1. {y} and MΓ for Γ ∈ Γ(y) partition the non-leaves of Tsub, and
2. each partition MΓ contains an eye, hence |Γ(y)| ≤ |V (T)|.

4 Finding a Compact Representation

In this section, we prove Theorem 1; namely, we establish our FPT algorithm. Throughout the
discussion, we assume G is connected, and handle disconnected graphs within the final proof.
From Section 3, it suffices to check for a compact representation Tsub. In Subsection 4.1,
we establish the concept of surrounded nodes, which leads, in Subsection 4.2, to the chains
that necessarily form paths in any compact tree representation. We establish that the
chains (composed of surrounded nodes), and the remaining non-surrounded nodes are only
quadratically many in the size of the desired tree T . In Subsection 4.3, we formalize the
way these pieces fit together as templates. Finally, Subsection 4.4 contains the algorithm
establishing Theorem 1. It proceeds by enumerating candidate templates and (non-trivially)
testing whether a template admits a compact representation via a bottom-up procedure.

4.1 Surrounded Nodes

We establish conditions for arbitrary nodes `, y, r that determines the relative position of
`, y, r in any representation Tsub, a relation which we denote as (`, y, r) surrounding. Clearly,
this positioning is unlikely to be possible for every triple (`, y, r) since this would yield a
polynomial-time algorithm. However, by carefully crafting our first two requirements, we
may still relatively position almost all nodes `, y, r. We only fail for a few nodes y, at most
quadratic in the size of the host tree T , hence our parameter.

I Definition 9. Consider non-leaves `, y, r of Tsub. There is a component Γ` ∈ Γ(y)
containing V` \ Vy, likewise a component Γr ∈ Γ(y) containing Vr \ Vy. Then (`, y, r) is a
surrounding triple, if the following conditions are met:
(1) If {Γ`,Γr} = Γ(y), then Vy = N(Γ`) ∪N(Γr) or N(Γ`) ∩N(Γr) = ∅;
(2) if {Γ`,Γr} (Γ(y),

(2A) Vy = N(Γ`) ∪N(Γr), and
(2B) for every Γ ∈ Γ(y) \ {Γ`,Γr} we have: N(Γ) ⊆ N(Γ`) ∩N(Γr); and

(3) for every `′, r′ that satisfy (1), (2A), and (2B) where Γ` = Γ`′ and Γr = Γr′ , we have
V`′ ∩ Vy ⊆ V` ∩ Vy and Vr′ ∩ Vy ⊆ Vr ∩ Vy.

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:7

yMΓ′

MΓ′′

MΓ

(a)

y R

L(b)

` y z MΓ

(c)

Figure 2 (a) Graph G− Vy splits into three connected components. Their models partition the
non-leaves of Tsub − {y}. Each model contains an eye (of this subdivision of a double-star). (b) Sets
L,R exactly capture the nodes `, r that (together with y) form a surrounding triple (`, y, r). Here, y
neighbors a subdivision node r to its right. In such a case a y-guard R ⊇ {r} may only contain r.
(c) Subdivision node y is not surrounded. A remote component Γ falsifies condition (2B). Note that
Γ−1(Γ) = {y, z}. Thus Γ does not falsify (2B) for another subdivision node y′.

Note, that the definition does not depend on the considered representation Tsub. Impor-
tantly, Γ` 6= Γr is (implicitly) required by condition (1). We say that y is surrounded, if a
triple (`, y, r) is a surrounding triple for some nodes `, r. See Figure 1 for examples.

For each node y, the connected components Γ` and Γr satisfy or falsify the first two
conditions independently of the precise maximal cliques V` and Vr. However, condition (3)
requires V` and Vr to be the closest ones to Vy. In many cases condition (3) implies that `
and r directly neighbor y. In fact, for a surrounded node y, there are sets of nodes L and R
that exactly localize the nodes ` and r forming a surrounding triple with y. Formally, L,R
are y-guards: A set of non-leaves L ⊆ V (Tsub) is a y-guard if L ∪ {y} is connected, and y is
adjacent to a node ` ∈ L such that {`} = L or ` is a branching node of Tsub; see Figure 2(b).

I Lemma 10 (?). Let a tree Tsub be a compact representation of a connected graph G. Let
y be surrounded. There are distinct y-guards L and R such that (`, y, r) is surrounding if
and only if (`, r) ∈ (L × R) ∪ (R × L). Moreover there is an O(t3n3)-time algorithm that
determines sets L,R for every surrounded node y; where t = |V (T)| and n = |V (G)|.

The guards of y are such distinct y-guards L and R that precisely characterize its
surrounding triples. It is worth noting that a node y that is surrounded by subdivision nodes
has singleton guards {`} and {r}, which then must be neighbors y in any representation.

Surprisingly there is also a quadratic bound in |V (T)| on the number of not surrounded
nodes. To show this, the main difficulty is that the conditions (2A) and (2B) fail for a
subdivision node y due to some remote component Γ, which is a connected component
Γ ∈ Γ(y) \ {Γ`,Γr}. Here, let y ∈ Tsub(x, z) for some neighbors x, z ∈ V (T). To cope with
these remote components, we use three ingredients:

A component Γ ∈ Γ(y) that falsifies the conditions in question relates to Γ(x) or Γ(z):
Its model MΓ must be outside of Tsub[x, z]. By examining the nodes y′ that have Γ as a
component, it follows that either Γ ∈ Γ(x) or Γ ∈ Γ(z).
We use Lemma 8 on components Γ ∈ Γ(x), likewise for Γ(z): The models of the
components Γ ∈ Γ(x) partition the non-leaves Tsub, and each of its models MΓ contains
an eye. That means that Γ(x) contains at most |E(T)| components.
A component Γ ∈ Γ(x) can be remote for at most one node y on the path Tsub(x, z), and
hence falsify the surround conditions for at most one y on that path. This yields a simple
2|E(Tsub)|-bound for not surrounded nodes on that path; see also Figure 2(c).

By incorporating these ideas in a more careful manner we obtain the following bound:

I Lemma 11 (?). Let subdivision Tsub of a tree T be a compact representation of a connected
graph G. There are at most |E(T)|2 + 1 non-leaves of V (Tsub) that are not surrounded.

IPEC 2020

8:8 Recognizing Proper Tree-Graphs

4.2 Chains: Paths in any Representation

As observed previously, singleton guards {`} and {r} of a node y must neighbor y. If a path
of nodes y1, . . . , ys is made of aligned guards, i.e., {yi−1} and {yi+1} are the guards of yi,
then it is a path in any representation Tsub. In this subsection we define such paths as chains.
A chain captures a maximum length path y1, . . . , ys with aligned guards. They also include
the initial and final guard Y0 and Ys+1, their terminals.

I Definition 12. A chain is a maximal length s ≥ 1 sequence of sets of non-leaf nodes

Y = 〈Y0, {y1}, . . . , {ys}, Ys+1〉

where yi has guards Yi−1 and Yi+1 for every i ∈ [s]; and where Yi := {yi} for i ∈ [s].

To avoid lengthy statements, let us implicitly use Yi := {yi} from now on. Let I(Y) =
{y1, . . . , ys} be the set of inner nodes of a chain Y. Let H(G) be the set of chains of a
(connected) graph G.

By Lemma 10 such a chain implies that y1, . . . , ys is a path in any representation Tsub. Also
there are unique realizations of the terminals y0 ∈ Y0∩NTsub(y1) and ys+1 ∈ Ys+t∩NTsub(ys)
in a given Tsub. Let y0y1 . . . ysys+1 be the corresponding path of Y in the tree Tsub.

The terminals define how the chains may attach to each other. In the very simple case a
terminal Y0 may only consist of a single non-surrounded node, and hence any other chain
must attach to that node. Otherwise, as we show later, only the following option remains:
Terminal Y0 contains some surrounded node y′i which is part of another chain 〈Y ′0 , . . . , Y ′s′+1〉.
Interestingly Y0 then contains the whole path y′1, . . . , y

′
s. This allows us to freely change

the attachment of the chain 〈Y0, {y1}, . . . 〉 to the chain 〈. . . , {y′i}, . . . 〉 without breaking the
connectivity of the representation, though possibly the properness. Similarly, the intersection
Vx ∩ Vyi

for an outside-of-path node x is equal for every i ∈ [s], and therefore may be
reattached in the same sense.

I Lemma 13 (?). Consider a chain 〈Y0, . . . , {yi}, . . . , Ys+1〉. A neighbor x ∈ N(yi) \ (Yi−1 ∪
Yi+1) has Vx ∩ Vyi

= Vx ∩ Vyj
, for every j ∈ [s]. Furthermore, Y ′ ∩ I(Y) ∈ {∅, I(Y)} for

every terminal Y ′ of any chain.

In the following subsection we aim for a bound on the number of chains. We note here
that chains behave in a reasonable way: Each surrounded node y is part of exactly one chain,
because otherwise it contradicts the classification by y-guards as seen in Lemma 10. Clearly,
a chain does not contain a node more than once, since yi-guards Yi−1, Yi+1 are in different
subtrees of yi, for every i ∈ [s]. As the next step, we observe that terminals only consist of
either a not-surrounded node or a non-singleton guard, i.e., are from
S(G) := {{y0} | y0 ∈ C(G) is not surrounded} , or
U(G) := {Y0 | Y0 is guard of some y1 ∈ C(G), |Y0| > 1} .

I Lemma 14 (?). Let Tsub be a compact representation of a connected graph G. Then every
terminal Y0, Ys+1 of a chain of G is part of S(G) or U(G).

Further, let the family of inner nodes be I(G) := {I(Y) | Y ∈ H(G)}. Note here that
I(G) ∪ S(G) partition the maximal cliques C(G).

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:9

Y
Y ′

(a) λ0

λ1

λ2

λ

(b)

r̄ = λ, λ2, λ0 . . .〈
Y ′0 , . . . , {y′2}

〉r̄
〈
Y0, . . . , Y3

〉r̄
(c)

Figure 3 a) Depiction of the chains of almost the graph from Figure 2a) with marked terminals.
b) A template prescribes the positioning of terminals, chains and S. Empty boxes represent leaves.
The chain Y is mapped to path λ0λ1λ2. The chain Y ′ is mapped to the single edge path λ1λ (an
edge despite the gap in the picture). We have t0(λ1) = I(Y), and indeed any attachment of Y ′ to
an inner node of Y is possible. For the chain Y ′ a mapping to single edge suffices since here it is
realized by a path of subdivision nodes. c) A sample root-ordering (colors mark the mapping of t0),
and resulting orientation of chains Y ′ and Y. Here λ2 (mapped to Y3) is a tie-breaker for Y.

4.3 Template: Fixing the Topology of Chains

The set of chains H(G) of a (connected) graph G already considerably prescribes many paths
that are present in any proper representation Tsub of G. What remains are two problems
of a more global flavor: For a chain there may be a vast range of possible connections.
Simultaneously we have to assure properness, i.e., that any vertices u and v escape each
other. To cope with these tasks we define a preliminary representation, a template. A
template considerably fixes the topology of a tree Tsub representing G. It narrows down
the possible representations such that we can focus on the properness. At the same time,
our final algorithm has to guess a template, thus its possibilities should be bounded by our
parameter, the size of T .

To fix the relative positions of chains, a template locates the terminals of a chain, Y0 and
Ys+1, on some template tree T 0. A concrete realization Tsub of that template is a subdivision
of T 0. It realizes a chain between its terminals as prescribed by the template. More precisely,
t0 maps the nodes λ of T 0 to the terminals of chains. To avoid ambiguity, let t0(λ) not map
to a mere terminal Y0, if Y0 ∈ U(G) (as it may be huge), but narrow down the mapping to
some set of inner nodes of I(G). In other words we fix the neighborhood of a chain on the
“chain-level”. Note that any Y0 ∈ U(G) is a superset of some set of inner nodes, as seen in
Lemma 13. For convenience, let us also fix a mapping h0 of chains 〈Y0, {y1}, . . . , {ys}, Ys+1〉
onto T 0: Let h0 map to paths λ0, . . . , λs′+1 in T 0, which should be conforming with the
terminals, which is t0(λ0) ⊆ Y0 and t0(λs′+1) ⊆ Ys+1. If the chain does not contain any
branching node, it suffices to represent the terminals. Then h0 maps simply to the single-edge
path λ0, λs′+1 (for example Y ′ in Figure 3(a),(b)). In the other extreme, every inner node
may be a branching node (respectively used as a terminal of another chain), thus possibly
s′ = s.

In more detail, a chain Y may correspond to a path y0 . . . ys+1 with an inner branching node
y′0 which is the endpoint of a path y′0y′1 . . . corresponding to another chain Y ′ = 〈Y ′0 , . . . , 〉.
Thus, the chain Y must be mapped to a path with an inner node λj that is an endpoint
of the path λj , λ

′
1 . . . , λ

′
s′′+1 that is the image of the other chain Y ′ (for example Y in

Figure 3a)b)). As seen before, then I(Y) ⊆ Y ′0 ∈ U(G). Hence, the mapping of that terminal
is t0(λj) = I(Y). We require this behavior for inner nodes like λj .

IPEC 2020

8:10 Recognizing Proper Tree-Graphs

I Definition 15. Let G be a connected chordal graph. A template of a tree T (w.r.t. G) is a
triple (T 0, t0, h0) where

T 0 is a re-subdivision of T ,
t0 is a mapping of the non-leaves of T 0 to S(G) ∪ I(G),
h0 is a bijection of the chains H(G) to an edge-disjoint set of non-trivial (i.e., containing
at least one edge) paths between non-leaves of T 0, and
for every chain 〈Y0, . . . , Ys+1〉 ∈ H(G) mapped to a path λ0, . . . , λs′+1 we have that
t0(λ0) ⊆ Y0 and t0(λs′+1) ⊆ Ys+1 and t0(λi) = I(Y) for every i ∈ [s′].

Consider a tree Tsub where each non-leaf y is identified with a maximal clique Vy. Then Tsub
realizes the template (T 0, t0, h0) if Tsub results from subdividing T 0 and Vλ ∈ t0(λ) for every
non-leaf λ of T 0.

Notably the image of h0 does not necessarily cover every edge between non-leaves. Namely,
non-surrounded nodes y and y′ might be neighbors. The next lemma establishes that every
tree Tsub that is a compact representation realizes some template, as we intended.

I Lemma 16 (?). If Tsub is a re-subdivision of a tree T and a compact representation of a
connected graph G, then Tsub realizes some template (T 0, t0, h0) of T .

As formalized in the next lemma, we can enumerate the possible templates in FPT, since
the number of chains is quadratically bounded in V (T).

I Lemma 17 (?). There are 2O(t2 log t) possible templates of a tree T w.r.t. a connected chordal
graph G, which can be enumerated in time 2O(t2 log t) · n3; where t = |V (T)|, n = |V (G)|.

4.4 Normalized Representation: Achieving Properness
We now consider a fixed template and focus on the properness. The remaining leeway is to
locally change the branching nodes of a particular chain. We use a construction which only
fails if the considered template does not allow a compact representation. The result is a
normalized representation.

Any representation Tsub can be normalized by a bottom-up process: Move each branching
node yi up as much as possible within the local subtree, i.e. as long as the subtree remains
compact. By moving up, we mean replacing yi by yj as a branching node that is closer to a
global root in the chain. The set of nodes that potentially replace yi behave in a linear fashion,
and hence allow this greedy approach. Thus we may assume that a normalized representation
exists for a yes-instance. Our algorithm though has to construct a representation from scratch.
By incorporating this idea in a more careful manner we may assemble each subtree of a
normalized Tsub bottom-up. Here we attach the inductive subtrees in the most conservative
way; then the same normalization step as before yields the desired new subtree. Again, the
linear behavior of the potential replacements enable this greedy approach.

To start, let us define the root of a template. Since chains may not “align” towards a
picked root r̄1, we have to work with additional tie-breakers r̄2, r̄3,

I Definition 18. A root-ordering r̄ is an ordering r̄1, r̄2, . . . of nodes V (T 0)∩{λ | t0(λ) ∈ S}.

The specific root-ordering will not be of importance and we may pick one arbitrarily.
We assume in the following that every tree and template comes with a root-ordering. See
Figure 3 for an example.

I Definition 19. A root-ordering r̄ and a template (T 0, t0, h0) define an orientation for
every chain Y = 〈Y0, . . . , Ys+1〉 as follows. Let h0(Y) map to a path in T 0 with end nodes
λ0 and λs+1 where t0(λ0) ⊆ Y0 and t0(λs+1) ⊆ Ys+1. Let k be the smallest index such
that (λ0, λs+1, r̄k) or (r̄k, λ0, λs+1) is T 0-ordered. If (λ0, λs+1, r̄k) is T 0-ordered, then Y is
oriented towards Ys+1, which we denote by writing 〈Y0, . . . , Ys+1〉r̄.

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:11

Note that the index k always exists, since every neighbor of a leaf is not surrounded.
Let R[yi, yj]Tsub be the tree resulting from replacing branching node yi by yj . Its local

version is ρ[yi, yj]Tsub. The models living in the more restrict subtree ρ↓[yi, yj]Tsub are
critical: Their properness is at stake. We define the possible replacements of a node yi
resulting in a proper representation as the potential Φ(Tsub, yi).

I Definition 20. Let r̄ be a root-ordering. Consider a branching node yi ∈ V (Tsub) and its
chain 〈Y0, . . . , {yi}, . . . , {yj}, . . . , Ys+1〉r̄ where y0 realizes Y0. For integers i ≤ j < s, let

R[yi, yj]Tsub be the tree Tsub where yi replaces yj as a branching node, i.e., edge {yi, z}
is replaced by a new edge {yj , z}, for every node z ∈ NTsub(yi) \ (Yi−1 ∪ Yy+1);
ρ[yi, yj]Tsub be the tree consisting of the subtree of R[yi, yj]Tsub rooted at y0 (w.r.t. global
root r̄1) and path y0, . . . , ys where for every chain node yi′ ∈ {y1, . . . , ys} and non-chain
neighbor z′ ∈ NR[yi,yj]Tsub \ (Yi′−1 ∩ Yi′+1) a new leaf node y′i′ added adjacent to yi′ ;
ρ↓[yi, yj]Tsub be the tree consisting of the subtree of R[yi, yj]Tsub rooted at y0 (w.r.t. global
root r̄1) and path y0, . . . , yj−1.

For convenience, let ρ↓[yi]Tsub := ρ↓[yi, yi]Tsub as well as ρ[yi]Tsub := ρ[yi, yi]Tsub.

I Definition 21. We define the potential Φ(Tsub, yi) (w.r.t. a template (T 0, t0, h0) and
root-ordering r̄) of non-leaf node yi.

For a not-surrounded node yi, let Φ(Tsub, yi) = {yi}.
For a surrounded branching node yi, consider its chain 〈·, . . . , {yi}, . . . , {ys}, ·〉r̄. The
potential Φ(Tsub, yi) contains every node yj ∈ {yi, . . . , ys} where the tree R[yi, yj]Tsub is
such that every vertex u with model Mu ⊆ V (ρ↓[yi, yj]Tsub) escapes every other vertex v.

A simple example is that yi ∈ Φ(Tsub, yi) for compact representations Tsub, as the
considered replacement does nothing. In contrast, Φ(Tsub, yi) = ∅ indicates non-properness
for the subtree of yi−1. Indeed, the potential of yi captures exactly the possible replacements
of yi as a branching node.

If some replacement yj of yi already is a branching node, the topology changes and
R[yi, yj]Tsub does not realize the same template. To avoid such issues, we require (without
loss of generality) a minimal representation: A tree Tsub is minimal if there is no compact
representation T ′sub of G that is a re-subdivision of Tsub with fewer branching nodes. Clearly,
if there is a representation Tsub of G, we may also assume that it is minimal. In particular,
the contraction would result in different candidate re-subdivision of T , which we consider
separately.

We may compute it locally, meaning it suffices to consider the subtree ρ[yi]. Since the
potential Φ(Tsub, yi) is a connected subsequence of 〈yi, . . . , ys〉, we either view it as a set or
as such a subsequence. Further, if the potential is 〈yi, . . . , yj〉, then replacing yi with the last
node yj makes the resulting potential at yj singleton. Finally, the potential is independent
from later replacements, assuming a bottom-up (i.e., leaf-to-root) procedure.

I Lemma 22 (?). Let Tsub be a minimal compact representation of a connected graph G.
We observe the following for a chain 〈·, . . . , {yi}, . . . , {yj}, . . . , {ys}, ·〉r̄ for i ≤ j ≤ s:
1. If yj ∈ Φ(Tsub, yj), then R[yi, yj]Tsub is a minimal compact representation of G.
2. locality, Φ(Tsub, yi) = Φ(ρ[yi]Tsub, yi),
3. connectivity, Φ(Tsub, yi) is connected in Tsub, and hence some subsequence 〈yi, . . . , yj〉,
4. linearity, Φ(Tsub, yi) = 〈yi, . . . , yj〉 if and only if Φ(R[yi, yj]Tsub, yj) = 〈yj〉.
5. independence, Φ(R[yi, yj]Tsub, x) ⊆ Φ(Tsub, x) for every node x ∈ V (Tsub) where (x, yi, r̄1)

is Tsub-ordered.

IPEC 2020

8:12 Recognizing Proper Tree-Graphs

Consider a tree Tsub that realizes a template (T 0, t0, h0), and has some root-ordering r̄.
We say Tsub is normalized for a node y (w.r.t. to (T 0, t0, h0) and r̄) if Φ(Tsub, y) = 〈y〉.
By the locality property, this is equivalent to Φ(ρ[y]Tsub, y) = 〈y〉, hence it suffices to
consider the local subtree. The whole tree Tsub is normalized if it is normalized for every
branching node. Now the independence of the potential as explored earlier allows normalizing
any representation by a bottom-up procedure. Thus, in a yes-instance, we may assume a
normalized representation.

I Lemma 23 (?). There is an O(n3) time algorithm that, given a connected chordal n-vertex
graph G and a template (T 0, t0, h0), decides whether there is a minimal compact representation
of G that realizes (T 0, t0, h0), and if one exists, it outputs one that is also normalized.

Proof (Sketch). Assuming a yes-instance, there is minimal compact representation T ′sub of
G that realizes template (T 0, t0, h0). We may also assume that T ′sub is normalized (proven
in the full version). Our algorithm outputs a representation isomorphic to T ′sub, thus a
normalized one as desired. If, however, our construction fails at some point, we correctly
conclude that no such representation exists. In the rest of the proof we fix an arbitrary
root-ordering r̄.

We fix an ordering σ = λ1, λ2, . . . of the non-leaf nodes of the template tree T 0, which
follows the ordering within in a chain and otherwise is bottom-up. Pick a node λk where
every non-leaf child of λk has been added before, and append it to the ordering. If there is a
chain 〈Y0, . . . , Ys′+1〉r̄ mapped by h0 to a path of form λ0, λk, λk,1, . . . , λk,s′+1, append nodes
λk,1, . . . , λk,s′+1 as well. Then continue to picking a new node until all nodes are ordered.

For k ≥ 1, let Tk be the subtree of T ′sub induced by λ1, . . . , λk, every subdivision node
between nodes from λ1, . . . , λk and leaves neighboring λ1, . . . , λk. By induction over k ≥ 1,
we prove that a tree isomorphic to Tk is polynomial time computable given G, (T 0, t0, h0,)
and r̄. Eventually this yields to a representation Tsub isomorphic to T ′sub, thus normalized
minimal compact and realizing (T 0, t0, h0), as desired.

(Induction base, when λk neighbors a leaf (w.r.t. to root r̄1)) The node λk represents
a not-surrounded node t0(λk) = {λk} ∈ S(G). Then Tk consists only of λk adjacent to
some leaf. Thus, this tree is prescribed by (T 0, t0, h0) and hence no computation is required.
The induction step where λk ∈ V (T 0) is a node with t0(λk) = {λk} ∈ S(G) is similar, and
omitted here.

(Induction step I(G)) We consider the case where the template node λk is a surrounded
branching node. This means that t0(λk) = {y1, . . . , ys} = I(Y) for some chain Y. The
template maps Y to a non-trivial path λ0, . . . , λs′+1 in T 0 containing λk:

λ0 . . . λc0λkλc′
0
. . . λs′+1 = h0(〈Y0, {y1} . . . , {yi}, . . . , {ys}, Ys+1〉r̄

)
.

For each of those inner template nodes λi′ , we have t0(λi′) = {y1, . . . , ys}. Let us assume
that t0(λ0) ⊆ Y0 such that the directions of increasing indices match.

Note that λc0 is ordered before λk because of how the ordering σ is defined. Our
algorithm may determine λc0 as the child in T 0 where (λ0, λc0 , λk, λs′+1) is T 0-ordered
(possibly λ0 = λc0). The tree Tk realizes λk with some inner node yj with j ∈ [s]. Our task is
to determine j without knowing Tk. Let λc1 , . . . , λcz

be the (possibly non-existent, possibly
containing λc′

0
) remaining children of λk in T 0. By the induction hypothesis, the subtrees

Tc0 , Tc1 , . . . , Tcz
are polynomial time computable.

The tree Tc0 realizes λc0 with some node yi−1 for i ∈ {2, . . . , s} where y0 ∈ Y0. Because
Tc0 is a subtree of Tk, this limits the possible realizations of yj to {yi, . . . , ys}. Let −→c0 be the
path (yi−1, yi, . . . , ys).

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:13

Consider the adjacency λc1λk. A simple case is that t0(λc1) = {λc1} ∈ S(G). Then in
the tree Tk the two realizing nodes λc1 and λk must be adjacent, and we define −→c1(λk) to
be the path λc1λk. Note that we define the path with a variable λk (as named to coincide
with the template node since it shares the same variability). For example −→c1(yj) is the path
contained in the tree Tk (which we aim to construct).

Otherwise, the node t0(λc1) is part of a chain with terminal Y ′s′+1 where t0(λk) ⊆ Y ′s′+1.
Now either λc1 is the other terminal of chain Y1, or it is the set of inner nodes I(Y1) and
hence realized as one of them. Thus the format of the chain is either
〈Y ′0 , {y1

c1
}, . . . , {ys1

c1
}, Y ′s′+1〉r̄ where t0(λc1) ⊆ Y ′0 , or

〈·, . . . , {yc1}, {y1
c1
}, . . . , {ys1

c1
}, Y ′s′+1〉r̄, where yc1 is the realization of λc1 in the tree Tc1 .

Let −→c1(λk) be the path (λc1 , y
1
c1
, . . . , ys1

c1
, λk), similarly as before with variable λk. For example

−→c1(yj) is the path contained in the unknown tree Tk. We define the paths −→c2(λk), . . . ,−→cz (λk)
for the other children analogously. Clearly, the same observations apply.

We define the tree T (λk) similarly. Namely, T (λk) is the tree containing the subtrees
Tc0 , Tc1 , . . . , Tcz together with paths −→c1(λk), . . . ,−→cz (λk) and path yi−1, yi, . . . , ys. Then Tk is
the subtree of T (yj) rooted at yj . Thus it remains to determine yj without knowing Tk.

For that purpose, consider the tree T (yi), the tree with the most conservative realization
of λk. Applying the rehang operation yields R[yi, yj]T (yi) = T (yj). Assume that node yk of
all the nodes of Tk has the smallest distance to the global root r̄ (the general case is handled
by a slight modification to T (yi), see full version). Then, since T ′sub is normalized and because
of locality, we have 〈yj〉 = Φ(T ′sub, yj) = Φ(ρ[yi]T ′sub, yj) = Φ(ρ[yi]T (yj), yj) = Φ(T (yj), yj).

Then by the linearity of the potential we have that Φ(T (yi), yi) = 〈yi, . . . , yj〉. This is
how we algorithmically determine yj , assuming a yes-instance. Thus the desired tree Tk(yj)
is polynomial time computable given graph G, template (T 0, t0, h0) and r̄. If our algorithm
observes that Φ(T (yi), yi) = ∅ at some point, it contradicts the existence of a normalized
representation T ′sub, and our algorithm returns no. J

Now we outline our FPT algorithm for the parameter t = |V (T)|. We assume without
loss of generality that G is a chordal graph and T 6= K1 as the problem is trivial otherwise.
Note that chordality can be tested in linear time [23]. If G is not connected, each proper
interval graph component always be represented using a subdivision of an edge incident to
a leaf of T . Thus, these components, which can be recognized in linear time [10, 11], can
be excluded from the further consideration. Each of the remaining components is not a
proper interval graph and, as such, contains a vertex whose model includes a branching
node of T . Thus, if these components number more than the number of branching nodes,
G has no T -representation. Assume that this is not the case. We guess an assignment of
the connected components of G to connected subtrees of T representing them. Two such
subtrees may share an edge (which can be needed to represent both components of G using
the end-nodes of this shared edge). Note that are at most 2O(t log t) possible mappings, and
then we can deal with every component of G and the corresponding subtree of T separately.
From now on, we assume that G is connected. By Theorem 7, we may look for a compact
representation Tsub; further, it suffices that Tsub is minimal. Therefore, there is a template
(T 0, t0, h0) that allows a representation of G as seen in Lemma 16. We compute the chains
of G and try every template in time 2O(t2 log t) · n3 where n = |V (G)|, as seen in Lemma 17.
Pick an arbitrary root-ordering r̄. Then test in polynomial time whether a minimal compact
representation of G realizing this template by using Lemma 23. In a positive case, applying
Theorem 7 leads to a proper representation. This implies our main result (restated here).

I Theorem 1. There is an algorithm that, given an n-vertex graph G and a tree T with t
nodes, decides whether G is a proper T -graph, and if yes, outputs a proper T -representation,
in 2O(t2 log t) · n3 time.

IPEC 2020

8:14 Recognizing Proper Tree-Graphs

5 Concluding Remarks and Open Problems

Our recognition algorithm for proper tree-graphs provides the following side result on proper
leafage (introduced by Lin et al. [21] analogously to leafage): The proper leafage `? of a
chordal graph G is the minimum number of leaf nodes of all trees T that properly represent
G. The side result, as in Corollary 24, is that computing the proper leafage is FPT. For the
decision version, if G is not a proper interval graph, we simply guess the host tree Tsub of
minimal leafage and verify properness with our algorithm from Theorem 1. Of course, it still
remains open whether computing proper leafage is NP-hard.

I Corollary 24. Computing the proper leafage `? of a chordal graph G is FPT w.r.t. `?.

While we have shown that proper T -graph recognition is FPT, it remains open whether
non-proper T -graph recognition is FPT. Perhaps most importantly, gaps remain concerning
the precise conditions under which (proper) H-graph recognition is NP-complete for fixed H.

References
1 Deniz Ağaoğlu and Petr Hliněný. Isomorphism problem for Sd-graphs, 2019. arXiv:1907.

01495.
2 Miklós Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. I. Interval graphs. Discrete

Mathematics, 100(1):267–279, 1992.
3 Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In

Graph Theory and Sparse Matrix Computation, pages 1–29, New York, NY, 1993. Springer
New York.

4 M. L. Brady and M. Sarrafzadeh. Stretching a knock-knee layout for multilayer wiring. IEEE
Transactions on Computers, 39(1):148–151, January 1990. doi:10.1109/12.46293.

5 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1999. doi:10.1137/1.9780898719796.

6 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9(3):205–212,
1974. doi:10.1016/0012-365X(74)90002-8.

7 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Kernel-
ization of graph hamiltonicity: Proper H-graphs. In Zachary Friggstad, Jörg-Rüdiger Sack,
and Mohammad R. Salavatipour, editors, WADS 2019, volume 11646 of LNCS, pages 296–310.
Springer, 2019. doi:10.1007/978-3-030-24766-9_22.

8 Steven Chaplick, Martin Toepfer, Jan Voborník, and Peter Zeman. On H-topological intersec-
tion graphs. In WG 2017, pages 167–179, 2017. doi:10.1007/978-3-319-68705-6_13.

9 Steven Chaplick and Peter Zeman. Combinatorial problems on H-graphs. In EUROCOMB’17,
volume 61 of ENDM, pages 223–229. Elsevier, 2017. doi:10.1016/j.endm.2017.06.042.

10 Derek G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs.
Discrete Applied Mathematics, 138(3):371–379, 2004. doi:10.1016/j.dam.2003.07.001.

11 Xiaotie Deng, Pavol Hell, and Jing Huang. Linear-time representation algorithms for proper
circular-arc graphs and proper interval graphs. SIAM Journal on Computing, 25(2):390–403,
1996. doi:10.1137/S0097539792269095.

12 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. Algorithmica, 2020. doi:10.1007/s00453-020-00692-9.

13 Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their clique
graphs. In WG 1995, volume 1017 of LNCS, pages 358–371. Springer, 1995. doi:10.1007/
3-540-60618-1_88.

14 Fǎnicǎ Gavril. The intersection graphs of subtrees of trees are exactly the chordal graphs.
Journal of Combinatorial Theory Series B, 16:47–56, 1974.

http://arxiv.org/abs/1907.01495
http://arxiv.org/abs/1907.01495
https://doi.org/10.1109/12.46293
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1016/0012-365X(74)90002-8
https://doi.org/10.1007/978-3-030-24766-9_22
https://doi.org/10.1007/978-3-319-68705-6_13
https://doi.org/10.1016/j.endm.2017.06.042
https://doi.org/10.1016/j.dam.2003.07.001
https://doi.org/10.1137/S0097539792269095
https://doi.org/10.1007/s00453-020-00692-9
https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1007/3-540-60618-1_88

S. Chaplick, P. A. Golovach, T. A. Hartmann, and D. Knop 8:15

15 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57 of Annals
of Discrete Mathematics. Elsevier Science B.V., Amsterdam, second edition, 2004. With a
foreword by Claude Berge.

16 M. L. Huson and A. Sen. Broadcast scheduling algorithms for radio networks. In Military
Communications Conference, 1995. MILCOM ’95, Conference Record, IEEE, volume 2, pages
647–651 vol.2, November 1995. doi:10.1109/MILCOM.1995.483546.

17 Lars Jaffke, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. Mim-width III.
graph powers and generalized distance domination problems. Theoretical Computer Science,
796:216–236, 2019. doi:10.1016/j.tcs.2019.09.012.

18 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. the feedback vertex set problem.
Algorithmica, 82(1):118–145, 2020. doi:10.1007/s00453-019-00607-3.

19 Deborah Joseph, Joao Meidanis, and Prasoon Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In Otto Nurmi and Esko
Ukkonen, editors, SWAT ’92, volume 621 of LNCS, pages 326–337. Springer, 1992. doi:
10.1007/3-540-55706-7_29.

20 Pavel Klavík, Jan Kratochvíl, Yota Otachi, and Toshiki Saitoh. Extending partial representa-
tions of subclasses of chordal graphs. Theoretical Computer Science, 576:85–101, 2015.

21 In-Jen Lin, Terry A. McKee, and Douglas B. West. The leafage of a chordal graph. Discuss.
Math. Graph Theory, 18(1):23–48, 1998. doi:10.7151/dmgt.1061.

22 Fred S Roberts. Graph theory and its applications to problems of society. SIAM, 1978.
23 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex

elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976. doi:10.1137/
0205021.

24 F. W. Sinden. Topology of thin film rc circuits. Bell System Technical Journal, 45(9):1639–1662,
1966. doi:10.1002/j.1538-7305.1966.tb01713.x.

25 James R. Walter. Representations of chordal graphs as subtrees of a tree. Journal of Graph
Theory, 2(3):265–267, 1978. doi:10.1002/jgt.3190020311.

IPEC 2020

https://doi.org/10.1109/MILCOM.1995.483546
https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1007/3-540-55706-7_29
https://doi.org/10.1007/3-540-55706-7_29
https://doi.org/10.7151/dmgt.1061
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0205021
https://doi.org/10.1002/j.1538-7305.1966.tb01713.x
https://doi.org/10.1002/jgt.3190020311

	Introduction
	Preliminaries
	Compact Representations of Proper T-Graphs
	Finding a Compact Representation
	Surrounded Nodes
	Chains: Paths in any Representation
	Template: Fixing the Topology of Chains
	Normalized Representation: Achieving Properness

	Concluding Remarks and Open Problems

