Planted Models for the Densest k-Subgraph
Problem
Yash Khanna

Indian Institute of Science, Bangalore, India
yashkhanna@iisc.ac.in

Anand Louis
Indian Institute of Science, Bangalore, India
anandl@iisc.ac.in

—— Abstract

Given an undirected graph G, the DENSEST k-SUBGRAPH problem (DkS) asks to compute a set
S C V of cardinality |S| < k such that the weight of edges inside S is maximized. This is a
fundamental NP-hard problem whose approximability, inspite of many decades of research, is yet
to be settled. The current best known approximation algorithm due to Bhaskara et al. (2010)

computes a O (n1/4+6) approximation in time n®/9 for any ¢ > 0.

We ask what are some “easier” instances of this problem? We propose some natural semi-
random models of instances with a planted dense subgraph, and study approximation algorithms for
computing the densest subgraph in them. These models are inspired by the semi-random models
of instances studied for various other graph problems such as the independent set problem, graph
partitioning problems etc. For a large range of parameters of these models, we get significantly better
approximation factors for the DENSEST k-SUBGRAPH problem. Moreover, our algorithm recovers a
large part of the planted solution.

2012 ACM Subject Classification Theory of computation — Semidefinite programming; Theory of
computation — Discrete optimization; Theory of computation — Graph algorithms analysis

Keywords and phrases Densest k-Subgraph, Semi-Random models, Planted Models, Semidefinite
Programming, Approximation Algorithms, Beyond Worst Case Analysis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2020.27
Related Version A full version of the paper is available at https://arxiv.org/abs/2004.13978.

Funding Anand Louis: AL was supported in part by SERB Award ECR/2017/003296 and a Pratiksha
Trust Young Investigator Award.

Acknowledgements We thank Rakesh Venkat for helpful discussions. We also thank the anonymous

reviewers for their suggestions and comments on earlier versions of this paper.

1 Introduction

Given a weighted undirected graph G = (V, E, w) with non-negative edge weights given
by w: E — RT, and an integer k¥ € Z*, the DENSEST k-SUBGRAPH problem (DkS) asks
to compute a set S C V of cardinality |S| < k such that the weight of edges inside S
(ie, 22 jesw ({7, j})) is maximized (if {i,j} ¢ E, we assume w.l.o.g. that w ({7, j}) = 0).
Computing the DES of a graph is a fundamental NP-hard problem. There has been a lot of
work on studying approximation algorithms for DkS, we give a brief survey in Section 1.3.

The current best known approximation algorithm [6] computes an O (nl/ 4+€) approx-
imation in time n®1/€) for any € > 0. On the hardness side, Manurangsi [31] showed that
assuming the exponential time hypothesis (ETH), there is no polynomial time algorithm
that approximates this to within n!/(1°8108™)° factor where ¢ > 0 is some fixed constant.
There are hardness of approximation results known for this problem assuming various other
? Yash Khanna and .Anand Louis; .

5v icensed under Creative Commons License CC-BY

40th TARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2020).
Editors: Nitin Saxena and Sunil Simon; Article No. 27; pp. 27:1-27:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:yashkhanna@iisc.ac.in
mailto:anandl@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.27
https://arxiv.org/abs/2004.13978
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

Planted Models for the Densest k-Subgraph Problem

hardness assumptions, see Section 1.3 for a brief survey. But there is still a huge gap between
the upper and lower bounds on the approximability of this problem.

Given this status of the approximability of the DENSEST k-SUBGRAPH problem, we ask
what are some “easier” instances of this problem? We propose some natural semi-random
models of instances with a planted dense subgraph, and study approximation algorithms for
computing the densest subgraph in them. Studying semi-random models of instances has been
a very fruitful direction of study towards understanding the complexity for various NP-hard
problems such as graph partitioning problems [28, 29, 26, 27], independent sets [13, 32], graph
coloring [1, 11, 12], etc. By studying algorithms for instances where some parts are chosen
to be arbitrary and some parts are chosen to be random, one can understand which aspects
of the problem make it computationally intractable. Besides being of natural theoretical
interest, studying approximation algorithms for semi-random models of instances can also be
practically useful since some natural semi-random models of instances can be better models
of instances arising in practice than the worst-case instances. Therefore, designing algorithms
specifically for such models can help to bridge the gap between theory and practice in the
study of algorithms. Some random and semi-random models of instances of the DENSEST
k-SUBGRAPH problem (and its many variants) have been studied in [2, 6, 8, 19, 20, 21, 33, 34],
we discuss them in Section 1.3. Our models are primarily inspired by the densest subgraph
models mentioned above as well as the semi-random models of instances for other problems
[13, 32] studied in the literature. For a large range of parameters of these models, we get
significantly better approximation factors for the DENSEST k-SUBGRAPH problem, and also
show that we can recover a large part of the planted solution.

We note that semidefinite programming (SDP) based methods have been popularly used
in many randomized models for different problems, including the DENSEST k-SUBGRAPH
problem [19, 20, 21]. And thus, another motivation for our work is to understand the power
of SDPs in approximating the DENSEST k-SUBGRAPH problem. Since even strong SDP
relaxations of the problem have a large integrality gap [7] for worst case instances (see
Section 1.3), we ask what families of instances can SDPs approximate well? In addition to
being of theoretical interest, algorithms using the basic SDP also have a smaller running time.
In comparison, the algorithm of [6] produces an O (nl/ 4+€) approximation for worst-case
instances in time n©(/€); their algorithm is based on rounding an LP hierarchy, but they
also show that their algorithm can be executed without solving an LP and obtain the same
guarantees.

1.1 Our models and results

The main inspiration for our models are the semi-random models of instances for the
independent set problem [13, 32]. Their instances are constructed as follows. Starting with
a set of vertices V, a subset of k vertices is chosen to form the independent set S, and
edges are added between each pair in S x (V'\ S) independently with probability p. Finally,
an arbitrary graph is added on V' \ S. They study the values of k and p for which they
can recover a large independent set. Our models can be viewed as analogs of this model
to the DENSEST k-SUBGRAPH problem: edges are added between each pair in § x (V'\ S)
independently with probability p, and then edges are added in S to form a dense subset.
Since we also guarantee that we can recover a large part of the planted dense subgraph S,
we also need to assume that the graph induced on V' \ S is “far” from containing a dense
subgraph. We now define our models.

» Definition 1.1 (DESExp(n, k,d,d,d', \)). An instance of DkSExp(n,k,d,d,d', \) is gener-
ated as follows,

Y. Khanna and A. Louis

1. We partition V into two sets, S and V' \ S with |S| = k. We add edges (of weight 1)
between pairs in S x (V' \ S) independently with probability p def od/k.

2. We add edges of arbitrary non-negative weights between arbitrary pairs of vertices in S
such that the graph induced on S has average weighted degree d.

3. We add edges of arbitrary non-negative weights between arbitrary pairs of vertices in
V'\ S such that the graph induced on V' \ S is a (d', \)-expander (see Definition 1.10 for
definition,).

4. (Monotone adversary) Arbitrarily delete any of the edges added in step 1 and step 3.

5. Output the resulting graph.

We note that the step 2, step 3, and step 4 in the construction of the instance above are
adversarial steps.

DkSExp(n, k,d,d,d’, \) are a class of instances that have a prominent dense subset of
size k. Note that, since the graph induced on V' \ S is a subset of an expander graph, it
would not have any dense subsets. We also note that the monotone adversary can make
significant changes to graph structure. For example, the graph induced on V' \ S can be
neither d’-regular nor an expander after the action of the monotone adversary.

We require § < 1 in step 1 for the following reason. For any fixed set S’ C V' \ S such
that |5’ = O (k), the expected weight of edges in the bipartite graph induced on S U S’ is
O (0kd). Since we want the graph induced on S to be the densest k-subgraph (the total of
edges in the graph induced on S is kd/2), we restrict ¢ to be at most 1.

We present our main results below, note that our algorithm outputs a dense subgraph of
size k and its performance is measured with respect to the density of the planted subgraph
G[S], i.e. kd/2.

» Definition 1.2. We define p(V") Lf (Zi,jeV' w ({Z,]})) /2 for any V' C V.

» Theorem 1.3 (Informal version of Theorem 2.1). Given an instance of
DEkSExp(n, k,d,d,d', \)where

U !
s—o(F), g len) g e (fer 2V
nd k n d

there exists a deterministic polynomial time algorithm that outputs with high probability (over
kd

the instance) a vertex set Q of size k such that p (Q) > (1 —v) - The above algorithm also

computes a vertex set T such that

(@) IT]< (1 + O @) k. (b) p(T08) > (1 -0 W) L.

» Remark 1.4. In Theorem 1.3, we restrict the range of § for the following reason. An
interesting setting of parameters is when the average degree of vertices in S and V' \ S are
within constant factors of each other. Then the expected average degree of a vertex in S is
d+p(n—k). And for a vertex in V' \ S, the expected average degree is d’ + kp. Thus setting,

!
d+pn—k)=0(d +kp) = =0 (%) (Recall, p= (Skd) .
n

We also study another interesting model with a different assumption on the subgraph
GV \ S].

27:3

FSTTCS 2020

27:4

Planted Models for the Densest k-Subgraph Problem

» Definition 1.5. DkS(n,k,d,d,v) is generated similarly to DkSExp(n,k,d,é,d’,\) except
in step 3, where we add edges between arbitrary pairs of vertices in V' \ S such that the graph
induced on V' \ S has the following property : p(V') < ~d|V'| VYV CV\S.

By construction, the graph induced on V' \ S does not have very dense subsets.

» Theorem 1.6. Given an instance of DkS(n, k,d,§,~) where

B k od logn B 1
smo(E), Hoa(tEn) T@(m%),

there is a deterministic polynomial time algorithm that outputs with high probability (over the

kd
instance) a vertex set Q of size k such that p(Q) > (1 —1) > - The above algorithm also

computes a vertex set T such that

@) [71< 1+ 0 M) k. (b) p(r08) > (1 -0 ().

Other results
We also study two variants of DkSExp(n, k,d, d,d’, \) and DkS(n, k,d, §,) where the sub-
graph G[S] is d-regular.

1. DkSExpReg(n, k,d,d,d’, \) is same as DkSExp(n, k,d, d,d’, \) except in step 2, which
requires the subgraph G[S] to be an arbitrary d—regular graph.
» Theorem 1.7. Given an instance of DkSExpReg(n,k,d,d,d’, \)where

! /Al
§5=0 kd” , 6—d:§2 logn) and V' =0 o vd ;
nd k n A
d 1_5_8

there is a deterministic polynomial time algorithm that outputs with high probability (over
the instance) a vertex set Q of size k such that

a.p(g)zu—u')%. b. |QNS| > (1—OW)k.

2. DkSReg(n, k,d,d,~) is same as DkS(n, k,d,d,~) except in step 2, which requires the
subgraph G[S] to be an arbitrary d—regular graph.
» Theorem 1.8. Given an instance of DkSReg(n, k,d, d,~)where

5:@(k>’ 6d:Q<logn>7 and T’=@<1>7
n k n Vd (1 -~y —46)

there is a deterministic polynomial time algorithm that outputs with high probability (over

the instance) a vertex set Q of size k such that

a.P(Q)Z(l—T’)%, b. |QQS‘Z(1*O(T/))]€,

We will show that for most natural regime of parameters, we get a better approximation
factors in the case when G[S] is a d-regular graph.

Y. Khanna and A. Louis

» Remark 1.9. It has been pointed out to us by anonymous reviewers that for a large range of
parameters of the DkS(n, k, d, 6,) and DkSReg(n, k, d, 8, v) models, arg maxy, - p(W)/ |W/|
will be a subset of S; for any graph G = (V, E), the algorithm due to Charikar [10] can be
used to compute arg maxy, -y p(W)/|W| in polynomial time. It is plausible that using this
algorithm iteratively, one can recover a “large” part of S. However the algorithm described
in Theorem 1.6 and Theorem 1.8 gives a more direct approach to recover a large part of S.

1.2 Notation

We use n %' [V], and use V and [n] &f {1,2,...,n} interchangeably. We assume w.l.0.g.

that G is a complete graph: if {i,j} ¢ E, we add {i,j} to E and set w ({i,5}) = 0. We use
A to denote the weighted adjacency matrix of G, ie. A;; = w({i,5}) Vi,j € V. The degree
of vertex i is defined as d; &' > w({i, j}).
JjeV
For V! C V, we use G[V’] to denote the subgraph induced on V' and V’ to denote V '\ V.
For a vector v, we use ||v]| to denote the |v||,. For a matrix A, we use ||A|| to denote the

Az

spectral norm || Al L max ” H
w0 ||z

We define probability distributions p over finite sets 2. For a random variable (r.v.)

X : Q — R, its expectation is denoted by E,.,[X]. In particular, we define the two

distributions which we use below.

1. For a vertex set V' C V, we define a probability (uniform) distribution (fy) on the

vertex set V' as follows. For a vertex i € V', fy/ (1) . We use i ~ V' to denote

— V]
i ~ fy for clarity.
2. For a vertex set V' C V, we define a probability distribution (fggy+)) on the edges

of G[V'] as follows. For an edge e € E(G[V']), fe)(e) = ;12‘(/6/))

Again, we use

e ~ E(G[V']) to denote e ~ fggpv) for convenience.

» Definition 1.10 ((d, \)-expanders). A graph H = (V, E,w) is said to be a (d, \)-expander
if H is d-regular and |N;| < X, Vi € [n]\ {1}, where \y > Aa... > A, are the eigenvalues of
the weighted adjacency matriz of H.

1.3 Related Work

Densest k-subgraph. There has been a lot of work on the DENSEST k-SUBGRAPH prob-
lem and its variants. The current best known approximation algorithm, due to Bhaskara et
al. [6], gives an approximation ratio of O(n/4+€) in time n®1/9) for all values of ¢ > 0 (for
e = 1/logn, we get a ratio of O (n'/*)). They also extend their approach to give a O(n!/4~°)
approximation algorithm which runs in time gn, They improved the prior results of Feige
et al. [14] which gave a n'/3~¢ approximation for some small € > 0. [14] also give a greedy
algorithm which has an approximation factor of O (n/k).

When k = O(n), Asahiro et al. [3] gave a constant factor approximation algorithm. Many
other works have looked at this problem using linear and semidefinite programming techniques.
Srivastav et al. [37] gave a randomized rounding algorithm using a SDP relaxation in the
case when k = n/c for ¢ > 1, they improved the constants for certain values of k over the
results of [3]. Feige and Langberg [15] use a different SDP to get an approximation of slightly
above k/n for the case when k is roughly n/2. Feige and Seltser [16] construct examples for
which their SDP has an integrality gap of Q(n'/3).

27:5

FSTTCS 2020

27:6

Planted Models for the Densest k-Subgraph Problem

There has been work done on a related problem called the maximum density subgraph,
where the objective is to find a subgraph which maximizes the ratio of number of edges to
the number of vertices. Goldberg [18] and Gallo et al. [17] had given an algorithm to solve
this problem exactly using maximum flow techniques. Later, Charikar [10] gave an algorithm
based on a linear programming method. This paper also solves the problem for directed
graphs using a notion of density given by Kannan and Vinay [22]. Khuller and Saha [24]
gave a max-flow based algorithm in the directed setting.

On the hardness side, Khot [23] showed that it does not have a PTAS unless NP has
subexponential algorithms. There has been some works based on some other hardness
assumptions. Assuming the small-set expansion hypothesis, Raghavendra and Steurer [35]
show that it is NP-hard to approximate DS to any constant factor. Under the deterministic
ETH assumption, Braverman et al. [9] show that it requires no8n) time to approximate
DkS with perfect completeness to within 1 + € factor (for a universal constant € > 0). More
recently Manurangsi [31] showed assuming the exponential time hypothesis (ETH), that
there is no polynomial time algorithm that approximates this to within n'/(°81°gm)° factor
where ¢ > 0 is some fixed constant independent of n.

Bhaskara et al. [7] study strong SDP relaxations of the problem and show that the
Qe (1) 1=¢ rounds of the Lasserre hierarchy. Also
for n Moreover for the Sherali-Adams relaxation,
they show a lower bound of 2 (711/4/log3 n) on the integrality gap for (logn/loglogn)
rounds.

even after n
2/53—¢

integrality gap of DES remains n

(=) younds, the gap is as large as n

Ames [2] studies the planted DkS problem using a non-SDP convex relaxation for instances
of the following kind. Let S be the planted dense subgraph (of size k), they claim that if
G[S] contains at least (’;) — c1k? edges and the subgraph G[V \ S] contains at most cok?
edges where ¢, co are constants depending on other parameters of the graph like the density
of the subgraph G[S] etc, then under some mild technical conditions, they show that the
unique optimal solution to their convex program is integral and corresponds to the set S.
They also study analogous models for bipartite graphs.

Random models for DkS. Bhaskara et al. [6] study a few random models of instances for
the DENSEST k-SUBGRAPH problem, we describe them here. Let D; denote the distribution of
Erdds-Rényi random graphs G(n,p) and let Dy denote the distribution of graphs constructed

as follows. Starting with a “host graph” of average degree D (D def np), a set S of k vertices
is chosen arbitrarily and the subgraph on S is replaced with a dense subgraph of average
degree d. Given G; ~ D; and G2 ~ D, the problem is to distinguish between the two
distributions. They consider this problem in three different models with varying assumptions
on Dy, (i) Random Planted Model : the host graph and the planted dense subgraph are
random, (ii) Dense in Random Model : an arbitrary dense graph is planted inside a random
graph, and (iii) Dense vs Random Model : an arbitrary dense graph is planted inside an
arbitrary graph.

The planted dense subgraph recovery problem is similar in spirit to the Random Planted
Model where the goal is to recover a hidden community of size k within a larger graph which
is constructed as follows : two vertices are connected by an edge with probability p if they
belong to the same community and with probability g otherwise. The typical setting of
parameters is, p > ¢. The works by [33, 20, 34, 19, 21, 8, 2] studies this problem using SDP
based, spectral, statistical, message passing algorithms etc.

We give a brief overview of their distinguishing algorithms in the three mlodeclls. Given

0g Qavg

a graph on n vertices with average degree dayg, its log-density is defined as] . Let
ogn

Y. Khanna and A. Louis

©; and O, denote the log-density of G and the log-density of the planted subgraph G5[S)]
respectively. Their algorithm is based on the counts of a specially constructed small-sized
tree (the size of which is parameterized by relatively prime integers r, s such that s > r > 0)
as a subgraph in G; and G3. They show that if ©; < r/s, then G; will have at most poly-

*7") number of such subtrees. On the other hand, when ©5 > r/s+e

logarithmic (O (logn)
where € > 0 is a small constant, they show that there at least k¢ such subtrees (even in the
Dense vs Random Model). Now if k > (logn)*(!), they use this difference in the log-densities
to show the gap between counts of such trees in G; and G2, and hence are able to distinguish
between the two distributions. They show that the running time of this algorithm is n®().
Also for constant ©; and s, the running time is n®1/(92=01)) ([6, 5]). We call this algorithm
the “subgraph counting” algorithm.

The distinguishing problem can be restated as the following : For a given n, k, p, we are
interested in finding the smallest value of d for which the problem can be solved. For a certain
range of parameters, spectral, SDP based methods, etc. can be used to work for small values
of d. For example, in the Dense vs Random Model, when k > /n a natural SDP relaxation
of DES can be used to distinguish between Gy and Gy for d > /D + kD /n (which is smaller
than D'°8n % the threshold of the subgraph counting algorithm). They upper bound the cost
of the optimal SDP solution for a random graph G, by constructing a feasible dual solution
which certifies (w.h.p.) that it cannot contain a k-subgraph with density more than that
of VD + kD/n. We use their results in bounding the cost of the SDP contribution from
G[V \ S] in the DkSExp(n, k,d, §,d’, \) and DkSExpReg(n, k,d, §,d’, \) models.

The distribution Dy of graphs considered in the Dense in Random Model (arbitrary dense
graph planted in a random graph) is similar to a subset of DkSExp(n, k, d, d,d’, \) instances
since G[S] is an arbitrary dense subgraph in both models and G[S, V' \ S] is a random graph
in both the models. The difference is in the subgraph G[V'\ S], where this is a random graph
in the Dense in Random model whereas our models require it to be a regular expander.
While our proofs require the expander to be regular, they can also be made to work for
random graphs since we use the bound on the SDP value from [6] (analysis in Section 2.2).
We note that while random graphs are good expanders w.h.p., the converse of this fact is
not true in general, since there are known deterministic constructions of expander graphs.

We look at the range of parameters where the following two algorithms can be used to
solve the Dense in Random problem. One is the SDP based algorithm proposed in our
work (closely related to DkSExp(n, k,d, d,d’, \) model) and second is the subgraph counting
algorithm which uses the difference in the log-densities of the planted subgraph and the host
graph to distinguish the two distributions from [6, 5]. For the purposes of comparison, we
consider the case when k&, d = poly(n) and p = 1/poly(n). Also we ignore the low-order terms
in these expressions. In this regime, our algorithms’ threshold is

d = Q (max {pk, /np}) (1)

since we can use the objective value of the SDP 1.11 to distinguish between the cases in this
range of d. For Gy, this value is at most k (pk + \/np) /2 (Lemma 2.12) while for G5 it is at
least kd/2. Moreover, Algorithm 1 can be used to recover a part of the planted solution as
the value of v is small (when d satisfies Equation (1), v is bounded away and smaller than 1)
in this regime (see Section 2 and Theorem 2.1).

The counting algorithms’ threshold (or the log-density threshold) is

1 1 1 1
0g d ognp>0 — logd>70gk o8 np
logn

_ e log,, k
logk logn —d ((np))

27:7

FSTTCS 2020

27:8

Planted Models for the Densest k-Subgraph Problem

1

O —
and its running time is n (Ing d —log,, np) . We look at different ranges of k and compare
the values of d for which the two algorithms can solve the distinguishing problem.

1. k=0 (/n).
In this case, max {pk, \/np} = \/np. This matches with the log-density threshold. Note
that for p = © (1/y/n), we get d = Q (n/*). To the best of our knowledge, there is no
poly-time algorithm which beats this lower bound.

2. k=w(y/n).
In this setting, (np)'°»* = w (\/np). Also, (np)'*&n* = k(p)'°6»* = w (pk). Thus our
algorithm has a better threshold in this regime. There is a spectral algorithm, see Section
6.2 of [6], which uses the second eigenvalue of the adjacency matrix which can distinguish
with the same threshold as our algorithm in this regime.

3. k=o(v/n).
In this case, (np)l°&=* = o (\/7Tp) Here the log-density threshold is smaller than our
threshold. Therefore the algorithm by Bhaskara et al. [6] works for a larger range of
parameters than our algorithms.

Other semi-random models. Semi-random instances of many other fundamental problems
have been studied in the literature. This includes the unique games problem [25], graph
coloring [1, 11, 12], graph partitioning problems such as balanced-cut, multi-cut, small set
expansion [28, 29, 26, 27|, etc. [30] studies the problem of learning communities in the
Stochastic Block Model in the presence of adversarial errors.

McKenzie, Mehta and Trevisan [32] study the complexity of the independent set problem
in the Feige-Killian model [13]. Instead of using a SDP relaxation for the problem, they use a
“crude” SDP (introduced in [25]) which exploits the geometry of vectors (orthogonality etc.)
to reveal the planted set. They bound the SDP contribution by the vertex pairs, S x V '\ §
using the Grothendieck inequality and thereby showing that the vectors in S are “clustered”
together. Their algorithm outputs w.h.p. a large independent set when k =) (n2/3/p1/3).
Also, for the parameter range k = Q (n2/ 3/ p), it outputs a list of at most n independent sets
of size k, one of which is the planted one.

Semi-random models for graph partitioning problems. The problem of DS is very closely
related to the SMALL SET EXPANSION problem (SSE, henceforth). This problem has been
very well studied in the literature. At the first glance, the problem of DS can be thought
of as finding a small set S of size k which is non-expanding. The densest set is typically
a non-expanding set because most of the edges incident on S would remain inside it than
leaving it. But the converse is not true, since all sets of cardinality & which have small
expansion are not dense. In particular, in our model, by the action of the monotone adversary
on V'\ S, there can exist many small sets (of size O (k)) which not only have a very small
fraction of edges going outside but can have very few edges left inside as well. This makes the
problem of DkS very different from the SSE problem. Nevertheless, we survey some related
works of semi-random models of SSE. The works [36, 4] study the worst-case approximation
factors for the SSE problem and give bi-criteria approximation algorithms for the same.
Their algorithms are also based on rounding a SDP relaxation.

Makarychev, Markarychev and Vijayaraghavan [28] study the complexity of many graph
partitioning problems including balanced cut, SSE, and multi-cut etc. They consider the
following model : Partition V into (S, V' \ S) such that G[S] and G[V '\ S] are arbitrary while

Y. Khanna and A. Louis

G[S,V \ 9] is a random graph with some probability €. They allow an adversary to add
edges within S and V' \ S, and delete any edges across these sets. They get constant factor
bi-criteria approximation algorithms (under some mild technical conditions) in this model.
In the case of balanced cut and SSE problems, when the partitions themselves have enough
expansion within them, they can recover the planted cut upto a small error.

Louis and Venkat [26] study the problem of balanced vertex expansion in a natural
semi-random model and get a bi-criteria approximation algorithm for the same. They even
get an exact recovery for a restricted set of parameters in their model. Their proof consisted
of constructing an optimal solution to the dual of the SDP relaxation and using it to show
the integrality of the optimal primal solution. In [27], they study the problem for a general,

balanced k—way vertex (and edge) expansion and give efficient algorithms for the same.

Their construction consists of k (almost) regular expander graphs (over vertices {Si}le,

each of size n/k) and then adding edges across them ensuring that the expansion of each
of the G[S;]’s is small. Their algorithm is based on rounding a SDP relaxation and then
showing that the vertices of each S; are “clustered” together around the mean vector p; and
for different sets S; and S, p; and p; are sufficiently apart. This gives a way to recover
a good solution. Our approach also shows that the SDP vectors for the vertices in S are
“clustered” together. However arriving at such a conclusion requires different ideas because
of the new challenges posed by the nature of the problem and assumptions on our models.

1.4 SDP formulation

We use the following Semidefinite/Vector Programming relaxation for our problem, over the
vectors X; (i € [n]) and I.

» SDP 1.11.
. . 1 =
mazimize 3 igz:l Aij (X3, X5) (2)
subject to Z (X, Xi) =k (3)

D (X XG) < B (XG, X3) vieln (4)
0<(X;,X;) <(Xi,Xa) Vi,jen], (i#j) (5)
(Xi, X;) <1 Vie[n] (6)

(Xi, I) = (X, Xi) vien] (7)
(I.I)=1 (8)

We note that these programs can be solved efficiently using standard algorithms, like ellipsoid
and interior point methods. To see, why the above SDP 1.11 is a relaxation, let S be the
optimal set and v be any unit vector. It is easy to verify the solution set,

v
XZ:{O

is feasible for SDP 1.11 and gives the objective value equal to its optimal density.

1€ S
ieV\S

~
Il
[,

and

27:9

FSTTCS 2020

27:10

Planted Models for the Densest k-Subgraph Problem

1.5 Proof Overview

Our algorithms are based on rounding an SDP relaxation (SDP 1.11) for the DENSEST
k-SUBGRAPH problem. At a high level, we show that most of the SDP mass is concentrated
on the vertices in S (Proposition 2.16). To show this, we begin by observing that the SDP
objective value is at least kd/2 since the integer optimal solution to the SDP has value at
least kd/2. Therefore, by proving an appropriate upper bound on the SDP value from edges
in S x (V\ S) (Proposition 2.2) and the edges in V' \ S (Proposition 2.11), we can get a
lower bound on the SDP value from the edges inside S.

The edges in S x (V'\ S) form a random bipartite graph. We can bound the contribution
towards the SDP mass from this part by bounding the contribution from the “expected
graph” (Lemma 2.5) and the contribution from the random graph minus the expected graph
(Corollary 2.10). The contribution from the latter part can be bounded using bounds on the
spectra of random matrices (Corollary 2.8). Since the expected graph is a complete weighted
graph with edge weights equal to the edge probability, the contribution from this part can
be bounded using the SDP constraints (Lemma 2.5).

For DkSExp(n, k,d, d,d’, \) and DkSExpReg(n, k,d, d,d’,), we use a result by [6]. They
construct a feasible solution to the dual of the SDP for random graphs, thereby bounding
the cost of the optimal solution of the primal. Their proof only uses a bound on the spectral
gap of the graph, and therefore, holds also for expander graphs. Therefore, this result
gives us the desired bound on the SDP value on the edges inside V' \ S in these models
(Proposition 2.11). We also give an alternate proof of the same result using the spectral
properties of the adjacency matrix of V' \ S in the full version of the paper; this approach is
similar in spirit to the proof of the classical expander mizing lemma.

For DkS(n, k,d, d,v) and DkSReg(n, k,d, d,7), we bound the SDP value on the edges
inside V'\ S using a result of Charikar [10]. This work showed that for a graph H = (V/, E'),
a natural LP relaxation can be used to compute maxy cy: p(W)/|W|. We show that we
can use our SDP solution to construct a feasible solution for this LP. Since p(W)/ |W| < ~d,
YW C V' \ S in this model, Charikar’s result [10] implies that the cost of any feasible LP
solution can be bounded by ~yd. This gives us the desired bound on the SDP value on the
edges inside V'\ S in these models.

These bounds establish that most of the SDP mass is on the edges inside S. Using the
SDP constraints, we show that the set of vertices corresponding to all the “long” vectors
will contain a large weight of edges inside S (Corollary 2.19). Moreover, since the sum of
squared lengths of the vectors is k (from the SDP constraints), we can only have O (k) long
vectors (Lemma 2.20). Using standard techniques from the literature, we can prune this set
to obtain a set of size at most k and having large density [37]. In the case when the graph
induced on S is d-regular, we show that if a set contains a large fraction of the edges inside
S, then it must also have a large intersection with S. We present our complete procedure in
Algorithm 1.

We note that while this framework for showing that the SDP mass is concentrated on
the planted solution has been used for designing algorithms for semi-random instances of
other problems as well, proving quantitative bounds is problem-specific and model-specific:
different problems and different models require different approaches.

Organization of the paper

Due to space constraints, we present the complete version (with all the details and proofs)
of Section 2 in the full version of the paper, however we do state the key technical results

Y. Khanna and A. Louis 27:11

here with the proof of Theorem 2.1. We state and prove the formal versions of Theorem 1.6,
Theorem 1.7, and Theorem 1.8 in the full version of the paper.

2 Analysis of DESExp(n, k,d, d,d’, \)
In this section, we will analyse the DkSExp(n, k,d, d,d’, \) model. Our main result is the

following.

» Theorem 2.1 (Formal version of Theorem 1.3). There exist universal constants k,& € R and
a deterministic polynomial time algorithm, which takes an instance of DESExp(n, k,d,d,d’, \)
where

[én A d'k

satisfying v € (0,1), and §d/k € [klogn/n,1), and outputs with high probability (over the
instance) a vertex set Q of size k such that

CEIEE

The above algorithm also computes a vertex set T such that

v kd
(a) \Tlék(Hg)- (b) p(TﬂS)z(lf%)?.
In the analysis below, without loss of generality we can ignore the adversarial action
(step 4 of the model construction) to have taken place. Let us assume the montone adversary
removes edges arbitrarily from the subgraphs G[V \ S| & G[S,V \ S] and the new resulting
adjacency matrix is A’. Then for any feasible solution {{Y;}!",,I} of the SDP, we have

> AL(YLY;) <0 > Ay (YL,Y;) for VP,Q € V. This holds because of the non-
iEPJEQ 1eP,jeQ
negativity constraint Equation (5). Thus the upper bounds on SDP contribution by vectors

in G[S,V'\ S] and G[V \ S] as claimed by Proposition 2.2 and Proposition 2.11 respectively
are intact and the rest of the proof follows exactly. Hence, without loss of generality, we can
ignore this step in the analysis of our algorithm.

2.1 Edges between S and V' \ S

In this section, we show an upper bound on > A (XL XG).
1€S,7€V\S

» Proposition 2.2. W.h.p. (over the choice of the graph), we have

S A X X) <3 (1- B) + kv (B 1) (1- 1),

1€S8,7jEV\S

Note that
Do AG(XL X =p > (X X+ Y (Ay—p) (X X)) (9)
1€S,jeV\S i€S,jEV\S 1€S,jeV\S

We will bound the two terms in the R.H.S. of Equation (9) separately. The first term relies
only on the expected graph and can be bounded using the SDP constraints. We use bounds
on the eigenvalues of random bipartite graphs to bound the second term.

FSTTCS 2020

27:12

Planted Models for the Densest k-Subgraph Problem

Bound the contribution from the expected graph

We first prove some properties of the SDP solutions that we will use to bound this term.
The following lemma shows that if the expected value of the squared norm of the vectors

corresponding to the set S is “large”, then their expected pairwise inner product is “large”

as well.

» Lemma 2.3. Let {{Y;};_, I} be any feasible solution of SDP 1.11 and T C V such that,
.%MEWZI—emeogegl,Mm‘ETQLE>Zl—%.

i LI~

» Corollary 2.4.

E (X, X;)>4 E ||X;|*-3.
ij~8 i~S

We are now ready to bound the first term in Equation (9).
» Lemma 2.5.

> (XX <3 (1- B IXIP) -
i€S.jeV\S b

Bounding the deviation from the expected graph
We now prove the following lemmas which we will use to bound the second term in Equa-

tion (9). Let B be the n x n matrix defined as follows.

B_

ij =

M{Aﬁ—pieSJeV\SmieV\&jeS

0 otherwise

» Lemma 2.6.

S B 06 X <2k 81 (B 160°) (1 - 2 1),

i,jEV

Now, we use the following folklore result to bound || B]|.

» Theorem 2.7 ([21], Lemma 30). Let M be a symmetric matriz of size n X n with zero
diagonals and independent entries such that M;; = M;j; ~ Bern(p;;) for all i < j with
pij € [0,1]. Assume p;j (1 —pij) < 7 for alli < j and nr = Q(logn). Then, with high
probability (over the randomness of matriz M),

1M —E[M]|| < O (1)v/nr.

1
» Corollary 2.8. There exists universal constants k,& € R™ such that if p € {K ogn7 1) ,
n
then
B < &/np
with high probability (over the choice of the graph).

» Remark 2.9. Note that, Corollary 2.8 holds with high probability when p = Q (logn/n).
In the rest of the paper, we work in the range of parameters where this lower bound on p is
satisfied. However, we do restate it when explicitly using this bound.

» Corollary 2.10. W.h.p. (over the choice of the graph),

S By 06 X) < 2k (B IR (1- B IGIE).

i,jEV

Y. Khanna and A. Louis

2.2 EdgesinV\ S

We recall, the subgraph G[V'\ 5] is a (d’, \)—expander in the DkSExp(n, k,d, d,d’, A) model.

We show the following upper bound on the SDP mass contribution by the vectors in V'\ S.

» Proposition 2.11.

d'k?
S Ay (X X)) < (Ak+ n_k) (1- EIXIF) -

i,JEV\S

To prove the above proposition, we use the following results from the Bhaskara et al. [6]
paper.

» Lemma 2.12 ([6], Theorem 6.1). For a G(n,p) (Erdds-Rényi model) graph, the value of

the SDP (SDP 1.11) is at most k*p + O (k‘ /np) with high probability when p = Q (logn/n).

» Lemma 2.13 ([6], Theorem 6.1). For a (d', \)-ezpander graph on n vertices, the value of
2 7

the SDP (SDP 1.11) is at most knd + kA

We note that, though the statement proved in [6] is about random graphs (Lemma 2.12),
their proof follows as is for an expander graph. Since, we are only applying Lemma 2.13 to the

subgraph G[V'\ S], we use a scaling factor of (1 —Eis ||XZ||2) The proof of Proposition 2.11

follows directly from the above lemma. We also provide an alternate proof of this in the full
version of the paper.

» Remark 2.14. If the subgraph, G[V \ S] is a random graph (G(n — k,p)) as considered in
our discussion in Section 1.3, we can analogously use Lemma 2.12 to get upper bounds on

Zi,jEV\S Aij <Xi7Xj>~

2.3 Putting things together

We have shown upper bounds on the SDP mass from the edges in S x (V'\ S) (Proposition 2.2)
and from the edges in V'\ S (Proposition 2.11). We combine these results to show that the
average value of (X, X,) where {u,v} € E(G[5]) is “large” (Proposition 2.16). The SDP
constraint Equation (5) implies the corresponding vertices, u and v have large squared norms
as well. This immediately guides us towards a selection criteria/recovery algorithm. However
we need to output a vertex set of size at most k, we prune this set using a greedy strategy
(Algorithm 1).

» Lemma 2.15.

A (X, X)) = (kd E X, X5 .
ZS X0 Xg) = (kd) B (X X)

» Proposition 2.16. W.h.p. (over the choice of the graph), we have E (X5, X;j) >
{1,5}~E(GIS])

1 —n, where

[én A d'k

Now, we present the complete algorithm below.

27:13

FSTTCS 2020

27:14 Planted Models for the Densest k-Subgraph Problem

Algorithm 1 Recovering a dense set Q.

Input: An Instance of DkSExp(n, k,d,d,d’,\) / DkSExpReg(n, k,d,§,d’,\) /
DkS(n, k,d,d,v) / DkSReg(n, k,d,d,~) and a parameter 0 < n < 1.
Output: A vertex set Q of size k.
1: Solve SDP 1.11 to get the vectors {{Xi}?zl ,I}.
o o 1/4/3n TFor instances of type, DkSExp(n, k,d,d,d’, \) or DkS(n, k, d,d,7) .
' 2//m For instances of type, DkSExpReg(n, k,d,d,d’, \) or DkSReg(n, k,d, d,7).
3: Let T = {iEV:HXiHQ 2170477}.
4: Initialize Q@ =T
5: if |Q| < k then
6: Arbitrarily add remaining vertices to set Q to make its size k.
7: else
8: while |Q] # k do
9: Remove the minimum weighted vertex from the set Q.
10: end while
11: end if
12: Return Q.

Note that if = 0, the SDP returns an integral solution and we can recover the set S
exactly. Therefore, w.l.o.g. we assume 1 # 0, 1.
To analyse the cost of the solution returned by Algorithm 1, we define two sets as follows.

e B (X X)) >1—an) and T {z VX >1 —an} ,

where 1 < o < 1/ is a parameter to be fixed later.
We show that a large weight of the edges inside S also lies in the set T".
» Lemma 2.17. W.h.p. (over the choice of the graph),
kd 1
Z w(e)><1—>.
2 «
eeT'NE(G[S))

The following lemma shows that the subgraph induced on T'N S contains all the edges in
T'Nn E (G[Y)).

» Lemma 2.18. W.h.p. (over the choice of the graph),
T'nE(G[S]) C E(G[TNS]).

» Corollary 2.19. W.h.p. (over the choice of the graph),

«

p(T)zp(TﬁS)Zl;d(l—l) :

We have shown that the subgraph induced on T has a large weight (&~ kd/2). In the next
lemma, we show that the size of set 1" is not too large compared to k.

» Lemma 2.20. W.h.p. (over the choice of the graph),

k

|T| < .
1—an

To prune the set T" and obtain a set of size k, we use a lemma from the work by Srivastav
et al. [37].

Y. Khanna and A. Louis

» Lemma 2.21 ([37], Lemma 1). Let V', V" C V be non-emply subsets such that |V"| > |V|,
then the greedy procedure which picks the lowest weighted vertex from V' and removes it
VIavi-1 p(V) .

iteratively till we have |V'| vertices left ensures, p (V') > VI VT=1)

We are now ready to prove the main result which gives the approximation guarantee of
our algorithm. We also set the value of parameter o which maximizes the density of the
output graph.

Proof of Theorem 2.1. We run Algorithm 1 on DkSExp(n, k,d,d,d’,) with n as given in
Proposition 2.16. From Lemma 2.21, we have a handle on the density of the new set (Q)

after pruning T to a set of size k. The algorithm performs this exactly in the steps 5 to 11.

Let ALG denote the density of this new set (output of Algorithm 1). We have,

k(k—1)) (1) kd
ALG > | —=———— 1——) — by Corollary 2.19 and Lemma 2.21
(Tl (T -1) o)z)

_ 2
> ((10"7)1)) (1 _ f) kd (by Lemma 2.20 and dividing by k — 1)

1+an/(k— a) 2

(1 —an)? (l)kd
> — 1——) — Jo.g., k>
(1+m] o) 3 (wlog, k=>2)
>(1—2a)(1—a)(1——)% ((1—x)2>1—2x&L>1—x vz € R)
= " K al 2 - 1+z ~ ’ =0
>(1—-3an— —) kd (rearranging and bounding the positive terms by 0)

2

(
(172\f) hd (weﬁxazl/\/:%).

Letting v o3 , we get that ALG > (1 — 7) kd/2 where

16 A d'k
v=2,13 (6(5 +¢& d%:l + P + (nk)d) (using the value of 1 from Proposition 2.16).

k k
From Lemma 2.20, |T| < —an =1 76) <k (1 + g) . And from Corollary 2.19,

kd 1 kd v
p<T“S>>2<1‘a> 5 (1-3) <

Note that for the parameter range 0 < 24/3n <1 <= 0 < v < 1, the value of a (= 1/1/3n)
fixed by the algorithm lies in the interval (1,1/n) as required.

» Remark 2.22 (on Theorem 1.3). In the restricted parameter case, we simplify the arguments
in our informal theorem statements, i.e. the case when the average degree of vertices in

kd' 1 d
S and V' \ S is close, we have 6 = © 1) Assuming v = 24/3n, we rewrite ﬁ as o3
n
(d =Nk .
from the above value of and the term m is at most a constant for “large” n. So,

A+ Vd
d

the new value of 7 is © (o+) A similar argument gives the new value of v/ in

Theorem 1.7.

27:15

FSTTCS 2020

27:16

Planted Models for the Densest k-Subgraph Problem

—— References

1

10

11

12

13

14

15

16

17

18

Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable graphs.
SIAM J. Comput., 26(6):1733-1748, December 1997. doi:10.1137/50097539794270248.
Brendan P. Ames. Guaranteed recovery of planted cliques and dense subgraphs by con-
vex relaxation. J. Optim. Theory Appl., 167(2):653-675, November 2015. doi:10.1007/
s10957-015-0777-x.

Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. In Algorithm Theory — SWAT’96, pages 136-148, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Nagara-
jan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set expansion.
SIAM J. Comput., 43(2):872-904, 2014. doi:10.1137/120873996.

Aditya Bhaskara. Finding dense structures in graphs and matrices. PhD thesis, Princeton
University, 2012. URL: https://www.cs.utah.edu/~bhaskara/files/thesis.pdf.

Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan.
Detecting high log-densities: an O(nl/ 4) approximation for densest k-subgraph. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 201-210, 2010. doi:10.1145/1806689.1806719.

Aditya Bhaskara, Moses Charikar, Aravindan Vijayaraghavan, Venkatesan Guruswami, and
Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’12, page 388-405, USA, 2012. Society for Industrial and Applied Mathematics.
Polina Bombina and Brendan Ames. Convex optimization for the densest subgraph and
densest submatrix problems, 2019. arXiv:1904.03272.

Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hardness for
densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-FEighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 1326-1341, Philadelphia,
PA, USA, 2017. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3039686.3039772.

Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proceedings of the Third International Workshop on Approximation Algorithms for Combin-
atorial Optimization, APPROX ’00, pages 84-95, Berlin, Heidelberg, 2000. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=646688.702972.

Amin Coja-Oghlan. Colouring semirandom graphs. Comb. Probab. Comput., 16(4):515-552,
July 2007. doi:10.1017/S0963548306007917.

Roee David and Uriel Feige. On the effect of randomness on planted 3-coloring models. In
Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16,
pages 77-90, New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897561.

Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput. Syst. Sci.,
63(4):639-671, December 2001. doi:10.1006/jcss.2001.1773.

Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410-421, 2001. doi:10.1007/s004530010050.

Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms, 41(2):174-211, 2001. doi:10.1006/jagm.
2001.1183.

Uriel Feige and Michael Seltser. On the densest k-subgraph problem. Algorithmica, 29:2001,
1997.

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. STAM J. Comput., 18(1):30-55, February 1989. doi:10.1137/0218003.

A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of
California at Berkeley, Berkeley, CA, USA, 1984.

https://doi.org/10.1137/S0097539794270248
https://doi.org/10.1007/s10957-015-0777-x
https://doi.org/10.1007/s10957-015-0777-x
https://doi.org/10.1137/120873996
https://www.cs.utah.edu/~bhaskara/files/thesis.pdf
https://doi.org/10.1145/1806689.1806719
http://arxiv.org/abs/1904.03272
http://dl.acm.org/citation.cfm?id=3039686.3039772
http://dl.acm.org/citation.cfm?id=3039686.3039772
http://dl.acm.org/citation.cfm?id=646688.702972
https://doi.org/10.1017/S0963548306007917
https://doi.org/10.1145/2897518.2897561
https://doi.org/10.1006/jcss.2001.1773
https://doi.org/10.1007/s004530010050
https://doi.org/10.1006/jagm.2001.1183
https://doi.org/10.1006/jagm.2001.1183
https://doi.org/10.1137/0218003

Y. Khanna and A. Louis

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

B. Hajek, Y. Wu, and J. Xu. Achieving exact cluster recovery threshold via semidefinite
programming: Extensions. IEEFE Transactions on Information Theory, 62(10):5918-5937,
2016.

Bruce Hajek, Yihong Wu, and Jiaming Xu. Computational Lower Bounds for Community
Detection on Random Graphs. arXiv e-prints, page arXiv:1406.6625, June 2014. arXiv:
1406.6625.

Bruce Hajek, Yihong Wu, and Jiaming Xu. Semidefinite programs for exact recovery of a
hidden community. Journal of Machine Learning Research, 49(June):1051-1095, June 2016.
29th Conference on Learning Theory, COLT 2016 ; Conference date: 23-06-2016 Through
26-06-2016.

Ravi Kannan and V Vinay. Analyzing the structure of large graphs. Rheinische Friedrich-
Wilhelms-Universitidt Bonn Bonn, 1999.

Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput., 36(4):1025-1071, December 2006. doi:10.1137/S0097539705447037.
Samir Khuller and Barna Saha. On finding dense subgraphs. In Proceedings of the 36th
International Colloguium on Automata, Languages and Programming: Part I, ICALP 09, pages
597-608, Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-02927-1_50.
Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique games
against a semi-random adversary: Study of semi-random models of unique games. In IEEFE
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs,
CA, USA, October 22-25, 2011, pages 443-452, 2011. doi:10.1109/F0CS.2011.78.

Anand Louis and Rakesh Venkat. Semi-random graphs with planted sparse vertex cuts:
Algorithms for exact and approximate recovery. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages
101:1-101:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.101.

Anand Louis and Rakesh Venkat. Planted models for k-way edge and vertex expansion.
In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India, pages 23:1-23:15,
2019. doi:10.4230/LIPIcs.FSTTCS.2019.23.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation
algorithms for semi-random partitioning problems. In Proceedings of the Forty-fourth Annual
ACM Symposium on Theory of Computing, STOC 12, pages 367-384, New York, NY, USA,
2012. ACM. doi:10.1145/2213977.2214013.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Constant factor
approximation for balanced cut in the pie model. In Proceedings of the Forty-sixth Annual
ACM Symposium on Theory of Computing, STOC ’14, pages 41-49, New York, NY, USA,
2014. ACM. doi:10.1145/2591796.2591841.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Learning com-
munities in the presence of errors. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir,
editors, 29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1258—1291, Columbia University, New York, New York, USA, 2016.
PMLR. URL: http://proceedings.mlr.press/v49/makarychevi6.html.

Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, Montreal, QC, Canada, June 19-23, 2017, pages 954-961, 2017. doi:10.1145/3055399.

3055412.

Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the robust semi-
random independent set problem. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 738746,
2020. doi:10.1137/1.9781611975994 .45.

F. McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium
on Foundations of Computer Science, pages 529-537, 2001.

27:17

FSTTCS 2020

http://arxiv.org/abs/1406.6625
http://arxiv.org/abs/1406.6625
https://doi.org/10.1137/S0097539705447037
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1109/FOCS.2011.78
https://doi.org/10.4230/LIPIcs.ICALP.2018.101
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.23
https://doi.org/10.1145/2213977.2214013
https://doi.org/10.1145/2591796.2591841
http://proceedings.mlr.press/v49/makarychev16.html
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1137/1.9781611975994.45

27:18

Planted Models for the Densest k-Subgraph Problem

34

35

36

37

Andrea Montanari. Finding one community in a sparse graph. Journal of Statistical Physics,
161, February 2015. doi:10.1007/s10955-015-1338-2.

Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pages 755-764, New York, NY, USA, 2010. ACM. doi:10.1145/1806689.1806792.

Prasad Raghavendra, David Steurer, and Prasad Tetali. Approximations for the isoperimetric
and spectral profile of graphs and related parameters. In Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, STOC 10, page 631-640, New York, NY, USA,
2010. Association for Computing Machinery. doi:10.1145/1806689.1806776.

Anand Srivastav and Katja Wolf. Finding dense subgraphs with semidefinite programming.
In Proceedings of the International Workshop on Approximation Algorithms for Combinatorial
Optimization, APPROX ’98, pages 181-191, London, UK, UK, 1998. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=646687.702946.

https://doi.org/10.1007/s10955-015-1338-2
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806776
http://dl.acm.org/citation.cfm?id=646687.702946

	Introduction
	Our models and results
	Notation
	Related Work
	SDP formulation
	Proof Overview

	Analysis of DkSExp(n, k, d, delta, d', lambda)
	Edges between S and V S
	Edges in V S
	Putting things together

