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Abstract
Model checking is the process of deciding whether a system satisfies a given specification. Often,
when the setting comprises multiple processes, the specifications are over sets of input and output
signals that correspond to individual processes. Then, many of the properties one wishes to specify
are symmetric with respect to the processes identities. In this work, we consider the problem of
deciding whether the given system exhibits symmetry with respect to the processes’ identities.
When the system is symmetric, this gives insight into the behaviour of the system, as well as allows
the designer to use only representative specifications, instead of iterating over all possible process
identities.

Specifically, we consider probabilistic systems, and we propose several variants of symmetry.
We start with precise symmetry, in which, given a permutation π, the system maintains the exact
distribution of permuted outputs, given a permuted inputs. We proceed to study approximate
versions of symmetry, including symmetry induced by small L∞ norm, variants of Parikh-image
based symmetry, and qualitative symmetry. For each type of symmetry, we consider the problem of
deciding whether a given system exhibits this type of symmetry.
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1 Introduction

A fundamental approach to automatic verification is model checking [4], where we are given
a system and a specification, and we check whether all possible behaviours of the system
satisfy the specification. In model checking of reactive systems, the specification is over sets
of inputs I and outputs O, and the system is an I/O transducer, which takes sequences of
inputs in 2I , and responds with an output in 2O. Then, model checking amounts to deciding
whether for every input sequence, the matching output sequence generated by the transducer,
satisfies the specification.

In practice, and especially in verification of concurrent systems, the input and output
sets have some correspondence. For example, in an arbiter for k processes, the inputs are
typically I = {i1, . . . , ik}, where ij is interpreted as “a request was generated by Process
j”, and the outputs are O = {o1, . . . , ok}, where oj is interpreted as “Process j was granted
access”. In such cases, specification often end up having symmetric repetitions of a similar
pattern. For example, we may wish to specify that in our arbiter, if Process j1 generated a
request before Process j2, then a grant for j1 should be given before a grant for j2. However,
in order to specify this in e.g., LTL (Linear Temporal Logic), we would have to explicitly
write this statement for every pair of processes j1, j2. In the worst case, this could entail a
blowup of k! in the size of the formula, which incurs a further exponential blowup during
model-checking algorithms.
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35:2 Process Symmetry in Probabilistic Transducers

This drawback, however, vanishes when we consider a symmetric system: intuitively, a
system is symmetric if permuting the input signals generates an output sequence of similarly
permuted outputs. If a system satisfies this property, then it is enough to check whether it
satisfies a representative specification. Indeed, any permutation of the processes is guaranteed
to be equivalently satisfied.

Unfortunately, deterministic systems are unlikely to be completely symmetric, unless
they are very naive (e.g., no grants are ever given). Indeed, tie-breaking in deterministic
systems has an inherent asymmetry to it. In probabilistic systems, however, no asymmetry is
needed to break ties – one can randomly choose a result.

In this paper, we consider several notions of symmetry for probabilistic transducers,
and their corresponding decision procedures. We start with the most restrictive version of
symmetry, in which a transducer T is symmetric under a permutation if the distribution
of outputs that are generated for an input sequence x is identical to the distribution of
permuted outputs for the permuted input sequence (Section 3). We show that deciding
whether a transducer is symmetric under a given permutation is decidable in polynomial
time, and use basic results in group theory to give a similar result for deciding whether a
transducer is symmetric under all permutations in a permutation group.

We then proceed to study approximate notions of symmetry, in order to capture cases
where a system is not fully symmetric, but still may exhibit some symmetrical properties. On
the negative side, using results on probabilistic automata, we show that an L∞ approximation
variant of symmetry results in undecidability. On the positive side, we study two variants of
symmetry that only take into account the Parikh image of the output signals, and we are
able to use results on probabilistic automata with rewards to obtain efficient decidability of
symmetry for these variants (Section 4).

Finally, we study a qualitative version of symmetry, which offers a coarse “nondeterminis-
tic” approximation of symmetry (Section 5). We show that deciding whether a system is
qualitatively symmetric is PSPACE complete.

The notion of symmetry is not only appealing for symmetry reductions in specification,
but also as a standalone feature for the explainability of model checking: standard model-
checking algorithms can output a counterexample whenever a system does not satisfy its
specification. This gives the designer insight as to what is wrong with either the system or
the specification. On the other hand, when the result of model checking is that a system
does satisfy its specification, no additional information is typically given. While this is
“good news”, a designer often wants some information as to “why” the system is correct. In
particular, the designer may be concerned that the specifications were too easy to satisfy (e.g.,
in vacuous specifications [1]). In this case, symmetry provides some information. Indeed,
symmetry can be easily witnessed (as we show in Remark 4), so the designer can be convinced
that any weakness of the specification, or any flaw of the system, is not biased toward a
specific process, and will arise regardless of a specific order of processes. In addition, it shows
that if the system satisfies e.g., liveness properties, then it satisfies them with the same “good
event intervals” regardless of process identities.

Related work

Process symmetry [3, 8, 6, 12] and more general symmetry reductions [16, 17, 19] have
been studied since the 90’s, typically in the context of alleviating the state-explosion prob-
lem. Symmetry can either be specified by the designer or user [13,24,25], or detected
automatically [15,16,32].
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A close approach to our work here is [12], where the problem of detecting process
symmetries is studied. There, however, parametrized deterministic systems are studied,
which shift the focus to the pattern of given symmetries (rather than our fixed-length
permutations), and does not concern probabilities.

Symmetry in the probabilistic setting was studied in [11, 5], where model checking of
probabilistic systems exploits known symmetries to avoid a state blowup by considering a
quotient of the system under the symmetry.

We remark that the works above typically focus on exact symmetries, and use them to
reduce the state space, whereas the focus of this paper is to decide whether a symmetry
exists, for various types of (not necessarily exact) symmetries, and to use the symmetry to
avoid blowup in the specification, as well as to give the user insight regarding the correctness
of the system.

Due to lack of space, some proofs appear in the appendix.

2 Preliminaries

Probabilities and Distributions

Consider a finite set S. A distribution over S is a function µ : S → [0, 1] such that∑
s∈S µ(s) = 1. We denote the space of all distributions over S by ∆(S). Given a distribution

µ, an event is a subset1 E ⊆ S, and its probability under µ is Pr(E) =
∑
e∈E µ(e). For an

element s ∈ S, the Dirac distribution 11[s] is given by 11[s](r) =
{

1 r = s,

0 r 6= s.
The support of

a distribution µ is Supp(µ) = {s ∈ S : µ(s) > 0}.
Given sets S1, . . . , Sn and distributions µ1, . . . , µn such that µi ∈ ∆i for every 1 ≤ i ≤ n,

a natural product distribution µ is induced on the product space S1 × · · · × Sn where
µ(s1, . . . , sn) =

∏n
i=1 µi(si).

Probabilistic Transducers and Automata

Consider two finite sets I and O of input and output signals, respectively. An I/O probabilistic
transducer (henceforth just transducer) is T = 〈I,O, S, s0, δ, `〉 where S is a finite set of
states, s0 is an initial state, δ : S × 2I → ∆(S) is a transition function, assigning to each
(state,letter) pair a distribution of successor states, and ` : S → 2O is a labelling function.

For a word x = i1 · i2 · · · in ∈ (2I)+, a run of T on x is a sequence ρ = q0, q1, . . . , qn where
q0 = s0, and the probability of the run ρ is

∏n−1
j=0 δ(qj , ij+1)(qj+1). Note that indeed this

induces a probability measure µ on {s0} × Sn via the product distribution.
A run ρ is proper if ρ ∈ Supp(µ). That is, if it has positive probability. We denote the

space of proper runs by runs(T , x). In the following, we usually refer only to proper runs, and
we omit the term “proper” when it is clear from context. We extend the labelling function `

to runs by `(ρ) = `(q1) · `(q2) · · · `(qn). Observe that we ignore the labelling of the initial
state, and only consider nonempty words, to avoid edge cases.

For x ∈ (2I)+ and y ∈ (2O)+ such that |x| = |y|, we denote by T (x) = y the event
{ρ ∈ runs(T , x) : `(ρ) = y}. Thus, Pr(T (x) = y) is the probability that the output
generated by T on input x is exactly y. We denote by x⊗ y ∈ (2I∪O)ω the combined word
(i1 ∪ o1) · (i2 ∪ o2) · · · (in ∪ on).

1 In general E needs to be a measurable subset, but since we only consider finite sets, any subset is
measurable.

FSTTCS 2020
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The sets I and O are called corresponding signals if I = {i1, . . . , ik} and O = {o1, . . . , ok}.
Intuitively, for 1 ≤ j ≤ k we think of ij as a request generated by a process j, and of oj as a
corresponding grant generated by the system.

A probabilistic automaton (PA) is A = 〈Q,Σ, δ, q0, F 〉 where Q is a finite set of states, Σ
is a finite alphabet, δ : Q × Σ → ∆(Q) is a probabilistic transition function, q0 ∈ Q is an
initial state, and F ⊆ Q is a set of accepting states. Similarly to transducers, an input word
x ∈ Σ∗ induces a probability measure on the set runs(A, x) of runs of A on x. Then, we
denote by A(x) the probability that a run of A on x is accepted, i.e. ends in a state in F .

Permutations

We assume familiarity with basic notions in group theory (see e.g. [2]). A permutation of the
set [k] = {1, . . . , k} is a bijection π : [k]→ [k]. A standard representation of permutations is
by a cycle decomposition, where, for example, the cycle (1 2 7) represents the permutation
π where π(1) = 2, π(2) = 7, π(7) = 1, and for all other elements we have π(j) = j. The set
of all permutations on [k], equipped with the functional composition operator ◦ forms the
symmetric group Sk. Any subgroup of Sk is referred to as a permutation group. A generating
set of a permutation group G is a finite set X = {π1, . . . , πm} such that every permutation
τ ∈ G can be expressed as a composition of the elements in X. For such a set X, we denote
the group generated by it by 〈X〉. It is well known that {(1 2), (1 2 . . . k)} is a generating
set of Sk (see e.g., [2]).

Consider corresponding signals I = {i1, . . . , ik} and O = {o1, . . . , ok}, and let π ∈ Sk.
For a letter i = {ij1 , . . . , ijm} ∈ 2I , we define π(i) = {iπj1,...,iπ(jm)}. That is, π permutes
the signals given in i.2 Then, for a word x = i1 · i2 · · · in ∈ (2I)+, we define π(x) =
π(i1) · π(i2) · · ·π(in). Similar definitions hold for O. Unless explicitly stated otherwise, we
henceforth assume I and O are corresponding signals.

3 Symmetric Probabilistic Transducers

Let T = 〈I,O, S, s0, δ, `〉 be an I/O transducer over I = {i1, . . . , ik} and O = {o1, . . . , ok},
and let π ∈ Sk. We say that T is π-symmetric if for every x ∈ (2I)+ and y ∈ (2O)+ it
holds that Pr(T (x) = y) = Pr(T (π(x)) = π(y)). That is, T is π-symmetric if whenever we
permute the input by π, the resulting distribution on outputs is permuted by π as well.

I Example 1. Consider a Round-Robin arbiter over three processes, as depicted in Figure 1.
At each state, the arbiter looks for a request from a single processor j, and grants it if it is
on, then moves to a state corresponding to process j + 1 (mod 3). Observe that this is a
deterministic transducer, except that the initial state is unspecified.

Consider the case where we let the state marked 001 be initial, which corresponds to
letting the first process start. In this case, the transducer is not π-symmetric for π = (1 2 3).
Indeed, the input word 100 will generate output 100, but its permutation π(100) = 010
generates output 000 6= π(100).

However, if we introduce a probabilistic initial state, that chooses each state of 100, 010, 001
as the next state, each with probability 1

3 , the transducer becomes π-symmetric for any
π ∈ S3. J

2 Formally, we would actually need I to be an ordered set. However, the order will be implied by the
naming convention, so we let I be a set.
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000

010

000

001

000

100
·1·

·0·

·1·

·0·

· · 1

· · 0

· · 0

· · 1

1 · ·
0 · ·

1 · ·
0 · ·

Figure 1 A transducer for a Round Robin arbiter. The labels on the transitions and states are
the characteristic vectors of the labels, with · as placeholders. Thus, e.g., 100 is {i1}, and · · 1 is any
i such that i3 ∈ i. The initial state is unspecified, see Example 1.

Consider a permutation group G = 〈X〉 generated by X = {π1, . . . , πm}. We say that T
is G-symmetric if it is π-symmetric for every π ∈ G. Toward understanding symmetry, we
start by showing that it is enough to consider symmetry under the generators.

I Lemma 2. Consider an I/O transducer T over I = {i1, . . . , ik} and O = {o1, . . . , ok}. If
T is π-symmetric and τ -symmetric for π, τ ∈ Sk, then T is π ◦ τ -symmetric.

Proof. Consider x ∈ (2I)+ and y ∈ (2I)+, we wish to show that Pr(T (x) = y) =
Pr(T (π(τ(x))) = π(τ(y))). Since T is τ -symmetric, then Pr(T (x) = y) = Pr(T (τ(x)) = τ(y)).
Next, since T is π-symmetric, then applying the definition for the input τ(x) ∈ (2I)+ and
τ(y) ∈ (2O)+, we have that Pr(T (τ(x)) = τ(y)) = Pr(T (π(τ(x))) = π(τ(y))), and so overall
Pr(T (x) = y) = Pr(T (π(τ(x))) = π(τ(y))) and we are done. J

An immediate corollary of Lemma 2 is that in order to check whether T is G-symmetric, it
suffices to check whether it is symmetric with respect to the generators of G.

I Corollary 3. Consider an I/O transducer T and a permutation group G with generators
X, then T is G-symmetric iff it is π-symmetric for every π ∈ X.

I Remark 4 (Symmetry for Explainability). Corollary 3 is key to using symmetry for explain-
ability of model checking. Indeed, it shows that we can convince a designer that a system is
e.g., Sk-symmetric by showing that it is symmetric under the two generators. That is, the
witness for symmetry consists of demonstrating symmetry on two permutations. As discussed
in Section 1, once the designer is convinced the system possesses symmetric properties, she
gains some insight to the possible reasons that make the system correct, or to possible
behaviour of bugs, when the system is incorrect. J

The fundamental problem about symmetry of probabilistic transducers is whether a
transducer is π-symmetric for a given permutation π. We now show that this problem can
be solved in polynomial time.

I Theorem 5. The problem of deciding, given an I/O transducer T and a permutation
π ∈ Sk, whether T is π-symmetric, is solvable in polynomial time.

Proof. Given two probabilistic automata A and B over the alphabet Σ, the problem of
determining whether A(x) = B(x) for every x ∈ Σ∗, dubbed the equivalence problem, is
solvable in polynomial time [7, 15, 18]. Our proof is by reduction of the problem at hand to
the equivalence problem for probabilistic automata.

FSTTCS 2020
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Consider an I/O transducer T = 〈I,O, S, s0, δ, `〉 over I = {i1, . . . , ik} and O =
{o1, . . . , ok}, and let π ∈ Sk. We construct from T two PAs A and B. Intuitively, A
mimics the behaviour of T , by reading words over 2I∪O, and accepting a word w ∈ (2I∪O)+

with probability µ iff T , when reading the inputs that appear in w, generates the outputs
that appear in w with probability µ. The PA B works exactly like A, but permutes both the
inputs and outputs by π.

Formally, A = 〈S ∪ {q⊥}, 2I∪O, η, s0, S〉 and B = 〈S ∪ {q⊥}, 2I∪O, ζ, s0, S〉 where q⊥ is
a new state, and the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o
with i ∈ 2I and o ∈ 2O, and let Vp =

∑
p∈S, `(p)=o δ(q, i)(p) be the probability assigned by

T to seeing a state labelled o after reading i in state q, then η(q, σ) ∈ ∆(S ∪ {q⊥}) is the
following distribution:

η(q, σ)(p) =


δ(q, i)(p) if p ∈ S and `(p) = o
0 if p ∈ S and `(p) 6= o
1− Vp if p = q⊥

In addition, η(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of
A in Figures 2a and 2b.

s0
∅

s1
{o1}

s2
{o1}

s3
{o1, o3}

{i1, i2}
0.
2

0.5
0.3

(a) Transition in T

s0

s1

s2
s⊥

s3

{i1, i2, o1}

{i1 , i2 , o1 , o3}

0.2

0.5

0.3

0.3

0.7

(b) Transition in A

s0

s1

s2
s⊥

s3

{i3, i1, o3}

{i3 , i1 , o3 , o2}

0.2

0.5

0.3

0.3

0.7

(c) Transition in B

Figure 2 A transition in a transducer T over I = {i1, i2, i3} and O = {o1, o2, o3}, and the
corresponding transitions in A and B, under the permutation π = (1 2 3). Observe that the transition
in B corresponds to the inverse permutation, π−1 = (3 2 1), so that e.g., π({i3, i1}) = {i1, i2}.

The construction of B is similar, but accounts for the permutation π. Let q ∈ S and
σ = i ∪ o with i ∈ 2I and o ∈ 2O, and let Up =

∑
p∈S, `(p)=π(o) δ(q, π(i))(p) be the

probability assigned by T to seeing a state labelled π(o) after reading π(i) in state q, then
ζ(q, σ) ∈ ∆(S ∪ {q⊥}) is the following distribution:

ζ(q, σ)(p) =


δ(q, π(i))(p) if p ∈ S and `(p) = π(o)
0 if p ∈ S and `(p) 6= π(o)
1− Up if p = q⊥

In addition, ζ(q⊥, σ)(q⊥) = 1 (so q⊥ is a rejecting sink). We demonstrate the construction of
B in Figures 2a and 2c.

Consider words x ∈ (2I)+ and y ∈ (2O)+. Since q⊥ is the only rejecting state in
both A and B, then by construction it is easy to see that A(x ⊗ y) = Pr(T (x) = y) and
B(x ⊗ y) = Pr(T (π(x)) = π(y)). Thus, we have that A and B are equivalent iff T is
π-symmetric, and since equivalence can be decided in polynomial time, we are done. J

Combining Theorem 5 with Corollary 3, we have the following.
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I Corollary 6. The problem of deciding, given an I/O transducer T and a finite set of
generators X = {π1, . . . , πm}, whether T is 〈X〉-symmetric, is solvable in polynomial time.

In particular, since the symmetric group Sk is generated by two permutations
{(1 2), (1 2 . . . k)}, we have the following.

I Corollary 7. The problem of deciding, given an I/O transducer T , whether T is Sk-
symmetric, is solvable in polynomial time.

4 Approximate Symmetry

While aspiring to obtain symmetric systems is noble, in practice exact symmetry may be
too strong a requirement, for example if the source of randomness supplies binary bits, and
one needs e.g., 1

3 probability, then only an approximate probability can be used. Thus, it is
reasonable to seek approximate notions of symmetry.

4.1 L∞ Symmetry
The most straightforward approach toward approximate symmetry in probabilistic transducers
is induced by the the L∞ norm, as follows. Let T be an I/O-transducer, let π ∈ Sk, and let
ε > 0. We say that T is (ε, π)-symmetric if |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| ≤ ε for
every x ∈ (2I)+ and for every y ∈ (2O)+. That is, permuting the inputs by π perturbs the
output distribution by at most ε.

Unfortunately, as we now show, approximate symmetry is undecidable.

I Theorem 8. The problem of deciding, given an I/O transducer T a permutation π ∈ Sk
and ε > 0, whether T is (ε, π)-symmetric, is undecidable.

Proof. The emptiness problem for PA is to decide, given a PA A over Σ and a threshold
λ ∈ [0, 1], whether there exists a word w ∈ Σ∗ such that A(w) > λ. This problem is known
to be undecidable [14, 13, 7].

We show that approximate symmetry is undecidable via a reduction from a restriction of
the emptiness problem (or rather the complement thereof), where the given PA is over the
alphabet {0, 1}. The problem remains undecidable under this restriction, as we can encode
any larger alphabet Γ using fixed-length sequences in {0, 1}d, such that while reading the d
symbols that compose a single letter in Γ, the states are not accepting (and hence we do not
introduce a word whose acceptance probability is above λ).

We start with an intuitive description of the reduction, depicted in Figure 3.

sinitsmids⊥

s>
∅

s⊥
{o1, o2}

2I

{i1}

∅, {i1}

{i1}, {i1, i2}
{i2} {i1}, {i1, i2}

{i1}, {i1, i2}A

Figure 3 The transducer constructed from a PA. The black squares denote probabilistic branching.

Consider a PA A over the alphabet Σ = {0, 1}. We construct a transducer T over
I = {i1, i2} and O = {o1, o2} which has two components. Initially, if T sees the input {i2},
it moves to a component which mimics A using the alphabet {∅, {i2}} instead of {0, 1}. At

FSTTCS 2020
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this stage, all the states are marked with the output {o1, o2}. If at any point the input signal
i1 is given, i.e. the letter {i1} or {i1, i2}, then T proceeds to a state labelled {o1, o2} from
non-accepting states of A, and to a state labelled ∅ from accepting states. Thus, a word
of the form {i2} · x · {{i1}, {i1, i2}}∗ with x ∈ {∅, {i2}}n would yield an output of the form
∅n+1 · ∅∗ with probability A(x) and of the form ∅n+1 · {o1, o2}∗ with probability 1−A(x).
Observe that both output possibilities are invariant under the permutation (1 2).

If, initially, T sees the input {i1}, it moves to a state labelled ∅, which loops as long
as {i1} or ∅ are seen. Then, if {i2} or {i1, i2} is seen, it moves to a sink labelled {o1, o2}.
Essentially, this component mimics the output sequence of a rejecting run of A in the first
component, under the permutation (1 2). Hence, taking ε = λ, we have that T is (ε, (1 2))-
symmetric iff there does not exist a word x such that A(x) > λ.

We proceed to give the precise reduction. Consider a PA A = 〈Q,Σ, δ, q0, F 〉 with
Σ = {0, 1}, we construct an I/O transducer T = 〈I,O, S, sinit, η, `〉 as follows. The states
of T are S = Q ∪ {smid, sinit, s>, s⊥}, where s⊥ /∈ Q, and the input and output sets are
I = {i1, i2} and O = {o1, o2}. The labelling function is given by `(q) = ∅ for all q ∈ Q,
`(s⊥) = O = {o1, o2}, and `(sinit) = `(smid) = {∅}. The transition function, as depicted in
Figure 3, is defined as follows.

First, for every q ∈ Q and i ∈ {∅, {i2}}, we have η(q, i) = δ(q, i), where we identify
{∅, {i2}} with {0, 1} in an arbitrary bijective manner. Next, if q ∈ F , then η(q, {i1}) =
η(q, {i1, i2}) = 11[s>], and if q /∈ F then η(q, {i1}) = η(q, {i1, i2}) = 11[s⊥]. The remaining
transitions are
η(sinit, {i1}) = 11[smid], η(smid, ∅) = η(smid, {i1}) = 11[smid],
η(sinit, {i2}) = 11[q0], η(smid, {i2}) = η(smid, {i1, i2}) = 11[s⊥],
η(sinit, ∅) = η(sinit, {i1, i2}) = 11[s⊥],

and for every i ∈ 2I we have η(s⊥, i) = 11[s⊥] and η(s>, i) = 11[s>].
Let π = (1 2) and ε = λ. Keeping our identification of {∅, {i2}} with {0, 1}, we claim

that there exists a word x′ ∈ {∅, {i2}}∗ such that A(x′) > λ iff there exists words x ∈ (2I)+

and y ∈ (2O)+ such that |Pr(T (x) = y) − Pr(T (π(x)) = π(y))| > ε (i.e. T is not (ε, π)-
symmetric). Observe that ` assigns only the labels ∅ and {o1, o2}, both of which are invariant
under π. Thus, the latter condition becomes

|Pr(T (x) = y)− Pr(T (π(x)) = y)| > ε. (1)

We now turn to prove correctness. For the first direction, let x′ ∈ {∅, {i2}}∗ such that
A(x′) > λ, and consider the word x = {i2} · x′ · {i1, i2}. By the construction of T , after
seeing {i2}, there is only a single run of T which proceeds to q0. From there, T mimics the
behaviour of A on x′. Thus, after reading x′, the distribution of states has probability A(x)
for states in F , and probability 1−A(x) in states in Q \ F . Note that up until then, only
the label ∅ is seen, so the distribution of outputs is 11[∅|x′|+1]. Then, after reading {i1, i2},
the distribution of outputs give probability A(x) to ∅|x′|+2, and 1−A(x) to ∅|x′|+1 · {o1, o2}.

Now consider π(x) = {i1} · π(x′) · {i1, i2}. Upon reading {i1}, the single run of T
arrives at smid. Then, since x′ ∈ {∅, {i2}}∗, we have that π(x′) ∈ {∅, {i1}}∗, so the run
of T stays in smid. Finally, reading {i1, i2}, the run moves to s⊥. Therefore T (x) gives
probability 1 to the output ∅|x′|+1{o1, o2}. Thus, for the output y = ∅|x′|+2, we have that
|Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x)− 0| > λ = ε, so T is not (ε, π)-symmetric.

For the converse direction, assume x, y are such that |Pr(T (x) = y)−Pr(T (π(x)) = y)| > ε.
We start by eliminating candidates for such x and y. First, observe that if x starts with ∅ or
{ß1,ø1} (both of which are invariant under π), we have T (x) gives probability 1 to the output
`(q⊥)|x| = {o1, o2}|x|, and so T (x) = T (π(x)), hence |Pr(T (x) = y)− Pr(T (π(x)) = y)| = 0
for all y, so this case cannot occur.
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Next, we claim that without loss of generality, we can assume x starts with {i2}. Indeed,
if x starts with {i1}, then π(x) starts with {i2}. Since π(π(x)) = x, we could start the
argument with π(x), while maintaining Equation (1).

Now, if x is of the form {i2} · {∅, {i2}}n, then T (x) gives probability 1 to the output
∅n+1, but π(x) is now of the form {i1} · {∅, {i1}}n, which also induces the same distribution,
this case cannot occur as well.

It follows that x is of the form {i2} · x′ · {{i1}, {i1, i2}} · (2I)∗ where x′ ∈ {∅, {i2}}n.
We claim that A(x′) > λ. Indeed, as we observed above, T (x) gives probability A(x′) to
the output ∅|x| and probability 1−A(x′) to the output ∅|x′|+1 · {o1, o2}|x|−|x

′|−1. However,
T (π(x)) gives probability 1 to the output ∅|x′|+1 · {o1, o2}|x|−|x

′|−1. Thus, there are only two
possibilities for y in order for Equation (1) to hold: if y = ∅|x|, we have

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |A(x′)− 0| = A(x′)

and if y = ∅|x′|+1 · {o1, o2}|x|−|x
′|−1, then

λ = ε < |Pr(T (x) = y)− Pr(T (π(x)) = y)| = |1−A(x′)− 1| = A(x′)

So in either case A(x′) > λ, and we are done. J

A-priori, the fact that (ε, π)-symmetry is undecidable does not mean that approximate
symmetry for an entire permutation group is undecidable, nor that for fixed ε the problem is
undecidable. Unfortunately, however, the proof of Theorem 8 uses the permutation group S2,
whose only nontrivial permutation is (1 2). Moreover, the reduction uses the given threshold
λ as is, by setting λ = ε, and the emptiness problem is known to be undecidable even when
λ is a fixed number in (0, 1). Thus, we have the following.

I Corollary 9. For every ε ∈ (0, 1), the problem of deciding, given an I/O transducer T
whether T is (ε, π)-symmetric for every π ∈ Sk, is undecidable.

I Remark 10 (Composability). While undecidability of (ε, π)-symmetry is unfortunate, the
reader may take solace in the fact that (ε, π)-symmetry is anyway not preserved under
composition. Indeed, if T is (ε, π)-symmetric and (δ, τ)-symmetric, it only guarantees that
it is (δ + ε, τ · π)-symmetric. Thus, in order to ensure symmetry over a group, a sound
method would have to take into account the diameter of the group. This, however, may lose
completeness. Thus, (ε, π)-symmetry is not a robust notion.

4.2 Parikh Symmetry
The notions of symmetry studied so far have a “letter-by-letter” flavour, where we compare
the distribution of specific outputs for a given inputs. We now turn to study a different
notion of symmetry, that abstracts away the order of the output symbols, and draws instead
on the Parikh image of the computation.

Let I = {i1, . . . , ik} and O = {o1, . . . , ok}. For a word y = o1 · · ·on ∈ 2O, and 1 ≤ j ≤ k,
define #(y, j) = |{m : oj ∈ om}| to be the number of occurrences of oj in y. Then, we
define the Parikh image3 of y to be P(y) = (#(y, 1), . . . ,#(y, k)) ∈ Nk.

Given a permutation π and a vector a = (a1, . . . , ak) ∈ Nk, we define
π(a) = (aπ−1(1), . . . , aπ−1(k)). Note that we use π−1 so that the following relation holds: if
e.g., π(1) = 3, then index 3 in π(a) contains a1.

3 Observe that this is not the standard Parikh image, in that it is the image with respect to signals in O,
rather than to letters in 2O.

FSTTCS 2020



35:10 Process Symmetry in Probabilistic Transducers

Consider an I/O transducer T and a word x ∈ (2I)+. The outputs of T on x induce
a probability measure on (a finite subset of) Nk, where for a vector a ∈ Nk we have
Pr(P(T (x)) = a) =

∑
y:P(y)=a Pr(T (x) = y). We can thus also consider the expected value

of the Parikh image, given by E[P(T (x))] =
∑
y Pr(T (x) = y)P(y) (where the product is

element-wise, so this is a vector in Nk).
Parikh images give rise to two measures of symmetry: given a permutation π, we say

that T is π-Parikh distribution symmetric if for every x ∈ (2I)+ and every a ∈ Nk we
have Pr(P(T (x)) = a) = Pr(P(T (π(x))) = π(a)). That is, every word x induces the same
distribution of Parikh images as π(x) does for the permuted images. A weaker notion of
symmetry uses expectation: we say that T is π-Parikh expected symmetric if for every
x ∈ (2I)+ we have E[P(T (x))] = π(E[P(T (π(x)))])

Note that Parikh-symmetry assumes the number of occurrences of a certain output signal
is meaningful. This is relevant when the output signals measure e.g., number of grants for
requests, but makes less sense when the outputs represent e.g., a choice between channels
through which a message is routed.

Our algorithmic results about Parikh symmetry use a translation to probabilistic reward
automata (PRA) [10, Section 5]. A PRA is a PA A = 〈Q,Σ, δ, q0, F 〉 equipped with a reward
function R : Q→ {0, 1}k for some k ∈ N.4 The rewards are summed along a run, and the
value of a word w ∈ Σ∗, denoted R(w), is the expected reward, that is, the weighted sum of
the rewards along all runs, weighted by their respective probabilities. We denote by A(w)
the distribution of reward vectors in Nk, induced by the runs of A on w.

In order to reason about Parikh images, we propose the following translation.

I Lemma 11. Given an I/O trandsucer T , we can construct two PRAs A,B over the
alphabet 2I and with reward function of dimension k = |I|, such that for every x ∈ (2I)+

and for every a ∈ Nk, we have that Pr(A(w) = a) = Pr(P(T (x)) = a), and Pr(B(w) = a) =
Pr(P(T (π(x))) = π(a)).

Proof. The translation is similar to the one given in the proof of Theorem 5, where instead
of adding 2O to the alphabet, we collate the Parikh image using the rewards.

Let T = 〈I,O, S, s0, δ, `〉, we construct A = 〈S, 2I , δ, s0, S〉 with the following reward
function: for every s ∈ S and 1 ≤ j ≤ k, we have R(s)j = 1 if oj ∈ `(s) and R(s)j = 0
otherwise (that is, R(s) is the characteristic vector of `(s)). Thus, A is identical to T , where
we treat all states as accepting, and replace output labels with their characteristic vectors.

The construction of B is similar, but accounts for the permutation π: we define B =
〈S, 2I , µ, s0, S〉 with reward function R′, where µ(s, i) = δ(s, π(i)) for every state s ∈ S and
i ∈ 2I , and R′(s) = π(R(s)) (where R is the reward function of A). It is easy to see that the
construction of A and B satisfies the conditions of the lemma. J

In [10], the problems of distribution-equivalence and expected-equivalence are solved,
with complexities NC and RNC, respectively, where NC is the class of problems solvable using
circuits of polynomial size and polylogarithmic depth, and RNC is its randomized analogue.
It is known that NC ⊆ P and RNC ⊆ RP.

The distribution-equivalence and expected-equivalence problems, applied to the automata
A and B obtained as per Lemma 11, exactly correspond to π-distribution symmetry and
π-expected symmetry of T , respectively. We thus have the following.

4 The rewards in [10] also allow −1 rewards, and is set on the transitions of the PRA. Since it is trivial to
push rewards from the states to the transitions, our model is simpler.
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I Theorem 12. The problem of deciding, given an I/O transducer T and a permutation π,
whether it is π-Parikh distribution symmetric (resp. π-Parikh expected symmetric), is in NC
(resp. RNC).

Both notions of Parikh symmetry can be easily shown respect composition, analogously to
Lemma 2, in that if T is both π- and τ - Parikh distribution/expected symmetric, then it is
also π ◦ τ -Parikh distribution/expected symmetric. Thus, we conclude this section with the
following.

I Theorem 13. The problem of deciding, given an I/O transducer T and a finite set of
generators X = {π1, . . . , πm}, whether it is π-Parikh distribution symmetric (resp. π-Parikh
expected symmetric) for every π ∈ 〈X〉, is in NC (resp. RNC).

5 Qualitative Symmetry

Section 4.1 rules out a decidable quantitative approximation for symmetry that takes into
account the order of the input (at least in the sense of Theorem 8). In lieu of such an
approximation, we turn to study a qualitative approximation, whereby we only require that
permuting the input does not alter the support of the output distribution.

Let T be an I/O transducer, and let π ∈ Sk. We say that T is π-qualitative-symmetric if
for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0.

Observe that for every x and y as above, Pr(T (x) = y) > 0 iff there exists a run of T
on x that is labelled y. Thus, in order to study qualitative symmetry, we can ignore the
concrete probabilities in T , and only keep information on whether they are positive or not.
Therefore, we essentially consider a nondeterministic transducer.

Using a similar translation to that in Theorem 5, but to NFAs instead of PAs, we have
the following.

I Lemma 14. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is in PSPACE.

Proof. Similarly to our approach in Theorem 5, we translate T to two automata A and
B, where A mimics the operation of T , and B works similarly, but under the permutation
π. Then, we check the equivalence of A and B. Instead of using PAs, however, we now
use nondeterministic automata (NFAs). An NFA is N = 〈Q,Σ, δ, q0, F 〉 where Q is a set of
states, Σ is an alphabet, δ : Q×Σ→ 2Q is a transition function, q0 is an initial state, and F
are the accepting states. The semantics of NFAs are textbook standard.

Let T = 〈I,O, S, s0, δ, `〉. We define A = 〈S, 2I∪O, η, s0, S〉 and B = 〈S, 2I∪O, ζ, s0, S〉,
where the transition functions are defined as follows. Let q ∈ S and σ = i ∪ o with i ∈ 2I
and o ∈ 2O, then η(q, σ) = {p ∈ S : δ(q, i)(p) > 0 and `(p) = o} and ζ(q, σ) = {p ∈ S :
δ(q, π(i))(p) > 0 and `(p) = π(o)}.

By construction, for every x ∈ (2I)+ and y ∈ (2O)+ we have that Pr(T (x) = y) > 0
iff A accepts x ⊗ y, and Pr(T (π(x)) = π(y)) iff B accepts x ⊗ y. Thus, we have that T
is π-qualitative-symmetric iff L(A) = L(B). Since equivalence of NFAs can be checked in
PSPACE, we are done. J

We proceed to show a matching lower bound.

I Lemma 15. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is PSPACE-hard.
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Proof. We show the problem is PSPACE-hard via a reduction from the universality problem
for NFAs over alphabet Σ = {0, 1} whose states are all accepting. That is, the problem of
deciding, given an NFA A = 〈Q, {0, 1}, δ, q0, Q〉 (where all states are accepting), whether
L(A) = Σ∗. This problem was shown to be PSPACE-hard in [9].

The reduction has a similar flavour as that of Theorem 8, in that we use the permutation
to switch between components of the transducer. The components themselves, however, are
somewhat different.

Let A = 〈Q, {0, 1}, δ, q0, Q〉 be an NFA over {0, 1} with all states accepting. We construct
a transducer T = 〈I,O, S, s0, η, `〉 over I = {i1, i2} and O = {o1, o2} as follows. The states
are S = Q∪{sinit, smid, s⊥}, with the labelling `(q) = ∅ for every q ∈ Q, `(sinit) = `(smid) = ∅,
and `(s⊥) = {o1, o2}. For simplicity, we treat the transition function as nondeterministic
η : S × 2I∪O → 2S . Technically, this can be thought of as specifying the support of the
transition function, with arbitrarily chosen probabilities (e.g., uniform). Note, however, that
we do not allow ∅ in the image of δ, since we must be able to specify probabilities for the
transitions. Now, for every q ∈ Q and i ∈ 2I , and we define

η(q, i) =


δ(q, 0) ∪ {s⊥} if i = ∅
δ(q, 1) ∪ {s⊥} if i = {i1, i2}
{q⊥} otherwise

That is, within the Q component, we identify Σ = {0, 1} with {∅, {i1, i2}}, and whenever
there are no corresponding transitions in A, or an “invalid” letter is seen, a transition is
taken to s⊥. Note that we add transitions to s⊥ even when there are transition in A, which
will play a role later on. The remaining transitions are as follows (see Figure 4).
η(sinit, {i1}) = {q0}, η(sinit, {i2}) = {smid},
η(sinit, ∅) = η(sinit, {i1, i2}) = {s⊥}, η(smid, ∅) = η(smid, {i1, i2}) = {smid, s⊥},
η(smid, {i1}) = η(smid, {i2}) = {s⊥}, and η(s⊥, σ) = {s⊥}.

sinitsmids⊥
s⊥

{o1, o2}

{i1}

{i1}, {i2}

{i2}

∅, {i1, i2}

∅, {i1, i2}
{i1}, {i2}

∅, {i1, i2}

Figure 4 The transducer constructed from an NFA.

Let π = (1 2). We claim that L(A) = Σ∗ iff T is (1 2)-qualitative-symmetric.
For the first direction, we prove the contrapositive. Assume L(A) 6= Σ∗, and let w ∈

Σ∗ \ L(A). Keeping our identification of Σ = {0, 1} with {∅, {i1, i2}}, consider the word
x = {i1} ·w. Since there are no runs of A on w, it follows that within the Q component, after
reading w, the only reachable state is s⊥. Thus, if z ∈ (2O)+ is such that Pr(T (x) = z) > 0,
then z is of the form ∅+ · {o1, o2}+. In particular, let y = ∅|w|+1, then Pr(T (x) = y) = 0.
However, a possible run of T on π(x) is sinit, s

|w|
mid, which induces the labels y = π(y). Thus,

Pr(T (π(x)) = π(y)) > 0, so T is not π-qualitative-symmetric.
Conversely, assume that L(A) = Σ∗, and consider x ∈ (2I)+ and y ∈ (2O)+. We claim

that Pr(T (x) = y) > 0 iff Pr(T (π(x)) = π(y)) > 0. Observe that similarly to Theorem 8, all
the labels on T are invariant under π, so the above can be stated as

Pr(T (x) = y) > 0 iff Pr(T (π(x)) = y) > 0. (2)
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Now, if x starts with either ∅ or {i1, i2}, then there is a single run on x and on π(x),
namely sinit, s⊥, so both x and π(x) induce the same distribution on output sequences. Thus,
Equation (2) holds.

Next, similarly to Theorem 8, we can again assume without loss of generality that x
starts with {i1}, otherwise we use π(x). Thus, x is either of the form {i1} · w or of the form
{i1} · w · {{i1}, {i2}} · (2I)∗ with w ∈ {∅, {i1, i2}}∗.

In the former case, recall that η follows the transition function of A, as well as allowing
at each point to reach s⊥. Thus, T (x) assigns positive probability to every word of the form
∅+{o1, o2}∗ (of length |w| + 1). Observe that π(w) = w, and hence π(x) = {i2}w, which
induces a distribution with the same support, and again Equation (2) holds.

In the latter case, x is of the form {i1} ·w · {{i1}, {i2}} · (2I)∗, where upon reading either
{i1} or {i2}, the runs in the Q component all collapse to s⊥. Thus, the support of T (x)
comprises words of the form ∅+{o1, o2}∗ where the ∅+ prefix is at most of length |w| + 1.
Since π({i1}) = {i2} and π({i2}) = {i1}, then by the definition of η, the distribution T (π(x))
has the same support (as runs that remain in smid collapse to s⊥ at the same stage). We
thus conclude the claim. Finally, it is easy to see that the reduction is polynomial. J

Combining Lemmas 14 and 15, we have the following.

I Theorem 16. The problem of deciding, given an I/O transducer T and a permutation π,
whether T is π-qualitative-symmetric, is PSPACE-complete.

As in Section 4, since we use the permutation group S2 for our hardness result, we have
the following.

I Corollary 17. The problem of deciding whether a given I/O transducer T is π-qualitative-
symmetric for every π ∈ Sk is PSPACE-complete.

6 Extensions and Research Directions

Extensions

The setting considered thus far restricts to corresponding input and output sets of the form
I = {i1, . . . , ik} and O = {o1, . . . , ok}. Typically, however, systems also include signals that
are not process-specific, such as whether the system is ready, whether there is an error,
etc. We can easily incorporate these into the setting. Indeed, adding input signals that are
ignored by permutations can be inserted mutatis-mutandis to all the automata constructions
we use. In addition, the lower bounds trivially carry over.

In addition, some systems have multiple sets of inputs and/or output signals that belong
to processes, such as read grants and write grants, both of which are process-specific outputs.
Again, our framework can easily be fit with this extension, by permuting each collection of
process-specific inputs or outputs separately.

Research Directions

Process symmetry often arises in model checking, and exploiting it correctly can significantly
reduce the size of specifications (and hence the time spent in model checking), as well as
give insight into the behaviour of the system. In this work, we introduce several variants
of process symmetry, and study their algorithmic aspects. Specifically, we show that exact
symmetry can be decided in polynomial time, whereas the approximate version via the
L∞ metric becomes undecidable. A coarser, qualitative approximation, can be decided in
PSPACE. In addition, a different type of symmetry, which looks only at the Parikh image of
the output, can be decided efficiently.
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The notions of symmetry studied in this work restrict to either letter-by-letter symmetry,
or Parikh symmetry. However, many other directions can exploit the structure of words
as temporal objects to define other symmetry measures. These include eventual symmetry,
where we require symmetry to take place only after a finite prefix, sliding-window symmetry,
where we look at Parikh images within a sliding window, while requiring window-by-window
symmetry, as well as notions of symmetry that are only relevant for infinite words, such as
the limit-average Parikh image.
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