
Sample-And-Gather: Fast Ruling Set Algorithms
in the Low-Memory MPC Model
Kishore Kothapalli
IIIT Hyderabad, India
kkishore@iiit.ac.in

Shreyas Pai
The University of Iowa, Iowa City, IA, USA
shreyas-pai@uiowa.edu

Sriram V. Pemmaraju
The University of Iowa, Iowa City, IA, USA
sriram-pemmaraju@uiowa.edu

Abstract

Motivated by recent progress on symmetry breaking problems such as maximal independent set
(MIS) and maximal matching in the low-memory Massively Parallel Computation (MPC) model
(e.g., Behnezhad et al. PODC 2019; Ghaffari-Uitto SODA 2019), we investigate the complexity
of ruling set problems in this model. The MPC model has become very popular as a model for
large-scale distributed computing and it comes with the constraint that the memory-per-machine is
strongly sublinear in the input size. For graph problems, extremely fast MPC algorithms have been
designed assuming Ω̃(n) memory-per-machine, where n is the number of nodes in the graph (e.g.,
the O(log logn) MIS algorithm of Ghaffari et al., PODC 2018). However, it has proven much more
difficult to design fast MPC algorithms for graph problems in the low-memory MPC model, where
the memory-per-machine is restricted to being strongly sublinear in the number of nodes, i.e., O(nε)
for constant 0 < ε < 1.

In this paper, we present an algorithm for the 2-ruling set problem, running in Õ(log1/6 ∆) rounds
whp, in the low-memory MPC model. Here ∆ is the maximum degree of the graph. We then extend
this result to β-ruling sets for any integer β > 1. Specifically, we show that a β-ruling set can be
computed in the low-memory MPC model with O(nε) memory-per-machine in Õ(β · log1/(2β+1−2) ∆)
rounds, whp. From this it immediately follows that a β-ruling set for β = Ω(log log log ∆)-ruling set
can be computed in in just O(β log logn) rounds whp. The above results assume a total memory of
Õ(m+n1+ε). We also present algorithms for β-ruling sets in the low-memory MPC model assuming
that the total memory over all machines is restricted to Õ(m). For β > 1, these algorithms are all
substantially faster than the Ghaffari-Uitto Õ(

√
log ∆)-round MIS algorithm in the low-memory

MPC model.

All our results follow from a Sample-and-Gather Simulation Theorem that shows how random-
sampling-based Congest algorithms can be efficiently simulated in the low-memory MPC model.
We expect this simulation theorem to be of independent interest beyond the ruling set algorithms
derived here.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Massively Parallel Computation, Ruling Set, Simulation Theorems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.28

Related Version A full version of this paper is available at: https://arxiv.org/abs/2009.12477.

Funding This work is funded in part by the Department of Science and Technology, Government of
India, via Grant number MTR/2017/000849.

© Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju;
licensed under Creative Commons License CC-BY

40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 28; pp. 28:1–28:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/360868975?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kkishore@iiit.ac.in
https://orcid.org/0000-0003-2409-7807
mailto:shreyas-pai@uiowa.edu
mailto:sriram-pemmaraju@uiowa.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.28
https://arxiv.org/abs/2009.12477
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

1 Introduction

There has been considerable recent progress in the design and study of large-scale distributed
computing models that are closer to reality, yet mathematically tractable. Of these, the
Massively Parallel Computing (MPC) model [24, 37] has gained significant attention due to
its flexibility and its ability to closely model existing distributed computing frameworks used
in practice such as MapReduce [14], Spark [38], Pregel [32], and Giraph [11].

The MPC model is defined by a set of machines, each having at most S words of
memory. The machines are connected to each other via an all-to-all communication network.
Communication and computation in this model are synchronous. In each round, each machine
receives up to S words from other machines, performs local computation, and sends up to S
words to other machines. The key characteristic of the MPC model is that both the memory
upper bound S and the number of machines used are assumed to be strongly sublinear in the
input size N , i.e., bounded by O(N1−ε) for some constant ε, 0 < ε < 1. This characteristic
models the fact that in modern large-scale computational problems the input is too large to
fit in a single machine and is much larger than the number of available machines.

Even though the MPC model is relatively new, a wide variety of classical graph problems
have been studied in this model. This stream of research includes the design of fast
algorithms [4, 6, 13, 12, 21] as well as lower bound constructions [10, 20, 35]. A particular,
though not exclusive, focus of this research has been on symmetry breaking problems such as
maximal independent set (MIS) [6, 21, 18], maximal matching [7], and (∆ + 1)-coloring [9, 3],
along with related graph optimization problems such as minimum vertex cover and maximum
matching.

For graph problems, the input size is Õ(m + n) where m is the number of edges and
n is the number of nodes of the input graph. Thus, O((m + n)1−ε), for some constant ε,
0 < ε < 1, is an upper bound on both the number of machines that can be used and the size S
of memory per machine. It turns out that the difficulty of graph problems varies significantly
based on how S relates to the number of nodes (n) of the input graph. Specifically, three
regimes for S have been considered in the literature.

Strongly superlinear memory (S = O(n1+ε)): For this regime to make sense in the
MPC model, the input graph needs to be highly dense, i.e., m � S � n such that S
is strongly sublinear in m. Even though the input graph is dense, the fact that each
machine has O(n1+ε) local memory makes this model quite powerful. For example, in
this model, problems such as minimum spanning tree, MIS, and 2-approximate minimum
vertex cover, all have O(1)-round algorithms [24, 22].
Near-linear memory (S = Õ(n)): Problems become harder in this regime, but
symmetry breaking problems such as MIS, approximate minimum vertex cover, and
maximal matching can still be solved in O(log logn) rounds [13, 2, 17, 19]. Furthermore,
recently Assadi, Chen, and Khanna [3] presented an O(1)-round algorithm for (∆ + 1)-
vertex coloring.
Strongly sublinear memory (S = O(nε)): Problems seem to get much harder in this
regime and whether there are sublogarithmic-round algorithms for certain graph problems
in this regime is an important research direction. For example, it is conjectured that
the problem of distinguishing if the input graph is a single cycle vs two disjoint cycles of
length n/2 requires Ω(logn) rounds [37, 20]. However, even in this regime, Ghaffari and
Uitto [21] have recently shown that MIS does have a sublogarithmic-round algorithm,
running in Õ(

√
log ∆) rounds, where ∆ is the maximum degree of the input graph. This

particular result serves as a launching point for the results in this paper.



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:3

The MIS problem has been called “a central problem in the area of locality in distributed
computing” (2016 Dijkstra award citation). Starting with the elegant, randomized MIS
algorithms from the mid-1980s by Luby [31] and by Alon et al. [1], several decades of
research has now been devoted to designing MIS algorithms in various models of parallel
and distributed computing (e.g., PRAM, Local, Congest, Congested-Clique, and
MPC). A ruling set is a natural relaxation of an MIS and considerable research has been
devoted to solving the ruling set problem in different models of distributed computation
as well [5, 26, 8, 15]. An (α, β)-ruling set of a graph G = (V,E) is a subset S ⊆ V such
that (i) every pair of nodes in S are at distance at least α from each other and (ii) every
node in V is at distance at most β from some node in S. An MIS is just a (2, 1)-ruling
set. Research on the ruling set problem has focused on the question of how much faster
distributed ruling set algorithms can be relative to MIS algorithms and whether there is
a provable separation in the distributed complexity of these problems in different models
of distributed computing. For example, in the Local model1, Kuhn, Moscibroda, and
Wattenhofer [27, 28] show an Ω

(
min

{
log ∆

log log ∆ ,
√

logn
log logn

})
lower bound for MIS, even for

randomized algorithms. However, combining the recursive sparsification procedure of Bisht
et al. [8] with the improved MIS algorithm of Ghaffari [15] and the recent deterministic
network decomposition algorithm of Rozhon and Ghaffari [36], it is possible to compute
β-ruling sets in O(β log1/β ∆ +polyloglog(n)) rounds, thus establishing a separation between
these problems, even for β = 2, in the Local model. In this paper, we are interested only in
(2, β)-ruling sets and so as a short hand, we drop the first parameter “2” and call these objects
β-ruling sets. Also as a short hand, we will use low-memory MPC model to refer to the
strongly sublinear memory MPC model. As mentioned earlier, Ghaffari and Uitto [21] recently
presented an algorithm that solves MIS in the low-memory MPC model in Õ(

√
log ∆) rounds.

However, nothing more is known about the 2-ruling set problem in this model and the fastest
2-ruling set algorithm in the low-memory MPC model is just the above-mentioned MIS
algorithm. This is in contrast to the situation in the linear-memory MPC model. In this
model, the fastest algorithm for solving MIS runs in O(log logn) rounds [17], whereas the
fastest 2-ruling set algorithm runs in O(log log logn) rounds [23]. This distinction between
the status of MIS and 2-ruling sets in the linear-memory MPC model prompts the following
related questions.

Is it possible to design an o(
√

log ∆)-round, 2-ruling set algorithm in the low-memory
MPC model? Could we in fact design 2-ruling set algorithms in the low-memory MPC
model that run in O(polyloglog(n)) rounds?

1.1 Main Results
We make progress on the above question via the following results proved in this paper.
1. We show (in Theorem 19 part (i)) that a 2-ruling set of a graph G can be computed in

Õ(log1/6 ∆) rounds in the low-memory MPC model. We generalize this result to β-ruling
sets, for β ≥ 2 (in Theorem 23 part (i)), and show that a β-ruling set of a graph G can be
computed in Õ(log1/(2β+1−2) ∆) rounds in the low-memory MPC model. These algorithms
are substantially faster than the MIS algorithm [21] for the low-memory MPC model. The
inverse exponential dependency on β in the running time of the β-ruling set algorithm is

1 The Local model is a synchronous, message passing model of distributed computation [29, 34] with
unbounded messages. See Section 1.2 for definitions of related models of computation.

FSTTCS 2020



28:4 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

worth noting. This dependency implies that for any β = Ω(log log log ∆), we can compute
a β-ruling set in only O(β ·polyloglog(n)) rounds. This is in contrast to the situation in the
Local model; using the O(β · log1/β ∆ + polyloglog(n))-round β-ruling set algorithm in
the Local model mentioned earlier, one can obtain an O(polyloglog(n))-round algorithm
only for β = Ω(log log ∆).

2. Even though the above-mentioned results are in the low-memory MPC model, they assume
no restrictions on the total memory used by all the machines put together. Specifically,
we obtain the above results allowing a total of Õ(m+n1+ε) memory. Note that the input
uses Õ(m) memory and thus these algorithms make use of Õ(n1+ε) extra total memory.
If we place the restriction that the total memory cannot exceed the input size, i.e., Õ(m),
then we get slightly weaker results. Specifically, we show (in Theorem 19 part (ii)) that a
2-ruling set can be computed in Õ(log1/4 ∆) rounds in the low-memory MPC model using
Õ(m) total memory. Additionally, we show (in Theorem 23 part (ii)) that a β-ruling set,
for any β ≥ 1, can be computed in Õ(log1/2β ∆) rounds in the low-memory MPC model
using Õ(m) total memory. Note that even though these results are weaker than those
we obtain in the setting where total memory is unrestricted, for β > 1, these algorithms
are much faster than the Õ(

√
log ∆)-round, low-memory MPC model algorithm for MIS

by Ghaffari and Uitto [21] that uses Õ(m) total memory. Also note that by plugging in
β = 1, we recover the Ghaffari-Uitto MIS algorithm.

Technical Contributions. We obtain all of these results by applying new Simulation The-
orems (Theorems 9 and 12) that we develop and prove. These Simulation Theorems provide
a general method for deriving fast MPC algorithms from known distributed algorithms in
the Congest model2 and they form the main technical contribution of this paper.

A well-known technique [16, 21, 23, 33] for designing fast algorithms in “all-to-all” com-
munication models such as MPC is the following “ball doubling” technique. Informally
speaking, if every node v knows the state of the k-neighborhood around v, then by exchan-
ging this information with all nodes, ideally in O(1) rounds, it is possible to learn the state
of the 2k-neighborhood around each node. In this manner, nodes can learn the state their
`-neighborhood in O(log `) rounds. Then it is possible to simply use local computation at
each node to “fast forward” the algorithm by ` rounds, without any further communication.
In this manner, a phase consisting of ` rounds in the Congest model can be compressed
into O(log `) rounds in the MPC model. This description of the “ball doubling” technique
completely ignores the main obstacle to using this technique: the k-neighborhoods around
nodes may be so large that bandwidth constraints of the communication network may disallow
rapid exchange of these k-neighborhoods.

Our main contribution is to note that in many randomized, distributed algorithms in
the Congest model, there is a natural sparsification that occurs, i.e., in each round a
randomly sampled subset of the nodes are active, and the rest are silent. This implies that
the k-neighborhoods that are exchanged only need to involve sparse subgraphs induced by
the sampled nodes. A technical challenge we need to overcome is that the subgraph induced
by sampled nodes is not just from the next round, but from the ` future rounds; so we need
to be able to estimate which nodes will be sampled in the future. On the basis of this idea,
we introduce the notion of α-sparsity of a randomized Congest algorithm, for a parameter
α; basically smaller the α greater the sparsification induced by random sampling. We present

2 The Congest model [34] is similar to the Local model except that in the Congest model there is an
O(logn) bound on the size of each message.



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:5

Sample-and-Gather Simulation Theorems in which, roughly speaking, an R-round Congest
algorithm is simulated in Õ(R/

√
logα n) rounds (respectively, Õ(R/

√
logα ∆) rounds) in the

low-memory MPC model, where the total memory is Õ(m+ n1+ε) (respectively, Õ(m)).
Our Simulations Theorems are inspired by a Simulation Theorem due to Behnehzhad et

al. [6, Lemma 5.5]. Using their Simulation Theorem, an R-round state-congested algorithm
can be simulated in (roughly)R/ log∆ n low-memory MPC rounds. In contrast, our Simulation
Theorem (Theorem 9) yields a running time of (roughly) R/

√
logα n, where α is a sparsity

parameter. When the input graph has high maximum degree, but the state-congested
algorithm samples a very sparse subgraph (i.e., α is small) then our Simulation Theorems
provide a huge advantage over the Behnehzhad et al. Simulation Theorems.

To obtain our results for ruling sets, we apply the Sample-and-Gather Simulation Theorems
to the sparsification procedure of Kothapalli and Pemmaraju [26] and Bisht et al. [8] and to
the sparsified MIS algorithm of Ghaffari [16]. We note that by applying the Sample-and-
Gather Simulation Theorems to the sparsified MIS algorithm of Ghaffari [16], we recover the
Ghaffari-Uitto low-memory MPC algorithm for MIS [21], built from scratch. We believe that
the Sample-and-Gather Theorems will be of independent interest because they simplify the
design of fast MPC algorithms.

1.2 Technical Preliminaries
Notation. For a node v ∈ V we denote its non-inclusive neighborhood in G by Nbr(v).
Moreover, we define Nbr+(v) = Nbr(v) ∪ {v}, Nbr(S) =

⋃
v∈S Nbr(v), Nbr+(S) =⋃

v∈S Nbr+(v). The standard usage of the Õ(f(n)) notation is to denote O(poly log(f(n)) ·
f(n)). But, because our round and memory complexity bounds involve multiple parameters
(e.g., n, m, and ∆), we abuse notation and use the Õ(·) notation to hide poly logn or
poly log logn factors, as appropriate (e.g., Õ(log1/6 ∆) denotes O(log1/6 ∆ · poly log logn)).
Moreover, we consider ε to be a constant in (0, 1) and hence, we don’t explicit mention ε
dependency in the run time results. However the dependency on epsilon is of the form 1/εc
for some small constant c ≥ 1 (and not 2−eps).

Distributed Computing Models. In the Congest model [34] a communication network is
abstracted as an n-node graph. In synchronous rounds each node can send a O(logn) bit
message to each of its neighbors. The Congested-Clique model is similar to the Congest
model, but nodes can send O(logn)-bits messages to all other nodes, not only to its neighbors
in the input graph G [30]. The Local model [29] is the same as the Congest model, except
the message sizes can be unbounded.

MPC model. Typically, in the MPC model, it is assumed that the input graph is distributed
in a node-centric manner among the machines. In other words, for each node v, there is a
machine Mv that hosts it and Mv knows all the neighbors of v and the machines that host
these neighbors. However, this scheme cannot be implemented as-is in the low-memory MPC
model because the degree of a node could be larger than the memory volume nε of a machine.
To deal with this issue, we first assume that a node v with deg(v) > nε is split into copies
that are distributed among different machines and we have a virtual O(1/ε)-depth balanced
tree on these copies of v. The root of this tree coordinates communication between v and
its neighbors in the input graph. By itself, this is insufficient because information from v’s
neighbors cannot travel up v’s tree without running into a memory bottleneck. However, if
computation at each node can be described by a separable function, then this is possible.

FSTTCS 2020



28:6 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

The following definition of separable functions captures functions such as max, min, sum,
etc. This issue and the proposed solution have been discussed in [21, 6].

I Definition 1. Let f : 2R → R denote a set function. We call f separable iff for any set of
reals A and for any B ⊆ A, we have f(A) = f

(
f(B), f(A \B)

)
.

The following lemma [6] shows that it is possible to compute the value of a separable function
f on each of the nodes in merely O(1/ε) rounds. The bigger implication of this lemma is
that a single round of a Congest algorithm can be simulated in O(1/ε) low-memory MPC
rounds.

I Lemma 2 ([6]). Suppose that on each node v ∈ V , we have a number xv of size O(logn)
bits and let f be a separable function. There exists an algorithm that in O(1/ε) rounds of
MPC, for every node v, computes f({xu |u ∈ Nbr(v)}) whp in the low-memory MPC model
with Õ(m) total memory.

Note about proofs. Due to space constraints, we only include two proofs of the main
Sample-and-Gather Simulation Theorem in the paper; a full version of the paper, with all
proofs, is available at https://arxiv.org/abs/2009.12477, [25].

2 The Sample-and-Gather Simulation

Our simulation theorems apply to a subclass of Congest model algorithms called state-
congested algorithms [6].

I Definition 3. An algorithm in the Congest model is said to be state-congested if
(i) by the end of round r, for any r, at each node v, the algorithm stores a state σr(v) of size

O(deg(v)polylog(n)) bits, i.e., an average of O(polylog(n)) bits per neighbor. The initial
state σ0(v) of each node v is its ID. Furthermore, the computation performed by each
node v in each round r uses an additional temporary space of size O(deg(v) · polylog(n))
bits.

(ii) The states of the nodes after the last round of the algorithm are sufficient in determining,
collectively, the output of the algorithm.

A key feature of a state-congested algorithm is that the local state at each node stays bounded
in size throughout the execution of the algorithm.

We inductively design a fast low-memory MPC algorithm that simulates a given state-
congested algorithm. For this purpose, we start by assuming that we have a state-congested,
possibly randomized, algorithm Alg, whose first t rounds have been correctly simulated in
the low-memory MPC model. Our goal now is to simulate a phase consisting of the next `
rounds of Alg, i.e., rounds t+ 1, t+ 2, . . . , t+ `, in just O(log `) low-memory MPC rounds.
We categorize each node u in a round τ , t+ 1 ≤ τ ≤ t+ `, based on its activity in round τ .
Specifically, a node u is a sending node in round τ if sends at least one message in round
τ . Moreover, a node is called a oblivious node if it does not update its state in round τ . In
other words, an oblivious node ignores any messages it receives in round τ .

Consider a node u at the start of the phase we want to compress. Since this is immediately
after round t, node u knows its local state σt(u). Let pt+1(u) denote the probability that
node u is a sending node in round t+ 1. We call this the activation probability of node u
in round t+ 1. Also, for any node v, let At+1(v) :=

∑
u∈Nbr(v) pt+1(u) denote the activity

level in v’s neighborhood in round t + 1. Note that pt+1(u) is completely determined by
σt(u) and so node u can locally calculate pt+1(u) after round t. In order to simulate rounds

https://arxiv.org/abs/2009.12477


K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:7

t + 1, t + 2, . . . , t + ` in a compressed fashion in the MPC model, every node u needs to
know the probability of it being a sending node in each of these rounds. But, rounds
t + 2, t + 3, . . . , t + ` are in the future and so node u, using current knowledge, can only
estimate an upper bound p̃τ (u) on the probability that it will be a sending node in round τ ,
t+ 2 ≤ τ ≤ t+ `.

In general, doing this estimation can be difficult because sampling probabilities of a node
u in the ` future rounds depend on current states of nodes in an `-radius neighborhood
around node u. The volume of such a neighborhood may be too high to fit in the memory of
any machine in the low-memory MPC model. In fact, our Sample-and-Gather Simulation
Theorems are designed to avoid exactly this type of ball gathering of potentially dense
neighborhoods. It turns out that this estimation is essentially trivial for the two applications
of our Simulation Theorem described in Section 3.1. This is because for these algorithms,
sampling probabilities for all active nodes increase by a known multiplicative factor in each
round. Thus independent of a node u’s future state (e.g., whether it is active), it is possible
to obtain an upper bound, denoted p̃τ (u), that node u will be a sending node in round τ , for
rounds τ = t+ 2, t+ 3, . . . , t+ `. For round τ = t+ 1, we simply set p̃t+1(u) := pt+1(u), i.e.,
the estimated activation probability in round t+ 1 is the actual activation probability.

For any τ , t + 1 ≤ τ ≤ t + `, for any node v, let Ãτ (v) :=
∑
u∈Nbr(v) p̃τ (u) denote the

estimated activity level in node v’s neighborhood in round τ . Note that for the first round in
the phase, τ = t+ 1, the estimated and actual activity levels are identical. Finally, let Ãτ be
the maximum Ãτ (v), where the maximum is taken over all nodes v that are not oblivious
nodes. The maximum being taken over all non-oblivious nodes is motivated by the fact
that if a node is oblivious, it does not update its state and therefore the activity level in its
neighborhood is not relevant.

I Lemma 4. Suppose ` is such that(
t+∑̀

τ=t+1
Ãτ logn

)`
≤ O(nε/2). (1)

Then the next phase of the algorithm Alg consisting of rounds t+ 1, t+ 2, . . . , t+ ` can be
simulated in O(log `) rounds in the low-memory MPC model with Õ(m+n1+ε) total memory.

Proof. Simulating rounds t+ 1, t+ 2, . . . , t+ ` of algorithm Alg is equivalent to computing
the state σt+`(v) for every node v ∈ V . We use the 2-step algorithm below to do this
computation. First, we introduce some notation. Let BG(v, `) denote the labeled subgraph
of G, induced by nodes that are at most ` hops from v in G and in which each node u is
labeled with its local state σt(u) after round t.
Step 1: For each node v ∈ V , designate a distinct machineMv at which we gather a “sampled”

subgraph SG(v, `) of BG(v, `). The definition of SG(v, `) is provided below.
Step 2: Using the subgraph SG(v, `), machineMv locally simulates rounds t+1, t+2, . . . , t+`

of Alg and computes σt+`(v).

In the rest of the proof, we will first define the subgraph SG(v, `). We will then show in
Claim 5 that using this subgraph, it is possible for machine Mv to locally simulate rounds
t+ 1, t+ 2, . . . , t+ ` of Alg. We then show in Claim 6 that assuming ` satisfies (1), the size
of SG(v, `) is O(nε) whp. Finally, in Claim 7, we show that the subgraph SG(v, `) can be
gathered at each machine Mv in parallel in O(log `) rounds. These claims together complete
the proof of the lemma.

FSTTCS 2020



28:8 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Each node u ∈ V generates a sequence of uniformly distributed random bits r1
τ (u),

r2
τ (u), . . ., rc·logn

τ (u) for a large enough constant c. These bits are designated for round τ ,
t+ 1 ≤ τ ≤ t+ ` and they serve two purposes: (i) they are used to randomly sample u based
on the estimate p̃τ (u) that u will be a sending node in round τ , and (ii) they are used to
simulate u’s actions in round τ . It is important that the same bits be used for both purposes
so that there is consistency in u’s random actions. Specifically, u constructs a real number
Rτ (u) that is uniformly distributed over {i/2c logn | 0 ≤ i < c logn} using these bits. Node
u adds these O(` · logn) bits to its local state after round t, σt(u). Node u then marks itself
for round τ if Rτ (u) ≤ pτ (u). If a node u marks itself for a round τ it means that in u’s
estimate after round t, u will be a sending node in round τ . Further, node u is marked if it
is marked for round τ for any τ , t+ 1 ≤ τ ≤ t+ `. The “sampled” subgraph SG(v, `) is the
subgraph of BG(v, `) induced by v along with all nodes u in BG(v, `) that are marked.

B Claim 5. For any node v ∈ V , information in SG(v, `) is enough to locally compute
σt+`(v).

Proof. We prove this claim inductively. Specifically, we prove the following:

For any i, 0 < i ≤ `, in addition to knowing SG(v, `), if we know the states σt+`−i(u)
for all u ∈ SG(v, i) then we can compute the states σt+`−i+1(u) for all u ∈ SG(v, i−1).

The premise of this statement is true for i = ` because SG(v, `) contains the round-t local
states σt(u) for all u ∈ SG(v, `). For i = 1 this claim is equivalent to saying that in addition
to SG(v, `), if we know σt+`−1(u) for all neighbors of v in SG(v, `) then we can compute
σt+`(v). This is what we need to show.

To be able to compute σt+`−i+1(u) for any u in SG(v, i− 1), we need to know the round-
(t + ` − i) local states σt+`−i(w) for all neighbors w of u that are sending nodes in round
t+ `− i. With high probability, the probability pw that a neighbor w of u sends messages in
round t+ `− i is upper bounded by the estimate p̃t+`−i(w) that w computed after round
t. Node w sends messages in round t+ `− i if Rt+`−i(w) ≤ pw. Since pw ≤ p̃t+`−i(w), we
know that Rt+`−i(w) ≤ p̃t+`−i(w) and therefore w is marked and included in SG(v, `). Also
note that since u ∈ SG(v, i − 1) and w is a neighbor of u, we see that w ∈ SG(v, i). Thus
any node w that sends a message to node u in round t + ` − i belongs to SG(v, i) and by
the hypothesis of the inductive claim we know σt+`−i(w). With the knowledge of σt+`−i(w),
we can simulate round t+ `− i+ 1 at each node w, using the random real Rt+`−i+1(w) to
execute any random actions w may take. Then using the message received by u from all such
neighbors w in round t+ `− i+ 1, we can update u’s local state, thus computing σt+`−i+1(u).

C

B Claim 6. For any node v ∈ V , the size of SG(v, `) is at most
(∑t+`

τ=t+1 Ãτ logn
)`

whp.

Proof. Consider an arbitrary v ∈ V and u ∈ BG(v, `) and a round t+ 1 ≤ τ ≤ t+ `. Node
u is marked for round τ with probability pτ (u). Recalling that Nbr(u) denotes the set
of neighbors of u in G, we see that expected number of neighbors of u marked for round
t+ 1 ≤ τ ≤ t+ ` is at most∑

w∈Nbr(u)

pτ (w) ≤ Ãτ (u) ≤ Ãτ .

Furthermore, since neighbors of u are marked for round τ independently, by Chernoff bounds
we see that the number of neighbors that u has in SG(v, `) that are marked for round τ

is Ãτ logn whp. By the union bound this means that the number of neighbors that u
has in SG(v, `) is

∑t+`
τ=t+1 Ãτ logn whp. From this it follows that the size of SG(v, `) is(∑t+`

τ=t+1 Ãτ logn
)`
. C



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:9

B Claim 7. For every node v ∈ V , the graph SG(v, `) can be gathered at Mv in at most
O(log `) rounds.

Proof. Here we use the “ball doubling” technique that appears in a number of papers on
algorithms in “all-to-all” communication models (e.g., [16, 21, 23, 33]). Suppose that each
machine Mv knows SG(v, i) for some 0 ≤ i ≤ `/2. Each machine Mv then sends SG(v, i)
to machine Mu for every node u in SG(v, i). After this communication is completed, each
machine Mv can construct SG(v, 2i) from the information it has received because SG(v, 2i)
is contained in the union of SG(u, i) for all u in SG(v, i).

We now argue that this communication can be performed in O(1) rounds. First, note
that the size of SG(v, i) is bounded above by O(nε/2). This also means that SG(v, i) contains
O(nε/2) nodes. Therefore, Mv needs to send a total of O(nε/2) × O(nε/2) = O(nε) words.
A symmetric argument shows an O(nε) bound on the number of words Mv receives. Since
O(nε) words can be sent and received in each communication round, this communication
can be completed in O(1) rounds. C

With the claims proven, we finish the proof of the Lemma. J

The biggest benefit from using this “sample-and-gather” simulation approach is for state-
congested algorithms that sample a sparse subgraph and all activity occurs on this subgraph.
We formalize this sparse sampling property as follows.

I Definition 8. Consider a state-congested algorithm Alg that completes in R rounds. For
a parameter α ≥ 2, we say that Alg is α-sparse if for all positive integers, t and ` satisfying
t+ ` ≤ R, for a length-` phase of Alg starting at round t+ 1 the following two properties
hold.
(a) Bounded activity level: The activity level in the first round of the phase, At+1, satisfies

the property: At+1 = O(α` · logn).
(b) Bounded growth of estimated activity level: The estimated activity level Ãτ , t+1 ≤

τ ≤ t+`, shows bounded growth. Specifically, Ãτ+1 ≤ αÃτ for for all t+1 ≤ τ ≤ t+`−1.
Together these properties require the activity level in each neighborhood to be low (Property
(a)), but also that the estimated activity level of each node does not grow too fast in future
rounds (Property (b)). When these two properties hold, Lemma 4 can be applied inductively
to obtain the following theorem. The fact that we use a single parameter α as an upper bound
for both Properties (a) and (b) is just a matter of convenience and leads to an easy-to-state
bound on number of rounds in this theorem.

I Theorem 9 (Sample-and-Gather Theorem v1). Let Alg be an α-sparse state-congested
algorithm that completes in R rounds. Then Alg can be simulated in the low-memory MPC
model with Õ(m+ n1+ε) total memory, for constant 0 < ε < 1, in O

(
R log logn/

√
logα n

)
rounds.

Proof. Let ` = b
√

ε
8 · logα nc. Partition the R rounds of Alg into dR/`e phases, where Phase

i, 1 ≤ i < dR/`e, consists of the ` rounds (i − 1) · ` + 1, (i − 1) · ` + 2, . . . , i · ` and Phase
dR/`e consists of at most ` rounds (dR/`e − 1) · `+ 1, (dR/`e − 1) · `+ 2, . . . , R.

FSTTCS 2020



28:10 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

We now use the fact that Alg is α-sparse to show, via series of inequalities, that ` satisfies
Inequality (1).(

t+∑̀
τ=t+1

Ãτ · logn
)`

≤

(
Ãt+1 · logn ·

`−1∑
i=0

αi

)`
(by Property (b) of being α-sparse)

≤

(
At+1 · logn ·

`−1∑
i=0

αi

)`
(by Ãt+1 = At+1)

≤

(
α` · log2 n ·

`−1∑
i=0

αi

)`
(by Property (a) of being α-sparse)

=
(
α` · log2 n · α

` − 1
α− 1

)`
(by geometric series)

≤ α2`2
· (log2 n)` (by ` ≥ 1, α ≥ 2)

≤ nε/4 · no(1) (by ` =
⌊√

ε

8 · logα n
⌋
)

≤ nε/2.

By using Lemma 4, this implies that each phase can be simulated in the MPC models with
O(nε) memory per machine in O(log `) = O(log logn) rounds. Given that the R rounds of
Alg are partitioned into dR/`e phases, we see that Alg can be implemented in the MPC
model with O(nε) memory per machine in O(R log logn/

√
ε logα n) rounds. J

Theorem 9 provides a Simulation Theorem for the MPC model in which machines use
O(nε) memory per machine. However, the total memory used by MPC algorithms that result
from this theorem is Õ(m+ n1+ε). We now show that under fairly general circumstances, it
is possible to obtain a Simulation Theorem yielding low-memory MPC algorithms that use
only Õ(m) total memory, while taking slightly more time.

I Definition 10. A Congest algorithm Alg is said to be degree-ordered if it satisfies two
properties.
(a) The execution of Alg can be partitioned into Stages 1, 2, . . . such that in Stage i the

only active nodes are those whose degree is greater than ∆1/2i and other nodes that are
neighbors of these “high degree” nodes.

(b) Let Ri be the number of rounds in Stage i. Then Ri ≤ Ri−1/2.
A lot of symmetry breaking algorithms are either inherently degree-ordered or can be made
so with small modifications – this can be seen in the applications of the Sample-and-Gather
Theorems in Section 3.1. The fact that our definition permits activity in a stage not just at
nodes that are “high degree” for that stage, but even at other nodes that are neighbors of
high degree nodes, provides the flexibility we need for our applications. In fact, it is possible
to further relax this definition and allow all nodes within O(1) hops of “high degree” nodes
to be active in a stage; for ease of exposition we just work with the current definition. For
algorithms that are degree-ordered, we can gather balls centered at active nodes, whose
volume is at most the degree threshold for the current stage. This allows us to use a simple
charging scheme to charge the sizes of the balls to the memory already allocated for the
neighborhoods of the active nodes. This in turn yields the Õ(m) total memory bound.
Property (b) holds for algorithms whose running time is dominated by O(log ∆). Given that
the degree threshold in Property (a) falls as ∆1/2i , the running time of each stage falls by a
factor of 2.



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:11

I Lemma 11. Suppose that Alg is a state-congested, degree-ordered algorithm. Consider a
phase of `− 1 rounds t+ 1, t+ 2, . . . , t+ `− 1 with a Stage i. If ` satisfies(

t+∑̀
τ=t+1

Ãτ logn
)`
≤ min

{
nε/2,∆1/2i

}
, (2)

then this phase can be simulated in O(log `) rounds in the low-memory MPC model with a
total of Õ(m) memory over all the machines.

Finally, if Alg is a state-congested algorithm that is α-sparse and degree-ordered, we obtain
the following Simulation Theorem that guarantees an Õ(m) total memory usage.

I Theorem 12 (Sample-and-Gather Theorem v2). Let Alg be a state-congested, α-sparse,
degree-ordered algorithm that completes in R rounds. Let α′ = α · log2 n. Then Alg can be
simulated in the MPC model with O(nε) memory per machine, for constant 0 < ε < 1 and
Õ(m) total memory, in O

(
R log log ∆/

√
logα′ ∆

)
rounds.

3 Fast 2-Ruling Set Algorithms

Our 2-ruling set algorithms consist of 3 parts. In Part 1, we sparsify the input graph, in Part
2 we “shatter” the graph still active after Part 1, and in Part 3 we deterministically finish off
the computation. Part 1 is a modification of Sparsify, a Congest model algorithm due to
Kothapalli and Pemmaraju [26]; Part 2 is a sparsified MIS algorithm, also in the Congest
model, due to Ghaffari [15, 16]. Our main contribution in this section is to show that these
algorithms are state-congested, α-sparse for small α, and degree-ordered. As a result, we can
apply the Sample-and-Gather Simulation Theorems (Theorems 9 and 12) to these algorithms
to obtain fast low-memory MPC algorithms. Part 3 – in which we finish off the computation
– is easy to directly implement in the MPC model.

3.1 Simulating Sparsify in low-memory MPC
Algorithm 1 is a modified version of the Sparsify algorithm of Kothapalli and Pemmaraju [26].
The algorithm computes a “sparse” set of vertices U that dominates all the vertices in the
graph (i.e. Nbr+(U) = V , see Lemma 13). In each iteration, “high degree” nodes and their
neighbors are sampled and the sampled nodes are added to U . In successive iterations, the
threshold for being a high degree node falls by a factor f and the sampling probability grows
by a factor f . The neighbors of the nodes that successfully join U are deactivated. The
parameter f takes on different values in different instantiations of this algorithm, though
always satisfying log f = logδ ∆ for some constant 0 < δ < 1. For example, f is set to
2(log ∆)2/3 (respectively, 2(log ∆)1/2) to obtain Theorem 19 part (i) (respectively, part (ii)).

DegOrderedSparsify fits nicely within the framework of the Sample-and-Gather
Simulation Theorems from Section 2. The state of each vertex stays small throughout the
algorithm (just ID plus O(1) bits), making DegOrderedSparsify state-congested. The
activity level in any iteration is bounded by O(f logn), because we show in Lemma 13 that in
any neighborhood only O(f logn) vertices are sampled whp and only these sampled vertices
need be active in that iteration. Furthermore, since the sampling probability grows by a
factor f in each iteration, the estimated neighborhood activity levels also grow by a factor
f , as we consider future iterations of DegOrderedSparsify. As shown in Lemma 13,
this makes DegOrderedSparsify f -sparse. In the Sparsify algorithm [26] all nodes,

FSTTCS 2020



28:12 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Algorithm 1 DegOrderedSparsify(G, f).

1 U ← ∅
2 V0 ← V // Initially all nodes are active
3 for i = 1 to dlogf ∆e do
4 Let Hi be the nodes in Vi−1 with degree at least ∆/f i in G[Vi−1]
5 Each node in Nbr+(Hi) ∩ Vi−1 joins Ui with probability f i · c lnn/∆, where c is a

fixed constant
6 Vi ← Vi−1 \Nbr+(Ui) // Nodes with at least one neighbor in Ui

deactivate themselves
7 U ← U ∪ Ui
8 end
9 return U

independent of their degrees, sample themselves (as in Line 5). Here, in order to make
Algorithm DegOrderedSparsify degree-ordered, we make a small modification and permit
only high degree nodes and their neighbors to sample themselves. As we show in Lemma 13,
the algorithm continues to behave as before, but is now degree-ordered.

I Lemma 13. Given a graph G = (V,E) and a parameter f > 3, a subset U ⊆ V can be
computed in O(logf ∆) rounds such that for every v ∈ V , N+(v) ∩ U 6= ∅, and for every
v ∈ U , degU (v) ≤ 2cf lnn, with probability at least 1− n−c+2.

It is easy to see that Algorithm DegOrderedSparsify(G, f) can be implemented in
the Congest model in O(logf ∆) rounds because each iteration of the for-loop takes O(1)
rounds in Congest. Furthermore, since each node can update its state by simply knowing
if it or a neighbor has joined set Ui, the update function at each node is separable (see
Definition 1). Therefore, DegOrderedSparsify(G, f) can be faithfully simulated in the
low-memory MPC model in O(logf ∆) rounds.

We now show that Algorithm DegOrderedSparsify has the three properties needed
for round compression via our Simulation Theorems and this leads to a substantial speedup.

I Lemma 14. Algorithm DegOrderedSparsify(G, f) is a state-congested, f -sparse, degree-
ordered algorithm.

Using Theorem 9 and Theorem 12, we obtain the following theorem.

I Theorem 15. Algorithm DegOrderedSparsify(G, f) can be implemented in the low-

memory MPC model in (i) O
(

logf ∆√
logf n

log logn
)

rounds whp using Õ(m+n1+ε) total memory

and (ii) O
(√

logf ∆ · log log ∆
)
rounds whp using Õ(m) total memory.

3.2 Simulating Sparsified Graph Shattering in low-memory MPC
Distributed graph shattering has become an important algorithmic technique for symmetry
breaking problems [5, 16, 20]. In this section, we use a sparsified graph shattering algorithm
due to Ghaffari [16] to process the graph G[U ] returned by DegOrderedSparsify. The
output of the shattering algorithm consists of an independent set I ⊆ U such that the graph
induced by the remaining set of vertices S = U \ Nbr+(I) contains only small connected
components.



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:13

Ghaffari’s sparsified shattering algorithm [16] is shown in Algorithm 2. At the start of
each round t, each node v has a desire-level pt(v) for joining the independent set I, and
initially this is set to p1(v) = 1/2. The independent set I is also initialized to the empty set.
The algorithm runs in phases, with each phase having ` :=

√
δ logn/10 rounds for a small

constant δ.
Several aspects of the algorithm make it nicely fit the Sample-and-Gather framework

from Section 2. We now point these out. (i) The desire-level pτ (u) for t+ 1 ≤ τ ≤ t+ ` can
be viewed the probability of sampling u; after the initial communication amongst neighbors
(Line 1), only sampled nodes send messages (beeps) and all other nodes remain silent. (ii)
The quantity dt+1(u) is identical to the activity level At+1(u) in u’s neighborhood, defined
in Section 2. (iii) Nodes with a high activity level, i.e., dt+1(u) ≥ 2

√
logn/5 (aka super-heavy

nodes), are oblivious nodes and are therefore excluded in the definition of At+1. As a result
At+1 ≤ 2

√
logn/5. (iv) In each iteration in a phase, the sampling probability grows by a

factor of at most 2 (Line 8). This implies that the estimated activity levels grow by a factor
of 2 in future rounds.

Algorithm 2 Shatter(G): (one phase, starting at iteration t+ 1).

1 Each node u sends its current desire-level pt+1(u) to all its neighbors
2 Each node u computes dt+1(u) =

∑
v∈Nbr(u) pt+1(v)

3 If node u has dt+1(u) ≥ 2
√

logn/5 then u is called a super-heavy node
4 ` =

√
δ logn/10 ; // δ is a small constant

5 for τ = t+ 1, t+ 2, . . . , t+ ` iterations do
// Round 1

6 Each node u beeps with probability pτ (u) and remains silent otherwise.
7 Node u is added to I if it is not super-heavy, it beeps, and none of its neighbors

beep
8 Node u sets pτ+1(u) as follows:

pτ+1(u) =
{
pτ (u)/2 if u is super-heavy, or a neighbor of u beeps
min{1/2, 2 · pτ (u)} otherwise

// Round 2
9 Node u beeps if it joins I in this iteration.

10 Neighbors of node u that are not in I become inactive on hearing the beep from u

11 end

The first four steps of Algorithm 2 do not fit into the Sample-and-Gather framework since
each node needs to send its pt+1 value to its neighbors. But the nodes are computing dt+1(u) =∑
v∈Nbr(u) pt+1(v) which is a separable function (sum). Therefore, we can implement the

first two steps in O(1/ε) rounds using Lemma 2, and use the Sample-and-Gather framework
to simulate the for-loop of the algorithm. These observations are formalized in the lemma
below to show that Shatter is 2-sparse. Additionally, the lemma shows that the algorithm
is state-congested.

I Lemma 16. Algorithm 2 is a state-congested algorithm whose for-loop is 2-sparse.

A total of O(log ∆/
√

logn) repeated applications of Shatter (i.e. a total of O(log ∆)
iterations) suffice to shatter the graph into small-sized components [16, 21].

FSTTCS 2020



28:14 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Using Lemma 16 and Theorem 9, we obtain the following lemma that shows that Shatter
can be simulated efficiently in the low-memory MPC model.

I Lemma 17. We can simulate a total O(log ∆) iterations of Algorithm Shatter in the

low-memory MPC model with Õ(m+ n1+ε) total memory in O
(

log ∆·log logn√
logn

)
rounds whp.

Ghaffari and Uitto [21] present a variant of Algorithm Shatter and show (in Theorem 3.7)
that this variant can be simulated in O(

√
log ∆ · log log ∆) rounds in the low-memory MPC

model, while using only Õ(m) total memory. While they describe their MPC implementation
from scratch, this MPC implementation can also be obtained by applying our Sample-
and-Gather Theorem (specifically, Theorem 12). It can be shown that this variant is
state-congested and has the same sparsity property as Algorithm Shatter, i.e., it is 2-sparse.
Furthermore, it can also be made degree-ordered by simply processing nodes in degree buckets
(∆1/2i ,∆1/2i−1 ], in the order i = 1, 2, . . . , O(log log ∆).

I Lemma 18 (Ghaffari-Uitto [21]). There is a variant of Algorithm Shatter can be simulated
in the low-memory MPC model with Õ(m) total memory in O(

√
log ∆ · log log ∆) rounds

whp.

3.3 Finishing off the 2-ruling set computation
After applying DegOrderedSparsify to the input graph G = (V,E) and then Shatter
to the subgraph G[U ], induced by the subset U ⊆ V output by DegOrderedSparsify,
we are left with a number of small-sized components. Ghaffari and Uitto [21, Theorem 3.7]
show that given the properties that the remaining graph has after Shatter, it is possible
to simply (and deterministically) gather each component at a machine and find an MIS of
the component locally in O(

√
log logn) rounds in the low-memory MPC model using Õ(m)

memory. Applying this “finishing off” computation completes our 2-ruling set algorithm.
The output of the algorithm is the union of the independent set output by Shatter and the
independent set output by the “finishing off” computation.

I Theorem 19. A 2-ruling set can be computed whp in the low-memory MPC model in
(i) O((log ∆)1/6 log logn) rounds using Õ(m+ n1+ε) total memory and in
(ii) O((log ∆)1/4 log log ∆ +

√
log logn log log ∆) rounds using Õ(m) total memory.

I Remark. We note that by just running Shatter on an input graph followed by the
“finishing off” computation, we get an MIS of the input graph. So our approach yields MIS
algorithms in the low-memory MPC model via the Sample-and-Gather Simulation Theorems.

I Theorem 20. An MIS of a graph G can be found in the low-memory MPC model in:

(i) O
(

log ∆·log logn√
logn

+
√

log logn
)

rounds whp using Õ(m+ n1+ε) total memory and

(ii) O(
√

log ∆ log log ∆ +
√

log logn) rounds whp using Õ(m) total memory.
As far as we know, the MIS result for the Õ(m+ n1+ε) total memory setting is new, but the
result for the Õ(m) total memory setting simply recovers the result from [21].

4 Fast β-ruling Set Algorithms

We now extend the 2-ruling set low-memory MPC algorithm in the previous section to
obtain a β-ruling set low-memory MPC algorithm for any integer β ≥ 2. The overall idea
is to repeatedly use Algorithm DegOrderedSparsify, as in [8]. We start by running a



K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:15

low-memory MPC implementation of DegOrderedSparsify with a parameter f1; this
call returns a set of nodes S1. Once this phase ends, the remaining graph G[S1] has degree
at most O(f1 · logn), by Lemma 13. We then run DegOrderedSparsify on the graph
G[S1] with a parameter f2 and this yields a set of nodes S2. This process continues for β − 1
phases at the end of which the graph G[Sβ−1] has a maximum degree O(fβ−1 · logn). We
now proceed to run a low-memory MPC implementation of an MIS algorithm on G[Sβ−1].

The correctness of the β-ruling set algorithm can be noted from Lemma 13. The set Si
covers all the nodes in Si−1 which means that all the nodes in S0 = V are at most β − 1
hops away from the nodes in Sβ−1. Therefore all the nodes of V are at most β hops away
from the MIS C of G[Sβ−1]. This means that the set C that the above technique returns is
a β-ruling set of G. In the following, we analyze the round complexity of the β-ruling set
algorithm in the low-memory MPC model.

I Lemma 21. Let f0 = ∆. The β-ruling set algorithm runs in

O

((
β−1∑
i=1

log(fi−1 logn)√
log fi · logn

+ log(fβ−1 logn)√
logn

)
log logn

)
(3)

rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

I Lemma 22. Let f0 = ∆. The β-ruling set algorithm runs in

O

((
β−1∑
i=1

√
log(fi−1 logn)

log fi
+
√

log(fβ−1 logn)
)

log log ∆ +
√

log logn
)

(4)

rounds whp in the low-memory MPC model with Õ(m) total memory.

We now instantiate the parameters f1, f2, . . . , fβ−1 so as to minimize the running times
in Lemmas 21 and 22. This leads to the following corollaries.

I Theorem 23. A β-ruling set of a graph G can be found whp in the low-memory MPC
model in
(i) O

(
β · log1/(2β+1−2) ∆ · log logn

)
rounds with Õ(m+ n1+ε) total memory and in

(ii) O
(
β ·
(

log1/2β ∆ · log log ∆ +
√

log logn
)
· log log ∆

)
rounds with Õ(m) total memory.

4.1 β-ruling sets in O(polyloglog(n)) rounds
As mentioned in the Introduction, this research is partly motivated by the question of whether
ruling set problems can be solved in the low-memory MPC model in O(polyloglog(n)) rounds.
Using our results we identify two interesting circumstances under which β-ruling sets can be
computed in the low-memory MPC model in O(polyloglog(n)) rounds. First, because the
running time in Theorem 23 part (i) has an inverse exponential dependency on β, we get the
following corollary.

I Corollary 24. For β ∈ Ω(log log log ∆), a β-ruling set of a graph G can be computed in
O(β log logn) rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

Second, we can also show that for graphs with bounded ∆, we can compute a β-ruling set
in O(β log logn) rounds, however this bound increases quickly with β, giving us the following
corollary.

I Corollary 25. If we have that ∆ = O

(
2log

1− 1
2β n

)
, then a β-ruling set can be computed in

O(β log logn) rounds whp in the low-memory MPC model with Õ(m+ n1+ε) total memory.

FSTTCS 2020



28:16 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

References

1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. J. Algorithms, 7(4):567–583, December 1986.
doi:10.1016/0196-6774(86)90019-2.

2 Sepehr Assadi. Simple round compression for parallel vertex cover. CoRR, abs/1709.04599,
2017. arXiv:1709.04599.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, pages 767–786,
2019. doi:10.1137/1.9781611975482.48.

4 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. Proceedings of the Annual ACM Symposium on
Principles of Distributed Computing, pages 461–470, 2019. doi:10.1145/3293611.3331596.

5 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. J. ACM, 63(3):20:1–20:45, 2016. doi:10.1145/2903137.

6 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching and
mis in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, page 481–490, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293611.3331609.

7 Soheil Behnezhad, Mohammadtaghi Hajiaghayi, and David G. Harris. Exponentially Faster
Massively Parallel Maximal Matching. In Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, volume 2019-November, pages 1637–1649, 2019.
doi:10.1109/FOCS.2019.00096.

8 Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. Brief announcement: Super-fast
t-ruling sets. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014, pages
379–381. ACM, 2014. doi:10.1145/2611462.2611512.

9 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (δ + 1) coloring in congested clique, massively parallel computation, and
centralized local computation. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC ’19, page 471–480, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293611.3331607.

10 Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional lower bounds for adaptive
massively parallel computation. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’20, page 141–151, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3350755.3400230.

11 Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proc. VLDB Endow., 8(12):1804–1815,
August 2015. doi:10.14778/2824032.2824077.

12 Artur Czumaj, Peter Davies, and Merav Parter. Graph Sparsification for Derandomizing
Massively Parallel Computation with Low Space, 2019. arXiv:1912.05390.

13 Artur Czumaj, Slobodan Mitrovic, Jakub Ła̧cki, Krzysztof Onak, Aleksander Ma̧dry, and Piotr
Sankowski. Round compression for parallel matching algorithms. Proceedings of the Annual
ACM Symposium on Theory of Computing, pages 471–484, 2018. doi:10.1145/3188745.
3188764.

14 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

15 Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, page 270–277, USA, 2016. Society for Industrial and Applied Mathematics.

https://doi.org/10.1016/0196-6774(86)90019-2
http://arxiv.org/abs/1709.04599
https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.1145/2903137
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.1145/2611462.2611512
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1145/3350755.3400230
https://doi.org/10.14778/2824032.2824077
http://arxiv.org/abs/1912.05390
https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/3188745.3188764
https://doi.org/10.1145/1327452.1327492


K. Kothapalli, S. Pai, and S. V. Pemmaraju 28:17

16 Mohsen Ghaffari. Distributed MIS via all-to-all communication. Proceedings of the Annual
ACM Symposium on Principles of Distributed Computing, Part F129314:141–150, 2017. doi:
10.1145/3087801.3087830.

17 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Ru-
binfeld. Improved massively parallel computation algorithms for MIS, matching, and vertex
cover. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing,
pages 129–138, 2018. doi:10.1145/3212734.3212743.

18 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS,
Matching, and Coloring on Trees and Beyond. CoRR, 2020. arXiv:2002.09610.

19 Mohsen Ghaffari, Ce Jin, and Daan Nilis. A massively parallel algorithm for minimum weight
vertex cover. In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15-17,
2020, pages 259–268. ACM, 2020. doi:10.1145/3350755.3400260.

20 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In Proceedings - Annual IEEE Symposium
on Foundations of Computer Science, FOCS, volume 2019-November, pages 1650–1663, 2019.
doi:10.1109/FOCS.2019.00097.

21 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1636–1653, July 2019. doi:
10.1137/1.9781611975482.99.

22 Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms
in the mapreduce model. In Proceedings of the 30th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, page 43–52, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3210377.3210386.

23 James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-constant-time
distributed algorithms on a congested clique. CoRR, abs/1408.2071, 2014. arXiv:1408.2071.

24 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 938–948, Philadelphia, PA, January 2010. Society for Industrial and Applied
Mathematics. doi:10.1137/1.9781611973075.76.

25 Kishore Kothapalli, Shreyas Pai, and Sriram V. Pemmaraju. Sample-and-gather: Fast ruling
set algorithms in the low-memory MPC model, 2020. arXiv:2009.12477.

26 Kishore Kothapalli and Sriram V. Pemmaraju. Super-fast 3-ruling sets. In Deepak D’Souza,
Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, Decem-
ber 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages 136–147. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.136.

27 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally!
In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’04, page 300–309, New York, NY, USA, 2004. Association for Computing
Machinery. doi:10.1145/1011767.1011811.

28 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. J. ACM, 63(2), March 2016. doi:10.1145/2742012.

29 Nathan Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193–201,
February 1992. doi:10.1137/0221015.

30 Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in o(log log
n) communication rounds. In SPAA, pages 94–100, 2003. doi:10.1145/777412.777428.

31 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986. doi:10.1137/0215074.

32 Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In

FSTTCS 2020

https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3087801.3087830
https://doi.org/10.1145/3212734.3212743
http://arxiv.org/abs/2002.09610
https://doi.org/10.1145/3350755.3400260
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1145/3210377.3210386
http://arxiv.org/abs/1408.2071
https://doi.org/10.1137/1.9781611973075.76
http://arxiv.org/abs/2009.12477
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.136
https://doi.org/10.1145/1011767.1011811
https://doi.org/10.1145/2742012
https://doi.org/10.1137/0221015
https://doi.org/10.1145/777412.777428
https://doi.org/10.1137/0215074


28:18 Sample-And-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’10, page 135–146, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1807167.1807184.

33 Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. In Ulrich
Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing,
DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages
40:1–40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
DISC.2018.40.

34 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
35 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits (on

lower bounds for modern parallel computation). J. ACM, 65(6), November 2018. doi:
10.1145/3232536.

36 Václav Rozhon and Mohsen Ghaffari. Polylogarithmic-time deterministic network decompos-
ition and distributed derandomization. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
350–363, 2020. doi:10.1145/3357713.3384298.

37 Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness
for single-linkage clustering under `p distances. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 5596–5605. PMLR, 2018. URL: http://proceedings.mlr.press/
v80/yaroslavtsev18a.html.

38 Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi,
Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big data
processing. Commun. ACM, 59(11):56–65, October 2016. doi:10.1145/2934664.

https://doi.org/10.1145/1807167.1807184
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3357713.3384298
http://proceedings.mlr.press/v80/yaroslavtsev18a.html
http://proceedings.mlr.press/v80/yaroslavtsev18a.html
https://doi.org/10.1145/2934664

	Introduction
	Main Results
	Technical Preliminaries

	The Sample-and-Gather Simulation
	Fast 2-Ruling Set Algorithms
	Simulating Sparsify in low-memory MPC
	Simulating Sparsified Graph Shattering in low-memory MPC
	Finishing off the 2-ruling set computation

	Fast beta-ruling Set Algorithms
	beta-ruling sets in O(polyloglog(n)) rounds


