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Abstract
Bulian and Dawar [Algorithmica, 2016] introduced the notion of elimination distance in an effort
to define new tractable parameterizations for graph problems and showed that deciding whether a
given graph has elimination distance at most k to any minor-closed class of graphs is fixed-parameter
tractable parameterized by k [Algorithmica, 2017].

In this paper, we consider the problem of computing the elimination distance of a given graph to
the class of cluster graphs and initiate the study of the parameterized complexity of a more general
version – that of obtaining a modulator to such graphs. That is, we study the (η,Clq)-Elimination
Deletion problem ((η,Clq)-ED Deletion) where, for a fixed η, one is given a graph G and k ∈ N
and the objective is to determine whether there is a set S ⊆ V (G) such that the graph G− S has
elimination distance at most η to the class of cluster graphs.

Our main result is a polynomial kernelization (parameterized by k) for this problem. As
components in the proof of our main result, we develop a kO(ηk+η2)nO(1)-time fixed-parameter
algorithm for (η,Clq)-ED Deletion and a polynomial-time factor-min{O(η · opt · log2 n), optO(1)}
approximation algorithm for the same problem.
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1 Introduction

A popular methodology for studying the parameterized complexity of problems is to consider
parameterization by distance from triviality [19]. In this methodology, the idea is to try and
lift the tractability of special cases of generally hard computational problems, to tractability
of instances that are “close” to these special cases (i.e., close to triviality) for appropriate
notions of “distance from triviality”. With some exceptions (see, for example, [13, 21]), this
approach typically has two components – (i) recognition algorithms that determine whether
the input is indeed close to triviality and possibly compute a (approximate) witness, and
(ii) solution algorithms that exploit the structure expressed by the witness in order to solve
computational problems. In graph problems, a standard measure of distance from triviality
is the size of a vertex modulator to a specific graph class, i.e., a set of vertices whose deletion
results in a graph belonging to a specific graph class. This way of parameterizing graph
problems has led to a rich collection of sophisticated algorithmic and lower bound machinery
over the last two decades. Of particular interest to us in this work are two specific strands of
research that fall under this framework.
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1:2 On the Parameterized Complexity of Clique Elimination Distance

In one strand, the goal is to enhance existing notions of distance from triviality by
exploiting some form of structure underlying vertex modulators rather than just the size
bound. This line of exploration has led to the development of several new notions of distance
from triviality [11, 5, 6, 17, 16, 10]. Of special interest to us in this line of research is the
notion of elimination distance introduced in [5]. Bulian and Dawar [5] introduced the notion
of elimination distance in an effort to define tractable parameterizations that are more
general than the modulator size for graph problems. We refer the reader to Section 2 for a
formal definition of this parameter. In their work, they focused on the Graph Isomorphism
(GI) problem and showed that GI is fixed-parameter tractable (FPT) when parameterized
by the elimination distance to graphs of bounded degree. In follow-up work, Bulian and
Dawar [6] showed that deciding whether a given graph has elimination distance at most k
to any minor-closed class of graphs is fixed-parameter tractable parameterized by k (i.e.,
can be solved in time f(k)nO(1)). The second strand focuses on enhancing the set of “base
classes” that capture the notion of triviality and study algorithms that compute or use
small modulators to these classes. For instance, the computation and use of modulators into
various hereditary graph classes (see, e.g., [14, 18, 3, 15, 24] for a partial list relevant to this
paper) has been extensively explored.

In more recent years, efforts have been made to simultaneously build upon these two
strands by retaining the notion of small modulators as the measure of distance from triviality,
but enhancing the notion of triviality to include graphs that have bounded elimination to
a second, well-understood graph class. Hols et al. [20] recently presented a comprehensive
study of the classic Vertex Cover problem parameterized by the size of a smallest modulator
to graphs that have bounded elimination distance to specific hereditary graph classes. They
provided an elegant (partial) characterization of parameterizations that permit polynomial
kernelizations for Vertex Cover. However, their focus is on solution (utilising the modulator)
rather than recognition, and so they do not focus on computing the modulators.

In our current work, we draw from both strands of research described above and study the
parameterized complexity of the (η,Clq)-Elimination Deletion problem, where one is
given a graph G and k ∈ N with the objective of determining whether there is a set S ⊆ V (G)
such that the graph G− S has elimination distance at most η to the class of cluster graphs
(disjoint union of cliques). We call graphs with elimination distance at most η to the class of
cluster graphs, (η,Clq)-graphs. Our parameter is the size of the modulator k and we note
that even for k = 0 (i.e., deciding whether the given graph has elimination distance at most
η to cluster graphs), this problem is quite non-trivial and even an algorithm with running
time nf(η) is far from obvious. Indeed, Bulian and Dawar [6] ask about the possibility of
extending their approach to obtain a fixed-parameter algorithm for this very problem.

The following is the formal definition of our main problem.

Input: A graph G and an integer k.
Parameter: k.
Question: Is there a set S ⊆ V (G) of size at most k, such that G− S is an (η,Clq)-graph?

(η,Clq)-Elimination Deletion((η,Clq)-ED Deletion)

The central result of this paper is Theorem 1.

I Theorem 1. (η,Clq)-Elimination Deletion admits a kernelization algorithm running
in time ηO(η2) · nO(1), that outputs an equivalent instance with 2O(η) · kO(1) vertices, where n
is the number of vertices in the input graph.
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Theorem 1 is in fact a polynomial kernelization for (η,Clq)-ED Deletion as η is a
constant that is part of the problem description. We have explicitly stated the dependence
on η in all our results.

A simple corollary of Theorem 1 (obtained by setting k = 0) is an algorithm with running
time ηO(η2) · nO(1) that determines whether a given graph is an (η,Clq)-graph (equivalently,
we say that the Clq-elimination distance of the given graph is at most η). That is, it is
a fixed-parameter algorithm for recognising (η,Clq)-graphs parameterized by η. Towards
the proof of Theorem 1, we prove the following two results of independent interest. The
first of these results gives an approximation algorithm for (η,Clq)-ED Deletion. The
second result gives a moderately exponential-time fixed-parameter algorithm for (η,Clq)-ED
Deletion.

I Theorem 2. There is an algorithm that, given a graph G on n vertices, runs in time
ηO(η2) · nO(1) and outputs a set S ⊆ V (G) of size O(η · opt2 · log2 n), such that G − S has
Clq-elimination distance at most η.

I Theorem 3. (η,Clq)-Elimination Deletion can be solved in time (k+η)O(ηk+η2)nO(1).

An important consequence of Theorem 2 and Theorem 3 is a polynomial-time optO(1)-
approximation algorithm for (η,Clq)-ED Deletion. We remark that the moderately
exponential dependence on k in the running time of Theorem 3 is crucially used in obtaining
this approximation algorithm and hence, we avoid resorting to meta-theorems in the proof of
Theorem 3. This optO(1)-approximation algorithm for (η,Clq)-ED Deletion is the starting
point of our proof of Theorem 1. Such optO(1)-approximation algorithms play a crucial role
in bootstrapping kernelization algorithms (see, for example, [22, 2]). They also allow for
further consequences when studying kernelization of problems parameterized by the size of
the smallest modulator to (η,Clq)-graphs since we do not need to assume that the modulator
is given as part of the input. In the literature on such structural parameterizations, it is
generally assumed that the modulator is included in the input. Often, such an assumption
can be made without loss of generality because the modulator can be optO(1)-approximated
in polynomial time. However, there are situations where the assumption is necessary due
to the lack of such approximations. We refer the reader to [12] for a detailed discussion on
formalizing structural parameterizations.

Finally, as part of the proof of Theorem 3, we obtain a constant factor fixed-parameter
approximation algorithm for the problem of determining the Clq-elimination distance of a
given graph. Moreover, we show that by invoking a result of Czerwiński et al. [8], one can
speed up this algorithm at the cost of a worse approximation. The formal statement is given
below (we refer the reader to Section 2 for the definition of an (η,Clq)-decomposition).

I Theorem 4. There are algorithms A1, A2 such that, given a graph G and an integer η,
the following hold:
1. A1 runs in time 2O(η2) ·nO(1) and either correctly reports that the Clq-elimination distance

of G is more than η, or computes a (5η,Clq)-decomposition of G.
2. A2 runs in time 2O(η) ·nO(1) and either correctly reports that the Clq-elimination distance

of G is more than η, or computes an (O(η2 log3/2 η),Clq)-decomposition of G.

Related work

Recently, Lindermayr et al. [27] showed that computing elimination distance to bounded
degree graphs is fixed-parameter tractable when the input is planar. Bougeret et al. [2]
introduced a measure called bridge-depth and showed that a minor-closed family of graphs
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1:4 On the Parameterized Complexity of Clique Elimination Distance

F has bounded bridge-depth precisely when Vertex Cover admits a polynomial kernel
parameterized by the size of a modulator to F (subject to standard complexity theoretic
hypotheses). The notion of elimination distance [5] generalizes the notion of generalized
treedepth introduced by Bouland et al [4] in an effort to combine the treedepth and max-
leaf number parameters. Building on [5] and extending the approach of combining width
parameters (treedepth in the case of [5]) and modulator size, Ganian et al. [17] proposed a
measure of distance to triviality for CSP that depended on the treewidth of an appropriate
graph defined on backdoor sets (these can be thought of as a version of vertex modulators
appropriate for use in solving ILP and CSP instances). That is, they introduced a way
of combining treewidth and modulator size into a single parameter that is stronger than
elimination distance. More recently, Eiben et al. [10] continued the line of research into
combining modulators and width parameters by studying this parameter in the context of
graph problems, where triviality is expressed in terms of bounded rankwidth.

2 Preliminaries

We refer to the book of Diestel [9] for standard graph terminology. Whenever the context
is clear, we use n and m to denote the number of vertices and the number of edges in the
input graph, respectively. A vertex cover in G is a set S ⊆ V (G), such that G− S has no
edges. By vc(G) we denote the size of a minimum sized vertex cover in G. We say that a
set S ⊆ V (G) is a clique in G if for every distinct u, v ∈ S, we have {u, v} ∈ E(G). We let
Clq(G) denote the set of all cliques in G.

I Proposition 5 ([23, 28]). We can generate all maximal cliques of a graph with O(nω) time
delay, where ω is the exponent in the running time of matrix multiplication.1

The set C(G) denotes the set of connected components of G. Consider a graph G. For
sets X,Y ⊆ V (G), an X-Y separator in G is a set S ⊆ V (G), such that G− S has no x-y
path, where x ∈ X \ S and y ∈ Y \ S. By sepG(X,Y ) we denote the size of a minimum sized
X-Y separator in G. Our algorithm(s) will rely on existence of balanced separators, which is
defined next.

I Definition 6. For a graph H, a set Z ⊆ V (H) is a balanced separator of H, if the
connected components of H − Z can be partitioned into two sets, C1 and C2, such that
| ∪C∈C1 V (C)| ≤ 2|V (H)|/3 and | ∪C∈C2 V (C)| ≤ 2|V (H)|/3.

For a tree T and vertices u, v ∈ V (T ), we denote the unique path between u and v by
PthT (u, v). A rooted tree is a tree with a special vertex called the root of the tree. Consider
a rooted tree T with root r. A vertex t ∈ V (T ) \ {r} is a leaf of T if it is a vertex of degree
exactly one in T . Moreover, if V (T ) = {r}, then r is the leaf (as well as the root) of T . A
vertex which is not a leaf, is a non-leaf vertex. Consider a node t ∈ V (T ). We say that t′ is a
child of t, if {t, t′} ∈ E(T ) and t′ does not belong to the unique t− r path in T . Furthermore,
we say that t = parT (t′) is the parent of t′. A vertex t′ ∈ V (T ) (t′ can possibly be the same
as t) is a descendant of t, if in T − {parT (t)}, where parT (t) is the parent of t, there is a
t− t′ path. Note that when t = r, then T − {parT (t)} = T , as the parent of r does not exist.
(Every vertex in T is a descendant of r.) By descT (t), we denote the set of all descendants
of t in T . We drop the subscript T from parT (·) and descT (·), when the context is clear. A
rooted forest is a forest where each of its connected component is a rooted tree. The set of

1 The current best value of ω is less than 2.3727 [31].
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leaves of a rooted forest is the union of the sets of leaves of the trees in this forest. The set of
leaves in a rooted forest F is denoted by Lf(F ). The depth, denoted by depth(T ) of a rooted
tree T is the maximum number vertices in a root to leaf path in T . The depth, denoted by
depth(F ) of a rooted forest is the maximum over the depths of its rooted trees. We now
define the notion of tree decompositions.

I Definition 7. A tree decomposition of a graph G is a pair (T, β), where T is a tree rooted
at r and β : V (T )→ 2V (G) that satisfies the following properties:
1.

⋃
t∈V (T ) β(t) = V (G),

2. for every edge {u, v} ∈ E(G) there is a node t ∈ V (T ), such that u, v ∈ β(t), and
3. for every v ∈ V (G), the graph T [Xv] is a subtree of T , where Xv = {t ∈ V (T ) | v ∈ β(t)}.

For t ∈ V (T ), we call β(t) the bag of t. The sets in {β(t) | t ∈ V (T )} are called bags of
(T, β). We refer to the vertices in V (T ) as nodes, to distinguish it from the vertices of G. The
width of the tree decomposition (T, β) is maxt∈V (T ) |β(t)| − 1. The treewidth of G, denoted
by tw(G), is the minimum over the widths over all possible tree decompositions of G.

A tree decomposition (T, β) of a graph G is called a path decomposition if T is a path.
Moreover, pathwidth of G, denoted by pw(G), is the minimum over the widths over all
possible path decompositions of G. In the following we state some folklore properties about
bounded treewidth graphs, that will be useful later.

I Proposition 8 (Exercise 7.6 [7]). Consider a graph G, a tree decomposition (T, β) of G,
and a clique S ⊆ V (G) in G. Then, there is t ∈ V (T ), such that S ⊆ β(t).

I Proposition 9. For a graph G, the number of distinct cliques (not necessarily maximal)
in G is bounded by O(2tw(G) · n).

I Definition 10 ([25, 7]). For a graph H, a path decomposition P = (P = (p1, p2, · · · , pt), β :
V (P ) → 2V (H)) of H is a nice path decomposition if β(p1) = β(pt) = ∅, P is rooted at pt,
and every node pi, for i ∈ [t] \ {1, t} is of exactly one of the following types:
1. Insert Vertex Node. We have β(pi) = β(pi−1) ∪ {v}, for some v ∈ V (H) \ β(pi−1).
2. Forget Vertex Node. We have β(pi) = β(pi−1) \ {v}, for some v ∈ β(pi−1).

We now state a result regarding computation of a nice path decomposition of a graph,
which follows from Lemma 7.2 of [7] and Proposition 8.

I Proposition 11. Any graph H that admits a path decomposition of width at most p, also
admits a nice path decomposition of width at most p. Moreover, given a path decomposition
P = (P = (p1, p2, · · · , pt), β) of H of width at most p, one can compute a nice path
decomposition P ′ = (P ′ = (p′1, p′2, · · · , p′t′), β′) of H of width at most p in time O(p2 ·
max(|V (P )|, |V (H)|)), such that the root node, pt, is a forget node and for each i ∈ [t], there
is some j ∈ [t′], with β(pi) = β′(p′j).

I Definition 12 (Forest embedding). A forest embedding of a graph G is a pair (F, f), where
F is a rooted forest and f : V (G) → V (F ) is a bijective function, such that for each
{u, v} ∈ E(G), either f(u) is a descendant of f(v), or f(v) is a descendant of f(u). The
depth of the forest embedding (F, f) is the depth of the rooted forest F .2 The treedepth of G,
denoted by td(G), is the minimum over the depths over all possible forest embeddings of G.

2 Sometimes we slightly abuse the notation for simplicity, and say that, for every β ≥ α, (F, f) is a forest
embedding of depth β, where α is the depth of F .
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1:6 On the Parameterized Complexity of Clique Elimination Distance

I Definition 13 (Induced forest embedding). Let (F, f) be a forest embedding of G and let
W ⊆ V (G). Define the pair (F ′, f ′) as follows:

V (F ′) = V (F )∩f(W ) and f ′ : W → V (F ′) is defined as f |W , where f(W ) =
⋃
w∈W f(w).

For every u ∈ V (F ′), if no ancestor of u in F is in f(W ), then make u a root.
For every u, v ∈ V (F ′) such that u is an ancestor of v in the rooted forest F , we add
an edge between u and v (making v a child of u in F ′) if and only if W is disjoint from
f−1(X), where X is the set of internal vertices on the unique u-v path in F .

We say that (F ′, f ′) is the forest embedding induced by (F, f) on the set W .

In the following we state some known results regarding treedepth of a graph.

I Proposition 14 (see Excercise 7.54 [7]). For every graph G, tw(G) ≤ td(G).

The next observation states that for every clique S in G, and every forest embedding of
G, there is a root-to-leaf path in this forest embedding that contains all the vertices of S.

I Observation 15. Consider a graph G, a forest embedding f : V (G)→ V (F ) of G into the
rooted forest F , and a clique S ⊆ V (G) in G. Then, there is a rooted tree T ∈ C(F )3 with
root r and a leaf t ∈ V (T ), such that for each s ∈ S, we have f(s) ∈ V (PthT (r, t)).

Next, we recall the notion of elimination-distance introduced by Bulian and Dawar [5].
We rephrase their definition and introduce notation that will facilitate our presentation.

I Definition 16 (Elimination Distance and (η,H)-decompositions). Consider a family H of
graphs and an integer η ∈ N. An (η,H)-decomposition of a graph G is a tuple (X,Y, F, f :
X → V (F ), g : C(G[Y ]) → Lf(F ) ∪ {⊥}), where (X,Y ) is a partition of V (G) and F is a
rooted forest of depth η, such that the following conditions are satisfied:
1. (F, f) is a forest embedding of G[X],
2. each connected component of G[Y ] belongs to H, and
3. for a connected component C of G[Y ], a vertex v ∈ V (C), and an edge {u, v} ∈ E(G),

either u ∈ Y or f(u) is a vertex in the unique path in F from r to g(C), where r is the
root of the connected component in F containing the vertex g(C).4

We say that G admits an (η′,H)-decomposition if there is some η ≤ η′, for which there is
an (η,H)-decomposition of G. The elimination distance of G to H (or the H-elimination
distance of G) is the smallest integer η∗ for which G admits an (η∗,H)-decomposition.

Consider an (η,H)-decomposition D = (X,Y, F, f, g) of a graph G. We say that X is the
interior part of D and Y is the exterior part of D. For a leaf u ∈ Lf(F ), by P̂D

u we denote
the the path from u to r in the tree T , where T is the tree rooted at r in F , containing u.
Moreover, by PD

u , we denote the graph G[{f−1(w) | w ∈ V (P̂D
u )}]. For a connected component

C ∈ C(G[Y ]), by CD
ext we denote the graph G[V (C) ∪ {f−1(w) | w ∈ V (PthF (g(C), r))}],

where r is the root of the component of F containing g(C). (For the above notations we
drop the superscript D, when the context is clear.) The following observation directly follows
from the definition of CD

ext and item 3 of Definition 16.

I Observation 17. Consider a graph G with an (η,Clq)-decomposition D = (X,Y, F, f, g).
For every clique S in G the following holds: i) if S ∩ Y = ∅, then there is u ∈ Lf(F ), such
that S ⊆ V (Pu), otherwise, ii) S ∩ Y 6= ∅, and there is C ∈ C(G[Y ]), such that S ⊆ V (Cext).

3 Recall that C(F ) denotes the set of connected components of F ,
4 If g(C) = ⊥, then u must belong to Y .
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For a graph G and integer η, by optη(G), we denote the size of a minimum sized set
S ⊆ V (G), such that G− S admits an (η,Clq)-decomposition. We drop the argument G and
the subscript η, whenever the context is clear. For a set S ⊆ V (G), we say that S is solution,
if G− S has Clq-elimination distance at most η. Furthermore, we say that S is a t-solution
if |S| ≤ t.

3 Overview of our algorithms

In this section, we give high level summaries of the proofs behind our results. For all our
algorithms, we assume that the input graph is connected and not a clique.

3.1 Polynomial kernelization for (η,Clq)-ED Deletion (Theorem 1)
We first outline our polynomial kernelization assuming Theorem 2 and Theorem 3.

Our kernelization is heavily inspired by the work of Fomin et al. [14] and Giannopoulou
et al. [18]. Fomin et al. gave a polynomial kernelization for the η-Treewidth Deletion
problem (and more generally, for the Planar F-deletion problem). Their kernel has
size kf(η) and subsequently, Giannopoulou et al. [18] developed specialised reduction rules
that result in a kernel of size f(η) · k6 for the special case of η-Treedepth Deletion. In
both these kernelizations, the starting point is a constant-factor approximate modulator to
η-treewidth graphs (respectively, η-treedepth graphs). While an approximate η-treedepth
modulator can be obtained by repeatedly taking the vertex set of a sufficiently long path in
the graph into the modulator, such an approach will not help in our case and we rely on
Theorem 2 and Theorem 3 to obtain a polynomial-time optO(1)-approximation algorithm for
(η,Clq)-ED Deletion.

Indeed, suppose that n ≤ (k + η)d(ηk+η2) (d is the constant hidden in the O(·) notation
in Theorem 3). Then, Theorem 2 implies a optO(1)-approximation in polynomial time. On
the other hand, if n > (k + η)d(ηk+η2), then the algorithm of Theorem 3 runs in polynomial
time. This approximation algorithm is the starting point of our proof of Theorem 1.

We now describe the rest of our kernelization algorithm. Using Theorem 4, we obtain a
(5η + 1,Clq)-decomposition, D̃ = (X,Y, T, f, g), of G− S, where T is a rooted tree. The two
main objectives of the algorithm are to i) bound the size of a connected component of G[Y ]
by (k + η)O(1), and ii) bound the degree of a vertex in T (and also the number of connected
components of G[Y ] associated with a leaf in T via the function g) by 2O(η) · kO(1). Once we
achieve the above two, using the fact that T has bounded depth, we can obtain our kernel of
the desired size. Each of our reduction rules either decreases the number of non-edges in the
input, or deletes a vertex. Thus in total, our algorithm will apply at most n2 + n reduction
rules. We will next give an intuitive description of our reduction rules (and their workings).

Our first reduction rule helps us bound the size of a connected component of G[Y ], and
we briefly explain the working of this reduction rule, below. Consider a connected component
C of G[Y ], and let a = g(C). Furthermore, let Xa be the set of vertices from X, that are
mapped to the vertices in the path from a to the root of T . For each u ∈ Xa ∪ S, we mark
O(k + η) neighbors (and non-neighbors) of u in C. After this, our reduction rules remove
all unmarked vertices from C. The idea behind the correctness of the above reduction rule
is that if u has large neighborhood in C, then any solution S∗ to G can delete at most k
of these neighbors. Moreover, at most η of these neighbors of u can belong to the interior
part of the decomposition for G− S∗. Thus, if we mark O(k + η) neighbors of u in C, then
we will be able to preserve the information that some neighbors of u in C must belong to
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1:8 On the Parameterized Complexity of Clique Elimination Distance

the exterior part of the decomposition. Once we have the above property, we may add the
deleted vertex from C to the exterior of (η,Clq)-decomposition for the reduced instance, to
obtain such a decomposition for the original instance.

Towards designing our reduction rule for bounding the degree of vertices in T , we first
devise another reduction rule that, very roughly speaking, helps up ensure that for the
neighborhood of the (sub-)graph below a vertex a ∈ V (T ), in S, induces a clique. This
clique-neighborhood property helps us to avoid considering the exact set of neighborhood in S,
as the vertices from a clique must belong to a root to leaf path, in any (η,Clq)-decomposition.
To achieve the clique-neighborhood property, we add edges between non-adjacent pair of
vertices in S that have (k+η)Ω(1)-flow between them (the flow value is proportional to bound
on the size of a connected components in G[Y ]). On the other hand, for pairs of vertices
in S that do not have (k + η)Ω(1)-flow between them, we mark the vertices of a minimum
separator for these vertices contained in G− S. As the number of separator vertices thus
marked is bounded by (k + η)O(1), they do not contribute excessively to the degree of a
vertex in T . Fix a vertex a in T that has an unbounded number of children and let a1, . . . , a`
be the children of a in T . For i ∈ [`], let Gi be the graph G[Vi], where Vi contains all i)
v ∈ X, for which f(v) is a descendant of ai, and ii) all vertices of C ∈ C(G[Y ]), where g(C)
is a descendant of ai. A child ai of a is relevant, if Gi does not contain a marked separator
vertex. At this point, for a relevant child ai of a in T , N(V (Gi))∩S is a clique. Let Xa ⊆ X
be the set of vertices that are mapped to vertices in the path from a to the root of T . For
each B ⊆ Xa, we mark O(k + η) relevant children ai of a, for which N(V (Gi)) ∩Xa is B.
Also, for each s ∈ S, we mark O(k + η) relevant child ai of a, for which V (Gi) has s as a
neighbor (resp. non-neighbor). While marking relevant children in this way, we not only
consider their neighborhoods as described, but we also do the following: for every possible
η̂ ∈ [η]0, mark O(k+η) relevant children ai (satisfying the aforementioned constraints on their
neighborhood) that have elimination distance exactly η̂. Following this series of markings, if
a child ai of a is unmarked, then we delete all the vertices in V (Gi), from G. Since we have
preserved O(k+η) representatives for the neighborhood and the elimination distance, given a
solution Ŝ for G−V (Gi), and an (η,Clq)-decomposition for (G−V (Gi))−S, we will be able
to show that Gi can be appended in an identical fashion to one of preserved representatives,
thus giving an (η,Clq)-decomposition for G− S. Summing up, when no reduction rules are
applicable, we can bound the number of vertices in the graph by 2O(η) · kO(1).

3.2 FPT-algorithm for (η,Clq)-ED Deletion (Theorem 3)
We now give a summary of the proof of Theorem 3 assuming Theorem 4. The first ingredient
of our FPT algorithm is the well-known technique of iterative compression, introduced by
Reed, Smith, and Vetta [29]. Roughly speaking, using the above, we can reduce our goal to
solving a variant of (η,Clq)-Elimination Deletion, where we have a (k+ 1)-solution, call
it Z, for G, and the objective is to find a k-solution, S ⊆ V (G) \ Z for G. As Z is a solution
for G, G − Z admits an (η,Clq)-decomposition. We compute a (5η,Clq)-decomposition,
D = (X,Y, F, f, g), of G − Z using Theorem 4. Using this (5η,Clq)-decomposition D, we
compute a path decomposition P = (P, β : V (P )→ 2X∪Z) of G[X ∪Z]. We then compute a
“pathlike decomposition”, T of G, by attaching connected components of G[Y ] (which induce
cliques), as bags, to P. We remark that T may not be a tree-decomposition of G, as the
edges between vertices in Y and X∪Z may not be contained in any bag of T . We ensure that
each bag of P is attached to at most one connected component of G[Y ] (which is achieved
by repeating some bags of P , when necessary), and for any connected component C of G[Y ],
the neighborhood of C is contained in the bag of P , to which it is attached. We then execute
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a dynamic programming algorithm over this pathlike decomposition. Roughly speaking,
we define states only for bags that are present in P and only preserve polynomial-size
information regarding the cliques (from G[Y ]), attached to it. Remembering only polynomial
sized information regarding the attached cliques is possible due to the following two properties:
i) at most one connected component of G[Y ] is attached to a bag from P , which allows us to
use “vertex cover” like property to identify vertices that must go to the interior part of the
decomposition. ii) As vertices of the connected component C of G[Y ] induces a clique, the
vertices from C that go to the interior, must belong to one root to leaf path.

We will now intuitively discuss the states for our dynamic programming algorithm. Let
P = (p1, p2 · · · , p`), where p` is the root of P . For i ∈ [`], let Gi be the graph induced on
vertices that appear in β(pi′) and the clique attached to it (if any), for i′ ∈ {1, 2, · · · , i}.
Suppose that S is a solution for G, that we are looking for, and D′ = (X ′, Y ′, F ′, f ′ :
V (X ′) → V (F ′), g′ : C(G[Y ′]) → V (F ′) ∪ {⊥}) is an (η,Clq)-decomposition for G − S.1
For each i ∈ [`], we will maintain a guess for the partition, (X̂, Ŷ , Ŵ ) of β(pi), where
we want Ŵ = S ∩ β(pi), X̂ = X ′ ∩ β(pi), and Ŷ = Y ′ ∩ β(pi). We will also maintain
the information regarding the “structure” of (F ′, f ′, g′), when restricted to the vertices
in β(pi) − S. Although we cannot maintain the whole of F ′, we will maintain a tuple
F = (F̂ , f̂ : X̂ → F̂ , fill : V (F̂ ) → {cur, pbl, ump}, load : V (F̂ ) → [η]) that will give us the
following information. We would like F̂ to correspond to the “truncation” of F ′, when
restricted to: i) the vertices in F ′ to which vertices in X̂ are mapped, and ii) the vertices in
F ′ that are associated with connected components of Gi[Ŷ ] (via g′). In the above not only
we will preserve the mappings of X̂ and C(Gi[Ŷ ]), but will also maintain the paths of these
vertices to the root of the tree in F ′, containing them. As the depth of F ′ is at most η, it
will be enough to have at most O(η(k + η)) vertices in our guess F̂ . The function f̂ will
correspond to f ′ restricted to the vertices in X̂. Some vertices in F ′ are filled from above
(vertices in G− V (Gi)), and thus must remain unmapped (ump, for short), when restricted
to Gi. Thus, the vertices in F̂ (if any) of the above type, will be marked ump by the function
fill. The vertices of F ′ to which vertices in X̂ are mapped, will be assigned cur (short for
current) by fill, indicating that the these vertices are already used by the current bag β(pi),
under consideration. Finally, the remaining vertices in F̂ are free to be potentially used by
vertices that appear strictly below, and they are marked pbl (short for potential below) by fill.
The function load will indicate the depth of the sub-tree that may be to a vertex in F̂ . We
will now discuss the properties that we would like to maintain corresponding to the function
g′. We will maintain a tuple G = (ĝ : C(G[Ŷ ])→ V (F̂ )∪ {⊥}, ext : C(G[Ŷ ])→ {0, 1}), which
will give us the following information: the function ĝ correspond to the restriction of g′ to
the connected components containing vertices from Ŷ , and ext will indicate whether we can
“extend” the connected component by adding vertices to it, that appear strictly below. Finally,
we will maintain the guess, k′ ∈ N, for the size of the solution restricted to Gi. We can bound
the number of states in the dynamic programming table by (k + η)O(ηk+η2)nO(1), and we
can (recursively) compute each of the table entry in time bounded by (k + η)O(ηk+η2)nO(1).
This gives us an algorithm for the problem, running in time (k + η)O(ηk+η2)nO(1).

1 For the section, we will be using a modified (but equivalent) definition of (η,Clq)-decomposition, which
will simplify some of the technicalities and arguments.
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3.3 Polynomial-time O(opt log2 n)-approximation for (η,Clq)-ED
Deletion (Theorem 2)

Our algorithm follows the recursive scheme of [1], for designing polylogarithmic approximation
algorithms, that in turn builds upon the classic technique of finding balanced separators in a
graph for designing approximation algorithms [26]. Our algorithm has two crucial ingredients:
(i) If the graph G has a clique of size Ω(n), then it also has a clique of size Ω(n) with a
neighborhood of size O(opt + η). Moreover, in polynomial time, either we can find such a
large clique with a small neighborhood, or conclude that G has no large cliques. (ii) If G has
no cliques of size n/3 and it satisfies certain simple constraints relating opt, k and n then G
has a balanced separator (see Definition 6) of size O((opt + η) logn) that can be computed
efficiently. In the case where G does not satisfy these constraints on opt, k and n, we will
have arrived at the base case of our recursion we can obtain a straightfoward approximation.

Using these two ingredients, our algorithm proceeds as follows. We try to compute a
clique of size Ω(n), say Q, with a neighborhood of size O(opt+η). If we succeed, then we add
the neighbors of Q to the solution, remove Q from G, and recurse on the smaller instance. If
we fail to find Q, then we may conclude that G has no large cliques. In this case, we compute
an O(logn)-approximate balanced separator [26], add these separator vertices to the solution,
and recursively approximate the solutions in the two smaller instances. A standard induction
argument on the number of vertices gives the stated bound on the approximation ratio.

3.4 Approximating (η,Clq)-decompositions (Theorem 4)
Consider an instance (G, η) of Clq-Elimination Distance, and let D = (X,Y, F, f, g) be
an (η,Clq)-decomposition of G. The high level idea is to identify an efficiently computable
set Z of vertices such that for some F ′, f ′, g′, D′ = (Z, V (G) \ Z,F ′, f ′, g′) is a (5η,Clq)-
decomposition.

The first step of our algorithm iteratively computes a grouping of vertices of G. Let S
be the set of all maximal cliques in G. From Observation 17, every clique in G either lies
on a root-to-leaf path in the interior of D or in the set V (Cext) for some C ∈ C(G[Y ]). In
particular, Observation 17 holds for every set in S. The goal of our grouping is to repeatedly
combine pairs of sets in this collection while ensuring that each set in the collection obtained
at every step also satisfies the statement of Observation 17.

Specifically, we begin by computing the collection S of all maximal cliques in the input
graph G and then repeatedly do the following: as long as there is a pair of sets in the
collection such that either (i) they intersect in at least η + 1 vertices or (ii) the minimum
set of vertices that must be deleted to separate them is at least η + 1 or (iii) both sets have
size at least 2η + 1 and their union can be partitioned into a clique plus at most η vertices,
then we remove both sets from the collection and add their union to the collection. We then
show that every set in the collection obtained at every step in this procedure also satisfies
the statement of Observation 17. Moreover, we show that for every pair of large sets (of size
at least 2η + 1) that remain in the collection at the end of this iterative procedure, every
vertex in their intersection must be contained in the interior of any (η,Clq)-decomposition of
G. Therefore, we may safely “push” these vertices (denoted by Znec) to the interior part of
the approximate decomposition that we are constructing. Now, we consider the remaining
vertices of the graph and argue that vertices that appear only in small sets (sets of size
at most 2η) in our grouping can be safely pushed to the interior part of our approximate
(η,Clq)-decomposition without increasing the depth of the interior by more than a constant
factor. Denote the vertices pushed to the interior in this way by Zsml. We then need to deal
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with vertices that appear in exactly one large set in our grouping. For this, we show that in
each large set, the set of vertices that appear only in this large set can be covered by a clique
plus a set of at most η vertices. We show that pushing these at most η vertices from each
large set into the interior of our decomposition also does not blow up the depth of the interior
by more than a constant factor. Once we have pushed these vertices (denoted by Zmch) to
the interior, we are left with a disjoint union of cliques. We argue that every set S ∈ S can
be separated from its out-neighborhood by at most η vertices and moreover, pushing an
arbitrary set of such vertices into the interior for each set S ∈ S (cumulatively denoted by
Zsep) also does not increase the depth of the interior by more than η. Finally, we show that
the remaining vertices in X that are not explicitly pushed into the interior by one of our
steps can be simply removed from the interior with the result being a (5η,Clq)-decomposition
of G. That is, we prove the following lemma, where

 
X = Znec ∪ Zsml ∪ Zmch ∪ Zsep denotes

the set of vertices that we have explicitly pushed into the interior of the new decomposition.

I Lemma 18. If there is an (η,Clq)-decomposition D = (X,Y, F, f, g) of G, then there is an
( η ,Clq)-decomposition

 
D = (

 
X,
 
Y ,
 
F ,
 
f ,
 
g ) of G such that  η ≤ 5η.

In order to compute the 5-approximate (η,Clq)-decomposition, we create an appropriate
graph, call it Gfull, on the vertex set

 
X and show that computing the treedepth exactly (and

a forest embedding) of Gfull is sufficient to obtain a (5η,Clq)-decomposition of G.

I Lemma 19. There is a polynomial-time algorithm that, given a forest embedding (Ffull, ffull)
of Gfull with depth η′, outputs an (η′,Clq)-decomposition of G.

When we use the 2O(td(Gfull)·tw(Gfull))nO(1) algorithm of Reidl et al. [30] to compute the
treedepth of Gfull and an optimal forest embedding, we obtain a (5η,Clq)-decomposition of
G in time 2O(η2)nO(1). If we use the polynomial-time algorithm of Czerwinski et al. [8] to
approximate the treedepth of Gfull, we obtain a (O(η2 log3/2 η),Clq)-decomposition of G in
time 2O(η)nO(1).

4 Discussions and conclusions

We studied the parameterized complexity of detecting a small modulator to graphs that have
a constant elimination distance to cluster graphs. For this problem, we obtained a polynomial
kernelization and in the process, developed a kO(k)nO(1)-time fixed-parameter algorithm and
a polynomial-time factor-min{O(η · opt · log2 n), optO(1)} approximation algorithm for this
problem. Since our focus was on analyzing the kernelization complexity of this problem, we
have not attempted to optimize the running time of our algorithm or the exponent of k in the
size-bound of the kernel. Moreover, since our focus was on the “recognition” problem for such
graphs, we leave for future work the design of fixed-parameter algorithms and kernelization
algorithms for other problems, when parameterized by the size of the smallest modulator of
the given graph to the class of (η,Clq)-graphs. We remark that even parameterization by
the elimination distance of the input graph to cluster graphs has not been explored.

Between A1,A2 and Theorem 3, for the problem of computing the eliminating distance of
a graph to cluster graphs, we obtained an exact algorithm (i.e., a 1-approximation) running
in time ηO(η2) · nO(1), a 5-approximation algorithm running in time 2O(η2) · nO(1) and an
O(η log3/2 η)-approximation algorithm running in time 2O(η) ·nO(1). An interesting direction
for future research is to identify the best possible tradeoffs between approximation factor
and running time for the problem. Naturally, exploring the algorithmic utility of (small
modulators to) bounded elimination distance to other graph classes remains an interesting
line of research.
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