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Abstract
In the Stable Marriage problem, when the preference lists are complete, all agents of the smaller
side can be matched. However, this need not be true when preference lists are incomplete. In most
real-life situations, where agents participate in the matching market voluntarily and submit their
preferences, it is natural to assume that each agent wants to be matched to someone in his/her
preference list as opposed to being unmatched. In light of the Rural Hospital Theorem, we have
to relax the “no blocking pair” condition for stable matchings in order to match more agents. In
this paper, we study the question of matching more agents with fewest possible blocking edges. In
particular, the goal is to find a matching whose size exceeds that of a stable matching in the graph
by at least t and has at most k blocking edges. We study this question in the realm of parameterized
complexity with respect to several natural parameters, k, t, d, where d is the maximum length of a
preference list. Unfortunately, the problem remains intractable even for the combined parameter
k + t+ d. Thus, we extend our study to the local search variant of this problem, in which we search
for a matching that not only fulfills each of the above conditions but is “closest”, in terms of its
symmetric difference to the given stable matching, and obtain an FPT algorithm.
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1 Introduction

Matching various entities to available resources is of great practical importance, exemplified
in matching college applicants to college seats, medical residents to hospitals, preschoolers to
kindergartens, unemployed workers to jobs, organ donors to recipients, and so on [2, 14, 19, 21].
It is noteworthy that in the applications mentioned above, it is not enough to merely match
an entity to any of the available resources. It is imperative, in fact, mission-critical, to
create matches that fulfil some predefined notions of compatibility, suitability, acceptability,
and so on. Gale and Shapley introduced the fundamental theoretical framework to study
such two-sided matching markets in the 1960s. They envisioned a matching outcome as a
marriage between the members of the two sides, and a desirable outcome representing a stable
marriage. The algorithm proffered by them has since attained wide-scale recognition as the
Gale-Shapley stable marriage/matching algorithm [14]. Stability is one of the acceptability
criteria for matching in which an unmatched pair of agent should not prefer each other over
their matched partner.

Of the many characteristic features of the two-sided matching markets, there are certain
aspects that stand out and are supported by both theoretical and empirical evidence –
particularly notable is the curious aspect that for a given market with strict preferences
on both sides,1 no matter what the stable matching outcome is, the specific number of
resources matched on either side always remains the same. This fact encapsulated by The
Rural Hospital’s Theorem [30, 31] states that no matter what stable matching algorithm
is deployed, the exact set (rather than only the number) of resources that are matched on
either side is the same. In other words, there is a trade-off between size and stability such
that any increase in size must be paid for by sacrificing stability. Indeed, it is not hard to
find instances in which as much as half of the available resources are unmatched in every
stable matching. Such gross underutilization of critical and potentially expensive resources
has not gone unaddressed by researchers. In light of The Rural Hospital Theorem, many
variations have been considered, some important ones being: enforcing lower and upper
capacities, forcing some matches, forbidding some matches, relaxing the notion of stability,
and finally foregoing stability altogether in favor of size [2, 3, 7, 16, 22, 34].

We formalize the trade-off mentioned above between size and stability in terms of the
Almost Stable Marriage problem. The classical Stable Marriage problem takes as
an instance a bipartite graph G = (A ∪ B,E), where A and B denote the set of vertices
representing the agents on the two sides and E denotes the set of edges representing acceptable
matches between vertices on different sides, and a preference list of every vertex in G over its
neighbors. Thus, the length of the preference list of a vertex is the same as its degree in the
graph. A matching is defined as a subset of the set of edges E such that no vertex appears
in more than one edge in the matching. An edge in a matching represents a match such that
the endpoints of a matching edge are said to be the matching partners of each other, and an
unmatched vertex is deemed to be self-matched. A matching µ is said to be stable in G if
there does not exist a blocking edge with respect to µ, defined to be an edge e ∈ E \ µ whose
endpoints rank each other higher (in their respective preference lists) than their matching
partners in µ.2 The goal of the Stable Marriage problem is to find a stable matching.
We define the Almost Stable Marriage problem as follows.

1 In most real-life applications, it is unreasonable if not unrealistic to expect each of the agents to rank
all the agents on the other side. That is, the graph G is highly unlikely to be complete.

2 Every candidate is assumed to prefer being matched to any of its neighbors to being self-matched.
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Almost Stable Marriage (ASM)
Input: A bipartite graph G = (A ∪B,E), a set L containing the preference list of
each vertex, and non-negative integers k and t.
Question: Does there exist a matching whose size is at least t more than the size of
a stable matching in G such that the matching has at most k blocking edges?

In ASM, we hope for a matching that is larger than a stable matching but may contain
some blocking edges. The above problem quantifies these two variables: t and k denote the
minimum increase in the size and the allowable number of blocking edges, respectively.

We note that Biró et al. [3] considered the problem of finding, among all matchings
of maximum size, one that has the fewest blocking edges, and showed the NP-hardness
of the problem even when the degree of the graph is at most three. Since one can find a
maximum matching and a stable matching in the given graph in polynomial time [27, 14],
their NP-hardness result implies NP-hardness for ASM even when the degree is at most
three by setting t to be the difference between the size of a maximum matching and the size
of a stable matching.

Our Contribution and Methods. We study the parameterized complexity of ASM with
respect to parameters k and t; a combination that is not settled by Biró et al. [3]. Our first
result exhibits a strong guarantee of intractability. We exhibit parameterized intractability
of ASM in a very restrictive setting where the degree of the given graph is three.

I Theorem 1. ASM is W[1]-hard with respect to k + t, even when the maximum degree of
the given graph is at most three.

We prove Theorem 1 by showing a polynomial-time many-to-one parameter preserving
reduction from the Multicolored Clique (MCQ, in short) problem to ASM. In the
Multicolored Clique problem, given a graph G = (V,E) and a partition of V (G) into
k parts, say V1, . . . , Vk; the goal is to decide the existence of a set S ⊆ V (G) such that
|S ∩ Vi| = 1, for all i ∈ [k], and G[S] induces a clique, that is, there is an edge between every
pair of vertices in G[S]. MCQ is known to be W[1]-hard [29, 12] with respect to k.

In light of the intractability result in Theorem 1, we are hard pressed to recalibrate our
expectations of what is algorithmically feasible in an efficient manner. Therefore, we consider
a local search approach for this problem, in which, instead of finding any matching whose
size is at least t larger than the size of stable matching, we also want this matching to be
“closest” in terms of its symmetric difference, to a stable matching. Such framework of local
search has also been studied for other variants of the Stable Marriage problem by Marx
and Schlotter [26, 25]. We would like to emphasize that the notion of local search used here
is different from the classical notion of local search heuristics/algorithms commonly used in
practice [33]. We use the notion of local search that is well-defined and widely used in the
domain of parameterized complexity, as exemplified by Marx and Schlotter [26, 25], and has
also been applied to study several other optimization problems [11, 18, 20, 23, 24, 25, 32].
The question is formally defined as follows.

Local Search-ASM (LS-ASM)
Input: A bipartite graph G = (A ∪B,E), a set L containing the preference list of
every vertex, a stable matching µ, and non-negative integers k, q, and t.
Question: Does there exist a matching η of size at least |µ| + t with at most k
blocking edges such that the symmetric difference between µ and η is at most q?

FSTTCS 2020
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Unsurprisingly perhaps, the existence of a stable matching in the proximity of which
we wish to find a solution does not readily mitigate the computational hardness of the
problem, as evidenced by Theorem 2. This result is a consequence of the properties of the
reduction used in the proof of Theorem 1. The NP-hardness of LS-ASM also follows from
the NP-hardness of ASM as we can set q to be 2n, the maximum possible size of µ ∪ η.

I Theorem 2 (♣).3 LS-ASM is W[1]-hard with respect to k + t, even when the maximum
degree of the given graph is at most three.

In our quest for a parameterization that makes the problem tractable, we investigate LS-ASM
with respect to k + q + t.

I Theorem 3 (♣). LS-ASM is W[1]-hard with respect to k + q + t.

To prove Theorem 3, we give a polynomial-time many-to-one parameter preserving
reduction from MCQ to LS-ASM. In the instance constructed to prove Theorem 1, q is not
a function of k. We mimic the idea of gadget construction in that proof and ensure that q is
a function of k. However, in this effort, the degree of the graph increases. Consequently, the
result in Theorem 3 does not hold for constant degree graphs or even when the degree is a
function of k. This trade-off between q and the degree of the graph in the instances that
establish intractability is not a coincidence, as implied by our next result.

I Theorem 4. There exists an algorithm that, given an instance of LS-ASM, solves the
instance in 2O(q log d)+o(dq)nO(1) time, where n is the number of vertices in the given graph,
and d is the maximum degree of the given graph.

To prove Theorem 4, we begin by using the technique of random separation based on
color coding, in which the underlying idea is to highlight the solution that we are looking
for with high probability. Suppose that η is a hypothetical solution to the given instance
of LS-ASM. Note that to find the matching η, it is enough to find the edges that are in
the symmetric difference of µ and η, denoted by µ4η. Thus, using the technique of random
separation, we wish to highlight the edges in µ4η. We achieve this goal using two layers
of randomization. The first one separates vertices that appear in µ4η, denoted by the set
V (µ4η), from its neighbors, by independently coloring vertices 1 or 2. Let the vertices
appearing in V (µ4η) be colored 1 and its neighbors that are not in V (µ4η) be colored 2.
Observe that the matching partner of the vertices which are not in V (µ4η) is the same in
both µ and η. Therefore, we search for a solution locally in vertices that are colored 1. Let
G1 be the graph induced on the vertices that are colored 1. At this stage we use a second
layer of randomization on edges of G1, and independently color each edge with 1 or 2. This
separates edges that belong to µ4η (say colored 1) from those that do not belong to µ4η.
Now for each component of G1, we look at the edges that have been colored 1, and compute
the number of blocking edges, the increase in size and increase in the symmetric difference,
if we modify using the µ-alternating paths/cycle that are present in this component. This
leads to an instance of the Two-Dimensional Knapsack (2D-KP) problem, which we
solve in polynomial time using a known pseudo-polynomial time algorithm for 2D-KP [17].
We derandomize this algorithm using the notion of an n-p-q-lopsided universal family [13].
Table 1 summarizes the results for ASM and LS-ASM.

3 Proofs marked by [♣] are deferred to the full version of the paper.
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Table 1 Summary of the results for ASM and LS-ASM. Results in blue row are implied from
Theorem 7 in [3].

ASM LS-ASM
NP-hard for d = 3 [3] NP-hard for d = 3 [3]

W[1]-hard for d = 3 wrt k + t [Thm. 1] W[1]-hard wrt k + q + t [Thm. 3]
FPT wrt q + d [Thm. 4]

Related Work. We present here some variants of the Stable Marriage problem which
are closely related to our model. In the past, the notion of “almost stability” is defined for
the Stable Roommate problem [1]. In the Stable Roommate problem, the goal is to
find a stable matching in an arbitrary graph. As opposed to Stable Marriage, in which
the graph is a bipartite graph, an instance of Stable Roommate might not admit a stable
matching. Therefore, the notion of almost stability is defined for the Stable Roommate
problem, in which the goal is to find a matching with a minimum number of blocking edges.
This problem is known as the Almost Stable Roommate problem. Abraham et al. [1]
proved that the Almost Stable Roommate problem is NP-hard. Biro et al. [4] proved
that the problem remains NP-hard even for constant-sized preference lists and studied it in
the realm of approximation algorithms. Chen et al. [5] studied this problem in the realm
of parameterized complexity and showed that the problem is W[1]-hard with respect to the
number of blocking edges even when the maximum length of every preference list is five.

Later in 2010, Biró et al. [3] considered the problem of finding, among all matchings of
the maximum size, one that has the fewest blocking edges, in a bipartite graph and showed
that the problem is NP-hard and not approximable within n1−ε, for any ε > 0 unless P=NP.

The problem of finding the maximum sized stable matching in the presence of ties and
incomplete preference lists, maxSMTI, has striking resemblance with ASM. In maxSMTI,
the decision of resolving each tie comes down to deciding who should be at the top of each of
tied lists, mirrors the choice we have to make in ASM in rematching the vertices who will
be part of a blocking edge in the new matching. Despite this similarity, the W[1]-hardness
result presented in [26, Theorem 7] does not yield the hardness result of ASM and LS-ASM
as the reduction is not likely to be parameteric in terms of k + t and k + t+ q, or have the
degree bounded by a constant. For other variants of the Stable Marriage problem, we
refer the reader to [6, 21, 15, 19].

2 Preliminaries

Sets. We denote the set of natural numbers {1, . . . , `} by [`]. For two sets X and Y , we use
notation X4Y to denote the symmetric difference between X and Y . For any ordered set X,
and an appropriately defined value t, X(t) denotes the tth element of the set X. Conversely,
suppose that x is tth element of the set X, then σ(X,x) = t.

Graphs. Let G be an undirected graph. We denote an edge between u and v as uv. The
neighborhood of a vertex v, denoted by NG(v), is the set of all vertices adjacent to it.
Analogously, the (open) neighborhood of a subset S ⊆ V , denoted by NG(S), is the set of
vertices outside S that are adjacent to some vertex in S. A component of G is a maximal
subgraph in which any two vertices are connected by a path. Let H be a subgraph of G.
For a component C in H, we set NG(C) = NG(V (C)). The subscript may be omitted if the
graph under consideration is clear from the context.

FSTTCS 2020
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Figure 1 Depiction of the top three layers of special vertices associated with the vertices of G′,
as explained on page 7, where t = log2(n/2). Yellow labels denote vertex labels and numbers on
edges denote preferences. Analogously, we can depict the layers of the special vertices associated
with the edges of G.

In the preference list of a vertex u, if v appears before w, then we say that u prefers v to
w, and denote it as v �u w. We call an edge in the graph a static edge if its endpoints prefer
each other over any other vertex in the graph. For a matching µ, V (µ) = {u, v : uv ∈ µ}. If
an edge uv ∈ µ, then µ(u) = v and µ(v) = u. A vertex is called saturated in a matching µ, if
it is an endpoint of one of the edges in the matching µ, otherwise it is an unsaturated vertex
in µ. If u is an unsaturated vertex in a matching µ, then we write µ(u) = ∅. For a matching
µ in G, a µ-alternating path (cycle) is a path (cycle) whose edges alternate between matching
edges of µ and non-matching edges. A µ-augmenting path is a µ-alternating path that starts
and ends at an unmatched vertex in µ.

Unless specified, we will be using all general graph terminologies from the book of
Diestel [9]. For parameterized complexity related definitions, we refer the reader to [8, 10, 28].

We conclude this section with a result that is used extensively in our analysis.

I Proposition 1 (♣). Let µ and µ′ denote two matchings in G such that µ is stable and
µ′ is not. Then, for each blocking edge with respect to µ′ we know that at least one of the
endpoints has different matching partners in µ and µ′.

3 W[1]-hardness of ASM

We give a polynomial-time parameter preserving many-to-one reduction from the W[1]-hard
problem Multicolored Clique (MCQ) [29, 12] in which we are given a regular graph
G = (V,E) and a partition of V (G) into k parts, V1, . . . , Vk, and the objective is to decide
if there exists a subset S ⊆ V (G) such that |S ∩ Vi| = 1, for each i ∈ [k], and the induced
subgraph G[S] is a clique. Given an instance I = (G, (V1, . . . , Vk)) of MCQ, we will next
describe the construction of an instance J = (G′,L, k′, t) of ASM.

Construction. We begin by introducing some notations. For any {i, j} ⊆ [k], such that
i < j, we use Eij to denote the set of edges between sets Vi and Vj . For each i ∈ [k], we
have |Vi| = n = 2p, and for each {i, j} ⊆ [k], we have |Eij | = m = 2p′ , for some positive
integers p and p′ greater than one.4 We assume that sets Vi (for each i ∈ [k]) and Eij (for

4 Let m′ be the maximum number of edges in any Eij , where {i, j} ⊆ [k]. Let p′ be the smallest positive
integer greater than one such that m′ ≤ 2p′

. Then, for every {i, j} ⊆ [k], add 2p′
− |Eij | isolated edges
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Figure 2 An illustration of construction of graph G′ in the proof of W[1]-hardness of ASM for
constant sized preference list. Here, blue colored edges belong to the stable matching µ. Here, n = 4,
m = 4, and ru = 2, for all u ∈ V (G).

each {i, j} ⊆ [k], i < j) have a canonical order, and thus for an appropriately defined value t,
Vi(t) (Eij(t)) and σ(Vi, v) (σ(Eij , e)), where v ∈ Vi and e ∈ Eij , are uniquely defined. For
each vertex u ∈ V (G), let ru denotes the degree of u in the graph G.

For each j ∈ [log2(n/2)], let βj = n/2j, and γj = βj/2. For each j ∈ [log2(m/2)], let
ρj = m/2j, and τj = ρj/2. Next, we are ready to describe the construction of the graph G′.

Base vertices.
For each vertex u ∈ V (G), we add 2ru + 2 vertices in G′, denoted by {ui : i ∈ [2ru + 2]},
connected via a path: (u1, . . . , u2ru+2).
For each edge e ∈ E(G), we have four vertices in G′, denoted by {ei : i ∈ [4]}, connected
via a path: (e1, e2, e3, e4).

For each vertex u ∈ V (G), we define a set Eu ⊆ V (G′) as follows. Let u ∈ Vi, for some
i ∈ [k]. Then, for any edge e(= uv) ∈ Eij , where j ∈ [k], j > i, we have that the vertex
e1 ∈ Eu; and for any edge e(= uv) ∈ Eji, where j ∈ [k], j < i, we have that the vertex
e3 ∈ Eu. Formally,

Eu = {e1 ∈ V (G′) : e = uv ∈ Eij} ∪ {e3 ∈ V (G′) : e = uv ∈ Eji}

We assume that the set Eu has a canonical ordering. We encode the vertex-edge incidence
relation in the graph G as follows: For each vertex u ∈ V (G) and value h ∈ [ru], the vertex
u2h+1 in G′ is a neighbor of the vertex Eu(h). Thus, the fact that the edge e is incident to a
vertex u in G, is captured by the fact that a “copy” of e (namely e1 or e3) is adjacent to a
“copy” of u in G′.

Special vertices. For each i ∈ [k], we create the following special vertices associated with
the vertices in Vi.

For each ` ∈ [β1], we add vertices pi` and p̃i` in V (G′). Let u and v denote the 2`− 1st
and the 2`th vertices in Vi, respectively. Then, the vertex pi` is a neighbor of vertices u1
and v1; and the vertex p̃i` is a neighbor of vertices u2ru+2 and v2rv+2 in G′.

(an edge whose endpoints are of degree exactly one) to Eij . Similarly, let n′ be the maximum number
of vertices in any Vi, where i ∈ [k]. Let p be the smallest positive integer greater than one such that
n′ ≤ 2p. Then, for every i ∈ [k], add 2p − |Vi| isolated vertices to Vi. Note that if (G, (V1, . . . , Vk)) was
a W[1]-hard instance of MCQ earlier, then so is the modified instance.

FSTTCS 2020
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For each j ∈ [log2(n/2)], we add vertices in G′ in layers, where the value of j gives the
layer. Vertices in layer j are {bij,` : ` ∈ [βj/2]} ∪ {aij,` : ` ∈ [βj ]}. In the 1st layer, ai1,` is a
neighbor of pi`. In the top layer, i.e., j = log2(n/2), bij,1 is a neighbor of aij,1 and aij,2. In
intermediate layers, i.e., 1 < j < log2(n/2), vertex bij,` is adjacent to two vertices in its
layer, namely aij,2`−1, aij,2` as well as one vertex from layer j + 1, namely aij+1,`. Refer to
Figure (1) for a depiction of two layers.
Symmetrically, we define vertices {b̃ij,` : ` ∈ [βj/2]} ∪ {ãij,` : ` ∈ [βj ]} and define similar
adjacencies for them as well; details are in Table 2.

For each {i, j} ⊆ [k], where i < j, we create the following special vertices associated with
the edges in Eij .
For each ` ∈ [ρ1], we add vertices qij` and q̃ij` to V (G′).
Moreover, let e and e′ denote the 2`− 1st and 2`th elements of Eij , respectively. Then,
qij` is a neighbor of e1 and e′1; and symmetrically q̃ij` is a neighbor of e4 and e′4 in G′.
As before, for each h ∈ [log2(m/2)], we add vertices in G′ in layers, where the value of h
indicates the layer. Vertices in layer h are {cijh,` : ` ∈ [ρj/2]} ∪ {dijh,` : ` ∈ [ρj ]}. In the 1st

layer, vertex cij1,` is a neighbor of qij` . In the top layer, i.e., h = log2(m/2), vertex dijh,1 is a
neighbor of cijh,1 and cijh,2. In intermediate layers, i.e., 1 < h < log2(m/2), vertex dijh,` is
adjacent to two vertices in its layer, namely cijh,2`−1, c

ij
h,2` as well as one vertex from layer

h+ 1, namely cijh+1,`.
Symmetrically, we define vertices {c̃ijh,` : ` ∈ [ρj/2]} ∪ {d̃ih,` : ` ∈ [ρj ]} and define similar
adjacencies for these vertices; details are in Table 2.

Figure 2 illustrates the construction of G′. The preference list of each vertex in G′ is
presented in Table 2.

Parameter: We set k′ = k2, and t = k + k(k−1)/2. This completes the construction of an
instance of ASM. Clearly, this construction can be carried out in polynomial time. Since
|Vi| = n and |Eij | = m, for every {i, j} ⊆ [k], we have 2nk + 4mk(k − 1) many base vertices
and 4nk + 2mk(k − 1)− 3k − 3k2 many special vertices. Thus, in total we have

|V (G′)| = 6mk(k − 1) + 6nk − 3k − 3k2. (I)

The rest of the proof of Theorem 1 is deferred to the full version of the paper.

4 FPT Algorithm for LS-ASM

In this section, we give an FPT algorithm for LS-ASM with respect to q + d (Theorem 4).
Recall that d is the degree of the graph G, and q is the symmetric difference between a
solution matching and the given stable matching µ. Before presenting our algorithm, we
prove that there exists a solution, γ, to (G,L, µ, k, q, t) such that in every component of
G[V (µ4γ)], the number of γ-edges (edges that are in γ) is more than the number of µ-edges
in this component. We will need such a solution for a technical purpose which will be cleared
later in Phase III of the algorithm.

I Lemma 5. There exists a solution γ to (G,L, µ, k, q, t) such that for every component C
of G[V (µ4γ)], |E(C) ∩ γ| > |E(C) ∩ µ|.

The proof of Lemma 5 follows by starting with a solution γ and then replacing the edges in
µ with the edges in γ only in those components of G[V (µ4γ)], where |γ| > |µ|.
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We begin with the description of a randomized algorithm which will be derandomized
later using n-p-q-lopsided universal family [13]. Our algorithm has three phases: Vertex
Separation, Edge Separation, and Size-Fitting. Given an instance (G,L, µ, k, q, t) of LS-ASM,
we proceed as follows.

Phase I: Vertex Separation. We start with the following assumption.

Table 2 Preference lists in the proof of Theorem 1. Here, for a set S, the notation 〈S〉 denotes
the order of preference over the vertices in this set.

For each vertex u ∈ Vi, where i ∈ [k], we have the following preferences:
u1: 〈u2, p

i
d`/2e〉 where for some ` ∈ [n], u = Vi(`).

u2h+1: 〈u2h, Eu(h), u2h+2〉 where h ∈ [ru]
u2h: 〈u2h−1, u2h+1〉 where h ∈ [ru]
u2ru+2: 〈u2ru+1, p̃

i
d /̀2e〉 where for some ` ∈ [n], u = Vi(`).

For the special vertices associated with Vi, we have the following preferences:
pi

`: 〈u1, v1, a
i
1,`〉 where ` ∈ [n/2], u = Vi(2`− 1) and v = Vi(2`)

p̃i
`: 〈u2ru+2, v2rv+2, ã

i
1,`〉 where ` ∈ [n/2], u = Vi(2`− 1) and v = Vi(2`)

ai
1,`: 〈pi

`, b
i
1,d`/2e〉 where ` ∈ [n/2]

ãi
1,`: 〈p̃i

`, b̃
i
1,d /̀2e〉 where ` ∈ [n/2]

ai
j,`: 〈bi

j−1,`, b
i
j,d /̀2e〉 where j ∈ [log2(n/2)] \ {1} and ` ∈ [n/2j ]

ãi
j,`: 〈b̃i

j−1,`, b̃
i
j,d`/2e〉 where j ∈ [log2(n/2)] \ {1} and ` ∈ [n/2j ]

bi
j,`: 〈ai

j,2`−1, a
i
j,2`, a

i
j+1,`〉 where j ∈ [log2(n/2)−1] and ` ∈ [n/2j+1]

b̃i
j,`: 〈ãi

j,2`−1, ã
i
j,2`, ã

i
j+1,`〉 where j ∈ [log2(n/2)−1] and ` ∈ [n/2j+1]

bi
j,1: 〈ai

j,1, a
i
j,2〉 where j = log2(n/2)

b̃i
j,1: 〈ãi

j,1, ã
i
j,2〉 where j = log2(n/2)

For each edge e ∈ Eij , 1 ≤ i < j ≤ k, we have the following preferences:
e1: 〈e2, u2h+1, q

ij
d`/2e〉 where for some ` ∈ [m], e = uv = Eij(`) s.t. u ∈ Vi and

for some h ∈ [ru], e1 = Eu(h)
e2: 〈e1, e3〉
e3: 〈e4, v2h+1, e2〉 where e = uv s.t v ∈ Vj and

for some h ∈ [rv], e3 = Ev(h).
e4: 〈e3, q̃

ij
d`/2e〉 where for some ` ∈ [m], e = uv = Eij(`)

For the special vertices associated with Eij , we have the following preferences:
qij

` : 〈e1, e
′
1, c

ij
1,`〉 where ` ∈ [m/2], e = σ(Eij , 2`− 1) and e′ = σ(Eij , 2`)

q̃ij
` : 〈e4, e

′
4, c̃

ij
1,`〉 where ` ∈ [m/2], e = σ(Eij , 2`− 1) and e′ = σ(Eij , 2`)

cij
1,`: 〈qij

` , d
ij
1,d`/2e〉 where ` ∈ [m/2]

c̃ij
1,`: 〈q̃ij

` , d̃
ij
1,d`/2e〉 where ` ∈ [m/2]

cij
h,`: 〈dij

h−1,`, d
ij
h,d`/2e〉 where h ∈ [log2(m/2)] \ {1}, ` ∈ [m/2h]

c̃ij
h,`: 〈d̃ij

h−1,`, d̃
ij
h,d`/2e〉 where h ∈ [log2(m/2)] \ {1} and ` ∈ [m/2h]

dij
h,`: 〈cij

h,2`−1, c
ij
h,2`, c

ij
h+1,`〉 where h ∈ [log2(m/2)−1] and ` ∈ [m/2h+1]

d̃ij
h,`: 〈c̃ij

h,2`−1, c̃
ij
h,2`, c̃

ij
h+1,`〉 where h ∈ [log2(m/2)−1] and ` ∈ [m/2h+1]

dij
h,1: 〈cij

h,1, c
ij
h,2〉 where h = log2(m/2)

d̃ij
h,1: 〈c̃ij

h,1, c̃
ij
h,2〉 where h = log2(m/2)
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Throughout this section we assume that there exists solution η, and everything will
be defined with respect to η. In fact, we assume that η is a hypothetical solution to
(G,L, µ, k, q, t) such that in every component of G[V (µ4η)], the number of η-edges is
more than the number of µ-edges in this component, that is, η satisfies the property
specified in Lemma 5.

We start by defining a notion of good coloring.

I Definition 6. A function f : V (G) → {0, 1} is called a good coloring, if the following
properties are satisfied.
1. Every vertex in V (µ4η) is colored 1.
2. Let border be the set of neighbors of the vertices in V (µ4η) outside the set V (µ4η), that

is, border = NG(V (µ4η)), and bordermates be the set of matching partners (if they exist)
of the vertices in border in µ. Every vertex in border ∪ bordermates is colored 2.

We will show that a random function f that assigns each vertex of the graph G inde-
pendently with color 1 or 2 with probability5 1/2 each is a good function with probability
depending only on q and d. In particular, we can say the following about f .

Every vertex in V (µ4η) is colored 1 w.p. at least 1
22q .

Every vertex in border ∪ bordermates is colored 2 w.p. at least 1
24qd . To see this, note

that |µ4η| ≤ q and the maximum degree of a vertex in the graph G is d, and so
|border ∪ bordermates| ≤ 2|border| = 2|NG(V (µ4η))| ≤ 4qd.

For each i ∈ [2], let Vi denotes the set of vertices of the graph G that are colored i using the
function f . Summarizing the above mentioned properties we get the following.

I Lemma 7. Let V1, V2, border and bordermates be as defined above. Then, w.p. at least
1

22q+4qd , V (µ4η) ⊆ V1 and border ∪ bordermates ⊆ V2. Thus, f is a good coloring w.p. at
least 1

22q+4qd .

Due to Lemma 7, we have the following:

I Corollary 8. Every component in G[V (µ4η)] is a component in G[V1] w.p. at least 1
22q+4qd .

The proof of Corollary 8 follows from the fact that V (µ4η) ⊆ V1 and border =
NG(V (µ4η)) is a subset of V2 w.p. at least 1

22q+4qd . Due to Corollary 8, if there exists
a component C in G[V1] containing a vertex u ∈ V (G) that is saturated in µ, such that
µ(u) /∈ C, then C is not a component in G[V (µ4η)]. This leads to the following definition.
A component C in G[V1] is called a colored-component, if for every vertex v ∈ C, we have
that µ(v) ∈ C. Thus, we get the following lemma.

I Lemma 9. Let G be a graph and f : V (G) → {0, 1} be a good function. Then, every
component C of G[V (µ4η)] is also a component of G[V1] and further it is a colored-component.

Let (G, f) be a pair such that G is the input graph and f is a good coloring function
on V (G). We call such (G, f) as a colored instance.

In light of Corollary 8, to find µ4η, in Phase II, we color the edges of G[V1] in order to
identify the components of the graph that only contain edges of µ4η. Let G1 = G[V1] and
G′ = G1[V (µ4η)].

5 Henceforth, we will use the shortened form w.p. for “with probability”.



S. Gupta, P. Jain, S. Roy, S. Saurabh, and M. Zehavi 24:11

Phase II: Edge Separation. We first define a notion of edge-colored instance.

I Definition 10. Let f : V (G)→ {0, 1} and g : E(G)→ {Red,Green,Blue} be two functions.
An instance (G, f, g) is called an edge-colored instance if the following properties are satisfied.
1. (G, f) is a colored instance.
2. Every edge in µ4η is colored Red.
3. Every edge in E(G′) \(µ4η) is colored Green.
4. Every edge in E(G) \ E(G1) is colored Blue.

Given a colored instance (G, f), we select a function g, as explained below, such that
(G, f, g) becomes an edge-colored instance with high probability.

Let g be a function that colors each edge of the subgraph G1 independently with
colors Red or Green with probability 1/2 each. Furthermore, g colors every edge in
E(G) \ E(G1) with Blue.

The following properties hold for the graph G1 that is colored using the function g:

Every edge in µ4η is colored Red with probability at least 1
2q .

Every edge in E(G′) \(µ4η) is colored Green with probability at least 1
22qd , because

|V (µ4η)| ≤ 2q and d is the maximum degree of a vertex in the graph G, so |E(G′)| ≤ 2qd.
Every edge in E(G) \ E(G1) has been colored Blue w.p. 1.

For i ∈ {Red,Green,Blue}, let Ei denotes the set of edges of the graph G that are colored
i using the function g. Then, due to the above mentioned coloring properties of the graph
G1, we have the following result.

I Lemma 11. Let (G, f) be a colored instance. Furthermore, let G′, ERed, EGreen, and EBlue
be as defined above. Then, w.p. at least 1

2q+2qd , µ4η ⊆ ERed, E(G′) \(µ4η) ⊆ EGreen, and
E(G) \ E(G1) ⊆ EBlue. Thus, (G, f, g) is an edge-colored instance w.p. at least 1

2q+2qd .

Note that the edges in µ4η form vertex-disjoint maximal µ-alternating paths/cycles. A
component may have several µ-alternating paths and cycles. Let C be a colored-component.
In what follows, we provide conditions such that if C satisfies either of them, then they do
not belong to G[V (µ4η)]. Such a colored-component is called malformed.
1. If the set of Red edges in C do not form vertex disjoint maximal µ-alternating paths or

cycles, then the component does not belong to G[V (µ4η)].
2. Furthermore, due to our assumption on the hypothetical solution η, if the number of Red

edges in C that are not in µ is at most the number of Red edges in C that are in µ, then
C does not belong to G[V (µ4η)].

3. If C does not have any Red edge, then it does not belong to G[V (µ4η)].

A component C in G1 that is not malformed is called an edge-colored-component
(edge-colored-comp).

The next observation follows from the properties of an edge-colored component.

I Observation 1. Let (G, f, g) be an edge-colored instance. Then, for every edge-colored-
comp C of G1, the following holds: (a) The set of Red colored edges form a collection of
µ-alternating path/cycle; and (b) every vertex in C is incident to at least one Red edge.
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Let Cecc be the set of components of G1 that are edge-colored-comp. In light of Obser-
vation 1, our goal is reduced to finding a family of components, C , in Cecc that contain
the edges of µ4η. Indeed, to obtain a matching of size at least |µ|+ t, we need to choose
t′ ≤ t components of G[V1] that have µ-augmenting paths (a µ-alternating path starting and
ending with edges not in µ). However, choosing t′ components arbitrarily might lead to a
large number of blocking edges in the solution matching. Thus, to choose the components
appropriately, we move to Phase III. In particular we show that if (G, f, g) is an edge-colored
instance, then we can solve the problem in polynomial time.

Phase III: Size-Fitting with respect to g. Let (G,L, µ, k, q, t) be an instance to LS-ASM
and η be a hypothetical solution to the problem that satisfies the condition in Lemma 5.
Further, let (G, f, g) be an edge-colored instance and Cecc be the set of components of G1
that are edge-colored-comp.

We reduce our problem to Two-Dimensional Knapsack (2D-KP), and after that use
an algorithm for 2D-KP, described in Proposition 2, as a subroutine.

Two-Dimensional Knapsack (2D-KP)
Input: A set of tuples, X = {(ai, bi, pi) ∈ N3 : i ∈ [n]}, and non-negative integers
c1, c2 and p.
Question: Does there exist a set Z ⊆ [n] such that

∑
i∈Z ai ≤ c1,

∑
i∈Z bi ≤ c2, and∑

i∈Z pi ≥ p?

I Proposition 2. [17] There exists an algorithm A that given an instance (X , c1, c2, p) of
2D-KP, in time O(nc1c2), outputs a solution if it is a Yes-instance of 2D-KP; otherwise A
outputs “no”.

Construction 2D-Knapsack. We construct an instance of 2D-KP as follows. Let C1, . . . , C`
be the components in Cecc. Intuitively, we construct a family of tuples X = {(ki, qi, ti) : i ∈ [`]}
such that ki denotes the number of blocking edges that we encounter if we add edges that
are not in µ but are present in µ-alternating paths/cycles in Ci to our solution. Similarly, qi
and ti denote the number of edges in the symmetric difference and the increase in the size of
the matching due to this alternation operation. By our choice of the components in Cecc all
these values are positive integers. Indeed, this is why we selected a hypothetical solution
with an additional property. Next, we describe the construction of an instance of 2D-KP.

For each i ∈ [`], let qi be the number of Red colored edges in Ci and ti = qi − 2|µi|
where µi denotes the edges of µ in Ci. Next, to compute ki, for each i ∈ [`], we construct
a matching ξi as follows. We add all the Red colored edges in Ci that are not in µ to ξi.
Next, we make another matching Γi, that has all the edges in ξi, and additionally, we add
all the edges in µ to Γi whose both endpoints are outside the components in Cecc, and at
least one of the endpoints is a neighbor of a vertex in Ci. Clearly, Γi is a matching in the
graph G. To ease notation, we let Gi denote the graph G[V (Γi) ∪ V (Ci) ∪NG(V (Ci))]. We
set ki as the number of blocking edges with respect to Γi in the graph Gi. Basically, the
graph Gi contains all the vertices in Ci, their neighbors in border, the µ-partners of these
border vertices in bordermates, and the neighbors of Ci which are unsaturated in µ. That is,
the number of blocking edges (with respect to Γi) incident on the vertices in the set V (ξi) is
ki in Gi. To see this note that there is no blocking edge with both endpoints in V (Γi \ ξi)
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(Proposition 1). The only reason to define Γi is to define the value of ki in a clean fashion.
We next state a simple lemma that shows that no blocking edge is counted twice.

I Lemma 12 (Locally Pairwise Disjoint Blocking Edges). Let (G,L, µ, k, q, t) be an instance
of LS-ASM and (G, f, g) be an edge-colored instance. Further, let Ci, Cj ∈ Cecc, i 6= j, and
for ` ∈ {i, j}, B` denote the set of blocking edges with respect to Γ` in G[V (Γ`) ∪ V (C`) ∪
N(V (C`))]. Then, Bi ∩Bj = ∅.

Proof. Due to the construction of the matching Γi, for all the blocking edges in Bi, at least
one of its endpoints is in Ci. Similarly, for all the blocking edges in Bj , at least one of its
endpoints is in Cj . Since Ci are Cj are distinct components in Cecc, we infer Bi∩Bj = ∅. J

Let X = {(ki, qi, ti) : i ∈ [`]}. This completes the construction of an instance (X , k, q, t)
of 2D-KP. We invoke the algorithm A given in Proposition 2 on the instance (X , k, q, t)
of 2D-KP. If A returns a set Z, then we return “yes”. Otherwise, we report failure of the
algorithm. It is relatively straightforward to create the solution η̂ when the answer is “yes”.
Next, we prove the correctness of Phase III.

I Lemma 13. Let (G, f, g) be an edge-colored instance. Then, (X , k, q, t) is a yes-instance
of 2D-KP.

Proof. Since (G, f, g) is an edge-colored instance, due to the definition of edge-colored
instance (Definition 10), (G, f) is a colored-instance. Thus, due to the definition of a
colored-instance and Lemma 9, every component in G[V (µ4η)] is also a component in G1.

Clearly, for every component C in G[V (µ4η)], if a vertex u ∈ C, then µ(u) ∈ C.
Therefore, all the components in G[V (µ4η)] are colored component. Next, we note that due
to Definition 10, all the edges in the set µ4η are colored Red. Thus, for every component C in
G[V (µ4η)], Red colored edges in C form vertex disjoint maximal µ-alternating paths/cycles.
Further, every component C in G[V (µ4η)] has at least one Red edge. Also, due to our
choice of η, the number of Red edges in C, which are not in µ, are less than the one that are
in µ. Therefore, all the components in G[V (µ4η)] are edge-colored-comp. Without loss of
generality, let C1, . . . , Cˆ̀ be the components in Cecc that are also in G[V (µ4η)]. Let us note
that Cecc may contain several other components. Let S = {i ∈ [ˆ̀] : (ki, qi, ti) ∈ X}. We claim
that S is a solution to (X , k, q, t).

Due to the construction of the instance (X , k, q, t), and the facts that η is a solution to
(G,L, µ, k, q, t) and (G, f, g) is an edge-colored instance, clearly,

∑
i∈S qi ≤ q and

∑
i∈S ti ≥ t.

We next show that
∑
i∈S ki ≤ k. Recall the definition of ξi and Γi. We show that every

blocking edge with respect to Γi in the graph Gi is also a blocking edge with respect to
η in the graph G. Let uv be a blocking edge with respect to Γi in the graph Gi. Then,
v �u Γi(u) and u �v Γi(v). Due to Proposition 1 and the definition of the matching Γi, at
least one of the endpoint of the edge uv is in the component Ci. Without loss of generality,
let u ∈ V (Ci). Since Ci is also a component in G[V (µ4η)], we can infer that η(u) = Γi(u).
If the vertex v is also in the component Ci, then using the same argument as above, we know
that η(v) = Γi(v). Thus, uv is also a blocking edge with respect η in the graph G. Suppose
that v /∈ V (Ci). Then, since v ∈ V (Γi) ∪ V (Ci), Γi(v) = µ(v). Since Ci is a component
in G[V (µ4η)] and u ∈ V (Ci) but v /∈ Ci, we can infer that η(v) = µ(v). Since u and v

have same matching partners in both the matchings η and Γi, we can infer that uv is also a
blocking edge with respect η in the graph G. Since ki is the the number of blocking edges
with respect to Γi, we infer

∑
i∈S ki ≤ k. Hence, (X , k, q, t) is a Yes-instance of 2D-KP. J

I Lemma 14. Suppose that (χ, k, q, t) is a Yes-instance of 2D-KP. Then, (G,L, µ, k, q, t) is
a Yes-instance of LS-ASM.
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Proof. Suppose that the algorithm A in Proposition 2 returns the set Z. Given the set
Z, we obtain the matching η̃ as follows. Let Z(C ) denotes the family of components in
Cecc corresponding to the indices in Z. Formally, Z(C ) = {Ci ∈ Cecc : i ∈ Z}. For each
component C ∈ Z(C ), we add all the Red edges in C that are not in µ, to η̃. That is,
η̃ = ∪i∈Zξi. Additionally, we add all the edges in µ to η̃ whose both endpoints are outside
the components in Z(C ). We next prove that η̃ is a solution to (G,L, µ, k, q, t).

B Claim 15. η̃ is a matching.

Proof. Towards the contradiction, suppose that uv, uw ∈ η̃, that is, there exists a pair of
edges in η̃ that shares an endpoint. Due to Observation 1, in every component of Z(C ),
the Red edges form µ-alternating path/cycle. Therefore, uv and uw both cannot be in a
component of Z(C ). Suppose that uv is in a component C in Z(C ), but uw does not belong
to C. Then, due to the construction of η̃, uw ∈ µ. This contradicts Lemma 9, as C is a
component in Cecc. If uv and uw are outside the components in Z(C ), then due to the
construction of η̃, uv and uw both are in µ. This contradicts that µ is a matching. C

B Claim 16. |µ4η̃| ≤ q and |η̃| ≥ |µ|+ t.

Proof. Let C be a component in Z(C ). Let ERed(C) denote the set of Red edges in the
component C. For each component Ci ∈ Z(C ), let µi = µ ∩ERed(Ci), that is, µi is the set
of Red edges in Ci that are in µ. Let µ̃ be the set of edges in µ that does not belong to any
component in Z(C ). Thus, µ = ]Ci∈Z(C )µi ] µ̃. Due to the construction of η̃, we have that
η̃ = ]Ci∈Z(C )(ERed(Ci) \ µi) ] µ̃. Thus, µ4η̃ = ]Ci∈Z(C )ERed(Ci). Hence,

|µ4η̃| =
∑

Ci∈Z(C )

|ERed(Ci)| =
∑
i∈Z

qi

as qi = |ERed(Ci)| for every component Ci ∈ Cecc. Since S is a solution to (X , k, q, t),∑
i∈Z qi ≤ q. Therefore, |µ4η̃| ≤ q. Next, we show that |η̃| ≥ |µ| + t. Due to the

construction of η̃, we know that

|η̃| = |µ̃|+
∑

Ci∈Z(C )

|ERed(Ci) \ µi| = |µ̃|+
∑

Ci∈Z(C )

(qi − |µi|) = |µ̃|+
∑

Ci∈Z(C )

(ti + |µi|)

as ti = qi − 2|µi|. Since
∑
i∈Z ti ≥ t, we obtained that |η̃| ≥ |µ|+ t. C

B Claim 17. There are at most k blocking edges with respect to η̃.

Proof. Due to the construction of the matching η̃ and Proposition 1, we know that if uv is a
blocking edge with respect to η̃, then at least one of its endpoint, that is vertex u or v, is in
Ci, for some Ci ∈ Z(C ). Without loss of generality, let the vertex u is in the component
Ci. Then, due to the definition of the matching Γi and the construction of the matching
η̃, we have that η̃(u) = Γi(u). Now, if v is also in the component Ci, then using the same
argument η̃(v) = Γi(v). Suppose that v is not in the component Ci, then its µ-partner,
that is µ(v) is also not present in Cecc due the the definition of colored-components. Thus,
η̃(v) = Γi(v) = µ(v). Since the matching partners of u and v are same in both the matchings
η and Γi, we have uv is also a blocking edge with respect to matching Γi. Thus, every
blocking edge with respect to η̃ is also a blocking edge with respect to Γi, for some Ci ∈ Z(C ).
Recall that ki is the number of blocking edges with respect to Γi in Gi. Therefore, the
number of blocking edges with respect to η̃ is at most

∑
i∈Z ki ≤ k. C

Due to Claims 15, 16, and 17, we can infer that η̃ is a solution to (G,L, µ, k, q, t). J
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Due to Lemmas 7 and 11, we obtain a polynomial-time randomized algorithm for LS-ASM
which succeeds with probability 1

23q+6qd . Therefore, by repeating the algorithm independently
23q+6dq times, where n is the number of vertices in the graph, we obtain the following result:

I Theorem 18. There exists a randomized algorithm that given an instance of LS-ASM
runs in 23q+6dqnO(1) time, where n is the number of vertices in the given graph, and either
reports a failure or outputs “yes”. Moreover, if the algorithm is given a Yes-instance of the
problem, then it returns “yes” with a constant probability.

Proof. Let (G,L, µ, k, q, t) be an instance to LS-ASM and η be a hypothetical solution to
the problem. If (G,L, µ, k, q, t) is a Yes-instance then by Lemmas 7 and 11, we can get
an edge-colored instance, (G, f, g), w.p. at least 1

23q+6qd . Given an edge-colored instance
(G, f, g), we apply Construction 2D-Knapsack and construct an instance of 2D-KP with
a family of tuples X = {(ki, qi, ti) : i ∈ [`]}. Here, (X , k, q, t) is a yes-instance of 2D-KP.
We can solve the instance in polynomial time using Proposition 2. Correctness of this step
follows from Lemmas 13 and 14. Thus, if (G,L, µ, k, q, t) is a Yes-instance, then we return
that it is a Yes-instance with probability at least 1

23q+6qd . Indeed, if (G,L, µ, k, q, t) is a
No-instance, then we return that it is a No-instance with probability 1. Thus, to boast the
success probability to a constant, we repeat the algorithm independently 23q+6dq(logn)O(1)

times, where n is the number of vertices in G. Indeed, the success probability is at least

1−
(

1− 1
23q+6qd

)23q+6dq(logn)O(1)

≥ 1− 1
nO(1) .

This concludes the proof. J

The derandomization of the algorithm is in the full version.

5 In Conclusion

In this paper, we initiated the study of the computational complexity of the trade-off between
size and stability through the lenses of both multivariate analysis and local search. Since
ASM is NP-hard for a graph in which every vertex has degree at most three, the natural
question that arises here is: Is ASM polynomial-time solvable for the graph in which every
vertex has degree at most two? It is worth mentioning that there is a fairly straightforward
dynamic programming algorithm that solves this question in polynomial time. The basis
idea is as follows. This graph, quite clearly, is a disjoint union of paths and cycles.

Consider a hypothetical solution η in the path or cycle Xn in G. Suppose that we know
the submatching of η, call it η′, that is contained in a subpath of Xn as well as the subset
of blocking edges with respect to η that are in this subpath. Then, we can extend η′ to η
by keeping all the necessary partial solutions. We can briefly sketch this idea as follows.
Suppose that ηi is a matching in the subpath Pi = (1, . . . , i). We want to extend ηi for the
subpath Pi+1. If vi is saturated in ηi, then we cannot add edge vivi+1 to ηi+1 and we can
easily check if it is a blocking edge with respect to ηi+1 in Pi+1. If vi is unsaturated in ηi,
then we have two possibilities: edge vivi+1 is and is not in ηi+1. If it is, then we can check
if vivi−1 is a blocking edge with respect to ηi+1 in Pi+1. Otherwise, vivi+1 is a blocking
edge with respect to ηi+1 in Pi+1. All these possibilities can be taken care by appropriately
defining the table entries. In the table, however, we do not need to store the whole matching.
We only need to remember the matching partner of vertices, such as vi−1, as that will help
in checking if vivi+1 is a blocking edge. We can similarly argue for a cycle in G.
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Next, we would like to point out that our hardness results, that is, Theorems 1, 2, and
3 hold even when the preference lists of the vertices in each side of the partition respect a
master ordering of vertices i.e., the relative ordering of the vertices in a preference list is
same as that of a fixed ordering of all the vertices on the other side. We discuss it in details
in the full version of the paper.

Future work. We conclude the paper with a few directions for further research.
In certain scenarios, the “satisfaction” of the agents (there exist several measures such as
egalitarian, sex-equal, balance) might be of importance. Then, it might be of interest to
study the tradeoff between t and k, tradeoff between egalitarian/sex-equal/balance cost
and k.
The formulation of ASM can be generalized to the case where the input contains a utility
function on the edges and the objective is to maximize the value of a solution matching
subject to this function.
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