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Abstract
This paper exploits extended Bayesian networks for uncertainty reasoning on Petri nets, where firing
of transitions is probabilistic. In particular, Bayesian networks are used as symbolic representations
of probability distributions, modelling the observer’s knowledge about the tokens in the net. The
observer can study the net by monitoring successful and failed steps.

An update mechanism for Bayesian nets is enabled by relaxing some of their restrictions,
leading to modular Bayesian nets that can conveniently be represented and modified. As for every
symbolic representation, the question is how to derive information – in this case marginal probability
distributions – from a modular Bayesian net. We show how to do this by generalizing the known
method of variable elimination. The approach is illustrated by examples about the spreading
of diseases (SIR model) and information diffusion in social networks. We have implemented our
approach and provide runtime results.
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1 Introduction

Today’s software systems and the real-world processes they support are often distributed,
with agents acting independently based on their own local state but without complete
knowledge of the global state. E.g., a social network may expose a partial history of its users’
interactions while hiding their internal states. An application tracing the spread of a virus
can record test results but not the true infection state of its subjects. Still, in both cases, we
would like to derive knowledge under uncertainty to allow us, for example, to predict the
spread of news in the social network or trace the outbreak of a virus.
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38:2 Uncertainty Reasoning for Probabilistic Petri Nets via Bayesian Networks

Using Petri nets as a basis for modelling concurrent systems, our aim is to perform
uncertainty reasoning on Petri nets, employing Bayesian networks as compact representations
of probability distributions. Assume that we are observing a discrete-time concurrent system
modelled by a Petri net. The net’s structure is known, but its initial state is uncertain, given
only as an a-priori probability distribution on markings. The net is probabilistic: Transitions
are chosen at random, either from the set of enabled transitions or independently, based
on probabilities that are known but may change between steps. We cannot observe which
transition actually fires, but only if firing was successful or failed. Failures occur if the
chosen transition is not enabled under the current marking (in the case where we choose
transitions independently), if no transition can fire, or if a special fail transition is chosen.
After observing the system for a number of steps, recording a sequence of “success” and
“failure” events, we then determine a marginal distribution on the markings (e.g., compute
the probability that a given place is marked), taking into account all observations.

First, we set up a framework for uncertainty reasoning based on time-inhomogeneous
Markov chains that formally describes this scenario, parameterized over the specific semantics
of the probabilistic net. This encompasses the well-known stochastic Petri nets [29], as well as
a semantics where the choice of the marking and the transition is independent (Sct. 2 and 3).
Using basic Bayesian reasoning (reminiscent of methods used for hidden Markov models [32]),
it is conceptually relatively straightforward to update the probability distribution based on
the acquired knowledge. However, the probability space is exponential in the number of
places of the net and hence direct computations become infeasible relatively quickly.

Following [5], our solution is to use (modular) Bayesian networks [36, 13, 31] as compact
symbolic representations of probability distributions. Updates to the probability distribution
can be performed very efficiently on this data structure, simply by adding additional nodes.
By analyzing the structure of the Petri net we ensure that this node has a minimal number
of connections to already existing nodes (Sct. 4 and 5).

As for every symbolic representation, the question is how to derive information, in this
case marginal probability distributions. We solve this question by generalizing the known
method of variable elimination [14, 13] to modular Bayesian networks. This method is known
to work efficiently for networks of small treewidth, a fact that we experimentally verify in
our implementation (Sct. 6 and 7).

We consider some small application examples modelling gossip and infection spreading.
Summarized, our contributions are:
We propose a framework for uncertainty reasoning based on time-inhomogeneous Markov
chains, parameterized over different types of probabilistic Petri nets (Sct. 2 and 3).
We use modular Bayesian networks to symbolically represent and update probability
distributions (Sct. 4 and 5).
We extend the variable elimination method to modular Bayesian networks and show how
it can be efficiently employed in order to compute marginal distributions (Sct. 6). This is
corroborated by our implementation and runtime results (Sct. 7).

All proofs and further material can be found in the full version [1].

2 Markov Chains and Probabilistic Condition/Event Nets

2.1 Markov Chains
Markov chains [18, 35] are a stochastic state-based model, in which the probability of a
transition depends only on the state of origin. Here we restrict to a finite state space.
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I Definition 1 (Markov chain). Let Q be a finite state space. A (discrete-time) Markov chain
is a sequence (Xn)n∈N0 of random variables such that for q, q0, . . . , qn ∈ Q:

P (Xn+1 = q | Xn = qn) = P (Xn+1 = q | Xn = qn, . . . , X0 = q0).

Assume that |Q| = k. Then, the probability distribution over Q at time n can be
represented as a k-dimensional vector pn, indexed over Q. We abbreviate pn(q) = P (Xn = q).
We define k× k-transition matrices Pn, indexed over Q, with entries1 for the entry of matrix
M at row q′ and column q: Pn(q′ | q) = P (Xn+1 = q′ | Xn = q). Note that pn+1 = Pn · pn.
We do not restrict to time-homogeneous Markov chains where it is required that Pn = Pn+1

for all n ∈ N0. Instead, the probability distribution on the transitions might vary over time.

2.2 Probabilistic Condition/Event Nets
As a basis for probabilistic Petri nets we use the following variant of condition/event nets
[33]. Deviating from [33], we omit the initial marking and furthermore the fact that the post-
condition is marked is not inhibiting the firing of a transition. That is, we omit the so-called
contact condition, which makes it easier to model examples from application scenarios where
the contact condition would be unnatural. Note however that we could easily accommodate
the theory to include this condition, as we did in the predecessor paper [5].

I Definition 2 (condition/event net). A condition/event net (C/E net or simply Petri net)
N = (S, T, •(), ()•) is a four-tuple consisting of a finite set of places S, a finite set of
transitions T with pre-conditions •() : T → P(S) and post-conditions ()• : T → P(S). A
marking is any subset of places m ⊆ S and will also be represented by a bit string m ∈ {0, 1}|S|
(assuming an ordering on the places).

A transition t can fire for a marking m ⊆ S if •t ⊆ m. Then marking m is transformed
into m′ = (m \ •t) ∪ t•, written m t⇒ m′. We write m t⇒ to indicate that there exists some
m′ with m t⇒ m′ and m 6 t⇒ if this is not the case. We denote the set of all markings by
M = P(S).

In order to obtain a Markov chain from a C/E net, we need the following data: given a
marking m and a transition t, we denote by rn(m, t) the probability of firing t in marking m
(at step n), and by rn(m, fail) the probability of going directly to a fail state ∗.

I Definition 3. Let N = (S, T, •(), ()•) be a condition/event net and let Tf = T ∪ {fail}
(the set of transitions enriched with a fail transition). Furthermore let rn : M× Tf → [0, 1],
n ∈ N0 be a family of functions (the transition distributions at step n), such that for each
n ∈ N0, m ∈M:

∑
t∈Tf

rn(m, t) = 1.
The Markov chain generated from N, rn has states Q =M∪ {∗} and for m,m′ ∈M:

P (Xn+1 = m′ | Xn = m) =
∑
t∈T,m t⇒m′

rn(m, t) P (Xn+1 = m′ | Xn = ∗) = 0
P (Xn+1 = ∗ | Xn = m) =

∑
t∈Tf ,m 6

t⇒
rn(m, t) P (Xn+1 = ∗ | Xn = ∗) = 1

where we assume that m 6fail⇒ for every m ∈M.

Note that we can make a transition from m to the fail state ∗ either when there is a non-
zero probability for performing such a transition directly or when we pick a transition that

1 We are using the notation M(q′ | q), resembling conditional probability,
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(a) A Petri net modelling gossip
diffusion in a social network (Ki:
i knows information).
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(b) A Petri net modelling spread of
a disease (S: susceptible, I: infected,
R: removed).

I

fail
infflp

(c) A Petri net modelling a
test with false positives and
negatives (I: infected).

Figure 1 Example Petri nets.

cannot be fired in m. Requiring that m 6fail⇒ for every m is for notational convenience, since we
have to sum up all probabilities leading to the fail state ∗ to compute P (Xn+1 = ∗ | Xn = m).
In this way the symbol 6⇒ always signifies a transition to ∗.

By parametrising over rn we obtain different semantics for condition/even nets. In
particular, we consider the following two probabilistic semantics, both based on probability
distributions pnT : T → [0, 1], n ∈ N0 on transitions. We work under the assumption that
this information is given or can be gained from extra knowledge that we have about our
environment.
Independent case: Here we assume that the marking and the transition are drawn indepen-
dently, where markings are distributed according to pn and transitions according to pnT . It
may happen that the transition and the marking do not “match” and the transition cannot
fire. Formally, rn(m, t) = pnT (t), rn(m, fail) = 0 (where m ∈M, t ∈ T ). This extends to the
case where fail has non-zero probability, with probability distribution pnT : Tf → [0, 1].
Stochastic net case: We consider stochastic Petri nets [29] which are often provided with a
semantics based on continuous-time Markov chains [35]. Here, however we do not consider
continuous time, but instead model the embedded discrete-time Markov chain of jumps that
abstracts from the timing. The firing rate of a transition t is proportional to pnT (t).

Intuitively, we first sample a marking m (according to pn) and then sample a transition,
restricting to those that are enabled in m. Formally, for every t ∈ Tf , rn(m, t) = 0,
rn(m, fail) = 1 if no transition can fire in m and rn(m, t) = pnT (t)/

∑
m

t′⇒
pnT (t′), rn(m, fail) =

0 otherwise.

Other semantics might make sense, for instance the probability of firing a transition could
depend on a place not contained in its pre-condition. Furthermore, it is possible to mix the
two semantics and do one step in the independent and the next in the stochastic semantics.

I Example 1. The following nets illustrate the two semantics. The first net (Fig. 1a) explains
the diffusion of gossip in a social network: There are four users and each place Ki represents
the knowledge of user i. To convey the fact that user i knows some secret, place Ki contains
a token. The diffusion of information is represented by transitions dj . E.g., if 1 knows the
secret he will tell it to either 2 or 3 and if 3 knows a secret she will broadcast it to both 1
and 4. Note that a person will share the secret even if the recipient already knows, and she
will retain this knowledge (see the double arrows in the net).2

2 Hence, in the Petri net semantics, we allow a transition to fire although the post-conditions is marked.



R. Bernemann, B. Cabrera, R. Heckel, and B. König 38:5

Here we use the stochastic semantics: only transitions that are enabled will be chosen
(unless the marking is empty and no transition can fire). We assume that pT (d2) = 1/3 and
pT (d1) = pT (d3) = pT (d4) = pT (d5) = 1/6, i.e., user 2 is more talkative than the others.

One of the states of the Markov chain is the marking m = 1100 (K1,K2 are marked –
users 1 and 2 know the secret – and K3,K4 are unmarked – users 3 and 4 do not). In this
situation transitions d1, d2, d3 are enabled. We normalize the probabilities and obtain that
d2 fires with probability 1/2 and the other two with probability 1/4. By firing d1 or d2 we stay
in state 1100, i.e., the corresponding Markov chain has a loop with probability 3/4. Firing d3
gives us a transition to state 1110 (user 3 now knows the secret too) with probability 1/4.

The second net (Fig. 1b) models the classical SIR infection model [24] for two persons.
A person is susceptible (represented by a token in place Si) if he or she has not yet been
infected. If the other person is infected (i.e. place I1 or I2 is marked), then he or she might
also get infected with the disease. Finally, people recover (or die), which means that they
are removed (places Ri). Again we use the stochastic semantics.

The third net (Fig. 1c) models a test (for instance for an infection) that may have false
positives and false negatives. A token in place I means that the corresponding person is
infected. Apart from I there is another random variable R (for result) that tells whether
the test is positive or negative. In order to faithfully model the test, we assign the following
probabilities to the transitions: pT (flp) = P (R | Ī) (false or lucky positive: this transition
can fire regardless of whether I is marked, in which case the test went wrong and is only
accidentally positive), pT (inf ) = P (R | I)− P (R | Ī) (the remaining probability,3 such that
the probabilities of flp and inf add up to the true positive) and pT (fail) = P (R̄ | I) (false
negative). Here we use the independent semantics, assuming that we have a random test
where the ground truth (infected or not infected) is independent of the firing probabilities of
the transitions.

3 Uncertainty Reasoning for Condition/Event Nets

We now introduce the following scenario for uncertainty reasoning: assume that we are given
an initial probability distribution p0

∗ on the markings of the Petri net. We stipulate that
the fail state ∗ cannot occur, assuming that the state of the net is always some (potentially
unknown) well-defined marking. If this fail state would be reached in the Markov model, we
assume that the marking of the Petri net does not change, i.e., we perform a “reset” to the
previous marking.

Furthermore, we are aware of all firing probabilities of the various transitions, given
by the functions (rn)n∈N0 and hence all transition matrices Pn that specify the transition
probabilities at step n.

Then we observe the system and obtain a sequence of success and failure occurrences.
We are not told which exact transition fires, but only if the firing is successful or fails (since
the pre-condition of the transition is not covered by the marking). Note that according to
our model, transitions can be chosen to fire, although they are not activated. This could
happen if either a user or the environment tries to fire such a transition, unaware of the
status of its pre-condition. Failure corresponds to entering state ∗ and in this case we assume
the marking does not change. That is, we keep the previous marking, but acquire additional
knowledge – namely that firing fails – which is used to update the probability distribution
according to Prop. 4 (by performing the corresponding matrix multiplications, including
normalization).

3 Here we require that P (R | Ī) ≤ P (R | I).

FSTTCS 2020
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We use the following notation: let M be a matrix indexed overM∪{∗}. Then we denote
by M∗ the matrix obtained by deleting the ∗-indexed row and column from M . Analogously
for a vector p. Note that (M · p)∗ = M∗ · p∗. Furthermore if p∗ is a sub-probability vector,
indexed overM, norm(p∗) stands for the corresponding normalized vector, where the m-entry
is p∗(m)/

(∑
m′∈M p∗(m′)

)
.

I Proposition 4. Let rn : M× Tf → [0, 1] and pn : M∪ {∗} → [0, 1] be given as above. Let
N be a C/E net and let (Xn)n∈N0 be the Markov chain generated from N, rn. Then

P (Xn+1 = m′ | Xn+1 6= ∗, Xn 6= ∗) = P (Xn+1 = m′ | Xn+1 6= ∗) = norm(Pn∗ · pn∗ )(m′)
P (Xn = m | Xn+1 = ∗, Xn 6= ∗) = norm(Fn∗ · pn∗ )(m)

where pn(m) = P (Xn = m), pn(∗) = P (Xn = ∗) and Fn is a diagonal matrix with
Fn(m̄ | m̄) := Pn(∗ | m̄), m̄ ∈M, and Fn(∗ | ∗) := Pn(∗ | ∗) = 1, all other entries are 0.

Hence, in case we observe a success we update the probability distribution to p̄n+1 by
computing Pn∗ · p̄n (and normalizing). Instead, in the case of a failure we assume that
the marking stays unchanged, but by observing the failure we have gathered additional
knowledge, which means that we can replace p̄n+1 by Fn∗ · p̄n (after normalization).

Pn∗ and Fn∗ are typically not stochastic, but only sub-stochastic. For a (sub-)probability
matrix M∗ and a (sub-)probability vector p∗ it is easy to see that norm(M∗ ·p∗) = norm(M∗ ·
norm(p∗)). Hence another option is to omit the normalization steps and to normalize at the
very end of the sequence of observations. Normalization may be undefined (in the case of
the 0-vector), which signifies that we assumed an a priori probability distribution that is
inconsistent with reality.

I Example 2. We get back to Ex. 1 and discuss uncertainty reasoning. Assume that in the
net in Fig. 1b person 1 is susceptible (S1 is marked), person 2 is infected (I2 is marked) and
the ij-transitions have a higher rate (higher probability of firing) than the rj-transitions.
Then, in the next step the probability that both are infected is higher than the probability
that 1 is still susceptible and 2 has recovered.

Regarding the net in Fig. 1c we can show that in the next step, in the case of success,
the probability distribution is updated in such a way that place I is marked with probability
P (I | R) and unmarked with probability P (Ī | R) (P (I | R̄), P (Ī | R̄) in the case of failure),
exactly as required. For more details see [1].

4 Modular Bayesian Networks

A

B

D

E

C

Figure 2 An example Bayesian network.

In order to implement the updates to the probability distributions described above in an
efficient way, we will now represent probability distributions over markings symbolically as
Bayesian networks [31, 8]. Bayesian networks (BNs) model certain probabilistic dependencies
of random variables through conditional probability tables and a graphical representation.

Consider for instance the Bayesian network in Fig. 2. Each node (A, B, C, D, E)
represents a binary random variable, where a node without predecessors (e.g., A) is associated
with the probabilities P (A) and P (Ā). Edges denote dependencies: for instance D is
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dependent on A,B, which means that D is associated with a conditional probability table
(matrix) with entries P (D | A,B), similar for E (entries of the form P (E | D,C)). In both
cases, the matrix contains 2 · 4 = 8 entries.

We will later describe how to derive probability distributions and marginal probabilities
(for instance P (E)) from a Bayesian network.

We deviate from the literature on Bayesian networks in three respects: first, since we
will update and transform those networks, we need a structure where we can easily express
compositionality via sequential and parallel composition. To this end we use the representation
of Bayesian networks via PROPs as in [16, 22]. Second, we permit sub-stochastic matrices.
Third, we allow a node to have several outgoing wires, whereas in classical Bayesian networks
a node is always associated to the distribution of a single random variable. This is needed
since we need to add nodes to a network that represent stochastic matrices of arbitrary
dimensions (basically the matrices Pn and Fn of Proposition 4). We rely on the notation
introduced in [5], but extend it by taking the last item above into account.

4.1 Causality Graphs
The syntax of Bayesian networks is provided by causality graphs [5]. For this we fix a set of
node labels G, also called generators, where every g ∈ G is associated with a type ng → mg,
where ng,mg ∈ N0.

I Definition 5 (Causality Graph (CG)). A causality graph (CG) of type n→ m, n,m ∈ N0,
is a tuple B = (V, `, s, out) where

V is a set of nodes
` : V → G is a labelling function that assigns a generator `(v) ∈ G to each node v ∈ V .
s : V →W ∗B is the source function that maps a node to a sequence of input wires, where
|s(v)| = n`(v) and WB = {(v, p) | v ∈ V, p ∈ {1, . . . ,m`(v)}} ∪ {i1, . . . , in} is the wire set.
out : {o1, . . . , om} →WB is the output function that assigns each output port to a wire.

Moreover, the corresponding directed graph (defined by s) has to be acyclic.
We also define the target function t : V →W ∗B with t(v) = (v, 1) . . . (v,m`(v)) and the set

of internal wires IWB = WB\{i1, . . . , in, out(o1), . . . , out(om)}.

We visualize such causality graphs by drawing the n input wires on the left and the m
outputs on the right. Each node v is drawn as a box, with nv ingoing wires and mv outgoing
wires, ordered from top to bottom. Connections induced by the source and by the output
function are drawn as undirected edges (see Fig. 2).

We define two operations on causality graphs: sequential composition and tensor. Given B
of type n→ k and B′ of type k → m, the sequential composition is obtained via concatenation,
by identifying the output wires of B with the input wires of B′, resulting in B;B′ of type
n→ m. The tensor takes two causality graphs Bi of type ni → mi, i ∈ {1, 2} and takes their
disjoint union, concatenating the sequences of input and output wires, resulting in B1 ⊗B2
of type n1 + n2 → m1 +m2. For formal definitions see [5, 4].

4.2 (Sub-)Stochastic Matrices
The semantics of modular Bayesian networks is given by (sub-)stochastic matrices, i.e.,
matrices with entries from [0, 1], where column sums will be at most 1. If the sum equals
exactly 1 we obtain stochastic matrices.

We consider only matrices whose dimensions are a power of two. Analogously to causality
graphs, we type matrices, and say that a matrix has type n→ m whenever it is of dimension
2m × 2n. We again use a sequential composition operator ; that corresponds to matrix

FSTTCS 2020
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multiplication (P ;Q = Q · P ) and the Kronecker product ⊗ as the tensor. More concretely,
given P : n1 → m1, Q : n2 → m2 we define P ⊗Q : n1 + n2 → m1 +m2 as (P ⊗Q)(x1x2 |
y1y2) = P (x1 | y1) ·Q(x2 | y2) where xi ∈ {0, 1}mi , yi ∈ {0, 1}ni .

4.3 Modular Bayesian Networks
Finally, modular Bayesian networks, adapted from [5], are causality graphs, where each
generator g ∈ G is associated with a (sub-)stochastic matrix of suitable type.

I Definition 6 (Modular Bayesian network (MBN)). An MBN is a tuple (B, ev) where B is
a causality graph and ev an evaluation function that assigns to every generator g ∈ G of
type n→ m a 2m × 2n sub-stochastic matrix ev(g). An MBN (B, ev) is called an ordinary
Bayesian network (OBN) whenever B has no inputs (i.e. it has type 0→ m), each generator
is of type n→ 1, out is a bijection and every node is associated with a stochastic matrix.

We now describe how to evaluate an MBN to obtain a (sub-)stochastic matrix. For
OBNs – which are exactly the Bayesian networks considered in [17] – this coincides with the
standard interpretation and yields a probability vector of dimension m.

I Definition 7 (MBN evaluation). Let (B, ev) be an MBN where B is of type n→ m. Then
Mev(B) is a 2m × 2n-matrix, which is defined as follows:

Mev(B)(x1 . . . xm | y1 . . . yn) =
∑
b∈B

∏
v∈V

ev(l(v)) (b(t(v)) | b(s(v)))

with x1, . . . , xm, y1, . . . , yn ∈ {0, 1}. B is the set of all functions b : WB → {0, 1} such that
b(ij) = yj, b(out(ok)) = xk, where k ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. The functions b are
applied pointwise to sequences of wires.

Calculating the underlying probability distribution of an MBN can also be done on a
graphical level by treating every occurring wire as a boolean variable that can be assigned
either 0 or 1. Function b ∈ B assigns the wires, ensuring consistency with the input/output
values. After the wire assignment, the corresponding entries of each matrix ev(l(v)) are
multiplied. After iterating over every possible wire assignment, the products are summed up.

Note that Mev is compositional, it preserves sequential composition and tensor. More
formally, it is a functor between symmetric monoidal categories, or – more specifically –
between CC-structured PROPs (More details on PROPs are given in the full version [1].).

I Example 3. We illustrate Def. 7 by evaluating the Bayesian network (B′, ev) in Fig. 2.
This results in a 2× 1-matrix Mev(B′), assigning (sub-)probabilities to the only output wire
in the diagram being 1 or 0, respectively. More concretely, we assign values to the four inner
wires to obtain:

Mev(B′)(e) =
∑

a∈{0,1}

∑
b∈{0,1}

∑
c∈{0,1}

∑
d∈{0,1}

(
A(a) ·B(b) · C(c) ·D(d | ab) · E(e | cd)

)
,

where a, b, c, d, e correspond to the output wire of the corresponding matrix (A,B,C,D,E).

5 Updating Bayesian Networks

An MBN B of type 0→ k, as defined above, symbolically represents a probability distribution
on {0, 1}k, that is, a probability distribution on markings of a net with |S| = k places.
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Under uncertainty reasoning (cf. Section 3), the probability distribution in the next step
pn+1 is obtained by multiplying pn with a matrix M (either Pn∗ in the successful case or Fn∗
in the case of failure). Hence, a simple way to update B would be to create an MBN BM
with a single node v (labelled by a generator g with ev(g) = M), connected to k inputs and
k outputs. Then the updated B′ is simply B;BM (remember that sequential composition
corresponds to matrix multiplication). However, at dimension 2k × 2k the matrix M is huge
and we would sacrifice the desirable compact symbolic representation. Hence the aim is to
decompose M = M ′ ⊗ Id where Id is an identity matrix of suitable dimension. Due to the
functoriality of MBN evaluation this means composing with a smaller matrix and a number
of identity wires (see e.g. Fig. 3b).

This decomposition arises naturally from the structure of the Petri net N , in particular if
there are only relatively few transitions that may fire in a step. In this case we intuitively
have to attach a stochastic matrix only to the wires representing the places connected to
those transitions, while the other wires can be left unchanged. If there are several updates,
we of course have to attach several matrices, but each of them might be of a relatively modest
size.

In order to have a uniform treatment of the various semantics, we assume that for
each step n there is a set S̄ ⊆ S of places4 and a set T̄ ⊆ Tf of transitions such that: (i)
rn(m, t) = 0 whenever t 6∈ T̄ ; (ii) rn(m1m2, t) = r̄(m1, t) for some function r̄ (where m1 is a
marking of length ` = |S̄|, corresponding to the places of S̄); (iii) S̄ contains at least •t, t•
for all t ∈ T̄ . Intuitively, S̄, T̄ specify the relevant places and transitions.

For the two Petri net semantics studied earlier, these conditions are satisfied if we take
as T̄ the support of pnT and as S̄ the union of all pre- and post-sets of T̄ . The function rn
can in both cases be defined in terms of r̄: in the independent case this is obvious, whereas
in the stochastic net case we observe that rn(m, t) is only dependent on pnT and on the set of
transitions that is enabled in m and this can be derived from m1.

Now, under these assumptions, we can prove that we obtain the decomposition mentioned
above.

I Proposition 8. Assume that N is a condition/even-net together with a function rn. Assume
that we have S̄ ⊆ S, T̄ ⊆ Tf satisfying the conditions above. Then

Pn∗ = P ′ ⊗ Id2k−` where P ′(m′1 | m1) =
∑
t∈T̄ ,m1

t⇒m′1
r̄(m1, t).

Fn∗ = F ′ ⊗ Id2k−` where F ′(m′1 | m1) =
∑
t∈T̄ ,m1 6

t⇒
r̄(m1, t) if m1 = m′1 and 0 otherwise.

Here P ′, F ′ are 2` × 2`-matrices and m1,m
′
1 ⊆ S̄. Note also that we implicitly restricted the

firing relation to the markings on S̄.

I Example 4. In order to illustrate this, we go back to gossip diffusion (Fig. 1a, Ex. 1). Our
input is the following: an initial probability distribution, describing the a priori knowledge,
given by an MBN. Here we have no information about who knows or does not know the secret
and hence we assume a uniform probability distribution over all markings. This is represented
by the Bayesian network in Fig. 3a where each node is associated with a 2× 1-matrix (vector)
Ki where both entries are 1/2.

Also part of the input is the family of transition distributions (rn)n∈N0 . Here we assume
that the firing probabilities of transitions are as in Example 1, but not all users are active
at the same time. We have information that in the first step only users 1 and 2 are active,
hence by normalization we obtain probabilities 1/4, 1/2, 1/4 for transitions d1, d2, d3 (the
other transitions are deactivated).

4 Without loss of generality we assume that the outputs have been permuted such that places in S̄ occur
first in the sequence of places.
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(b) An MBN after performing
an update (observation of a
successful step).
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(c) Computing a marginal
probability distribution from
an MBN.

Figure 3 Example: transformation of modular Bayesian networks.

Now we observe a success step. According to Sct. 3 we can make an update with P∗ where
P is the transition matrix of the Markov chain. Since none of the transitions is attached to
place K4 the optimizations of this section allow us to represent P∗ as P ′ ⊗ Id2 where P ′ is
an 8× 8-matrix. E.g., as discussed in Ex. 1, we have P ′(110 | 110) = 3/4, P ′(111 | 110) = 1/4.
This matrix is simply attached to the modular Bayesian network (see Fig. 3b).

Now assume that it is our task to compute the probability that place K3 is marked.
For this, we compute the corresponding marginal probabilities by terminating each output
wire (apart from the third one) (see Fig. 3c). “Terminating a wire” means to remove it
from the output wires. This results in summing up over all possible values assigned to each
wire, where we can completely omit the last component, which is the unit of the Kronecker
product. Note that the resulting vector is sub-stochastic and still has to be normalized. The
normalization factor can be obtained by terminating also the remaining third wire, which
gives us the probability mass of the sub-probability distribution. Our implementation will
now tell us that place K3 is marked with probability 5/8.

6 Variable Elimination and Tree Decompositions

6.1 Motivation
Given a modular Bayesian network, it is inefficient to obtain the full distribution, not just
from the point of view of the computation, but also since its direct representation is of
exponential size. However what we often need is to compute a marginal distribution (e.g.,
the probability that a certain place is marked) or a normalization factor for a sub-stochastic
probability distribution (cf. Ex. 4). Another application would be to transform an MBN
into an OBN, by isolating that part of the network that does not conform to the properties
of an OBN, evaluating it and replacing it by an equivalent OBN.

Def. 7 gives a recipe for the evaluation, which is however quite inefficient. Hence we
will now explain and adapt the well-known concept of variable elimination [14, 13]. Let us
study the problem with a concrete example. Consider the Bayesian network B′ in Fig. 2
and its evaluation described in Ex. 3. If we perform this computation one has to enumerate
24 = 16 bit vectors of length 4. Furthermore, after eliminating d we have to represent a
matrix (also called factor in the literature on Bayesian networks) that is dependent on four
random variables (a,b, c, e), hence we say that it has width 4 (24 = 16 entries).

However, it is not difficult to see that we can – via the distributive law – reorder the
products and sums to obtain a more efficient way of computing the values:

Mev(B′)(e) =
∑

d∈{0,1}

( ∑
c∈{0,1}

( ∑
b∈{0,1}

( ∑
a∈{0,1}

(
A(a) ·D(d | ab)

)
·B(b)

)
·C(c)

)
·E(e | cd)

)
.
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In this way we obtain smaller matrices, the largest matrix (or factor) that occurs is D
(width 3). Choosing a different elimination order might have been worse. For instance, if we
had eliminated d first, we would have to deal with a matrix dependent on a, b, c, e (width 4).

6.2 Variable elimination
The literature of Bayesian networks [14, 13] extensively studies the best variable elimination
order and discusses the relation to treewidth. For our setting we have to extend the results
in the literature, since we also allow generators with more than one output.

I Definition 9 (Elimination order). Let B = (V, `, s, out) be the causality graph of a modular
Bayesian network of type n→ m. As in Def. 5 let WB be the set of wires.

We define an undirected graph U0 that has as vertices5 the wires WB and two wires w1, w2
are connected by an edge whenever they are connected to the same node. More precisely, they
are connected whenever they are input or output wires for the same node (i.e. w1, w2 are
both in s(v)t(v) for a node v ∈ V ).

Now let w1, . . . , wk (where k = |IWB |) be an ordering of the internal wires, a so-called
elimination ordering. We update the graph Ui−1 to Ui by removing the next wire wi and
connecting all of its neighbours by edges (so-called fill in). External wires are never eliminated.
The width of the elimination ordering is the size of the largest clique that occurs in some
graph Ui. The elimination width of B is the least width taken over all orderings.

In the case of Bayesian networks, the set of wires of an OBN corresponds to the set of
random variables. In the literature, the graph U0 is called the moralisation of the Bayesian
network, it is obtained by taking the Bayesian network (an acyclic graph), forgetting about
the direction of the edges, and connecting all the parents (i.e., the predecessors) of a random
variable, i.e. making them form a clique. This results in the same graph as the construction
described above.

To introduce the algorithm, we need the notion of a factor, already hinted at earlier.

I Definition 10 (Factor). Let (B, ev) be a modular Bayesian network with a set of wires
WB. A factor (f, w̃) of size s consists of a map f : {0, 1}s → [0, 1] together with a sequence
of wires w̃ ∈W ∗B. We require that w̃ is of length s (|w̃| = s) and does not contain duplicates.

Given a wire w ∈WB and a multiset F of factors, we denote by Cw(F) all those factors
(f, w̃) ∈ F where w̃ contains w. By Xw(F) we denote the set of all wires that occur in the
factors in Cw(F), apart from w.

We now consider an algorithm that computes the probability distribution represented
by a modular Bayesian network of type n → m. We assume that an evaluation map ev,
mapping generators to their corresponding matrices, and an elimination order w1, . . . , wk of
internal wires is given. Furthermore, given a sequence of wires w̃ = w′1 . . . w

′
s and a bitstring

x = x1 . . . xs, we define the substitution function bw̃,x from wires to bits as bw̃,x(w′j) = xj .

I Algorithm 11 (Variable elimination).
Input: An MBN (B, ev) of type n→ m

Let F0 be the initial multiset of factors. For each node v of type n`(v) → m`(v), it contains
the matrix ev(v), represented as a factor f , together with the sequence s(v)t(v). That is
f(xy) = ev(v)(y | x) where x ∈ {0, 1}n`(v) , y ∈ {0, 1}m`(v) .

5 We talk about the nodes of an MBN B and the vertices of an undirected graph Ui.
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Now assume that we have a set Fi−1 of factors and take the next wire wi in the elimination
order. We choose all those factors that contain wi and compute a new factor (f, w̃). Let
w̃ be a sequence that contains all wires of Xw(Fi−1) (in arbitrary order, but without
duplicates). Let s = |w̃|. Then f is a function of type f : {0, 1}s → [0, 1], defined as:

f(y) =
∑

z∈{0,1}

∏
(g,w̃g)∈Cwi

(Fi−1)

g(bw̃wi,yz(w̃g)).

We set Fi = Fi−1\Cwi
(Fi−1) ∪ {(f, w̃)}.

After the elimination of all wires we obtain a multiset of factors Fk, whose sequences
contain only input and output wires. The resulting probability distribution is p : {0, 1}n+m

→ [0, 1], where x ∈ {0, 1}n, y ∈ {0, 1}m, ι̃ = i1 . . . in, õ = out(o1) . . . out(om):

p(xy) =
∏

(f,w̃f )∈Fk

f(bι̃õ,xy(w̃f ))

That is, given the next wire wi we choose all factors that contain this wire, remove them
from Fi−1 and multiply them, while eliminating the wire. The next set is obtained by adding
the new factor. Finally, we have factors that contain only input and output wires and we
obtain the final probability distribution by multiplying them.

I Proposition 12. Given a modular Bayesian network (B, ev) where B is of type n → m,
Algorithm 11 computes its corresponding (sub-)stochastic matrix Mev(B), that is

Mev(B)(y | x) = p(xy) for x ∈ {0, 1}n, y ∈ {0, 1}m.

Furthermore, the size of the largest factor in any multiset Fi is bounded by the width of the
elimination ordering.

6.3 Comparison to Treewidth
We conclude this section by investigating the relation between elimination width and the
well-known notion of treewidth [2].

I Definition 13 (Treewidth of a causality graph). Let B = (V, `, s, out) be a causality graph
of type n→ m. A tree decomposition for B is an undirected tree T = (VT , ET ) such that

every node t ∈ VT is associated with a bag Xt ⊆WB,
every wire w ∈WB in contained in at least one bag Xt,
for every node v ∈ V there exists a bag Xt such that all input and output wires of v are
contained in Xt (i.e., all wires in s(v) and t(v) are in Xt) and
for every wire w ∈WB, the tree nodes {t ∈ VT | w ∈ Xt} form a subtree of T .

The width of a tree decomposition is given by maxt∈VT
|Xt| − 1.

The treewidth of B is the minimal width, taken over all tree decompositions.

Note that the treewidth of a causality graph corresponds to the treewidth of the graph
U0 from Def. 9. Now we are ready to compare elimination width and treewidth.

I Proposition 14. Elimination width is always an upper bound for treewidth and they coincide
when B is a causality graph of type 0→ 0. For a network of type 0→ m the treewidth may
be strictly smaller than the elimination width.
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The treewidth might be strictly smaller since we are now allowed to eliminate output
wires. However, it is easy to see that the treewidth plus the number of output wires always
provides an upper bound for the elimination width.

The paper [2] also discusses heuristics for computing good elimination orderings, an
opimization problem that is NP-hard. Hence the treewidth of a causality graph gives us an
upper bound for the most costly step in computing its corresponding probability distribution.
[26] shows that a small treewidth is actually a necessary condition for obtaining efficient
inference algorithms.

We can also compare elimination width to the related notion of term width, more details
can be found in [1].

7 Implementation and Runtime Results

We extended the implementation presented in the predecessor paper [5] by incorporating
probabilistic Petri nets and elimination orderings, in order to evaluate the performance of the
proposed concepts. The implementation is open source and freely available from GitHub.6

Runtime results were obtained by randomly generating Petri nets with different parameters,
e.g. number of places, transitions and tokens, initial marking. The maximal number of places
in pre- and post-conditions is restricted to three and at most five transitions are enabled
in each step. With these parameters, the worst case scenario is the creation of a matrix of
type 30→ 30. After the initialization of a Petri net, which can be interpreted with either
semantics (independent/stochastic), transitions and their probabilities are picked at random.
Then we observe either success or failure and update the probability distribution accordingly.

We select the elimination order via a heuristics by preferring wires with minimal degree in
the graph Ui (cf. Def 9). Furthermore we apply a few optimizations: Nodes with no output
wires will be evaluated first, nodes without inputs second. The observation of a failure will
generate a diagonal matrix, which enables an optimized evaluation, as its input and output
wires have to carry the same value (otherwise we obtain a factor 0). In addition, we use
optimizations whenever we have definitive knowledge about the marking of a particular place
(of a pre-condition), by drawing conclusions about the ability to fire certain transitions.

The plot on the left of Fig. 4 compares runtimes when incorporating ten success/failure
observations directly on the joint distribution (i.e. the naive representation of a probability
distribution) versus our MBN implementation. We initially assume a uniform distribution
of tokens and calculate the probability that the first place is marked after the observations.
Both approaches evaluate the same Petri net and therefore calculate the same results. The
data is for the independent semantics, but it is very similar for the stochastic semantics.

While the runtime increases exponentially when using joint distributions, our MBN
implementation stays relatively constant (see Fig. 4, left). Due to memory issues, handling
Petri nets with more than 30 places is not anymore feasible for the direct computation of
joint distributions. We use the median for comparison (see Fig. 4, left), but if an MBN
consists of very large matrices, the evaluation time will be rather high. The right plot of
Fig. 4 shows this correlation, where colours denote the runtime and the y-axis represents the
number of wires attached to the largest matrix. (Here we actually count equivalence classes
by grouping those wires that have to carry the same value, due to their attachment to a
diagonal matrix, see also the optimization explained above.)

6 https://github.com/RebeccaBe/Bayesian-II
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Figure 4 Left: Median of runtimes performing after 10 transitions on a Petri net. Right: Effect
of large matrices on the runtimes of the MBN implementation.

The advantage of our approach decreases when we have substantially more places in the
pre- and post-set, more transitions that may fire and a larger number of steps, since then
the Bayesian network is more densely connected and contains larger matrices. Furthermore,
one might generally expect the state (containing tokens or not) of places of the Petri net
to become more and more coupled over time, as more transitions have fired, decreasing the
performance improvement we gain from using MBNs. However, recall that the transitions
that can fire at any time are explicitly controlled by the input pnT . This allows our model to
capture situations where different parts of the network stay uncoupled over time and where
using MBNs is an advantage. Furthermore the observation of a failure allows an optimizated
variable elimination, as explained above.

8 Conclusion

We propose a framework for uncertainty reasoning for probabilistic Petri nets that represents
probability distributions compactly via Bayesian networks. In particular we describe how to
efficiently update and evaluate Bayesian networks.
Related work: Naturally, uncertainty reasoning has been considered in many different scenarios
(for an overview see [19]). Here we review only those approaches that are closest to our work.

In [5] we studied a simpler scenario for nets whose transitions do not fire probabilistically,
but are picked by the observer, resulting in a restricted set of update operations. Rather than
computing marginal distributions directly via variable elimination as in this paper, our aim
there was to transform the resulting modular Bayesian network into an ordinary one. Since
the updates to the net were of a simpler nature, we were able to perform this conversion. Here
we are dealing with more complex updates where this can not be done efficiently. Instead we
are concentrating on extracting information, such as marginal distributions, from a Bayesian
network.

Furthermore, uncertainty reasoning as described in Sct. 3 is related to the methods
used for hidden Markov models [32], where the observations refer to the states, whereas we
(partially) observe the transitions.

There are several proposals which enrich Petri nets with a notion of uncertainty:
possibilistic Petri nets [27], plausible Petri nets [9] that combine discrete and continuous
processes or fuzzy Petri nets [6, 34] where firing of transitions is governed by the truth values
of statements. Uncertainty in connection with Petri nets is also treated in [25, 23], but
without introducing a formal model. As far as we know neither approach considers symbolic
representation of probability distributions via Bayesian networks.
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In [3] the authors exploit the fact that Petri nets also have a monoidal structure and
describe how to convert an occurrence (Petri) net with a truly concurrent semantics into a
Bayesian network, allowing to derive probabilistic information, for instance on whether a
place will eventually be marked. This is different from our task, but it will be interesting to
compare further by unfolding our nets and equipping them with a truly concurrent semantics,
based on the probabilistic information from the time-inhomogeneous Markov chain.

We instead propose to use Bayesian networks as symbolic representations of probability
distributions. An alternative would be to employ multi-valued (or multi-terminal) binary
decision diagrams (BDDs) as in [20]. An exact comparison of both methods is left for future
work. We believe that multi-valued BDDs will fare better if there are only few different
numerical values in the distribution, otherwise Bayesian networks should have an advantage.

As mentioned earlier, representing Bayesian networks by PROPs or string diagrams is a
well-known concept, see for instance [16, 22]. The paper [21] describes another transformation
of Bayesian networks by string diagram surgery that models the effect of an intervention.

In addition there is a notion of dynamic Bayesian networks [30], where a random variable
has a separate instance for each time slice. We instead keep only one instance of every
random variable, but update the Bayesian network itself.

In addition to variable elimination, a popular method to compute marginals of a probability
distribution is based on belief propagation and junction trees [28]. In order to assess the
potential efficiency gain, this approach has to be adapted for modular Bayesian networks.
However due to the dense interconnection and large matrices of MBNs, an improvement in
runtime is unclear and deserves future investigation.
Future work: One interesting avenue of future work is to enrich our model with timing
information by considering continuous-time Markov chains [35], where firing delays are
sampled from an exponential distribution. Instead of asking about the probability distribution
after n steps we could instead ask about the probability distribution at time t.

We would also like to add mechanisms for controlling the system, such as transitions that
are under the control of the observer and can be fired whenever enabled. Then the task of
the observer would be to control the system and guide it into a desirable state. In this vein
we are also interested in studying stochastic games [11] with uncertainty.

The interaction between the structure of the Petri net and the efficiency of the analysis
method also deserves further study. For instance, are free-choice nets [15] – with restricted
conflicts of transitions – more amenable to this type of analysis than arbitrary nets?

Recently there has been a lot of interest in modelling compositional systems via string
diagrams, in the categorical setting of symmetric monoidal categories or PROPs [10]. In this
context it would be interesting to see how the established notion of treewidth [2] and its
algebraic characterizations [12] translates into a notion of width for string diagrams. We
started to study this for the notion of term width, but we are not aware of other approaches,
apart from [7] which considers monoidal width.
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