
Component Order Connectivity in Directed
Graphs
Jørgen Bang-Jensen
University of Southern Denmark, Odense, Denmark
jbj@imada.sdu.dk

Eduard Eiben
Royal Holloway, University of London, UK
eduard.eiben@rhul.ac.uk

Gregory Gutin
Royal Holloway, University of London, UK
g.gutin@rhul.ac.uk

Magnus Wahlström
Royal Holloway, University of London, UK
Magnus.Wahlstrom@rhul.ac.uk

Anders Yeo
University of Southern Denmark, Odense, Denmark
andersyeo@gmail.com

Abstract
A directed graph D is semicomplete if for every pair x, y of vertices of D, there is at least one
arc between x and y. Thus, a tournament is a semicomplete digraph. In the Directed Component
Order Connectivity (DCOC) problem, given a digraph D = (V, A) and a pair of natural numbers
k and `, we are to decide whether there is a subset X of V of size k such that the largest strong
connectivity component in D −X has at most ` vertices. Note that DCOC reduces to the Directed
Feedback Vertex Set problem for ` = 1. We study parameterized complexity of DCOC for general and
semicomplete digraphs with the following parameters: k, `, ` + k and n− `. In particular, we prove
that DCOC with parameter k on semicomplete digraphs can be solved in time O∗(216k) but not in
time O∗(2o(k)) unless the Exponential Time Hypothesis (ETH) fails. The upper bound O∗(216k)
implies the upper bound O∗(216(n−`)) for the parameter n− `. We complement the latter by showing
that there is no algorithm of time complexity O∗(2o(n−`)) unless ETH fails. Finally, we improve
(in dependency on `) the upper bound of Göke, Marx and Mnich (2019) for the time complexity of
DCOC with parameter ` + k on general digraphs from O∗(2O(k` log(k`))) to O∗(2O(k log(k`))). Note
that Drange, Dregi and van ’t Hof (2016) proved that even for the undirected version of DCOC
on split graphs there is no algorithm of running time O∗(2o(k log `)) unless ETH fails and it is a
long-standing problem to decide whether Directed Feedback Vertex Set admits an algorithm of time
complexity O∗(2o(k log k)).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized Algorithms, component order connectivity, directed graphs,
semicomplete digraphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.2

Funding Jørgen Bang-Jensen: Research supported by the Independent Research Fund Denmark
under grant number DFF 7014-00037B.
Gregory Gutin: Research supported by the Leverhulme Trust under grant number RPG-2018-161.

© Jørgen Bang-Jensen, Eduard Eiben, Gregory Gutin, Magnus Wahlström, and Anders Yeo;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 2; pp. 2:1–2:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360869009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5783-7125
mailto:jbj@imada.sdu.dk
mailto:eduard.eiben@rhul.ac.uk
mailto:g.gutin@rhul.ac.uk
mailto:Magnus.Wahlstrom@rhul.ac.uk
mailto:andersyeo@gmail.com
https://doi.org/10.4230/LIPIcs.IPEC.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Component Order Connectivity in Directed Graphs

1 Introduction

Motivated by various practical network applications, many different vulnerability measures
of undirected graphs have been introduced and studied in the literature. The two most
studied of such measures are vertex and edge connectivity of an undirected graph. However,
these two measures often do not capture the more subtle vulnerability properties of networks
that one might wish to consider, such as the number of vertices in the largest remaining
connected component.

While both undirected and directed graphs are of great interest in graph theory, algorithms
and applications, undirected graphs have been studied much more than their directed
counterparts arguably due to simpler structure of undirected graphs. In this paper, we study
a number of parameterizations of a problem of interest from both theory and applications
which was mainly studied for undirected graphs so far.

In many networks, the underlying graph is directed rather than undirected and the
aim of this paper is to study an extension to directed graphs of the `-component order
connectivity of an undirected graph G, which is the size of a minimum set X ⊆ V (G) such
that mco(G−X) ≤ `, where mco(G−X) is the number of vertices in the largest connected
component of G−X (mco stands for maximum component order). By Component Order
Connectivity we will denote the following decision problem:

component order connectivity
Input: A graph G = (V,E) and a pair `, k ∈ N of natural numbers
Question: Is there a subset X of V of size k such that mco(G−X) ≤ ` ?

For a survey on Component Order Connectivity, see Gross et al. [13]; for more
recent research on the problem, see e.g. [11, 15, 16].

For a directed graph D, we define the `-component order connectivity as the size
of a minimum set X ⊆ V (D) such that mco(D − X) ≤ `, where mco(D − X) is the
number of vertices in the largest strongly connected component of D − X. Using this
definition of mco(D−X), we can state the following directed version of Component Order
Connectivity.

directed component order connectivity
Input: A digraph D = (V,A) and a pair `, k ∈ N of natural numbers
Question: Is there a subset X of V of size k such that mco(D −X) ≤ ` ?

In what follows, we will assume without loss of generality that k + ` < n = |V | (or,
k < n− `). Indeed, if k+ ` ≥ n then our instance is a YES-instance since deleting any set X
of k vertices implies mco(D −X) ≤ `.

Clearly, Directed Component Order Connectivity is a generalization of Compon-
ent Order Connectivity (each instance (G, `, k) of Component Order Connectivity
corresponds to an equivalent instance (D, `, k) of Directed Component Order Connecti-
vity, where D is obtained from G by replacing every edge of G by a directed 2-cycle). For
` = 1, while Component Order Connectivity is equivalent to the Vertex Cover
problem, Directed Component Order Connectivity is equivalent to the Directed
Feedback Vertex Set problem. Unlike Vertex Cover whose fixed-parameter tractabil-
ity is very easy to show, a fact that was known very early on in parameterized algorithmics
[9], fixed-parameter tractability of Directed Feedback Vertex Set was a long-standing
open problem until Chen et al. [7] in 2008 proved its fixed-parameter tractability by designing
a 4kk!nO(1)-time algorithm. (We provide basics on parameterized algorithms and complexity
in the next section.)

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:3

Since Component Order Connectivity is NP-complete (it remains NP-complete even
for split, co-bipartite and chordal undirected graphs [11]), a number of researchers studied
Component Order Connectivity using the framework of parameterized algorithmics,
see e.g. [11, 15, 16]. Göke, Marx and Mnich [12] were the first to study the Directed Com-
ponent Order Connectivity problem from the viewpoint of parameterized algorithms
and complexity. They obtained an algorithm of running time 4k(k`+ k + `)!nO(1), which is
close to the complexity of the algorithm of Chen et al. [7] when ` = 1. Thus, Directed
Component Order Connectivity parameterized by k + ` is fixed-parameter tractable
(FPT).

We will continue the study of Directed Component Order Connectivity using
parameterized algorithms and complexity. In particular, as in papers [11, 15, 16] which
studied Component Order Connectivity, we study Directed Component Order
Connectivity parameterized by three parameters: `, k and ` + k. We will denote the
corresponding parameterized problems by Directed Component Order Connectivi-
ty[`], Directed Component Order Connectivity[k] and Directed Component
Order Connectivity[`+ k], respectively.

Moreover, we introduce and study a new parameterization of Directed Component
Order Connectivity: parameter n − `, where n is the number of vertices in D. One
reason to introduce Directed Component Order Connectivity[n− `] is that normally
one requires the parameters to be relatively small compaired to the size of the problem
under consideration. However, if k is small it is possible that for every X ⊆ V (D) of size k,
mco(D −X) is not much smaller than n− k. Then n− ` can be much smaller than `.

Since Component Order Connectivity is equivalent to the Vertex Cover problem
for ` = 1, Component Order Connectivity[`] is para-NP-complete. Drange et al. [11,
Theorem 8] proved that Component Order Connectivity[k] is W[1]-hard even on split
graphs. In their construction, n−` = O(k2). Hence, Component Order Connectivity[n−
`] is also W[1]-hard. They also showed that Component Order Connectivity[`+ k] is
FPT by obtaining an algorithm of running time 2O(k log `)n. The above mentioned results are
written in the undirected graphs row of Table 1.

A directed graph D is semicomplete if for every pair x, y of distinct vertices of D, there
is an arc between x and y. When we require that there is only one arc between x and y

then we obtain a definition of a tournament. Clearly, the hardness results for the directed
graphs row of Table 1 follow from the corresponding results in the undirected graphs row
for columns n− ` and k. Directed Component Order Connectivity[`] is para-NP-
complete for semicomplete digraphs as Directed Component Order Connectivity on
semicomplete digraphs is NP-complete for ` = 1. This follows from the fact that Directed
Feedback Vertex Set is NP-complete even for tournaments, as proved by Bang-Jensen
and Thomassen [3] and Speckenmeyer [18].

The FPT result in the directed graphs row of Table 1 is first obtained by Göke et
al. [12] as discussed above. The running time of their algorithm is 4k(k`+ k + `)!nO(1) =
2O(k` log(k`))nO(1). By modifying their algorithm, we obtained an algorithm of complexity
2O(k)`kk!nO(1) = 2O(k log(k`))nO(1), which decreases asymptotic dependence of the running
time on `.1 Our modification consists of replacing a branching algorithm in [12] with a
randomized algorithm which can be derandomized without increasing the complexity upper
bound. Note that Drange et al. [11, Theorem 14] proved that even for Component Order

1 The same result was also obtained in [17]. We obtained this result independently and our approach is
different from that in [17].

IPEC 2020

2:4 Component Order Connectivity in Directed Graphs

Connectivity on split graphs there is no algorithm of running time O∗(2o(k log `)) (here we
assume that ` = O(kO(1))) unless the Exponential Time Hypothesis (ETH) [14] fails and it
is a long-standing problem to decide whether Directed Feedback Vertex Set admits
an algorithm of time complexity O∗(2o(k log k)).

Table 1 Parameterized Complexity of (Directed) Component Order Connectivity.

class of graphs n− ` k ` ` + k

semicomplete digraphs FPT FPT para-NP-c. FPT
undirected graphs W[1]-hard W[1]-hard para-NP-c. FPT
directed graphs W[1]-hard W[1]-hard para-NP-c. FPT

The most interesting entry in the semicomplete digraphs row is a non-trivial result that
Directed Component Order Connectivity[k] on semicomplete digraphs is FPT. This
FPT algorithm boils down to finding a shortest path in a suitably defined auxiliary weighted
acyclic digraph. The running time of the algorithm is O(216kkn2). The other two FPT entries
in this row follow from this result (for the parameter n − ` this is due to our assumption
that k < n − `). We also prove the following lower bounds: no algorithm for Directed
Component Order Connectivity[k] on semicomplete digraphs can have time complexity
2o(k)nO(1) unless ETH fails2 and no such deterministic algorithm can run in time o(n2).

Our paper is organised as follows. The next section is devoted to terminology and notation
on directed and undirected graphs, and basics on parameterized algorithms and complexity.
In Section 3, we describe our improvement on the algorithm of Göke et al. [12]. In Section 4,
we prove that Directed Component Order Connectivity[k] on semicomplete digraphs
admits an algorithm of running time O∗(216k) and show the lower bounds on running time
with parameters k and n− `. We conclude the paper in Section 5.

2 Preliminaries

2.1 Directed and Undirected Graph Terminology and Notation
In this paper, all directed and undirected graphs are finite, without loops or parallel edges.
As often the case in the directed graph theory, an edge of a digraph will be called an arc and
the vertex and arc sets of a digraph D will be denoted by V (D) and A(D), respectively. The
out-neighbourhood and in-neighbourhood of a vertex x of a digraph D are denoted by
N+

D (x) = {y ∈ V (D) : xy ∈ A(D)} and N−D (x) = {y ∈ V (D) : yx ∈ A(D)}, respectively,
and the subscript D will be omitted if D is clear from the context. The out-degree and
in-degree of a vertex x of D is d+

D(x) = |N+
D (x)| and d−D(x) = |N−D (x)|, respectively.

In this paper all paths and cycles in digraphs are directed, so we will omit the adjective
“directed” when referring to paths and cycles in digraphs. If D = (V,A) is a digraph and
S ⊆ V , then we denote by D[S] the subdigraph induced by the vertices in S. A digraph D
is strongly connected (or, just strong) if there is a path from x to y for every ordered
pair x, y of distinct vertices. A strong component of a digraph D is a maximal strong
induced subgraph of D. Strong components of D do not share vertices and can be ordered
D1, D2, . . . , Dp such that there is no arc in D from V (Dj) to V (Di) when j > i. Such an

2 Similarly, no algorithm for Directed Component Order Connectivity[n − `] on semicomplete
digraphs can have running time 2o(n−`)nO(1), unless ETH fails.

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:5

ordering is called an acyclic ordering. Note that if D is a semicomplete digraph, then
the strong components of D have a unique acyclic ordering D1, D2, . . . , Dp and we have
xy ∈ A(D) for every x ∈ V (Di), y ∈ V (Dj), i < j.

Basic digraph terminology not introduced in this section can be found in [1, 2].

2.2 Parameterized Complexity

An instance of a parameterized problem Π is a pair (I, k) where I is the main part and k
is the parameter; the latter is usually a non-negative integer. A parameterized problem
is fixed-parameter tractable (FPT) if there exists a computable function f such that
instances (I, k) can be solved in time O(f(k)|I|c) where |I| denotes the size of I and c is an
absolute constant. The class of all fixed-parameter tractable decision problems is called FPT
and algorithms which run in the time specified above are called FPT algorithms. As in other
literature on FPT algorithms, we will sometimes omit the polynomial factor in O(f(k)|I|c)
and write O∗(f(k)) instead.

While FPT is a parameterized complexity analog of P in classic complexity, there are
many hardness classes in parameterized complexity and they form a nested sequence starting
from W[1]. It is well known that if the Exponential Time Hypothesis holds then FPT6=W[1].
Due to this and other complexity results, it is widely believed that FPT 6=W[1] and hence
W[1] is viewed as a parameterized analog of NP in classical complexity.

para-NP is the class of parameterized problems which can be solved by a nondeterministic
algorithm in time O(f(k)|I|c), where f is a computable function and c is an absolute constant.
It is well-known that if a problem Π with parameter κ is NP-hard when κ equals to some
constant, then Π is para-NP-hard. It is also well known that FPT=para-NP if and only if
P=NP.

For more information on parameterized algorithms and complexity, see recent books [8, 10].

3 Directed Component Order Connectivity[` + k] on General
Digraphs

Göke, Marx and Mnich [12] showed that Directed Component Order Connectivi-
ty[`+ k] is FPT with a running time given as

4k(k`+ k + `)!nO(1) = 2O(k` log(k`))nO(1).

The core of their algorithm is as follows. Begin with the iterative compression version
of the problem, where in addition to (D, `, k) the input also contains a solution X0 with
|X0| = k+ 1, which can be used to guide the search for a smaller solution. This is a standard
ingredient in FPT algorithms; see, e.g., [8]. At the cost of a simple branching step, we may
also assume that we are looking for a solution X with X ∩X0 = ∅. Next, they observe that if
we knew the strongly connected components of D −X that the vertices of X0 are contained
in, then the problem reduces to a previously studied, simpler problem known as Skew
Separator [7], which occurs in the design of the FPT algorithm for Directed Feedback
Vertex Set (DFVS) of Chen et al. [7]. Indeed, if the precise strong components containing
the vertices of X0 are known, then the problem can be solved in time O∗(4kk!) using a
strategy much like that for DFVS [7, 12]. Hence the bottleneck in Directed Component
Order Connectivity[`+ k] is the guessing of the strong components of X0 in D −X.

IPEC 2020

2:6 Component Order Connectivity in Directed Graphs

Göke et al. [12] solve this via a branching algorithm that they analyse as taking time at
most (k` + k + `)!. We show a simpler randomized method solving this problem with an
improved time bound of(

`(k + 1) + k

k

)
≤ (e(`+ 1 + `/k))k≤ (3e`)k = 2O(k) · `k. (1)

The method can be derandomized by standard means.

I Lemma 1. Let (D, `, k) be an instance of Directed Component Order Connectivi-
ty[`+ k], and let X0 be a solution with |X0| = k + 1. Let X be an unknown solution with
|X| ≤ k such that X ∩X0 = ∅. There is a randomized procedure that with success probability
at least(

(`+ k)O(1)
(
`k + `+ k

k

))−1

computes a set S ⊂ V (D) such that for every x ∈ X0, the strong components containing x in
D −X and in D[S] are identical.

Proof. Initialize S = X0, then for every vertex v ∈ V (D) \X0 place v in S independently
at random with probability p = 1− 1/(`+ 1). We declare a guess a success if the following
conditions apply:
1. For every x ∈ X0 we have Vx ⊆ S, where Vx ⊆ V is the strong component of D − X

containing x
2. X ∩ S = ∅

Let Y =
⋃

x∈X0
Vx. Our guess is successful if and only if v ∈ S for every v ∈ Y , and v /∈ S

for every v ∈ X. Since these are independent events, this clearly happens with probability
precisely

p|Y |(1− p)|X| ≥ p`(k+1)(1− p)k,

hence the worst case occurs when all sets Vx are disjoint and have |Vx| = `, and |X| = k, i.e.,
|Y | = `(k + 1) and |X| = k. Let S0 = X ∪ Y . We bound the probability of success carefully
in two steps:
1. We estimate the probability that |S ∩ S0| = |Y |, without caring about the precise

intersection (i.e., success in this stage includes cases where X ∩ S 6= ∅).
2. We estimate the probability of success, conditional on the previous event.
Note |S0| = `(k + 1) + k by assumption.

For the first step, note that the expected number of vertices of S0 not in S is

(1− p)|S0| = (1/(`+ 1))(`k + `+ k) = k + `

`+ 1 .

Also note that in a successful guess, this value is precisely k. Hence the expected value differs
from the intended value by less than 1. Since |S ∩ S0| is a binomial distribution, due to the
guesses being independent, this clearly happens with probability at least inverse polynomial
in k + `.

Subject to this event, the set S0 \ S is uniformly distributed among all subsets of S0 of
size k by independence, hence the conditional probability of success is one in

(
`k+`+k

k

)
. We

conclude that the success probability matches the bound in the lemma.

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:7

Finally, assume that the guess was successful for some set S and consider the strong
component of x in D[S] for some x ∈ X0. Let V ′x be this strong component. Since D[Vx] is
strongly connected and Vx ⊆ S, we have Vx ⊆ V ′x. On the other hand, by assumption D[S]
is an induced subgraph of D−X, and since Vx is a strongly connected component in D−X
we must have V ′x ⊆ Vx. We conclude Vx = V ′x for each x ∈ X0, as required. J

For the derandomization, we employ a cover-free family construction of Bshouty and
Gabizon [4]. We get the following:

I Lemma 2. There is a deterministic procedure that produces a set F ⊆ 2V with

|F| =
(
`k + `+ k

k

)1+o(1)
log |V |

in time O(|F|n), such that there is a set S ∈ F such that for every x ∈ X0, the strong
components containing x in D −X and in D[S] are identical.

Proof. Let r ≤ s < n be integers. Bshouty and Gabizon (in a slightly non-standard definition)
define an (n, (r, s))-cover free family as a set F ⊆ {0, 1}n such that for every disjoint pair
of sets A,B ⊆ [n] with |A| = r and |B| = s there is a set S ∈ F such that A ⊆ S and
B ∩ S = ∅. Bshouty and Gabizon [4] show how to compute an (n, (r, s))-cover free family F
of size

|F| =
(
r + s

r

)1+o(1)
logn

in time O(|F|n).
By Lemma 1, it suffices to construct a cover-free family with parameters n = |V (D)|,

r = `(k + 1) and s = k. Here r > s, but we can simply compute an (n, (s, r))-cover free
family and take the complement of every member. Hence we get a family of size(

`k + `+ k

k

)1+o(1)
logn

computed in output-linear time. J

The two lemmas of this section and (1) imply the following:

I Theorem 3. There is a randomized FPT algorithm that solves Directed Component
Order Connectivity[` + k] in time 2O(k)`kk!nO(1) with probability at least Ω(1). The
algorithm can be derandomized in the same time, up to a lower-order overhead factor.

4 Directed Component Order Connectivity on Semicomplete
Digraphs

Let us first summarize the main ideas behind our FPT algorithm, before providing more
technical details. Let D = (V,A) be a semicomplete digraph, k, ` ∈ N and let X ⊆ V of size
k such that mco(D−X) ≤ `. The vertices of D−X can be partitioned into C1, . . . , Cq such
that each Ci is the vertex set of a strong component of D −X and
1. for every i ∈ [q] is |Ci| ≤ `, and
2. for every i, j ∈ [q] with i < j and every x ∈ Ci, y ∈ Cj we have xy ∈ A and yx /∈ A.

IPEC 2020

2:8 Component Order Connectivity in Directed Graphs

X1

C1

X2

C2

Xi

Ci

Xi+1

Ci+1

Xq

CqYi Zi

Figure 1 An example of a valid triple (Yi, Zi, Si). A semicomplete digraph D, the set X =⋃
i∈[q] Xi is such that mco(D − X) = 3 and C1, . . . , Cq are strong components of D − X. Yi =

C′1 ∪C′2 ∪ · · · ∪C′i and Zi = C′i+1 ∪C′i+2 ∪ · · · ∪C′q, where C′i = Ci ∪Xi, i ∈ [q]. The arcs uv, u ∈ C′i,
v ∈ C′j for i < j are omitted as well as the arcs within X between Xt and Ct, t ∈ [q]. The set Si is
the set of the three red vertices, one in each of Xi, Xi+1, and Xq, is a minimal vertex cover of the
red arcs from Zi to Yi. Note that the vertex in X1 is not in Si as the arc incident to it with the
tail in Zi is already covered by Si. Note also the blue vertex in Xi, the only reason it is in X is to
reduce the size of Ci and as such it will not appear in any Sj , j ∈ [q], in the set of q valid triples
defining these components.

In our algorithm, we would like to discover the strong components one by one in the ascending
order from C1 to Cq. Now let X1, . . . , Xq be a partition of X into q (possibly empty) parts
and let, for each i ∈ [q], Yi = C ′1 ∪ C ′2 ∪ · · · ∪ C ′i and Zi = C ′i+1 ∪ C ′i+2 ∪ · · · ∪ C ′q, where
C ′i = Ci ∪ Xi, i ∈ [q]. Moreover, let Si be a subset of X such that for each y ∈ Yi \ Si

and z ∈ Zi \ Si we have yz ∈ A and zy /∈ A. See also Figure 1. Note that, given Si, it
suffice to solve our problem in subgraphs D[Yi \ Si] and D[Zi \ Si] separately. Moreover,
the set (Yi+1 \ Yi) \ (Si+1 ∪ Si) is basically the strong component Ci+1 up to few vertices
in Xi+1 that are not incident to any arc with tail in Zi+1 \ Si+1 or head in Yi \ Si. Such
vertices can actually be replaced in X by any vertex in Ci+1. It follows, that if we are given
(Y1, Z1, S1), . . . , (Yq, Zq, Sq), then we can easily reconstruct a solution of size |X| as

⋃
i∈[q] Si

plus some arbitrary vertices of (Yi+1 \ Yi) \ (Si+1 ∪ Si) to have at most ` vertices in each
strong component of D −X.

Therefore, our goal will be to search for triples (Yi, Zi, Si), i ∈ [q], where {Yi, Zi} is
a partition of V and Si is a minimal subset of X such that there is no arc zy in A with
z ∈ Zi \ Si and y ∈ Yi \ Si. The first step of our proof is to show that there are at most
28k+2n triples we need to consider (Lemma 7). We will call these important triples valid
and we postpone the precise definition for later. The main reason for the bound is that
we only need to consider triples (Yi, Zi, Si) for which |Si| ≤ k and that if we fix |Yi| (and
hence also |Zi|), then vertices with out-degree at least |Zi| + |Si| + 1 (resp. in-degree at
least |Yi| + |Si| + 1) have to be in Yi (resp. in Zi) or in Si and we can fix these vertices
in Yi (resp. in Zi). Once we bound the number of the triples we need to consider, we can
define compatible pairs of triples

(
(Y 1, Z1, S1), (Y 2, Z2, S2)

)
, for which Y 1 ⊂ Y 2 and these

triples, loosely speaking can define a strong component of D −X with at most ` vertices
as (Y 2 \ Y 1) \ (S1 ∪ S2) and the arcs from Z2 to Y1 are all hit by a vertex in S1 ∩ S2. This
allows us to create an auxiliary acyclic “state” digraph whose vertices are valid triples and
arcs are the compatible pairs of triples. The paths from (∅, V, ∅) to (V, ∅, ∅) in this graph
then define a solution for (D, `, k). Note that our algorithm can be equivalently seen as a
dynamic programming which computes for each valid triple (Y, Z, S) a minimum size set X
such that mco(D[Y]− (X ∪ S)) ≤ `.

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:9

The following lemma allows us to show that if we fix |Y | in a triple (Y, Z, S), then only
O(k) vertices of D could potentially be in both Y and Z and all other vertices are fixed.
The lemma is an easy consequence of the fact that every semicomplete digraph on at least
2p+ 2, p ∈ N, vertices has a vertex of out-degree at least p+ 1. We give the proof here for
the convenience of the reader.

I Lemma 4. Let D = (V,A) be a semicomplete digraph and let Y, Z be a partition of V such
that for every y ∈ Y and every z ∈ Z, we have yz ∈ A. Then for every p ∈ N (1) there are
at most 2p+ 1 vertices in Y with d+

D(y) ≤ |Z|+ p and (2) there are at most 2p+ 1 vertices
in Z with d−D(z) ≤ |Y |+ p.

Proof. We will first prove Part (1). Let Y≤ be the set of vertices in Y with out-degree at
most |Z|+ p in D. Since for every y ∈ Y and every z ∈ Z, we have yz ∈ A, it follows that
all vertices in Y≤ have out-degree at most p in D[Y≤]. Hence

∑
y∈Y≤

d+
D[Y≤](y), i.e., the sum

of out-degrees of vertices in Y≤ in D[Y≤], is at most p|Y≤|. Hence,∑
y∈Y≤

d+
D[Y≤](y) = |A(D[Y≤])| ≤ p|Y≤|.

Since D is a semicomplete digraph,

|Y≤| · (|Y≤| − 1)
2 ≤ |A(D[Y≤])| ≤ p|Y≤|.

It follows that |Y≤| ≤ 2p+ 1. Part (2) follows directly from Part (1) applied to a digraph
D′ = (V,A′) obtained from D by reversing all the arcs i.e. A′ = {yx | xy ∈ A}. J

Let D = (V,A) be a semicomplete digraph and t ∈ [n]. We will call a triple (Y,Z, S)
t-valid if
1. Y, Z is a partition of V (D) with |Y | = t,
2. S ⊆ V (D) is a minimal (w.r.t. inclusion) set such that for all y ∈ Y and z ∈ Z, if

zy ∈ A(D), then |{y, z} ∩ S| ≥ 1,
3. |S| ≤ k,
4. for all x ∈ S, if d+

D(x) > n− t+ k, then x ∈ Y ,
5. for all x ∈ S, if d−D(x) > t+ k, then x ∈ Z.

We will say a triple (Y, Z, S) is valid, if it is t-valid for some t ∈ N. The following simple
observation will help us bound the number of partitions (Y, Z) that could lead to a t-valid
triple (Y,Z, S).

I Lemma 5. For any t-valid triple (Y,Z, S), all vertices v with d+
D(v) > n− t+ k are in Y

and all vertices v with d−D(v) > t+ k are in Z.

Proof. If v ∈ S, the lemma follows directly from the definition of a t-valid triple. If
v ∈ V (D) \ S and d+

D(v) > n − t + k, then v has an out-neighbour in Y \ S, because
|Z ∪ S| ≤ n − t + k, and v ∈ Y follows by property 2. Similarly, if v ∈ V (D) \ S and
d−D(v) > t+ k, then v has an in-neighbour in Z \ S and v ∈ Z by property 2. J

I Lemma 6. Let D = (V,A) be a semicomplete digraph, n = |V |, and let t ∈ [n]. If there
exists a t-valid triple, then there are at most 7k+ 2 vertices v in V (D) with d+

D(v) ≤ n− t+k

and d−D(v) ≤ t+ k.

IPEC 2020

2:10 Component Order Connectivity in Directed Graphs

Proof. Let us assume that there is at least one t-valid triple and let us denote it (Y, Z, S).
Note that for all y ∈ Y \S and z ∈ Z \S it holds that zy /∈ A(D). Since D is a semicomplete
digraph, it follows that yz ∈ A(D). Due to Lemma 4 applied to D − S, there are at most
2(k+ |Z ∩S|) + 1 vertices in Y \S with d+

D−S(y) ≤ |Z \S|+k+ |Z ∩S| = n− t+k and there
are at most 2(k+ |Y ∩S|) + 1 vertices in Z \S with d−D−S(z) ≤ |Y \S|+ k+ |Y ∩S| = t+ k.
Let F = {v ∈ V (D) : d+

D(v) ≤ n− t+ k and d−D(v) ≤ t+ k}. By the above,

|F \ S| ≤ 2(k + |Z ∩ S|) + 1 + 2(k + |Y ∩ S|) + 1
≤ 4k + 2 + 2|S| ≤ 6k + 2.

Thus, |F | ≤ 7k + 2. J

I Lemma 7. Let D = (V,A) be a semicomplete digraph, n = |V |, and let t ∈ [n]. There are
at most 28k+2 t-valid triples (Y, Z, S). Moreover, if we are given the in- and out-degrees of
all vertices in D on the input, then we can enumerate all such triples in time O(28kkn).

Proof. Let F = {v ∈ V (D) : d+
D(v) ≤ n − t + k and d−D(v) ≤ t + k}. By Lemma 6,

|F | ≤ 7k + 2. If the out- and in-degrees of all vertices in D are given on the input, we can
construct the set F in time O(n). By Lemma 5, there are at most 27k+2 possible partitions
(Y ′, Z ′) that could lead to a t-valid triple (Y ′, Z ′, S′) for some S′, each such partition is
uniquely determinate by fixing Y ′ ∩ F .

For the rest of the proof, we assume that we computed the set F of vertices v in V (D)
with d+

D(v) ≤ n − t + k and d−D(v) ≤ t + k, |F | ≤ 7k + 2. Let (Y ′, Z ′) be one of 27k+2

partitions that could lead to a t-valid triple. We show that we can enumerate all minimal
sets S′, |S′| ≤ k, such that for all y ∈ Y ′ and z ∈ Z ′, if zy ∈ A(D), then |{y, z} ∩ S′| ≥ 1.
Let G be an undirected bipartite graph such that V (G) = V (D), the partite sets of G are Y ′
and Z ′, and for every y ∈ Y ′, z ∈ Z ′, it holds yz ∈ V (G) if and only if zy ∈ A(D). Then
S′ is a minimal vertex cover in G. Moreover, every minimal vertex cover S′ in G leads to
a t-valid triple (Y ′, Z ′, S′). It is well known and easy to show that we can enumerate all
minimal vertex covers of size at most k in G in time O(2kk2 + kn). This is done by including
all vertices with degree at least k + 1 in every vertex coverand removing every vertex they
cover. If the resulting graph has more than k2 edges, then there is no vertex cover of size at
most k [5]. Then we can enumerate all vertex covers, by using simple search-tree algorithm
that picks an edge, say uv, and recursively enumerate all minimal vertex covers of size at
most k − 1 that include u or v, respectively. Given the algorithm, it is also easy to see that
there are at most 2k distinct minimal vertex covers of size at most k.

It follows that there are at most 27k+2 · 2k = 28k+2 t-valid triples and we can enumerate
all of them in time O(n+ 28kk2 + kn) = O(28kkn). J

We are now ready to present our algorithm.

I Theorem 8. There is an FPT algorithm that solves Directed Component Order
Connectivity[k] on semicomplete digraphs in time O(216kkn2).

Proof. Let D = (V,A) be a semicomplete digraph and let (D, `, k) be an instance of
Directed Component Order Connectivity[k].

Algorithm. Our algorithm boils down to finding a shortest path in an auxiliary weighted
acyclic digraph whose vertex set consists of all the valid triples. The main idea is to find a
sequence of valid triples (Y1, Z1, S1), . . . , (Yq, Zq, Sq) such that S =

⋃
i∈[q] Si is a solution for

(D, `, k) and the strongly connected components of D−S are subsets of Ci = Yi+1 \ (Yi ∪S),
where |Ci| ≤ ` and for all i < j, xi ∈ Ci, xj ∈ Cj it holds that xjxi /∈ A.

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:11

We define the weighted directed acyclic state graph D = (V,A) as follows. The set of
vertices V is the set of all t-valid triples for all t ∈ {0, 1, . . . , n}. The set of arcs A contains
an arc from a t1-valid triple (Y1, Z1, S1) to a t2-valid triple (Y2, Z2, S2) if and only if the
following conditions holds:

Y1 ⊂ Y2 (and Z2 ⊆ Z1),
if x ∈ S1 ∩ Z1 and x ∈ Z2, then x ∈ S2,
if x ∈ Y1 \ S1, then x ∈ Y2 \ S2, and
|S1 \ S2|+ max(0, |Z1 ∩ Y2 \ (S1 ∪ S2)| − `) ≤ k.
We let the weight of an arc from (Y1, Z1, S1) to (Y2, Z2, S2) be

|S1 \ S2|+ max(0, |Z1 ∩ Y2 \ (S1 ∪ S2)| − `).

This finishes the description of the auxiliary weighted acyclic digraph. In the remainder of
the proof we first show that (D, `, k) is a YES-instance if and only if the cost of the shortest
path in D from (∅, V (D), ∅) to (V (D), ∅, ∅) is at most k. Afterwards, we bound |V| + |A|
by O(216kn2) and prove that we can construct the auxiliary digraph in O(216kkn2) time.
We can then find a shortest path from (∅, V (D), ∅) to (V (D), ∅, ∅) in linear time, that is, in
time O(216kn2) since D is acyclic (by dynamic programming using an acyclic ordering of the
vertices), which finishes the proof.

Correctness of the Algorithm. Suppose first that (D, `, k) is a YES-instance of Directed
Component Order Connectivity[k] such that D is a semicomplete digraph. Let X be a
minimum size solution for (D, `, k), that is, a minimum size set such that mco(D −X) ≤ `.
Since (D, `, k) is YES-instance, |X| ≤ k and mco(D−X) ≤ `, the vertices of D−X can be
partitioned in sets C1, . . . , Cq such that
1. for every i ∈ [q] is |Ci| ≤ `, and
2. for every i, j ∈ [q] with i < j and every x ∈ Ci, y ∈ Cj we have xy ∈ A and yx /∈ A.

Our goal is to define a sequence of valid triples (Yi, Zi, Si), i ∈ [q], such that the arc
((Yi, Zi, Si), (Yi+1, Zi+1, Si+1)) is in A and the cost of the path in D defined by this sequence is
|X|. We will construct these triples from X and C1, . . . , Cq with some additional restrictions
that makes it easier to show that they indeed define a path in D of cost at most |X|. Namely,
we will define them such that for all i, j ∈ [q], i < j the triples satisfy the following properties:
1. (Yi, Zi, Si) is ti-valid for some ti ∈ [n],
2. C1 ∪ · · · ∪ Ci ⊆ Yi,
3. Ci+1 ∪ · · · ∪ Cq ⊆ Zi,
4. Si ⊆ X,
5. Yi ⊂ Yj and Zj ⊆ Zi,
6. if x ∈ Si ∩ Zi and x ∈ Zj , then x ∈ Sj ,
7. if x ∈ Yi \ Si, then x ∈ Yj \ Sj .

It is straightforward to verify that, given the above properties, the arc

((Yi, Zi, Si), (Yi+1, Zi+1, Si+1)) ∈ A.

We first show that a sequence with the above properties indeed exists and defer the compu-
tation of the cost of the path defined by this sequence to later.

To obtain this sequence, we need to discuss how to distribute the vertices of X in the sets
Yi’s and Zi’s and how to compute Si, Sj (Note that the partition of the vertices in V \X is
fixed by properties 2 and 3).

IPEC 2020

2:12 Component Order Connectivity in Directed Graphs

To distribute the vertices of X between Yi and Zi, we put all x ∈ X with d+
D(x) ≥ n−ti+k

in Yi and all x ∈ X with d−D(x) ≥ ti +k in Zi. The remaining vertices in X we can distribute
arbitrarily, we only have to make sure that for all i, j ∈ [q], i < j, it holds that Yi ⊂ Yj and
Zj ⊆ Zi. Now |X| ≤ k and for all y ∈ Yi \X = C1∪ · · ·∪Ci and z ∈ Zi \X = Ci+1∪ · · ·∪Cq

we have zy /∈ A(D). The set Si is defined to be those vertices x ∈ X such that one of the
following holds:
1. x ∈ Yi and there exists z ∈ Zi \X such that zx ∈ A(D),
2. x ∈ Zi and there is an arc xy ∈ A(D), y ∈ Yi such that y /∈ Si.

Note that all arcs from Zi to Yi are covered by Si and for each x ∈ X there is an arc zy
from Zi to Yi with {y, z} ∩X = {x}. Note that if x ∈ Yi \ Si, then x ∈ Yj \ Sj for all j > i.
On the other hand, if x ∈ Zi ∩ Si, then there is y ∈ Yi \ Si such that xy ∈ A(D). Moreover,
for all j > i, y ∈ Yj \Sj . Therefore, if x ∈ Zj , then x ∈ Sj . From the above two properties it
follows that if x ∈ Si \ Sj , then x /∈ Sj+1 ∪ · · · ∪ Sq. This finishes the proof of the existence
of a sequence of valid triples (Y1, Z1, S1), . . . , (Yq, Zq, Sq) with properties 1-7.

We claim that the cost of path following this sequence is |X| ≤ k. First note that if
x ∈ Si \ Si+1, then x ∈ Yi+1 and for all j ≥ i+ 1 it holds x /∈ Sj , hence every vertex in X is
counted in at most one of the sets Si \ Si+1. Now the set Ci is precisely (Zi−1 ∩ Yi) \X. If
x ∈ Zi−1 ∩ Yi ∩X is in some set Sj , then from the properties 5, 6 and 7 of the sequence of
triples it follows that x is in Si−1 ∪Si. Hence |(Zi−1 ∩Yi) \ (Si−1 ∪Si)| − |Ci| is precisely the
number of vertices in X that are in Zi−1 ∩ Yi and in none of the sets Sj , j ∈ [q]. Note that
for such vertex x ∈ (Zi−1 ∩ Yi) \

⋃
j∈[q] Sj and a vertex y ∈ Yj \ Sj , for some j ∈ [q] with

j < i, it holds xy /∈ A(D) (else by definition of a valid triple |{x, y} ∩ Sj | ≥ 1). Similarly for
z ∈ Zj \ Sj , j > i, zx /∈ A(D). Hence, if |Ci| < `, then X \ {x} would be a smaller solution
for the instance (D, `, k) and because of minimality of X, (|Zi−1 ∩ Yi \ (Si−1 ∪ Si)| − `) is
precisely the number of vertices in X that are in Zi−1 ∩ Yi and in none of the sets Sj . It
follows that each vertex in X is counted on precisely one arc on the path and the shortest
path from (∅, V (D), ∅) to (V (D), ∅, ∅) in D = (V,A) has length precisely |X|.

For the other direction, let some shortest path in D from (∅, V (D), ∅) to (V (D), ∅, ∅) be
defined by the sequence (Yi, Zi, Si), i ∈ {0, . . . , q}, and assume that the cost of the path is at
most k. For every i ∈ [q], let Ti be an arbitrary set consisting of (|(Zi−1∩Yi)\(Si−1∪Si)|−`)
vertices from (Zi−1 ∩ Yi) \ (Si−1 ∪ Si) and let X =

⋃
i∈[q](Ti ∪ Si). Because the pair

((Yi−1, Zi−1, Si−1), (Yi, Zi, Si)) is an arc in D for every i ∈ [q], we have Yi−1 ⊆ Yi and Zi ⊆
Zi−1. Moreover, (Yi−1, Zi−1, Si−1) and (Yi, Zi, Si)) are ti−1-valid and ti-valid triples, for some
ti−1, ti ∈ [n], respectively. Therefore, there is no arc from Zj \X to Yi \X for any i ≤ j ∈ [q].
It follows that each strongly connected component of D −X is a subset of (Zi−1 ∩ Yi) \X
for some i ∈ [q]. In particular note that (Zi−1 ∩ Yi) ∩X = (Zi−1 ∩ Yi) ∩ (Si−1 ∪ Si ∪ Ti),
(Si−1 ∪ Si) ∩ Ti = ∅ and Ti ⊆ (Zi−1 ∩ Yi). Hence the size of each connected component is at
most maxi∈[q] |(Zi−1 ∩ Yi) \ (Si−1 ∪ Si ∪ Ti)| = maxi∈[q] | ((Zi−1 ∩ Yi) \ (Si−1 ∪ Si)) \ Ti| =
maxi∈[q](| ((Zi−1 ∩ Yi) \ (Si−1 ∪ Si)) | − |Ti|) ≤ `. Since S0 = Sq = ∅, every vertex that
appears in Si for some i ∈ [q] is counted in some |Sj \ Sj+1|, where j ≥ i and every vertex
that appears in Ti for some i ∈ [q] is counted in max(0, |Zi ∩ Yi+1 \ (Si ∪ Si+1)| − `) and the
final set X has at most k vertices.

Construction of the Auxiliary Weighted Digraph. Note that by Lemma 7, |V| ≤ 28k+2n

and, since we can compute the out- and in-degrees of all vertices in D in time O(n2), we
can enumerate all vertices in D in time O(28kkn2). It follows that |A| ≤ |V|2 ≤ 216k+4n2

and |V| + |A| = O(216kn2). It remains to show that for a pair of triples (Y1, Z1, S1) and

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:13

(Y2, Z2, S2), we can check whether ((Y1, Z1, S1), (Y2, Z2, S2)) is an arc and compute its weight
in O(k) amortized time. First note that if |Y1| ≥ |Y2|, then the arc is not there. We will
only check if ((Y1, Z1, S1), (Y2, Z2, S2)) is an arc if |Y1| < |Y2|. This can be done without
computing the sizes of Y1 and Y2, respectively, if we enumerate the t-valid triples in D
in levels in the order increasing t (i.e., we invoke Lemma 7 for t only after we added all
t′-valid triples, for all t′ < t, to V.) and compute all in-neighbours of a vertex when it
is added to V. Moreover, when adding the triple (Y,Z, S) in V, we will in O(n) time
compute maps α(Y,Z,S) : V (D)→ {0, 1} such that α(Y,Z,S)(x) = 0 if and only if x ∈ Y and
β(Y,Z,S) : V (D)→ {0, 1} such that β(Y,Z,S)(x) = 0 if and only if x ∈ S. We also compute the
set ∆Y,Z = {x | x ∈ V (D), d+

D(x) ≤ |Z|+k, d−D(x) ≤ |Y |+k}. By Lemma 6, |∆Y,Z | ≤ 7k+ 2.
Now we can describe the O(k) algorithm that determines whether ((Y1, Z1, S1), (Y2, Z2, S2))
is an arc.

First, for every x ∈ S1 we can in constant time check that x ∈ S1∩Z1 (i.e., α(Y1,Z1,S1)(x) =
1 and β(Y1,Z1,S1)(x) = 0) and x ∈ Z2 (α(Y2,Z2,S2)(x) = 1) implies x ∈ S2 (β(Y2,Z2,S2) = 0).
Similarly we can check in constant time that if x ∈ Y1, then x ∈ Y2 \ S2.

Second, by Lemma 5 and since |Y1| < |Y2| and |Z1| > |Z2|, we get that to check that Y1 ⊂
Y2 and Z2 ⊆ Z1, we only need to check for every x ∈ ∆Y1,Z1 ∪∆Y2,Z2 that α(Y1,Z1,S1)(y) = 0
implies α(Y2,Z2,S2)(x) = 0. This check can done in O(|∆Y1,Z1 ∪∆Y2,Z2 |) = O(k) time. Finally,
to compute the weight of the arc, we note that |Z1 ∩ Y2| is precisely |Y2| − |Y1|, because
Y1 ⊂ Y2 and Z1 = V (D) \ Y1, so we only need to check how many of the vertices in S1 ∪ S2
are in Z1 ∩ Y2 and how many of the vertices in S1 are also in S2. Moreover, we only need
to compute |(Z1 ∩ Y2) \ (S1 ∪ S2)| − ` if ` < |Y2| − |Y1| ≤ `+ 2k. Else either the weight of
the arc is precisely |S1 \ S2| or it would be more than k and hence it is not an arc. Hence,
we end up spending O(k + logn) time on the computation of the weight of each of at most
O(216kkn) many arcs (for which ` < |Y2| − |Y1| ≤ ` + 2k) and O(k) on all of at most
O(216kn2) remaining arcs. Since k ≤ n, we can construct D in O(216kkn2) time. J

In the rest of the section, we will show that the dependency on both k and n cannot be
significantly improved. More precisely, we will show an unconditional lower-bound of Ω(n2)
even if k = 0, as we show that we need to read at least Ω(n2) arcs of the input instance
in the worst case to distinguish between k = 0 and k = 1. Furthermore, we show that any
2o(k)nO(1) algorithm would imply that Exponential Time Hypothesis fails.

I Theorem 9. There is no deterministic sequential algorithm that outputs the correct answer
for every instance (D, `, 0) of Directed Component Order Connectivity when D is a
tournament in o(n2) time.

Proof. For i ∈ N, let Hi be an arbitrary but fixed strongly connected tournament on i

vertices. If n
2 ≤ ` < n, then let us consider the graph D obtained by taking disjoint

union of Hbn
2 c and Hdn

2 e and orienting arcs between Hbn
2 c and Hdn

2 e from Hbn
2 c to Hdn

2 e.
Clearly, mco(D) = dn

2 e ≤ ` and (D, `, 0) is YES-instance of Directed Component Order
Connectivity. Note there are bn

2 c · d
n
2 e = Θ(n2) arcs between Hbn

2 c and Hdn
2 e. Now

let A be a deterministic sequential algorithm that solves Directed Component Order
Connectivity[k] in o(n2) time if k = 0. If we run A on D, then there is an arc from Hbn

2 c
to Hdn

2 e that A did not read. Let this arc be xy and let D′ be a graph obtained from D by
replacing the arc xy by the arc yx. It follows that D′ is strongly connected and hence (D′, `, 0)
is NO-instance of Directed Component Order Connectivity. However, because the
algorithm A decided that (D, `, 0) is YES-instance without considering the orientation of
the arc between x and y on the instance (D, `, 0) and the only difference between (D, `, 0)
and (D′, `, 0) is the orientation of the arc between x and y, it follows that A outputs that

IPEC 2020

2:14 Component Order Connectivity in Directed Graphs

(D′, `, 0) is YES-instance, which contradicts the assumption that A outputs correct answer
for every instance (D, `, 0) of Directed Component Order Connectivity such that D
is a tournament.

If ` < n
2 , the proof is very similar to the above, the only difference is the construction

of the digraph D. To construct D we first take the disjoint union of q = bn
` c copies of

H`, denoted H1
` , . . . ,H

q
` , and one copy of Hn−q`. We add the arc xy to D if x ∈ Hi

`

and y ∈ Hj
` such that 1 ≤ i < j ≤ q or if x ∈ Hi

`, i ∈ [q], and y ∈ Hn−q`. It follows
that D is a tournament and mco(D) = `, that is (D, `, 0) is a YES-instance. Now let
Y =

⋃
i∈[b q

2 c]
V (Hi

`) and Z = V (D) \ Y . It is easy to see that n
4 ≤ |Y | ≤

n
2 and there are

Θ(n2) arcs from Y to Z in D. Moreover if yz ∈ A(D) is an arc such that y ∈ Y and z ∈ Z,
then Dyz = (V (D), (A(D) \ {yz}) ∪ {zy}) contains a strongly connected components of size
at least 2` that includes all vertices in V (Hb

q
2 c

`)∪V (Hb
q
2 c+1

`). The proof follows by analogous
arguments to the case n− ` < `, as for any algorithm A that solves (D, `, k) in o(n2), there
is an arc yz such that A outputs incorrectly that (Dyz, `, k) is YES-instance. J

Finally, we will present our O∗(2o(k)) lower bound result, based on the well-established
Exponential Time Hypothesis (ETH).

Our result uses the fact that the classical Vertex Cover problem cannot be solved in
subexponential time under ETH.

I Theorem 10 (Cai and Juedes [6]). There is no 2o(k) · |V (G)|O(1) algorithm for Vertex
Cover, unless ETH fails.

Given the above result by Cai and Juedes, the lower bound then directly follows from
the proof of NP-hardness of Directed Feedback Vertex Set by Speckenmeyer [18]. In
fact, given a graph G, Speckenmeyer constructs in O(|V (G)|2) time a tournament T with
3|V (G)| − 2 vertices such that for every k the graph G has a vertex cover of size at most k if
and only if T has a directed feedback vertex set of size at most k (see Theorem 6 in [18]).
Hence, we obtain the following:

I Theorem 11. There is no algorithm solving Directed Component Order Connecti-
vity[k] on tournaments in time 2o(k)nO(1), unless ETH fails.

In Theorem 8 we saw that there is an FPT algorithm for Directed Component Order
Connectivity[n− `] that runs in O∗(216(n−`)) time, as we may assume that k ≤ n− `. By
the construction explained before Theorem 11 we can replace k by n− ` in 2o(k) in Theorem
11 and thus obtain a matching lower bound for the upper bound O∗(216(n−`)).

I Theorem 12. There is no 2o(n−`)nO(1)-time algorithm for solving Directed Component
Order Connectivity[n− `] on semicomplete digraphs, unless ETH fails.

5 Conclusions

Since Directed Component Order Connectivity generalizes Directed Feedback
Vertex Set, it would likely be hard to improve our upper bound and obtain a tight lower
bound for the time complexity of Directed Component Order Connectivity[`+ k]
on general digraphs. It seems easier to improve our upper and lower bounds on the time
complexity of Directed Component Order Connectivity[k] on semicomplete digraphs.

J. Bang-Jensen, E. Eiben, G. Gutin, M. Wahlström, and A. Yeo 2:15

It would be interesting to consider the time complexity of the problem on well-studied
generalizations of semicomplete digraphs: (i) semicomplete multipartite digraphs which are
digraphs that can be obtained from complete multipartite graphs by replacing every edge by
an arc with the same end-vertices or a pair of opposite arcs with the same end-vertices, (ii)
quasi-transitive digraphs which are digraphs in which if xy and yz are arcs such that x, y, z
are distinct vertices then either xz or zx or both are arcs, too (in particular, a transitive
digraph is quasi-transitive), (iii) locally semicomplete digraphs which are digraphs in which
the out- and in-neighborhood of every vertex induce semicomplete digraphs (a directed cycle
is an example of a locally semicomplete digraph). Chapters 7, 8 and 5 of [2], respectively,
provide extensive surveys on these classes of digraphs.

References
1 J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag,

London, 2nd edition, 2009.
2 J. Bang-Jensen and G.Z. Gutin, editors. Classes of Directed Graphs. Springer Monographs in

Mathematics. Springer, 2018.
3 J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path problem for

semicomplete digraphs. SIAM J. Discrete Math., 5(3):366–376, 1992. doi:10.1137/0405027.
4 N.H. Bshouty and A. Gabizon. Almost optimal cover-free families. In Dimitris Fotakis, Aris

Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity - 10th International
Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of
Lecture Notes in Computer Science, pages 140–151, 2017.

5 Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993.

6 Liming Cai and David Juedes. On the existence of subexponential parameterized algorithms.
J. Comput. System Sci., 67(4):789–807, 2003.

7 J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the
directed feedback vertex set problem. J. Assoc. Comput. Mach., 55(5):21:1–21:19, 2008.

8 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

9 R.G. Downey and M.R. Fellows. Parameterized Complexity. Monographs in Computer Science.
Springer, 1999. doi:10.1007/978-1-4612-0515-9.

10 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013.
11 P.G. Drange, M.S. Dregi, and P. van ’t Hof. On the computational complexity of vertex

integrity and component order connectivity. Algorithmica, 76(4):1181–1202, 2016.
12 A. Göke, D. Marx, and M. Mnich. Parameterized algorithms for generalizations of dir-

ected feedback vertex set. In P. Heggernes, editor, Algorithms and Complexity. CIAC
2019, volume 11485 of Lecture Notes in Computer Science. Springer, Cham, 2019. doi:
10.1007/978-3-030-17402-6_21.

13 D. Gross, M. Heinig, L. Iswara, L. W. Kazmierczak, K. Luttrell, J. T. Saccoman, and C. Suffel.
A survey of component order connectivity models of graph theoretic networks. WSEAS
Transactions on Mathematics, 12:895–910, 2013.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. System Sci., 63(4):512–530, 2001. Special issue on FOCS
98 (Palo Alto, CA).

15 M. Kumar and D. Lokshtanov. A 2lk kernel for l-component order connectivity. In J. Guo and
D. Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation,
IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 20:1–20:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

16 E. Lee. Partitioning a graph into small pieces with applications to path transversal. Math.
Program., 177(1-2):1–19, 2019.

IPEC 2020

https://doi.org/10.1137/0405027
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-030-17402-6_21
https://doi.org/10.1007/978-3-030-17402-6_21

2:16 Component Order Connectivity in Directed Graphs

17 Rian Neogi, M. S. Ramanujan, Saket Saurabh, and Roohani Sharma. On the parameterized
complexity of deletion to -free strong components. In Javier Esparza and Daniel Král’, editors,
45th International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 75:1–75:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.75.

18 E. Speckenmeyer. On feedback problems in digraphs. In M. Nagl, editor, Graph-Theoretic
Concepts in Computer Science, 15th International Workshop, WG ’89, 1989, Proceedings,
volume 411 of Lecture Notes in Computer Science, pages 218–231. Springer, 1989. doi:
10.1007/3-540-52292-1.

https://doi.org/10.4230/LIPIcs.MFCS.2020.75
https://doi.org/10.1007/3-540-52292-1
https://doi.org/10.1007/3-540-52292-1

	Introduction
	Preliminaries
	Directed and Undirected Graph Terminology and Notation
	Parameterized Complexity

	Directed Component Order Connectivity[l+k] on General Digraphs
	Directed Component Order Connectivity on Semicomplete Digraphs
	Conclusions

